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Abstract

We provide a general Doob-Meyer decomposition for g-supermartingale systems, which
does not require any right-continuity on the system, nor that the filtration is quasi
left-continuous. In particular, it generalizes the Doob-Meyer decomposition of Mertens
[36] for classical supermartingales, as well as Peng’s [41] version for right-continuous
g-supermartingales. As examples of application, we prove an optional decomposition
theorem for g-supermartingale systems, and also obtain a general version of the
well-known dual formulation for BSDEs with constraint on the gains-process, using
very simple arguments.
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1 Introduction

The Doob-Meyer decomposition is one of the fundamental result of the general theory
of processes, in particular when applied to the theory of optimal control, see El Karoui
[17]. Recently, it has been pointed out by Peng [41] that it also holds in the semi-linear
context of the so-called g-expectations. Namely, let (Ω,F ,P) be a probability space
equipped with a d-dimensional Brownian motion W , as well as the Brownian filtration
F = (Ft)t≥0, let g : (t, ω, y, z) ∈ R+ × Ω×R×Rd −→ R be some function, progressively
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Doob-Meyer-Mertens decomposition for g-supermartingale

measurable in (t, ω) and Lipschitz in (y, z), and ξ ∈ L2(Fτ ) for some stopping time τ . We
define Eg·,τ [ξ] := Y· where (Y,Z) solves the backward stochastic differential equation

−dYt = gt(Yt, Zt)dt− Zt · dWt, on [0, τ ],

with terminal condition Yτ = ξ. Then, an optional process X is said to be a (strong) Eg-
supermartingale if for all stopping times σ ≤ τ we have Xτ ∈ L2(Fτ ) and Xσ ≥ Egσ,τ [Xτ ]

almost surely. When X is right-continuous, it admits a unique decomposition of the form

−dXt = gt(Xt, Z
X
t )dt− ZXt · dWt + dAXt ,

in which ZX is a square integrable and predictable process, and AX is non-decreasing
predictable. See [41] and [10, 26, 33]. In particular, when g ≡ 0, this is the classical
Doob-Meyer decomposition in a Brownian filtration framework.

As fundamental as its classical version, this result was used by many authors in
various contexts : backward stochastic differential equation with constraints [2, 30, 42],
minimal supersolutions under non-classical conditions on the driver [15, 25], minimal
supersolutions under volatility uncertainty [8, 16, 34, 35, 43, 45, 48, 49], backward
stochastic differential equations with weak terminal conditions [3], etc.

However, it is limited to right-continuous Eg-supermartingales, while the right-
continuity might be very difficult to prove, if even correct. The method generally
used by the authors is then to work with the right-limit process, which is automatically
right-continuous, but they then face important difficulties in trying to prove that it still
shares the dynamic programming principle of the original process. This was sometimes
overcome to the price of stringent assumptions, which are often too restrictive, in
particular in the context of singular optimal control problems.

In the classical case, g ≡ 0, it is well known that we can avoid these technical difficul-
ties by appealing to the version of the Doob-Meyer decomposition for supermartingales
with only right and left limits, see El Karoui [17]. It has been established by Mertens
[36], Dellacherie and Meyer [12, Vol. II, Appendice 1] provides an alternative proof.
Unfortunately, such a result has not been available so far in the semi-linear context.

This paper fills this gap1 and provides a version à la Mertens of the Doob-Meyer
decomposition of Eg-supermartingales. By following the arguments of Mertens [36],
we first show that a supermartingale associated to a general family of semi-linear
(non-expansive) and time consistent expectation operators can be corrected into a right-
continuous one by subtracting the sum of the previous jumps on the right. Applying
this result to the g-expectation context, together with the decomposition of [41], we
then obtain a decomposition for the original Eg-supermartingale, even when it is not
right-continuous. The same arguments apply to g-expectations defined on Lp, p > 1, and
more general filtrations than the Brownian one considered in [41], in particular we shall
not assume that the filtration is quasi left-continuous. This is our Theorem 3.1 below.
The only additional difficulty is that the decomposition for right-continuous processes
has to be extended first. This is done by using the fact that it can naturally be obtained
by considering the BSDE reflected from below on the Eg-supermartingale and by using
recent technical extensions of the seminal paper El Karoui et al. [19], see Proposition
3.1 below. Then, using classical results of the general theory of stochastic processes, we

1After completing this manuscript, we discovered [22] that was issued at the same time. In this paper, the
authors prove the existence of reflected BSDEs for barriers with only right-limits, from which they can infer a
similar Doob-Meyer-Mertens decomposition as the one proved in the current paper. Their decomposition is
less general, in terms of integrability conditions and assumptions on the filtration. On the other hand, we do
not provide any comparable existence result for reflected BSDEs with only right-limited barriers (see however
our companion paper [4], where a general existence result for reflected BSDEs with càdlàg obstacles is given).
Also, our technique of proof is quite different.
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can even replace the notion of supermartingale by that of supermartingale systems, for
which an optional aggregation process can be easily found, see El Karoui [17] for the
classical case g ≡ 0.

These key statements aim not only at extending already known results to much more
general contexts, but also at simplifying many difficult arguments recently encountered
in the literature. We provide two illustrative examples. First, we prove a general optional
decomposition theorem for g-supermartingales. To the best of our knowledge, such a
decomposition was not obtained before. Then, we show how a general duality for the
minimal super-solution of a backward stochastic differential equation with constraint
on the gains-process can be obtained. This is an old problem, but we obtain it in a
framework that could not be considered in the literature before, compare with [2, 11].
In both cases, these a-priori difficult results turn out to be easy consequences of our
main Theorem 3.1, whenever right continuity per se is irrelevant.

Notations: (i) In this paper, (Ω,F ,P) is a complete probability space, endowed with a
filtration F = (Ft)t≥0 satisfying the usual conditions. Note that we do not assume that
the filtration is quasi left-continuous.

(ii) We fix a time horizon T > 0 throughout the paper, and denote by T the set of
stopping times almost surely less than or equal or T . We shall also make use of the set
Tσ of stopping times τ ∈ T a.s. greater than or equal to σ ∈ T . For ease of notations, let
us say that (σ, τ) ∈ T2 if σ ∈ T and τ ∈ Tσ.

(iii) Let σ ∈ T , conditional expectations or probabilities given Fσ are simply denoted
by Eσ and Pσ. Inequalities between random variable are taken in the a.s. sense unless
something else is specified. If Q is another probability measure on (Ω,F), which is
equivalent to P, we will write Q ∼ P.

(iv) For any sub-σ-field G of F , L0(G) denotes the set of random variables on (Ω,F)

which are in addition G-measurable. Similarly, for any p ∈ (0,∞], and any probability
measure Q on (Ω,F), we let Lp(G,Q) be the collection of real-valued G-measurable
random variables with absolute value admitting a p-moment under Q. For ease of
notations, we denote Lp(G) := Lp(G,P) and also Lp := Lp(F). The spaces Lp(G) and Lp

are endowed with their usual norm, and we identify two random variables if they are
equal almost surely.

(v) For p ∈ (0,∞], we denote by Xp (resp. Xp
r , Xp

`r) the collection of all optional
processes X such that Xτ lies in Lp(Fτ ) for all τ ∈ T (resp. and such that X admits
right-limits, and such that X admits right- and left-limits). We denote by Sp the set of
all càdlàg, F-adapted processes Y , such that sup0≤t≤T Yt ∈ Lp, and by Hp the set of all
predictable d-dimensional processes Z such that

E

(∫ T

0

|Zs|2ds

) p
2

 < +∞.

Finally, we denote by Ap the set of all non-decreasing predictable processes A such that
A0 = 0 and AT ∈ Lp.

(vi) For any d ∈ N\{0}, we will denote by x ·y the usual inner product of two elements
(x, y) ∈ Rd ×Rd. We will also abuse notation and let |x| denote the Euclidean norm of
any x ∈ Rd, as well the associated operator norm of any d× d matrix with real entries.

2 Stability of E-supermatingales under Mertens’s re-gularization

In this section, we provide an abstract regularization result for supermartingales
associated to a family of semi-linear non-expansive and time consistent conditional
expectation operators (see below for the exact meaning we give to this, for the moment,
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vague appellation). It states that we can always modify a supermartingale with right-
limits so as to obtain a right-continuous process which is still a supermatingale. This
was the starting point of Mertens’s proof of the Doob-Meyer decomposition theorem
for supermatingales (in the classical sense) with only right-limits. Our proof actually
mimics the one of Mertens [36]. This abstract formulation has the merit to point out the
key ingredients that are required for it to go through, in a non-linear context. It will
then be applied to g-expectation operators, in the terminology of Peng [40], to obtain
our Doob-Meyer type decomposition, which is the main result of this paper.

