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Abstract

We consider the contact process with infection rate λ on a random (d + 1)-regular
graph with n vertices, Gn. We study the extinction time τGn (that is, the random
amount of time until the infection disappears) as n is taken to infinity. We establish a
phase transition depending on whether λ is smaller or larger than λ1(T

d), the lower
critical value for the contact process on the infinite, (d+1)-regular tree: if λ < λ1(T

d),
τGn grows logarithmically with n, while if λ > λ1(T

d), it grows exponentially with
n. This result differs from the situation where, instead of Gn, the contact process is
considered on the d-ary tree of finite height, since in this case, the transition is known
to happen instead at the upper critical value for the contact process on Td.
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1 Introduction

Let G = (V,E) be a locally finite and connected graph. The contact process on G with
parameter λ > 0 is the continuous-time Markov process (ξt)t>0 on the space of subsets
of V whose transitions are given by:

for every x ∈ ξt, ξt → ξt \ {x} with rate 1,

for every x /∈ ξt, ξt → ξt ∪ {x} with rate λ |{y ∈ ξt : {x, y} ∈ E}|, (1.1)

where for a set A, we write |A| to denote its cardinality. We identify subsets of V with
elements of {0, 1}V (through the indicator function).

The contact process is usually thought of as a model for the spread of an infection in
a population. Vertices of the graph are interpreted as individuals, and states 0 and 1
indicate that an individual is healthy or infected, respectively. An infected site recovers
with rate 1 and infects a neighbouring site with rate λ times the number of connecting
edges (we will allow for multiple edges connecting a given pair of vertices). We refer
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Phase transition of the contact process on random regular graphs

the reader to [16] for a thorough introduction to the contact process, including the facts
that we state without proof in this introduction.

We denote by (ξAt )t>0 the contact process on G with initial configuration ξA0 ≡ A. If

A = {x}, we write (ξxt ) instead of (ξ
{x}
t ). We write PG,λ for a probability measure under

which the contact process with parameter λ on G is defined.
The extinction time τAG for the contact process on G = (V,E) with initial configuration

A ⊆ V is defined by
τ
A
G = inf{t : ξAt = ∅}.

Since the dynamics only allows for new infections to appear by transmission, the config-
uration ∅ is absorbing, so we have ξAt = ∅ for any t > τAG. We write τG instead of τGG and

τxG instead of τ
{x}
G .

When the contact process is considered on infinite graphs, a central question is
whether we have survival or extinction of the infection.

For a graph G = (V,E), a finite set A ⊆ V and λ > 0, define

pext
G,A,λ = PG,λ

[
τ
A
G <∞

]
= PG,λ

[
∃t0 : ξAt = ∅ for all t > t0

]
,

ploc ext
G,A,λ = PG,λ

[
∃t0 : ξAt ∩A = ∅ for all t > t0

]
,

the probabilities of extinction and local extinction of the contact process with parameter
λ on G started from ξA0 ≡ A. It can be shown that we either have pext

G,A,λ = 1 for all A or

pext
G,A,λ < 1 for all A; likewise, either ploc ext

G,A,λ = 1 for all A or ploc ext
G,A,λ < 1 for all A. We say

that the contact process

• dies out if pext
G,A,λ = 1 for all A;

• survives weakly (or globally but not locally) if pext
G,A,λ < 1 and ploc ext

G,A,λ = 1 for all A;

• survives strongly (or locally) if ploc ext
G,A,λ < 1 for all A.

We let λ1(G) = sup{λ : pext
G,A,λ = 1} and λ2(G) = sup{λ : ploc ext

G,A,λ = 1}.
It is well known that for G = Zd, 0 < λ1(Zd) = λ2(Zd) =: λc(Z

d) < ∞. For G = Td,
the infinite, (d+ 1)-regular tree (with d > 2), the situation is quite different, as we then
have 0 < λ1(Td) < λ2(Td) <∞. In this case, if we take λ such that λ1(Td) < λ < λ2(Td)

and start the process from a single infection at a vertex x, then the infection has a
chance of surviving, but it can only do so by propagating outwards from x; any finite
neighbourhood of x only carries the infection for a finite amount of time, as required in
the definition of weak survival.