2.1 Semi-linear time consistent expectation operators

Let p ∈ (1,+∞]. Throughout the paper, q will denote the conjugate of p (i.e. p−1 +

q−1 = 1). Then, we define a non-linear conditional expectation operator as a family
E = {Eσ,τ , (σ, τ) ∈ T2} of maps

Eσ,τ : Lp(Fτ ) 7−→ Lp(Fσ), for (σ, τ) ∈ T2.

One needs it to satisfy certain structural and regularity properties. Let us start with the
notions related to time consistency.

Assumption (Tc). Fix (τi)i≤3 ⊂ T such that τ1 ∨ τ2 ≤ τ3. Then,

(a) Eτ1,τ1 is the identity.

(b) Eτ1,τ2 ◦ Eτ2,τ3 = Eτ1,τ3 , if τ1 ≤ τ2.

(c) Eτ1,τ3 [ξ] = Eτ2,τ3 [ξ] a.s. on {τ1 = τ2}, for all ξ ∈ Lp(Fτ3).

We also need some regularity with respect to monotone convergence.

Assumption (S). Fix (σ, τ) ∈ T2.

(a) Fix s ∈ [0, T ) and ξ ∈ L0(Fs). Let (sn)n≥1 ⊂ [s, T ] decrease to s and (ξn)n≥1 be such
that ξn ∈ Lp(Fsn) for each n, (ξ−n )n≥1 is bounded in Lp, and ξn −→ ξ a.s. as n −→∞,
then

lim sup
n→∞

Es,sn [ξn] ≥ ξ.

(b) Let (σn)n≥1 ⊂ T be a decreasing sequence which converges a.s. to σ and s.t. σn ≤ τ
a.s. for all n ≥ 1. Fix ξ ∈ Lp(Fτ ). Then,

lim sup
n→∞

Eσn,τ [ξ] ≥ Eσ,τ [ξ].

(c) Let (ξn)n≥1 ⊂ Lp(Fτ ) be a non-decreasing sequence which converges a.s. to ξ ∈
Lp(Fτ ). Then,

lim sup
n→∞

Eσ,τ [ξn] ≥ Eσ,τ [ξ].

The idea that E should be semi-linear and non-expansive is encoded in the following.
Let Q1, Q2 be two probability measures on (Ω,F) and τ ∈ T , we define the concate-

nated probability measure Q1 ⊗τ Q2 on (Ω,F) by

EQ
1⊗τQ2[

ξ
]

:= EQ
1[
EQ

2[
ξ
∣∣Fτ ]], for all bounded measurable variable ξ.

Assumption (Sld). There is a family Q of P-equivalent probability measures such that:

• E

[∣∣∣dQdP ∣∣∣q +
∣∣∣dQdP ∣∣∣1−q] ≤ L for all Q ∈ Q, for some L > 1.

• Q1 ⊗τ Q2 ∈ Q, for all Q1,Q2 ∈ Q and τ ∈ T .
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• For all (σ, τ) ∈ T2 and (ξ, ξ′) ∈ Lp(Fτ ) × Lp(Fτ ) there exists Q ∈ Q and a [L−1, 1]-
valued β ∈ L0(F) satisfying

Eσ,τ [ξ] ≤ Eσ,τ [ξ′] + EQσ [β(ξ − ξ′)].

Let us comment this last condition. Assume that (Q, β) is the same for (ξ, ξ′) and
(ξ′, ξ). Then, inverting the roles of ξ and ξ′, it indeed says that

Eσ,τ [ξ]− Eσ,τ [ξ′] = EQσ [β(ξ − ξ′)].

Otherwise stated, in this case, the operator E can be linearized at each point. However,
the linearization, namely (Q, β), depends in general on (ξ, ξ′), σ and τ , so that it is not a
linear operator. Thus the label semi-linear.

In any case, it is non-expansive in the sense that Eσ,τ [ξ]− Eσ,τ [ξ′] ≤ EQσ [|ξ − ξ′|], since
β ≤ 1. Moreover, Eσ,τ [ξ] ≤ Eσ,τ [ξ′] whenever ξ ≤ ξ′ a.s., and with strict inequality on
{Pσ[ξ < ξ′] > 0}, since β > 0. It is therefore monotone.

Remark 2.1. For later use, note that (Sld) implies that Eσ,τ [ξ′+ξ] ≤ Eσ,τ [ξ′]+ξ whenever
(ξ′, ξ) ∈ Lp(Fτ )×Lp(Fσ) and ξ ≥ 0 a.s. This follows from the fact that the corresponding
β takes values in [0, 1].

2.2 Stability by regularization on the right

Before stating the main result of this section, one needs to define the notion of
E-supermartingales.

We say thatX is a E-supermatingale ifX ∈ Xp andXσ ≥ Eσ,τ [Xτ ] a.s. for all (σ, τ) ∈ T2.
We say that it is a local E-supermatingale if there exists a non-decreasing sequence of
stopping times (ϑn)n≥1 s.t. Xσ∧ϑn ≥ Eσ∧ϑn,τ∧ϑn [Xτ∧ϑn ] for all (σ, τ) ∈ T2 and n ≥ 1, and
ϑn ↑ ∞ a.s. as n −→∞.

Lemma 2.1. Let Assumptions (Tc), (S) and (Sld) hold. Let X ∈ Xp
r be a E-supermartin-

gale such that (X−t )t≤T is bounded in Lp. Define the process I by

It :=
∑
s<t

(Xs −Xs+), t ≤ T. (2.1)

Then, I is non-decreasing, left-continuous and belongs to X
1
p . Moreover, X := X + I is a

right-continuous local E-supermatingale.

Proof. We split the proof in several steps. As already mentioned, we basically only check
that the arguments of Mertens [36] go through under our assumptions.
(a) X is right-continuous. Indeed, for every t ∈ [0, T ), one has

Xt+ = Xt+ + It+ = Xt+ + It + (Xt −Xt+) = Xt + It.

(b) Jumps from the right are non-positive, i.e. Xt ≥ Xt+ for each t ∈ [0, T ), so that I is
non-decreasing, and Xσ+ ≥ Eσ,τ [Xτ ] for all (σ, τ) ∈ T2 with σ < τ .

By the E-supermartingale property, Xt ≥ Et,t+h[Xt+h] for any h ∈ (0, T − t] and t < T .
Since Xt+h −→ Xt+ as h ↓ 0 and (X−t+h)h is bounded in Lp, it follows from (S)(a) that
Xt ≥ Xt+. Similarly, Xσ+ ≥ Eσ,τ [Xτ ] as a consequence of (S)(b).
(c) Let k ∈ N, ε > 0, and (σi)i≤k ⊂ T be the non-decreasing sequence of stopping times
which exhausts the first k jumps from the right of X of size bigger than ε (recall that X
admits right-limits). Denote

Iε,kt :=

k∑
i=1

(Xσi −Xσi+)1σi<t, and X
ε,k

t := Xt + Iε,kt , (2.2)

then X
ε,k

is still a E-supermartingale.

EJP 21 (2016), paper 36.
Page 5/21

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4527
http://www.imstat.org/ejp/


Doob-Meyer-Mertens decomposition for g-supermartingale

Note that we can always assume that there are a.s. at least k jumps, as we can always
add jumps of size 0 at T . We shall use the conventions σ0 = 0 and σk+1 = T . The proof
proceeds by induction and requires several steps. For ease of notation, we omit the

superscript (ε, k) in (X
ε,k
, Iε,k) and write (X, I) in this part (that is in item (c) only).

(i) Fix i ≤ k and τ1, τ2 ∈ T such that σi ≤ τ1 ≤ τ2 ≤ σi+1 a.s. Let us show that

Xτ1 ≥ Eτ1,τ2 [Xτ2 ].

Indeed, since X ≥ X+ and I ≥ 0 by (b), Remark 2.1 implies that

Eτ1,τ2 [Xτ2 ] = Eτ1,τ2
[
Xτ2 + Iσi + (Xσi −Xσi+)1{σi<τ2}

]
≤ Eτ1,τ2 [Xτ2 ] + Iσi + (Xσi −Xσi+)1{σi<τ2}.

On the other hand, it follows from (b) that Eτ1,τ2 [Xτ2 ] ≤ Xτ1+. Hence,

Eτ1,τ2 [Xτ2 ] ≤ Xτ1+ + Iσi + (Xσi −Xσi+)1{σi<τ2} = Xτ1 + Iτ1 = Xτ1 .

(ii) In view of (Tc)(b), the result of (i) implies in particular that Xτ1 ≥ Eτ1,τ2 [Xτ2 ] for
any (τ1, τ2) ∈ T2 such that σi ≤ τ1 ≤ σi+1 and σj ≤ τ2 ≤ σj+1 a.s., for some i ≤ j ≤ k.

(iii) Given τ ∈ T , we next show by induction that

Xσi ≥ Eσi,τ [Xτ ] on {σi ≤ τ}, ∀ i ≤ k.