The contact process on finite graphs (deterministic or random) has also been the
subject of much investigation; below we will survey some of the past work that is most
relevant to the object of interest of this paper. Let us start noting that for finite graphs,
there is no question of survival or extinction: if G is finite, the infection almost surely
disappears in finite time. One is thus interested in the behaviour of the infection before
it disappears. The typical course of action goes as follows: we fix λ and the parameters
that define the graph, then take a size parameter (e.g. the number of vertices) to infinity,
so as to obtain a sequence of graphs Gn, and consider the asymptotic behaviour of some
random quantity Xn associated with the contact process on Gn. Common choices for Xn

are the extinction time τGn and the average proportion of infected vertices before τGn .
Of particular interest are the cases in which the asymptotic behaviour of Xn depends
sensitively on the choice of λ and the set of parameters that define the graph; this
dependency can sometimes be related to a phase transition of the contact process on an
infinite graph that is in some sense approximated by Gn.

This project has been first carried out for Gn equal to the subgraph of Zd induced by
the vertices contained in a box of side length n; see [10, 25, 14, 12, 15, 19, 20], or [16,
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Phase transition of the contact process on random regular graphs

Section I.3] for an overview. As suggested in the previous paragraph, the behaviour of
τGn exhibits a phase transition that mimics the phase transition of the contact process
on Zd: τGn grows logarithmically or exponentially with the volume of Gn respectively if
λ is taken smaller or larger than λc(Zd).

Let us now turn to finite trees. Let Td` denote the d-ary tree of height `. In other
words, Td` is a tree with a distinguished vertex o (called the root) so that o has degree
d, all vertices at distance between 1 and `− 1 from o have degree d+ 1 and all vertices
at distance ` from o have degree 1. In [27], bounds were obtained on τTd`

for different
values of λ, and these bounds were improved in [13] to yield the result below.

Theorem 1.1. [13] (a) For any λ ∈ (0, λ2(Td)), there exists c ∈ (0,∞) such that, as
`→∞,

τTd`

log |Td` |
→ c in probability.

(b) For any λ ∈ (λ2(Td),∞), there exists C ∈ (0,∞) such that, as `→∞,

log τTd`

|Td` |
→ C in probability.

Moreover, τTd`
divided by its expectation converges in distribution to the exponential

distribution with parameter 1.

In short, the asymptotic behaviour of the extinction time on Td` has a phase transition
at the value λ = λ2(Td). It is worth mentioning that the above theorem remains true if
Td` is replaced by T̂d` , defined as the subgraph of Td induced by the vertex set given by
a distinguished root vertex o and all vertices at graph distance at most ` from o (Td` is
obtained from T̂d` by removing one of the sub-trees emanating from the root of T̂d` ).

The main goal of this paper is to investigate the asymptotic behaviour of the extinction
time of the contact process on random (d+ 1)-regular graphs, which we now describe.
Fix n ∈ N, the number of vertices, with the restriction that n(d + 1) be even. Let us
define a random graph Gn with vertex set Vn = {1, . . . , n}. We endow each vertex with
d+ 1 half-edges; attaching two half-edges (say, one belonging to vertex i and another to
vertex j) produces an edge between i and j. Then, any perfect matching on the set of
half-edges produces a graph (again we note that we allow for multiple edges between
two vertices and also edges with both extremities at a single vertex). We choose one
perfect matching uniformly at random from all the (n(d+ 1)− 1) · (n(d+ 1)− 3) · · · 3 · 1
possibilities, and this produces the random edge set En. Obviously, Gn is a (d+1)-regular
graph; by using an alternate construction of Gn that is described in Section 3, it is easy
to show that, for any R, with probability tending to 1 as n → ∞, the ball of radius R
around a given vertex has no cycle, and is thus isomorphic to T̂dR.

We write Pn for the law of Gn, and Pn,λ for a probability measure under which both
Gn and the contact process on Gn with parameter λ are defined. Our main result is

Theorem 1.2. (a) For every λ ∈ (0, λ1(Td)) there exists C <∞ such that

lim
n→∞

Pn,λ [τGn < C log(n)] = 1.

(b) For every λ ∈ (λ1(Td),∞) there exists c > 0 such that

lim
n→∞

Pn,λ [τGn > ecn] = 1.

Let us stress the most important point: contrary to the situation in Theorem 1.1, the
behaviour of the extinction time has here a phase transition at λ1(Td) instead of λ2(Td).
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Although surprising at first, this phenomenon can be understood as follows: when ` is
large, the tree Td` as seen from a vertex chosen uniformly at random does not at all
locally look like Td. For example, with non-vanishing probability, the random vertex
is a leaf of Td` . The notion of local limit of a sequence of graphs, as formalized in [9],
captures such features, and one can check that Td` does not converge locally to Td, but
rather to another infinite graph called the canopy tree CTd (see [7, Example 5.14] for
details). Moreover, one can show that

λ1(CTd) = λ2(CTd) = λ2(Td) (1.2)

(local survival for λ > λ2(Td) can be derived from [13, Theorem 1.6], while extinction
for λ 6 λ2(Td) follows from [16, Proposition 4.57]). In light of this, the logarithmic-
exponential phase transition for the extinction time on Td` does happen at the lower
critical value of the limiting graph after all, but one must take into account that this
limiting graph is the canopy tree.

It would be very interesting to find wider classes of graphs (such as the configuration
model described below, or see [23] for an exposition) for which one can prove that the
same phase transition occurs at the lower critical value of the limiting graph. This is
reminiscent of the question of the locality of the percolation critical probability, see [8],
[7, Section 5.2], [17] and [26].

The graph Gn is a particular case of the class of graphs known as the configuration
model. Whereas for Gn we assumed that all degrees are taken equal to d + 1, in the
configuration model one allows for a random degree sequence, typically i.i.d. from
some fixed degree distribution. The contact process on these graphs has lately received
attention ([11, 21, 22]). In particular, it was proved that, if the degree distribution is a
power law (and the graph is assumed to be connected), then the extinction time grows
exponentially with the number of vertices regardless of the value of λ. In this sense, one
can say that the contact process on the configuration model with a power law degree
distribution has no phase transition: it is “always supercritical”. Theorem 1.2 shows that,
if the degrees are constant, then there is a phase transition. In fact, putting together
Lemma 4.2 below with the main result of [21], we get

Theorem 1.3. Let Gn,d be the set of connected graphs with n vertices and degree
bounded by d+ 1.

(a) For any λ ∈ (0, λ1(Td)), there exists C <∞ such that

lim
n→∞

inf
G∈Gn,d

PG,λ [τG < C log n] = 1.

(b) For any λ ∈ (λc(Z),∞), there exists c > 0 such that

lim
n→∞

inf
G∈Gn,d

PG,λ [τG > ecn] = 1.

In particular, if we take the contact process on the configuration model with a degree
distribution with bounded support, the extinction time exhibits a phase transition on
λ. A problem that we believe to be of much interest is whether such a phase transition
also occurs if the degree distribution has unbounded support, but a light tail. Equally
interesting is the corresponding question for supercritical Erdős-Rényi random graphs.
In this direction, we refer the reader to the very recent remarkable results of [18], where
existence of a phase transition for the contact process on certain graphs with unbounded
degrees, such as Delaunay triangulations of Rd, is shown.

We now comment on the proofs of the two parts of Theorem 1.2. Part (a) relies on the
fact, stated in Lemma 4.2, that the contact process on any graph of degree bounded by
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d+1 is stochastically dominated (in terms of the number of infected vertices) by a contact
process with the same λ on Td. Although this is a very elementary and natural statement,
we did not find it in the literature, so we give a proof, which relies on the concept of
universal covering of a graph. Once Lemma 4.2 has been established, we invoke known
bounds for the extinction time of the contact process on Td in the extinction regime in
order to conclude the proof of part (a).

As a side note, we remark that Lemma 4.2 also applies to infinite graphs, and as a
consequence we prove:

Theorem 1.4. If λ 6 λ1(Td), then the contact process with parameter λ on any graph
with degree bounded by d+ 1 dies out.

The proof of part (b) of Theorem 1.2 is more involved, and relies on a geometric
property of Gn (Theorem 3.4). The idea can be roughly summarised as follows. Assume
that at time 0, there are δn infected vertices (δ > 0 small) with the property that within
distance r of each of these vertices, one can find a copy of Td` , the copies (and the
paths to them) being pairwise disjoint. Let us say that a set satisfying this property is
regenerative. If ` can be chosen sufficiently large, then after some time, the infection will
spread to kδn vertices with k large, except for an event whose probability is exponentially
small in n. The crucial geometric property of Gn that we need is that if k is sufficiently
large, then with probability tending to 1, any subset of size kδn contains a regenerative
subset of size δn. This enables to iterate the argument. Since the probability of failure
of a given step is exponentially small, the extinction time must be exponentially long.