For i = k, this follows from (Tc)(c) and (i). Assume that it is true for 1 ≤ i+ 1 ≤ k. Then,
on {σi ≤ τ},

Xσi ≥ Eσi,τ∧σi+1

[
Xτ∧σi+1

]
= Eσi,τ∧σi+1

[
Xτ1τ≤σi+1

+Xσi+1
1τ>σi+1

]
.

But, by (a) and (c) of (Tc) and the induction hypothesis, we deduce immediately

Xτ1τ≤σi+1
= Eτ∧σi+1,τ

[
Xτ

]
1τ≤σi+1

and Xσi+1
1τ>σi+1

≥ Eτ∧σi+1,τ

[
Xτ

]
1τ>σi+1

.

It remains to appeal to (Sld) to deduce that Xσi ≥ Eσi,τ∧σi+1 ◦ Eτ∧σi+1,τ [Xτ ], on {σi ≤ τ},
and to conclude by (Tc)(b).

(iv) We are in position to conclude this step. Fix (τ1, τ2) ∈ T2. Set τ̃ i1 := (τ1 ∨ σi)∧ σi+1.
Then, (Tc)(c) implies that Eτ1,σi+1∧τ2 [Xτ2 ] = Eτ̃ i1,σi+1∧τ2 [Xσi+1∧τ2 ] on {σi ≤ τ1 ≤ σi+1}. But
it follows from (iii), and the same arguments as above, that

Eτ̃ i1,σi+1∧τ2
[
Xσi+1∧τ2

]
= Eτ̃ i1,σi+1∧τ2

[
Xτ21τ2≤σi+1 +Xσi+11τ2>σi+1

]
≥ Eτ̃ i1,σi+1∧τ2

[
Eτ2∧σi+1,τ2

[
Xτ2

]]
= Eτ̃ i1,τ2

[
Xτ2

]
.

Recalling the result of (i), we conclude that, on {σi ≤ τ1 ≤ σi+1},

Xτ1 ≥ Eτ1,σi+1∧τ2
[
Xσi+1∧τ2

]
≥ Eτ1,τ2

[
Xτ2

]
.

Since ∪ki=0{σi ≤ τ1 ≤ σi+1} = Ω, this concludes the proof of this step.
(d) We now provide a bound on Iε,kT defined by (2.2).

Let (σi)i≤k be as in (c) associated to the parameter (ε, k). We first prove by induction
that

Eσi,T [Iε,kT ] ≤ Iσi +Xσi + EQiσi [X−T ], i ≤ k + 1,

in which Qi ∈ Q. The result is true for i = k + 1, recall our convention σk+1 = T and
(Tc)(a). Let us assume that it holds for some i + 1 ≤ k + 1. Then, by (Tc)(a)-(b) and
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(Sld) (see also Remark 2.1) combined with (b),

Eσi,T
[
Iε,kT

]
= Eσi,σi+1 ◦ Eσi+1,T

[
Iε,kT

]
≤ Eσi,σi+1

[
Iε,kσi+1

+Xσi+1 + EQi+1
σi+1

[
X−T
]]

= Eσi,σi+1

[
Iε,kσi +Xσi −Xσi+ +Xσi+1 + EQi+1

σi+1
[X−T ]

]
≤ Iε,kσi +Xσi −Xσi+ + Eσi,σi+1

[
Xσi+1

]
+ EQ̃iσi

[
EQi+1
σi+1

[X−T ]
]

≤ Iε,kσi +Xσi + EQ̃iσi

[
EQi+1
σi+1

[X−T ]
]
,

in which Q̃i ∈ Q. Then, our induction claim follows for i by composing Q̃i and Qi+1 in an
obvious way. Recalling our convention σ0 = 0, this implies that E0,T [Iε,kT ] ≤ X0 +EQ0 [X−T ],
from which (Sld) provides the estimate

L−1EQ
[
Iε,kT

]
≤ E0,T

[
Iε,kT

]
− E0,T [0] ≤ X0 + EQ0 [X−T ]− E0,T [0],

in which Q ∼ P is such that EQ[|dP/dQ|q] ≤ L. Since p and q are conjugate, it remains
to use Hölder’s inequality to deduce that

E
[(
Iε,kT

) 1
p

]p
≤ CL

(
1 + |X0|+ E[(X−T )p]

1
p + |E0,T [0]|

)
, (2.3)

for some CL > 0 which only depends on L.
(e) We now extend the bound (2.3) to the general case.

Notice that the r.h.s. of (2.3) does not depend on ε nor k, so we can first send k to∞
and then ε to 0 and apply the monotone convergence theorem, to obtain that

E
[(
IT
) 1
p

]p
≤ CL

(
1 + |X0|+ E[(X−T )p]

1
p + |E0,T [0]|

)
.

(f) It remains to show that X := X + I is a local E-supermartingale.

Recall that I is defined in (2.1), and (Iε,k, X
ε,k

) are defined in (2.2). Let ϑn be the first
time when I ≥ n. Note that (ϑn)n≥1 is a.s. increasing and converges to∞, this follows

from (e). We know from (c) that X
ε,k

is a E-supermartingale. Hence, for (σ, τ) ∈ T2, we
have

X
ε,k

σ∧ϑn ≥ Eσ∧ϑn,τ∧ϑn
[
X
ε,k

τ∧ϑn

]
.

But X
ε,k

ϑ ↑ Xϑ a.s. for any stopping time ϑ, when one lets k first go to∞ and then ε to 0.
Since Xτ∧ϑn ∈ Lp(Fτ ), by definition of (ϑn)n≥1 and the fact that X ∈ Xp

r , (S)(c) implies
that

Xσ∧ϑn ≥ Eσ∧ϑn,τ∧ϑn
[
Xτ∧ϑn

]
,

which concludes the proof. 2

3 Doob-Meyer-Mertens decomposition of g-supermar-tingale sys-
tems

We now specialize to the context of g-expectations introduced by Peng [40] (notice
however that we consider a slightly more general version). The object is to provide
a Doob-Meyer-Mertens decomposition of g-supermartingale systems without càdlàg
conditions. This is our Theorem 3.1 below.

We assume that the space (Ω,F ,P) carries a d-dimensional Brownian motion W ,
adapted to the filtration F, which may be strictly larger than the natural (completed)
filtration of W . Recall that F satisfies the usual conditions.
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3.1 g-expectation and Doob-Meyer decomposition

Fix some p > 1. Let g : (ω, t, y, z) ∈ Ω× [0, T ]×R×Rd 7−→ gt(ω, y, z) ∈ R be such that
(gt(·, y, z))t≤T is F-progressively measurable for every (y, z) ∈ R×Rd and

|gt(ω, y, z)− gt(ω, y′, z′)| ≤ Lg(|y − y′|+ |z − z′|), (3.1)

∀ (y, z), (y′, z′) ∈ R×Rd, for dt× dP− a.e. (t, ω) ∈ [0, T ]× Ω,

for some constant number Lg > 0. We also assume that (gt(ω, 0, 0))t≤T satisfies the
following integrability condition

E

[∫ T

0

|gt(0, 0)|pdt

]
<∞. (3.2)

In the following, we shall most of the time omit the argument ω in g, for ease of notations.
Given (σ, τ) ∈ T2 and ξ ∈ Lp(Fτ ), we set Egσ,τ [ξ] := Yσ in which (Y, Z,N) is the unique

solution of

Yt = ξ +

∫ τ

t∧τ
gs(Ys, Zs)ds−

∫ τ

t∧τ
Zs · dWs −

∫ τ

t∧τ
dNs, t ≤ T, (3.3)

such that (Y, Z) ∈ Sp ×Hp and N is a càdlàg F-martingale orthogonal to W in the sense
that the bracket [W,N ] is null, P-a.s., and such that

E
[
[N ]

p
2

T

]
< +∞.

The wellposedness of this equation follows from [4, Thm 4.1], see also [31, Thm 2] and
[30] or [44, Prop. A.1] for the case p = 2. We also remind the reader that the introduction
of the orthogonal martingale N in the definition of the solution is necessary, since the
martingale predictable representation property may not hold with a general filtration F.
The map Eg is usually called the g-expectation operator.

We define Eg-supermartingales, also called g-supermatingales, as in the previous
section, for E = Eg, i.e. X is a Eg-supermatingale iff X ∈ Xp and Xσ ≥ Egσ,τ [Xτ ] a.s. for
all (σ, τ) ∈ T2. For càdlàg Eg-supermartingales, we have the following classical Doob-
Meyer decomposition, which is a consequence of the well-posedness of a corresponding
reflected backward stochastic differential equation. Its proof is provided in the Appendix
(see also Peng [41, Thm. 3.3] in the case of a Brownian filtration).2

Proposition 3.1. Let X ∈ Xp be a càdlàg Eg-supermartingale. Then there exists Z ∈ Hp,
a càdlàg process A ∈ Ap and a càdlàg martingale N , orthogonal to W , satisfying
E[[N ]

p/2
T ] <∞, such that

Xσ = Xτ +

∫ τ

σ

gs(Xs, Zs)ds+Aτ −Aσ −
∫ τ

σ

Zs · dWs −
∫ τ

σ

dNs,

for all (σ, τ) ∈ T2. Moreover, this decomposition is unique.