In Section 2, we give a summary of the notation we use, an exposition of the graphical
construction of the contact process and some known results about the contact process
on trees. Sections 3 and 4 are devoted to proving parts (b) and (a) of Theorem 1.2
respectively.

2 Notation and preliminary results

2.1 Summary of notation for sets and graphs

For a set A, we write |A| for the cardinality of A and 1A for the indicator function of
A.

We will bother the reader with defining graphs, because we want to allow loops
(edges between a vertex and itself) and multiple edges with the same endpoints, and
this requires some care with the notation. Given sets V and E and a function

ζ : E → {subsets of V with cardinality 1 or 2},

the triple G = (V,E, ζ) is a graph ; elements of V are vertices and elements of E are
edges. e ∈ E is said to be an edge between vertices x and y if ζ(e) = {x, y}; if such an
edge exists, we say that x and y are neighbours. If ζ(e) = {x}, we say e is a loop at x.

We may abuse notation and write v ∈ G instead of v ∈ V when convenient. Also, we
will omit the presence of the function ζ, simply writing G = (V,E) as is usual.

The degree of a vertex is the number of non-loop edges that contain it plus twice
the number of loops that contain it. The graph distance between vertices x and y is
the length of a shortest path between x and y, and is denoted by dist(x, y), or distG(x, y)

when we want to make the graph explicit. A cycle is a sequence of vertices x0, . . . , xk so
that x0, . . . , xk−1 are all distinct, xk = x0 and for each i, xi and xi+1 are neighbours.

The set ~E of oriented edges of G is defined as follows: for each non-loop e ∈ E, we
add to ~E two oriented edges corresponding to the two possible orientations of e; for
each loop in e, we also add to ~E two “oriented edges” from x to x (though this will be
quite unimportant). A generic element of ~E will be denoted by ~e. Note that, if there are
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k edges containing x and y, then there are 2k oriented edges containing x and y. We
write v0(~e) and v1(~e) to denote the starting and ending vertex of ~e, respectively. We also
let u(~e) ∈ E denote the unoriented edge to which ~e is associated.

A rooted graph is a pair (ρ,G) where G is a graph and ρ ∈ G. Given two rooted
graphs (ρ,G) and (ρ′, G′) with G = (V,E), G′ = (V ′, E′), we say that f : V → V ′ is an
embedding of (ρ,G) into (ρ′, G′) if

• f(ρ) = ρ′,

• f is injective,

• for every u, v ∈ V , the number of edges in G containing u and v is less than or
equal to the number of edges of G′ containing f(u) and f(v).

(Of course, ifG andG′ have no loops or multiple edges between vertices, the last property
means that f(u) and f(v) are neighbours in G′ whenever u and v are neighbours in G.)
We say that (ρ′, G′) embeds (ρ,G) if there exists an embedding of (ρ,G) into (ρ′, G′); that
(ρ,G) and (ρ′, G′) are isomorphic if each embeds the other.

For the rest of the paper, we fix d > 2 and omit d from Td and Td` , thus writing T and
T` respectively. The root of T` is denoted by o.

2.2 Graphical construction of the contact process

Almost every paper on the contact process contains a brief exposition of its graphical
construction, so this is by now quite a redundant addition. We nevertheless include it
here because we allow our graphs to contain loops and parallel edges, so we need to be
careful with the notation to avoid confusion.

Fix a graph G = (V,E) and an infection rate λ > 0. Assume given the following
families of independent Poisson point processes on [0,∞): (T~e)~e∈~E , all with rate λ, and
(Dx)x∈V , all with rate 1. We now imagine G is embedded on the xy-plane and add marks
on the vertical lines (V ∪ ~E) × [0,∞) as follows: for each x and each t ∈ Dx, we add
a so-called recovery mark at (x, t), and for each ~e and each t ∈ T~e, we add a so-called
transmission arrow at (~e, t).

Given x, y ∈ V and 0 6 s 6 t, we say that (x, s) and (y, t) are connected by an infection
path (and write (x, s) ↔ (y, t)) if there exists a right-continuous function γ : [s, t] → V

such that

• γ(s) = x, γ(t) = y,

• (r, γ(r)) /∈ Dγ(r) for all r ∈ [s, t],

• γ(r−) 6= γ(r) implies r ∈ T~e for some ~e with v0(~e) = γ(r−), v1(~e) = γ(r).

In other words, (r, γ(r))s6r6t must be a path from (x, s) to (y, t) which does not cross any
recovery mark and is allowed to traverse transmission arrows.

For x ∈ V , let ξxt = {y ∈ V : (x, 0) ↔ (y, t)}; for A ⊆ V , let ξAt = ∪x∈A ξxt . Then,
(ξAt )t>0 is a Markov process on {0, 1}V with the same distribution as the process defined
earlier in (1.1). The graphical construction has the advantage that all the contact
processes ((ξAt )t>0)A⊆V are defined in the same probability space and, if A ⊆ B, then
ξAt ⊆ ξBt for all t. Note also that ξAs+t = ∪x∈ξAt {y : (x, t)↔ (y, t+ s)}.

2.3 Known results on the contact process on T

We now list some definitions and results about the contact process on T which we
will need; all of them can be found in Section I.4 of [16]. The reader is encouraged to
skip this subsection and refer back to it when each result is needed.

We start defining a “generation number” function ` : T → Z as follows. Take an
embedding κ : Z→ T so that κ(0) = o. If x ∈ κ(Z), set `(x) = κ−1(x). If x /∈ κ(Z), let y
be the first vertex of κ(Z) reached in a path from x to κ(Z); set `(x) = `(y) + dist(x, y).
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Now, given ρ > 0, as in [16] equation (4.23), page 87, we put

φλ(ρ) = lim
t→∞

ET,λ

[∑
x∈T

ξot (x) · ρ`(x)

] 1
t

;

the limit is shown to exist (page 87). In Proposition 4.27(a) and (b) we respectively have

φλ(ρ) = φλ

(
1

ρd

)
(2.1)

and

ET,λ [|ξot |] 6 Cλ · φλ(1)t, t > 0, (2.2)

for some constant Cλ > 0. In Proposition 4.44(a), we have

1√
d
6 ρ < ρ′ and φλ(ρ′) > 1 =⇒ φλ(ρ) < φλ(ρ′). (2.3)

As in equation (4.48), page 96, we define for λ > 0

β(λ) = lim
n→∞

PT,λ [∃t : ξt(κ(n)) = 1]
1
n ; (2.4)

again the limit is shown to exist (page 96). Regarding β, we will need the following facts,
which can be found in Theorem 4.83, Corollary 4.87 and Theorem 4.130 of [16]:

β(λ) <
1√
d

=⇒ φλ(β(λ)) = φλ

(
1

β(λ) · d

)
= 1, (2.5)

β(λ1) =
1

d
, (2.6)

β is strictly increasing in [0, λ2(T)]. (2.7)

3 Supercritical regime

The goal of this section is to prove part (b) of Theorem 1.2. We first state for later
usage a classical large deviation result on binomial random variables, whose proof is
standard.

Lemma 3.1. Let Bin(m, p) denote a binomial random variable with parameters m ∈ N
and p ∈ [0, 1] (defined with respect to the measure P, say). For every δ > 0,

P[Bin(m, p) > (p+ δ)m] 6 e−mψp(δ),

where

ψp(δ) = sup
λ

[
λ(p+ δ)− log(1− p+ peλ)

]
= (p+ δ) log

(
p+ δ

p

)
+ (1− p− δ) log

(
1− p− δ

1− p

)
. (3.1)

We will need the following estimate:

Lemma 3.2. For every λ > λ1(T), there exist R, p0 > 0 and α0 > 1 such that, for ` large
enough,

PT`,λ
[
|ξoR`| > α`0

]
> p0.
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Proof. Let T∞ be the infinite, rooted, d-ary tree (that is, the infinite rooted tree in which
the root o has degree d and all other vertices have degree d+ 1). In [24] it is shown that
for every λ > λ1(T), there exist U > 0, γ > 1 and p > 0 such that, for ` ∈ N large enough,