Proof. See Appendix A.1. 2

3.2 Time consistence and regularity of g-expectations

We now verify that the conditions of Lemma 2.1 apply to Eg.
Proposition 3.2. Assume that y 7−→ gt(ω, y, z) is non-increasing for all z ∈ R, for
dt× dP− a.e. (t, ω) ∈ [0, T ]× Ω. Then, Assumptions (Tc), (S) and (Sld) hold for Eg.

2 We emphasize that we work with a filtration which is not assumed to be quasi-left continuous, a case
which, as far as we know, has never been covered in the literature. The main technical results needed to
establish Proposition 3.1 are given in our companion paper [4].
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Proof. First, notice that since W is actually continuous, we not only have [W,N ] = 0, a.s.,
but also

〈W,N〉 = 〈W,N c〉 = 〈W,Nd〉 = 0, a.s.,

where N c (resp. Nd) is the continuous (resp. purely discontinuous) martingale part of
N . Then (Tc) follows from the definition of Eg and the uniqueness of a solution. The
stability properties (S)(b) and (c) follow from the path continuity of the Y component of
the solution of (3.3) and the standard estimates given in [4, Thm 2.1 and Thm 4.1], see
also [31, Prop. 3] for the case where the filtration is quasi left-continuous3.

The fact that (Sld) holds is a consequence of the usual linearization argument. Let
(Y,Z,N) and (Y ′, Z ′, N ′) be the solutions of (3.3) with terminal conditions ξ and ξ′. Then,
since g is uniformly Lipschitz continuous, there exist two processes λ and η, which are
F-progressively measurable, such that

gs(Ys, Zs)− gs(Y ′s , Z ′s) = λs (Ys − Y ′s ) + ηs · (Zs − Z ′s) , ds× dP− a.e.

These two processes are bounded by Lg for dt × dP − a.e. (t, ω) ∈ [0, T ] × Ω, as a
consequence of (3.1). Moreover, λ ≤ 0 since g is non-increasing in y.

Then, for any 0 ≤ t ≤ s ≤ T , let us define the following continuous, positive and
F-progressively measurable process

At,s := exp

(∫ s

t

λudu−
∫ s

t

ηu · dWu −
1

2

∫ s

t

|ηu|2du
)
.

By applying Itô’s formula, we deduce classically (see [31, Lem. 9]) that

Yσ − Y ′σ = Eσ [Aσ,τ (ξ − ξ′)] ,

which is nothing else but Assumption (Sld) by Girsanov’s theorem (recall that λ ≤ 0

and that λ and η are bounded by Lg, i.e. it suffices to consider Q as the collection of
measures with density with respect to P given by an exponential of Doléans-Dade of the
above form with η bounded by Lg).

Finally, the condition (S)(a) follows from a similar linearization argument. Let s ∈
[0, T ) and ξ ∈ L0(Fs), sn ↘ s and (ξn)n≥1 be such that ξn ∈ Lp(Fsn) for each n, (ξ−n )n≥1

is bounded in Lp and ξn → ξ as n→∞. One has

Egs,sn [ξn] ≥ Es
[
An

(
ξn − C

∫ sn

s

|gs(0, 0)|ds
)]

,

for a sequence (An)n≥1 bounded in any Lp
′
, p′ ≥ 1, which converges a.s. to 1, and some

C ≥ 1 independent on n. Since
(
ξ−n ,

∫ sn
s
|gs(0, 0)|ds

)
n≥1

is bounded in Lp, and p > 1, the
negative part of term in the above expectation is uniformly integrable, and we can apply
Fatou’s Lemma to conclude the proof. 2

Remark 3.1. One easily checks that Xσ+ ≥ Egσ,τ [Xτ+] for (σ, τ) ∈ T2, whenever X is a
Eg-supermartingale. Again, this follows from the path continuity of the Y component of
the solution of (3.3) and the estimates of [4, Rem 4.1].

Corollary 3.1. Assume that y 7−→ gt(ω, y, z) is non-increasing for all z ∈ Rd, for dt ×
dP− a.e. (t, ω) ∈ [0, T ]× Ω. Let X ∈ Xp

r be an Eg-supermartingale. Define the process I
by

It :=
∑
s<t

(Xs −Xs+), t ≤ T. (3.4)

Then, I is a non-decreasing and left-continuous process satisfying IT ∈ L
1
p . Moreover,

X := X + I is a right-continuous local Eg-supermatingale.

3Notice that these estimates can be readily extended to the difference of two solutions of BSDEs, since, as
pointed out in the proof of [5, Thm 4.2], such a difference is itself the solution to a BSDE.
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Proof. This is an immediate consequence of Lemma 2.1 and Proposition 3.2 if (X−t )t≤T
is bounded in Lp. But this follows from the fact that X− ≤ Eg·,T [XT ]− ∈ Sp. 2

For later use, let us a provide another version in which the monotonicity of g in y

is not used anymore. The price to pay is that the I process defined below may not be
non-decreasing anymore.

Corollary 3.2. Let X ∈ Xp
r be an Eg-supermartingale. Then, Xt ≥ Xt+ for all t ∈ [0, T ).

Define the process I by

It :=
∑
s<t

eLg(s−t)(Xs −Xs+), t ≤ T. (3.5)

Then, IT ∈ L
1
p , I is left-continuous. Moreover, X := X + I is a right-continuous local

Eg-supermatingale.

Proof. It follows from Corollary 3.1 that the result holds if g is non-increasing in its
y-variable. On the other hand, it is immediate to check that ζ is an Eg-supermartingale if
and only if ζ̃ is an E g̃-supermartingale, with

ζ̃ := eLgT ζ and g̃t(y, z) := eLgtg(ye−Lgt, ze−Lgt)− Lgy.

The map g̃ is now non-increasing in its y-component as a consequence of (3.1). Moreover,
g̃ still satisfies (3.1), with the same constant Lg, and, by (3.2), g̃(0, 0) satisfies the
integrability condition needed to define the corresponding BSDE. Hence X̃ + Ĩ is a
right-continuous E g̃-supermartingale, Ĩ is non-decreasing and ĨT ∈ L

1
p , where we have

defined
Ĩt :=

∑
s<t

(X̃s − X̃s+) =
∑
s<t

eLgs(Xs −Xs+).

Hence, X + I = e−Lg·(X̃ + Ĩ) is a Eg-supermartingale, and IT ∈ L
1
p since ĨT ∈ L

1
p . 2

3.3 The Doob-Meyer-Mertens’s decomposition for Eg-supermar-tingales

We are now in position to state the main result of this paper.
Let S = {S(τ), τ ∈ T } be a T -system in the sense that for all τ, τ ′ ∈ T

(i) S(τ) ∈ L0(Fτ ),

(ii) S(τ) = S(τ ′) a.s. on {τ = τ ′}.

If S(τ) ∈ Lp(Fτ ) for every τ ∈ T and S(σ) ≥ Egσ,τ [S(τ)] for all (σ, τ) ∈ T2, then we say
that it is a Eg-supermartingale system.

Theorem 3.1 (Mertens’s decomposition). Let S be a Eg-supermatingale system s.t. {S(τ),

τ ∈ T } is uniformly integrable, then there exists X ∈ Xp
`r such that S(σ) = Xσ for all

σ ∈ T . If in addition, esssup{S(τ) τ ∈ T } ∈ Lp, then there exists (Z,A) ∈ Hp ×Ap and a

càdlàg martingale N , orthogonal to W , satisfying E[[N ]
p/2
T ] <∞, such that

S(σ) = Xσ = Xτ +

∫ τ

σ

gs(Xs, Zs)ds+Aτ −Aσ −
∫ τ

σ

Zs · dWs −
∫ τ

σ

dNs,

for all (σ, τ) ∈ T2. This decomposition is unique.

Proof. (a) Let us first prove that there exists an optional process X ∈ Xp such that
S(σ) = Xσ a.s. for all σ ∈ T . Since S is uniformly integrable, [13, Thm. 6 and Rem. 7 c)]
imply that it suffices to show that

E[S(σ)] ≥ lim inf
n→∞

E[S(σn)],
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for all non-increasing sequence (σn)n≥1 ∈ Tσ such that σn −→ σ ∈ T , a.s. By using a
similar linearization argument as the one used in the proof of Proposition 3.2, we can find
F-progressively measurable processes λn and ηn that are bounded by Lg dt×dP-a.e. and
such that

S(σ) ≥ Eσ
[
Hn
σn

(
e
∫ σn
σ

λns dsS(σn) +

∫ σn

σ

e
∫ s
σ
λns dsgs(0, 0)ds

)]
where

Hn := exp

(
−1

2

∫ ·∨σ
σ

|ηns |2ds+

∫ ·∨σ
σ

ηns · dWs

)
.