PT∞,λ
[
|ξoU`| > γ`

]
> p. (3.2)

We remark that:

1. the above estimate follows from equation (2.6) in [24];

2. the running hypothesis in [24] is that λ > λ2(T), but (3.2) holds true more generally,
for λ > λ1(T). Indeed, its proof depends on two ingredients. First, their Lemma
1, which in fact holds for any λ > 0. Second, an argument involving branching
processes (see the paragraphs preceding their equation (2.6)) which is applicable
as long as d · β(λ) > 1 (β(λ) is defined above, in (2.4)). By (2.6) and (2.7), this is
indeed the case when λ > λ1(T);

3. we can then choose γ as any constant between 1 and d · β(λ).

Using equation (4.76) in [16], one can readily show that there exists S > 0 such that,
for all t > 0,

PT∞,λ [ξos(y) = 0 for all s 6 t and y with dist(o, y) > St]

> PT,λ [ξos(y) = 0 for all s 6 t and y with dist(o, y) > St] > 1− p

2
.

Combining these two estimates and setting R = S−1 and α0 = γR/U > 1 we get

p

2
6 PT∞,λ

[
|ξoR`| > α`0, ξ

o
s(y) = 0 for all s 6 R` and y with dist(o, y) > `

]
6 PT`,λ

[
|ξoR`| > α`0

]
.

We have the following consequence of the above result:

Lemma 3.3. For every λ > λ1(T) and r > 0, there exist R, σ > 0 and α > 1 such that
for every ` large enough, the following holds. For any graph G with vertices x, y such
that dist(x, y) 6 r and (y,G) embeds (o,T`), we have

PG,λ
[
|ξxR`| > α`

]
> σ.

Proof. Let R, p0 and α0 be as in the previous lemma; we have

PG,λ

[
|ξxR(`+1)| > α`0

]
> PG,λ [ξxR(y) = 1] · PG,λ

[
|ξyR`| > α`0

]
> PG,λ [ξxR(y) = 1] · p0.

We can now find σ > 0 that bounds the right-hand side from below uniformly on
dist(x, y) ∈ {1, . . . , r} (one can guarantee that the event {ξxR(y) = 1} occurs by making
finitely many prescriptions on Poisson processes in the graphical construction on a
geodesic path connecting x and y and the time interval [0, R]). We then pick any
α ∈ (1, α0); the result follows from observing that α`−1

0 > α` for ` large enough.

We say that a set of vertices W ⊆ Vn is `-regenerative if there exists a family (G′v)v∈W
of subgraphs of Gn that are pairwise disjoint and such that for every v ∈W , the following
two conditions hold:

• G′v contains v,

• there exists x ∈ G′v such that the distance in G′v between x and v is 4 and (x,G′v)

embeds (o,T`).
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Phase transition of the contact process on random regular graphs

The crucial geometric property of Gn that we need is

Theorem 3.4 (Finding large regenerative subsets). For any ` ∈ N and ε > 0 sufficiently
small (depending on `), the following holds with Pn-probability tending to 1 as n tends to
infinity. From every W ⊆ Vn of cardinality at least εn, one can extract an `-regenerative
subset of cardinality at least ε

40d6n.

Remark 3.5. In what follows, in order to prevent the notation from getting too heavy, we
will pretend that certain quantities, such as εn in the above proposition, are integers.
It should be clear that in a correct but overscrupulous writing, one should take the
pertinent integer parts or add or subtract 1 at certain places, but that this does not
change our proofs in any relevant way.

We prove part (b) of Theorem 1.2 using Theorem 3.4, before turning to the proof of
the latter.

Proof of part (b) of Theorem 1.2. We fix λ > λ1(T), and choose constants according to
the following steps:

1. let α,R, σ correspond to λ and r = 4, as in Lemma 3.3;

2. take ` large enough, as required by Lemma 3.3, and also so that α` > 80d6

σ ;

3. take ε corresponding to ` as in Theorem 3.4.

Assume Gn satisfies the property stated in Theorem 3.4, namely

every W ⊆ Vn with |W | > εn has an `-regenerative subset of cardinality
ε

40d6
n.