Then,

E[S(σ)] ≥ E[S(σn)] + E
[
e
∫ σn
σ

λns ds(Hn
σn − 1)S(σn)

]
+ E

[
Hn
σn

∫ σn

σ

e
∫ s
σ
λns dsgs(0, 0)ds

]
(3.6)

+ E
[(
e
∫ σn
σ

λns ds − 1
)
S(σn)

]
.

Note that
(Hn

σn − 1)S(σn) ≥ −(S(σn))+ −Hn
σn(S(σn))−.

Since S is uniformly integrable, so is S+. Besides, we have by definition

S(σn) ≥ Egσn,T [S(T )].

But, once more it is clear that Egσn,T [S(T )] is bounded in Lp, uniformly in n, see [4,
Thm 4.1]. Since Hn

σn has bounded (uniformly in n) moments of any order, de la Vallée-
Poussin criterion ensures that HnS− is also uniformly integrable. Therefore, {[(Hn

σn −
1)S(σn)]−, n ≥ 1} is uniformly integrable. Using the fact that (λn, ηn)n is uniformly
bounded by Lg, as well as (3.2), we can use Fatou’s lemma in (3.6) to obtain that the
second and the third terms on the right-hand side converges to 0 as n −→∞.

(b) The fact that X has right- and left-limits, up to an evanescent set, follows from
Lemma A.2 stated below, since X is an Eg-supermartingale.

(c) Let I be defined as in Corollary 3.2 for X. Since X + I is right-continuous, we can
apply the Doob-Meyer decomposition of Proposition 3.1 to X

n
:= (X + I)·∧ϑn where ϑn

is the first time when I ≥ n. There exists (Zn, Ān) ∈ Hp ×Ap and a càdlàg martingale
Nn, orthogonal to W , such that, for (σ, τ) ∈ T2,

X
n

σ = X
n

τ +

∫ ϑn∧τ

ϑn∧σ
gs(X

n

s , Z
n
s )ds+ Ānτ − Ānσ −

∫ ϑn∧τ

ϑn∧σ
Zns · dWs −

∫ ϑn∧τ

ϑn∧σ
dNn

s

= X
n

τ +

∫ ϑn∧τ

ϑn∧σ
{gs(Xs, Z

n
s ) + ηsIs}ds+ Ānτ − Ānσ −

∫ ϑn∧τ

ϑn∧σ
Zns · dWs

−
∫ ϑn∧τ

ϑn∧σ
dNn

s ,

in which η is a progressively measurable process bounded by Lg, dt × dP-a.e., as a
consequence of (3.1). Set

An := I·∧ϑn + Ān +

∫ ·∧ϑn
0

ηsIsds, (3.7)

and observe that (An, Zn, Nn) = (Ak, Zk, Nk) on [[0, ϑk]] for n ≤ k, by uniqueness of the
decomposition in Proposition 3.1. We can then define

(A,Z,N) := 1[[0,ϑ1]](A
1, Z1, N1) +

∑
n≥1

1]]ϑn,ϑn+1]](A
n+1, Zn+1, Nn+1), (3.8)
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so that

Xσ = Xτ +

∫ τ

σ

gs(Xs, Zs)ds+Aτ −Aσ −
∫ τ

σ

Zs · dWs −
∫ τ

σ

dNs. (3.9)

We claim that A is non-decreasing and that the above decomposition is unique. The fact
that (Z,A, [N ]T ) ∈ Hp ×Ap × Lp/2 then follows from [4, Proposition 2.1].

Let us now prove our claim. Define X̃ and g̃ by

X̃ := eLg·X and g̃t(y, z) := eLgtg(ye−Lgt, ze−t)− Lgy.

Then, X̃ is a E g̃-supermartingale, and so is its right-limits process X̃+ := X̃+, as a
consequence of Remark 3.1, recall Lemma A.2 below. Applying Proposition 3.1, we can
find a right-continuous non-decreasing process Ã ∈ Ap, Z̃ ∈ Hp and a càdlàg martingale
Ñ , orthogonal to W , such that

X̃+
σ = X̃+

τ +

∫ τ

σ

g̃s(X̃
+
s , Z̃s)ds+ Ãτ − Ãσ −

∫ τ

σ

Z̃s · dWs −
∫ τ

σ

dÑs

for all (σ, τ) ∈ T2. This decomposition is unique. On the other hand, (3.9) implies that

X̃+
σ = X̃+

τ +

∫ τ

σ

g̃s(X̃
+
s , e

LgsZs)ds+ B̃τ − B̃σ −
∫ τ

σ

eLgsZs · dWs −
∫ τ

σ

eLgsdNs,

in which

B̃τ − B̃σ :=

∫ τ

σ

(g̃s(X̃s, e
LgsZs)− g̃s(X̃+

s , e
LgsZs))ds

+

∫ τ

σ

eLgsdAs + eLgτ (Aτ+ −Aτ )− eLgσ(Aσ+ −Aσ).

Hence, B̃ = Ã is non-decreasing. But, since (g̃(X̃, eLg·Z) − g̃(X̃+, eLg·Z)) ≤ 0 as a
consequence of Corollary 3.2 (namely X̃ ≥ X̃+) and the fact that g̃ is non-increasing
in its first component, we must have that the continuous part of

∫ ·
0
eLgsdAs is non-

decreasing, and so must be the continuous part of A. We now deduce from the definition
of I in (3.5) and (3.7)-(3.8) that A can only decrease in a continuous manner, recall that
Ān is non-decreasing. Hence, A is non-decreasing. The fact that the decomposition is
unique comes from the uniqueness of the decomposition for X̃+. 2

3.4 Remarks

The framework of this section corresponds to the case where the BSDEs are driven
by a continuous martingale M , whose quadratic variation is absolutely continuous with
respect to the Lebesgue measure, and with an invertible density. Extensions to the
context of [6], see also [18], [30] or [9], would be of interest. Similarly, one could
certainly consider BSDEs with jumps, generators with quadratic growth, obstacles,
stochastic Lipschitz conditions, etc. We have chosen to work in a simpler setting so as
not to drown our arguments by unneeded technicalities, and to focus on the novelty of
our approach.

However, the case p = 1 can not be treated by the same technics, in particular we can
not appeal to the classical linearization procedure. It would also require a reinforcement
of the condition (3.1), see [5].

4 Applications

We now consider two problems studied in the recent literature, which are solved with
sophisticated arguments under technical conditions. Using Theorem 3.1, we can solve
these problems in a very general context with quite simple arguments.
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4.1 Optional decomposition of g-supermartingale systems

We are still in the context of the previous section, with the slight modification that,
instead of the Brownian motion W , we consider a continuous (P,F)-martingale M of the
form: Mt =

∫ t
0
α>s dWs, in which α is a Rd×d-bounded predictable process with bounded

inverse. Recall that F satisfies the usual conditions.
Let S = {S(τ), τ ∈ T } be a T -system, g be as in Section 3 such that (3.1) and (3.2)

hold. LetM0 denote the set of probability measures Q on (Ω,F) which are equivalent
to P and such that M is a (Q,F)-martingale. We then say that a T -system S is a
Eg-supermartingale system under some Q ∈ M0 if S(τ) ∈ Lp(Q) for all τ ∈ T and
S(σ) ≥ EQ,gσ,τ [S(τ)] for all (σ, τ) ∈ T2, where, with (σ, τ) ∈ T2 and ξ ∈ Lp(Fτ ,Q), we set
EQ,gσ,τ [ξ] := Yσ, with (Y,Z,N) the unique solution of

Yt = ξ +

∫ τ

t∧τ
gs(Ys, Zs)ds−

∫ τ

t∧τ
Zs · dMs −

∫ τ

t∧τ
dNs,

= ξ +

∫ τ

t∧τ
gs(Ys, α

−1
s αsZs)ds−

∫ τ

t∧τ
αsZs · dWs −

∫ τ

t∧τ
dNs, t ≤ T,

such that Y ∈ Sp(Q), Z belongs to Hp(Q) and N is a càdlàg (F,Q)-martingale orthogonal
to M , and such that

EQ
[
[N ]

p/2
T

]
< +∞.

The spaces Sp(Q) and Hp(Q) are defined as Sp and Hp, but with Q instead of P.
The main result of this section is the following optional type decomposition (see e.g.

[20, 27, 21]).

Theorem 4.1 (Optional decomposition). If for any Q ∈M0, S is a EQ,g-super-martingale
system which is Q-uniformly integrable s.t. esssup{|S(τ)|, τ ∈ T } ∈ Lp(Q), then there
exists (X,Z) ∈ Xp

`r ×Hp such that S(σ) = Xσ for all σ ∈ T , and

X· +

∫ ·
0

gs(Xs, Zs)ds−
∫ ·

0

Zs · dMs is non-increasing, a.s.

Proof. The existence of the process X ∈ Xp
`r such that S(σ) = Xσ for all σ ∈ T follows

from Theorem 3.1. Fix then some Q ∈M0. Using Theorem 3.1, we deduce the existence
of (ZQ, AQ) ∈ Hp(Q) × Ap(Q) and of a Q-martingale NQ orthogonal to M such that
P− a.s. (or Q− a.s.)

Xσ = Xτ +

∫ τ

σ

gs(Xs, Z
Q
s )ds+AQτ −AQσ −

∫ τ

σ

ZQs · dMs −
∫ T

t

dNQ
s ,

for (σ, τ) ∈ T2. Recall the definition of I in Corollary 3.2 and that X+I is right-continuous.
Then,

[X + I,M ]· =

∫ ·
0

α>s αsZ
Q
s ds, (4.1)

and the family (ZQ)Q∈M0
can actually be aggregated into a universal predictable process

Z, since α is invertible. Hence, we deduce that X +
∫ ·

0
gs(Xs, Zs)ds is actually a super-

martingale under any Q ∈M0, and we can apply the classical optional decomposition
theorem ([21, Thm.1]) together with the classical Mertens’s decomposition ([36, T2
Lemme]) to deduce the existence of an F-predictable process Z̃ such that

X· +

∫ ·
0

gs(Xs, Zs)ds−
∫ ·

0

Z̃s · dMs is non-increasing, P− a.s.

Next, using (4.1), we obtain Z = Z̃ dt× dP-a.e., which ends the proof. 2
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4.2 Dual formulation for minimal super-solutions of BSDEs with constraints
on the gains process

In this section, we provide an application to the dual representation for BSDEs with
constraints. We specialize to the situation where Ω is the canonical space of Rd-valued
continuous functions on [0, T ], starting at 0, endowed with the Wiener measure P. We let
F◦ = (F◦t )t≤T denote the raw filtration of the canonical process ω 7−→W (ω) = ω, while
F denotes its P-augmentation. We also fix p′ > p > 1.

We let g be as in Section 3 such that (3.1) and (3.2) hold for p′ and fix ξ ∈ Lp
′
. Further,

let O = (Ot(ω))(t,ω)∈[0,T ]×Ω be a family of non-empty closed convex random subsets of
Rd, such that O is F◦-progressively measurable in the sense of random sets (see e.g.
Rockafellar [46]) i.e. {(s, ω) ∈ [0, t]× Ω : Os(ω) ∩ O 6= ∅} ∈ B([0, t])⊗ F for all t ∈ [0, T ]

and all closed O ⊆ Rd. In particular, it admits a Castaing representation, see e.g. [46],
which in turn ensures that the support function defined by

δt(ω, ·) : u ∈ Rd 7−→ δt(ω, u) := sup{u · z, z ∈ Ot(ω)}

is F◦t ⊗ B([0, t])⊗ B(Rd)/B(Rd ∪ {∞})-measurable, for each t ∈ [0, T ].
We consider solutions (Y, Z,A) ∈ Xp

`r ×Hp ×Ap of

Y = ξ +

∫ T

·
gs(Ys, Zs)ds+AT −A−

∫ T

·
Zs · dWs, (4.2)

under the constraint

Z ∈ O, dt× dP− a.e. (4.3)

We say that a solution (Y,Z,A) ∈ Xp
`r ×Hp ×Ap of (4.2)-(4.3) is minimal if any other

solution (Y ′, Z ′, A′) ∈ Xp
`r ×Hp ×Ap is such that Yτ ≤ Y ′τ a.s., for any τ ∈ T .

The dual characterization relies on the following construction.
Let us also define U as the class of Rd-valued, progressively measurable processes

such that |ν| + |δ(ν)| ≤ c, dt × dP-a.e., for some c ∈ R. Given ν ∈ U , we let Pν

be the probability measure whose density with respect to P is given by the Doléans-
Dade exponential of

∫ ·
0
νs · dWs, and denote by W ν := W −

∫ ·
0
νsds the corresponding

Pν -Brownian motion. Then, given ξ′ ∈ Lp(Fτ ,Pν), τ ∈ T , we define Eν·,τ [ξ′] as the
Y ν -component of the solution (Y ν , Zν) ∈ Sp(Pν)×Hp(Pν) of the BSDE

Y ν = ξ′ +

∫ τ

·
(gs(Y

ν
s , Z

ν
s )− δs(νs)) ds−

∫ τ

·
Zνs · dW ν

s .

In the above, Sp(Pν) and Hp(Pν) are defined as Sp and Hp but with respect to Pν in
place of P.

Theorem 4.2. Define

S(τ) := esssup
{
Eντ,T [ξ], ν ∈ U

}
, τ ∈ T . (4.4)

Assume that esssup{|S(τ)|, τ ∈ T } ∈ Lp
′

for some p′ > p. Then, there exists X ∈ Xp
`r

such that Xτ = S(τ) for all τ ∈ T , and (Z,A) ∈ Hp×Ap such that (X,Z,A) is the minimal
solution of (4.2)-(4.3).

Before providing the proof of this result, let us comment it. This formulation is known
since [11], however it was proven only under strong assumptions. Although it should
essentially be a consequence of the Doob-Meyer decomposition for g-supermatingales,
the main difficulty comes from the fact that the family of controls in U is not uniformly
bounded. Hence, (4.4) is a singular control problem for which the right-continuity of
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τ 7−→ S(τ) is very difficult to establish, a priori, see [2] for a restrictive Markovian
setting. This fact prevents us to apply the result of [41]. Theorem 3.1 allows us to bypass
this issue and provides a very simple proof.

Proof of Theorem 4.2. Let (Y, Z,A) ∈ Xp
`r ×Hp ×Ap be a solution of (4.2)-(4.3). Then,

for (σ, τ) ∈ T2,

Yσ = Yτ +

∫ τ

σ

gs(Ys, Zs)ds+Aτ −Aσ −
∫ τ

σ

Zs · dWs

= Yτ +

∫ τ

σ

(gs(Ys, Zs)− νs · Zs)ds+Aτ −Aσ −
∫ τ

σ

Zs · dW ν
s

= Yτ +

∫ τ

σ

(gs(Ys, Zs)− δs(νs))ds+Aτ −Aσ +

∫ τ

σ

(δs(νs)− νs · Zs)ds

−
∫ τ

σ

Zs · dW ν
s .

Notice that Z ∈ O, dt× dP-a.e. and hence δ(ν)− ν · Z ≥ 0, dt× dP-a.e. Then, it follows
by comparison that

Yσ ≥ Eνσ,T [ξ], for all ν ∈ U and σ ∈ T . (4.5)

Conversely, it is not difficult to deduce from the definition of S that it satisfies a
dynamic programming principle:

S(σ) = esssup
{
Eνσ,τ [S(τ)], ν ∈ U

}
, ∀ (σ, τ) ∈ T2,

see e.g. [2]. Taking ν ≡ 0, we deduce that S is a E0-supermartingale system. The
existence of the aggregating process X ∈ Xp

`r then follows from Theorem 3.1. Since it is
also a Eν -supermartingale system for ν ∈ U , the same theorem implies that we can find
(Zν , Aν) ∈ Hp(Pν)×Ap(Pν) such that

Xσ = ξ +

∫ T

σ

(gs(Xs, Z
ν
s )− δs(νs))ds+AνT −Aνσ −

∫ T

σ

Zνs · dW ν
s , σ ∈ T .

Identifying the quadratic variation terms implies that Zν = Z0 =: Z. Thus for all ν ∈ U ,

e(ν) :=

∫ T

0

(νsZs − δs(νs))ds ≤
∫ T

0

(νsZs − δ(νs))ds+AνT −Aν0 = A0
T −A0

0.

We claim that if N := {(ω, t) : Zt(ω) /∈ Ot,ω} has a non-zero measure w.r.t dP× dt, then
we can find ν̂ ∈ U such that e(ν̂) ≥ 0 and P[e(ν̂) > 0] > 0. However, for any real λ > 0,
one has λν̂ ∈ U and e(λν̂) = λe(ν̂) ≤ A0

T − A0
0, by the above, which is a contradiction

since A0
T −A0

0 is independent of λ. Hence, (4.3) holds for Z = Z0 and

Xσ = ξ +

∫ T

σ

gs(Xs, Zs)ds+A0
T −A0

σ −
∫ T

σ

Zs · dWs, σ ∈ T .

By (4.5), it is clear that (X,Z,A0) is the minimal solution of (4.2)-(4.3).
It remains to prove the above claim. Assume that N has non-zero measure. Then,

it follows from [47, Thm. 13.1] that {(ω, t) : F̄t(ω) := sup{Ft(ω, u), |u| = 1} ≥ 2ι} has
non-zero measure, for some ι > 0, in which

Ft(ω, u) := u · Zt(ω)− δt(ω, u).

After possibly passing to another version (in the dt× dP-sense), we can assume that Z is
F◦-progressively measurable. Since δ is F◦T ⊗ B([0, T ]) ⊗ B(Rd)-measurable, (ω, t, u) ∈
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Ω× [0, T ]×Rd 7−→ Ft(ω, u) is Borel-measurable. By [1, Prop. 7.50 and Lem. 7.27], we can
find a Borel map (t, ω) 7−→ û(t, ω) such that |û| = 1 and Ft(ω, û(t, ω)) ≥ F̄t(ω)−ι dt×dP-a.e.
Then, ũ(t, ω) := û(t, ω)1N (ω, t) is Borel and satisfies Ft(ω, û(t, ω)) ≥ ι1N (ω, t) dt× dP-a.e.
Since Ft(ω, ·) depends on ω only though ω·∧t, the same holds for (t, ω) 7−→ û(t, ω·∧t),
which is progressively measurable. We conclude by setting

ν̂t(ω) := û(t, ω·∧t)/(1 + |δt(ω, û(t, ω·∧t))|).

A Appendix

A.1 Doob-Meyer decomposition for right-continuous supermar-tingales

We complete here the proof of Proposition 3.1, based on a personal communication
with Nicole El Karoui.

Proof of Proposition 3.1. Let us start by considering the following reflected BSDEs
with lower obstacle X on [0, τ ]

Y = Yτ +

∫ τ

·
gs(Ys, Zs)ds−

∫ τ

·
Zs · dWs −

∫ τ

·
dNs −

∫ τ

·
dKs,

Y ≥ X on [0, τ ],∫ τ

0

(Ys− −Xs−)dKs = 0,

(A.1)

where N is again a càdlàg martingale orthogonal to W , and K is a càdlàg non-decreasing
and predictable process. Since the obstacleX is assumed to be càdlàg, the wellposedness
of such an equation is guaranteed by [4, Theorem 3.1] (see also [23], etc.).

Let us now prove that we have Yt = Xt, a.s., for any t ∈ [0, τ ]. Let us argue by
contradiction and suppose that this equality does not hold. Without loss of generality,
we can assume that Y0 > X0 (otherwise, we replace 0 by the first time when Y > X + ι

for some ι > 0). Fix then some ε > 0 and consider the following stopping time

τε := inf {t ≥ 0, Yt ≤ Xt + ε} ∧ τ.

Since Y is strictly above X before τε, we know that K is identically 0 on [[0, τε]], which
implies that

Yt = Yτε +

∫ τε

t

gs(Ys, Zs)ds−
∫ τε

t

Zs · dWs −
∫ τε

t

dNs.

Consider now the following BSDE on [[0, τε]]

yt = Xτε +

∫ τε

t

gs(ys, zs)ds−
∫ τε

t

zs · dWs −
∫ τε

t

dns.

By standard a priori estimates (see for instance [4, Rem. 4.1]), we can find a constant
C > 0 independent of ε > 0 s.t.

Y0 ≤ y0 + CE [|Xτε − Yτε |p]
1
p ≤ y0 + Cε.

But remember that X is an Eg-supermartingale, so that we must have y0 ≤ X0. Hence,
we have obtained Y0 ≤ X0 + Cε, which implies a contradiction by arbitrariness of ε > 0.

The uniqueness of the decomposition is then clear by identification of the local
martingale part and the finite variation part of a semimartingale. 2

EJP 21 (2016), paper 36.
Page 16/21

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4527
http://www.imstat.org/ejp/


Doob-Meyer-Mertens decomposition for g-supermartingale

A.2 Down-crossing lemma of Eg-supermartingale

We provide here a down-crossing lemma for Eg-supermartingales (defined in Section
3 with g satisfying (3.1) and (3.2) for some p > 1), which is an extension of Chen and
Peng [7, Thm 6] (see also Coquet et al. [10, Prop. 2.6]). For completeness, we will also
provide a proof. As in the classical case, g ≡ 0, it ensures the existence of right- and
left-limits for Eg-supermartingales, see Lemma A.2 below.

For any m > 0, we denote by E±mσ,τ the non-linear expectation operator associated to
the generator (t, ω, y, z) 7−→ ±m|z| and stopping times (σ, τ) ∈ T2. Let J := (τn)n∈N be a
countable family of stopping times taking values in [0, T ], which are ordered, i.e. for any
i, j ∈ N, one has τi ≤ τj , a.s., or τi ≥ τj , a.s. Let a < b, X be some process and Jn ⊆ J be
a finite subset (Jn = {0 ≤ τ1 ≤ · · · ≤ τn ≤ T}). We denote by Db

a(X, Jn) the number of
down-crossing of the process (Xτk)1≤k≤n from b to a. We then define

Db
a(X, J) := sup

{
Db
a(X, Jn) : Jn ⊆ J, and Jn is a finite set

}
.

Lemma A.1 (Down-crossing). Suppose that the generator g satisfies (3.1) with Lipschitz
constant L in y and µ in z, and (3.2) with p > 1. Let X ∈ Xp be a Eg-supermartingale,
J := (τn)n∈N be a countable family of stopping times taking values in [0, T ], which are
ordered. Then, for all a < b,

E−µ0,T

[
Db
a(X, J)

]
≤ eLT

b− a
Eµ0,T

[
eLT (X0 ∧ b− a)− e−LT (XT ∧ b− a)+

+ eLT (XT ∧ b− a)− + eLT
∫ T

0

|gs(a, 0)|ds
]
. (A.2)

Proof. First, without loss of generality, we can always suppose that τ0 ≡ 0 and τ1 ≡ T
belong to J , and also that b > a = 0. Indeed, whenever b > a 6= 0, we can consider
the barrier constants (0, b − a), and the E ḡ-supermartingale X − a, with generator
ḡt(y, z) := gt(y + a, z), which reduces the problem to the case b > a = 0.

Now, suppose that Jn = {τ0, τ1, · · · , τn} with 0 = τ0 < τ1 < · · · < τn = T . We consider
the following BSDE

yit : = Xτi +

∫ τi

t

gs(y
i
s, z

i
s)ds−

∫ τi

t

zis · dWs −
∫ τi

t

dN i
s

= Xτi +

∫ τi

t

(
gs(0, 0) + λisy

i
s + ηisz

i
s

)
ds−

∫ τi

t

zis · dWs −
∫ τi

t

dN i
s,

where λi and ηi are progressively measurable, coming from the linearization of g. In
particular, we have |λi| ≤ L and |ηi| ≤ µ. Let us now consider another linear BSDE

ȳit = Xτi +

∫ τi

t

(
− |gs(0, 0)|+ λisȳ

i
s + ηisz̄

i
s

)
ds−

∫ τi

t

z̄is · dWs

−
∫ τi

t

dN
i

s. (A.3)

By the comparison principle for BSDEs (see [31, Prop. 4]), and since X is an Eg-
supermartingale, it is clear that

ȳiτi−1
≤ yiτi−1

≤ Xτi−1
.

Solving the above linear BSDE (A.3), it follows that

ȳiτi−1
= EQ

[
Xτie

∫ τi
τi−1

λirdr −
∫ τi

τi−1

e
∫ s
τi−1

λirdr|gs(0, 0)|ds

∣∣∣∣∣Fτi−1

]
,
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where Q is defined by

dQ

dP
= e−

1
2

∫ T
0
|ηs|2ds+

∫ T
0
ηs·dWs , with ηs :=

n∑
i=1

ηis1[τi−1,τi)(s).

Let λs :=
∑n
i=1 λ

i
s1[τi−1,τi)(s), it follows that the discrete process (Yτi)0≤i≤n defined by

Yτi := Xτie
∫ τi
0 λrdr −

∫ τi

0

e
∫ s
0
λrdr|gs(0, 0)|ds

is a Q-supermartingale. Define further

Y τi := Yτi ∧
(
beLT −

∫ τi

0

e
∫ s
0
λrd〈M〉r |gs(0, 0)|ds

)
,

which is clearly also a Q-supermartingale. Let

ut := be
∫ t
0
λrdr −

∫ t

0

e
∫ s
0
λrdr|gs(0, 0)|ds,

and

lt := −
∫ t

0

e
∫ s
0
λrdr|gs(0, 0)|ds.

Denote then by Du
l (Y, J) (resp. Du

l (Y , J)) the number of down-crossing of the process
Y (resp. Y ) from the upper boundary u to lower boundary l. It is clear that Du

l (Y, J) =

Du
l (Y , J). Notice that lt is decreasing in t, so that we can apply the classical down-

crossing theorem for supermartingales (see e.g. Doob [14, p.446]) to Y , and obtain
that

EQ
[
Db

0(X,J)
]

≤ EQ
[
Du
l (Y , J)

]
≤ eLT

b
EQ
[
(Y 0 − Y T )− (uT − Y T ) ∧ 0

]
≤ eLT

b
EQ

[
X0 ∧ (beLT )− e

∫ T
0
λsds(XT ∧ b) + eLT

∫ T

0

|gs(0, 0)|ds

]
.

Notice that |λs| ≤ L, |ηs| ≤ µ and (XT ∧ b) = (XT ∧ b)+ − (XT ∧ b)−. Therefore, we have
proved (A.2) for the case b > a = 0, from which we conclude the proof, by our earlier
discussion. 2

Lemma A.2. Let X ∈ Xp be a Eg-supermartingale of class (D). Then, it admits right-
and left-limits outside an evanescent set.

Proof. We follow well-known arguments for (classical) supermartingales. Let (ϑn)n ⊂ T
be a non-increasing sequence of stopping times. Then, (Xϑn)n≥1 converges a.s. This is
an immediate consequence of the down-crossing inequality of Lemma A.1, see e.g. [12,
Proof of Thm V-28]. Set X̄ := X/(1 + |X|). Then, [12, Thm VI-48] implies that, up to an
evanescent set, X̄ admits right-limits. Since a/(1 + |a|) = b/(1 + |b|) implies a = b, for all
a, b ∈ R, this shows that X admits right-limits, up to an evanescent set. The existence
of left-limits is proved similarly by considering non-decreasing sequences of stopping
times. 2
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[23] S.Hamadǹe. Reflected BSDEs with Discontinuous Barrier and Application, Stochastics and
Stochastic Reports, 74(3–4):571–596, 2002. MR-1943580

[24] S. Hamadène and Y. Ouknine. Reflected backward SDEs with general jumps. Theory of
Probability and its Applications, 60(2):357–376, 2015.

[25] G. Heyne, M. Kupper, and C. Mainberger. Minimal supersolutions of BSDEs with lower semi-
continuous generators. In Annales de l’Institut Henri Poincaré, Probabilités et Statistiques,
50:524–538, Institut Henri Poincaré, 2014. MR-3189083

[26] Y. Hu, J. Ma, S. Peng, and S. Yao. Representation theorems for quadratic f -consistent
nonlinear expectations. Stochastic Processes and their Applications, 118(9):1518–1551,
2008. MR-2442369

[27] D.O. Kramkov. Optional decomposition of supermartingales and hedging in incomplete
security markets. Probability Theory and Related Fields, 105:459–479, 1996. MR-1402653

[28] T. Klimsiak. BSDEs with monotone generator and two irregular reflecting barriers. Bulletin
des Sciences Mathématiques, 137(3):268–321, 2013. MR-3043077

[29] T. Klimsiak. Reflected BSDEs with monotone generator. Electron. J. Probab, 17(107):1–25,
2014. MR-3015691

[30] T. Klimsiak. Reflected BSDEs on filtered probability spaces. Stochastic Process. Appl.
125(11):4204–4241, 2015. MR-3385601

[31] T. Kruse and A. Popier. BSDEs with jumps in a general filtration. arXiv:1412.4622, 2014.

[32] E. Lenglart. Tribus de Meyer et théorie des processus. Séminaire de probabilité, 14:500–546,
1980. MR-0580151

[33] J. Ma and S. Yao. On quadratic g-evaluations/expectations and related analysis. Stochastic
Analysis and Applications, 28(4):711–734, 2010. MR-2739601

[34] A. Matoussi, L. Piozin, and D. Possamaï. Second-order BSDEs with general reflection and
game options under uncertainty. Stochastic Processes and their Applications, 124(7):2281–
2321, 2014. MR-3192498

[35] A. Matoussi, D. Possamaï, and C. Zhou. Second-order reflected backward stochastic differen-
tial equations. The Annals of Applied Probability, 23(6):2420–2457, 2013. MR-3127940

[36] J.-F. Mertens. Théorie des processus stochastiques généraux applications, aux surmartingales.
Probability Theory and Related Fields, 22(1):45–68, 1972. MR-0346895

[37] P.-A., Meyer. Une majoration du processus croissant naturel associé à une surmartingale,
Séminaire de probabilités (Strasbourg), 2:166–170, 1967. MR-0242240

[38] M. Nutz. Robust superhedging with jumps and diffusion. Stochastic Processes and their
Applications, 125(12):4543–4555, 2015. MR-3406595

[39] E. Pardoux. Backward stochastic differential equations and viscosity solutions of systems of
semilinear parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related
Topics VI, pages 79–127. Springer, 1998. MR-1652339

[40] S. Peng. Backward SDE and related g-expectation. In: El Karoui, N., Mazliak, L. (eds.), Pitman
Research Notes in Mathematics Series,, (364):141–159, 1997. MR-1752680

[41] S. Peng. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-
Meyer’s type. Probability Theory and Related Fields, 113(4):473–499, 1999. MR-1717527

[42] S. Peng and M. Xu. Reflected BSDE with a constraint and its applications in an incomplete
market. Bernoulli, 16(3):614–640, 2010. MR-2730642

[43] D. Possamaï. Second-order backward stochastic differential equations under a monotonic-
ity condition. Stochastic Processes and their Applications, 123(5):1521–1545, 2013. MR-
3027889

[44] D. Possamaï and X. Tan. Weak approximation of 2BSDEs. The Annals of Applied Probability,
25(5):2535–2562, 2015. MR-3375883

[45] D. Possamaï and C. Zhou. Second order backward stochastic differential equations with
quadratic growth. Stochastic Processes and their Applications, 123(10):3770–3799, 2013.
MR-3084159

EJP 21 (2016), paper 36.
Page 20/21

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1943580
http://www.ams.org/mathscinet-getitem?mr=3189083
http://www.ams.org/mathscinet-getitem?mr=2442369
http://www.ams.org/mathscinet-getitem?mr=1402653
http://www.ams.org/mathscinet-getitem?mr=3043077
http://www.ams.org/mathscinet-getitem?mr=3015691
http://www.ams.org/mathscinet-getitem?mr=3385601
http://arXiv.org/abs/1412.4622
http://www.ams.org/mathscinet-getitem?mr=0580151
http://www.ams.org/mathscinet-getitem?mr=2739601
http://www.ams.org/mathscinet-getitem?mr=3192498
http://www.ams.org/mathscinet-getitem?mr=3127940
http://www.ams.org/mathscinet-getitem?mr=0346895
http://www.ams.org/mathscinet-getitem?mr=0242240
http://www.ams.org/mathscinet-getitem?mr=3406595
http://www.ams.org/mathscinet-getitem?mr=1652339
http://www.ams.org/mathscinet-getitem?mr=1752680
http://www.ams.org/mathscinet-getitem?mr=1717527
http://www.ams.org/mathscinet-getitem?mr=2730642
http://www.ams.org/mathscinet-getitem?mr=3027889
http://www.ams.org/mathscinet-getitem?mr=3027889
http://www.ams.org/mathscinet-getitem?mr=3375883
http://www.ams.org/mathscinet-getitem?mr=3084159
http://dx.doi.org/10.1214/16-EJP4527
http://www.imstat.org/ejp/


Doob-Meyer-Mertens decomposition for g-supermartingale

[46] R. T. Rockafellar. Integral functionals, normal integrands and measurable selections. In
Nonlinear Operators and the Calculus of Variations, volume 543 of Lecture Notes in Math.,
pages 157–207, Springer, Berlin, 1976. MR-0512209

[47] R.T. Rockafellar. Convex analysis, volume 28. Princeton University Press, 1997. MR-1451876

[48] H. M. Soner, N. Touzi, and J. Zhang. Wellposedness of second order backward SDEs. Proba-
bility Theory and Related Fields, 153(1–2):149–190, 2011. MR-2925572

[49] H. M. Soner, N. Touzi, and J. Zhang. Dual formulation of second order target problems. The
Annals of Applied Probability, 23(1):308–347, 2013. MR-3059237

EJP 21 (2016), paper 36.
Page 21/21

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=0512209
http://www.ams.org/mathscinet-getitem?mr=1451876
http://www.ams.org/mathscinet-getitem?mr=2925572
http://www.ams.org/mathscinet-getitem?mr=3059237
http://dx.doi.org/10.1214/16-EJP4527
http://www.imstat.org/ejp/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Stability of E-supermatingales under Mertens's re-gularization
	Semi-linear time consistent expectation operators
	Stability by regularization on the right

	Doob-Meyer-Mertens decomposition of g-supermar-tingale systems
	g-expectation and Doob-Meyer decomposition
	Time consistence and regularity of g-expectations
	The Doob-Meyer-Mertens's decomposition for Eg-supermar-tingales
	Remarks

	Applications
	Optional decomposition of g-supermartingale systems
	Dual formulation for minimal super-solutions of BSDEs with constraints on the gains process

	Appendix
	Doob-Meyer decomposition for right-continuous supermar-tingales
	Down-crossing lemma of Eg-supermartingale

	References