We will now prove that, for some constant c > 0 which does not depend on n,

for all W ⊆ Vn with |W | > εn, PGn
[
|ξWR`| > εn

]
> 1− e−cn. (3.3)

This will imply the statement of Theorem 1.2.
We fix W with |W | > εn and extract from it an `-regenerative subset W ′ of cardinality

n′ := ε
40d6n; we enumerate its elements, W ′ = {v1, . . . , vn′}. By the definition of `-

regenerative sets, there exist pairwise disjoint subgraphs of G, G′v1 , . . . , G
′
vn′

such that
vi ∈ G′vi and there exists xi ∈ G′vi such that dist(vi, xi) = 4 and (xi, G

′
vi) embeds (o,T`).

For each vi, let (ζvit )t>0 be the contact process on G′vi , started from only vi infected,
and built using the same family of Poisson processes as the original contact process on G.
If i 6= j, then (ζvit ) and (ζ

vj
t ) are independent (since the G′vi ’s are disjoint) and moreover,

ξWt ⊇ ξW
′

t ⊇ ∪v∈W ′ ζvt for all t.
Define the events

Ei =
{
|ζviR`| > α`

}
, 1 6 i 6 n′.

We then have PGn [Ei] > σ. Thus, by standard large deviation estimates for binomial
random variables (see Lemma 3.1), we have

PGn

 n′∑
i=1

1Ei >
σ

2
n′

 > 1− e−c(ε,σ)n.

Finally, if the event in the above probability occurs, we have

|ξWR`| > α` ·
n′∑
i=1

1Ei > α` · σ
2
n′ > εn.

This completes the proof.
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Phase transition of the contact process on random regular graphs

We now give some definitions and preliminary results for the proof of Theorem 3.4.
We say that a set of vertices W ⊆ V is well separated if the following two properties
hold:

• for every v ∈ W , the 3-neighbourhood of v is cycle-free (for r ∈ N, the r-
neighbourhood of a vertex v ∈ V is the set of vertices w whose distance to v

is at most r),

• for every two distinct v, w ∈W , the 3-neighbourhoods of v and w are disjoint.

The key step of the proof lies in the following proposition.

Proposition 3.6 (Key estimate). For every ` ∈ N, there exists c > 0 such that for every
ε > 0 suficiently small (depending on `) and every n large enough,

P

[
the set {1, . . . , εn} is well separated but

has no `-regenerative subset of size εn/5

]
6 (cε

6
5 )εn.

Remark 3.7. In order to prove Theorem 3.4, we will use a union bound over all sets of
cardinality εn. Roughly speaking, there are about ε−εn such sets (ε� 1). So the crucial
point in Proposition 3.6 is that the exponent 6

5 appearing there is strictly larger than 1.

Before proving this key estimate, we introduce some terminology. A semi-graph
g = (V, E ,H) is a triple consisting of a set V of vertices, a set E of edges between points
of V , and a set H of half-edges, each half-edge being attached to some vertex in V . Given
two half-edges h and h′, we write h+ h′ to denote the edge obtained by “gluing together”
the half-edges h and h′ (that is to say, if h is attached to a vertex v and h′ to a vertex w,
then h+ h′ is an edge connecting v and w). The distance in the semi-graph g is simply
the distance in the graph (V, E).

Consider the semi-graph g = (Vn, E ,H) such that E = ∅ and each vertex in Vn has
exactly d + 1 half-edges. We can construct a random regular graph with distribution
Pn by the following recursive procedure. Take an arbitrary half-edge h in H (call it the
elected half-edge); take a half-edge h′ uniformly at random inH\{h}; add the edge h+h′

to the set E , remove the half-edges h and h′ from H; repeat until the set of half-edges
is empty. (Recall that we assume (d+ 1)n to be even, so that there is an even number
of half-edges to begin with). The resulting random graph has law Pn. A feature of this
procedure that will be crucial in our reasoning is that at each step, we have the freedom
to choose the elected half-edge as we wish among the half-edges of H.

It will be convenient to write operations on sets such as those done in the above
construction in the more symbolic form

E ← E ∪ {h+ h′}, H ← H \ {h, h′}. (3.4)

Proof of Proposition 3.6. Fix ` ∈ N. Also fix ε ∈ (0, 1) and n ∈ N; for the moment we do
not specify their choice. We take the semi-graph g = (Vn, E ,H) such that E = ∅ and
such that every site has exactly (d+ 1) half-edges. We denote byW the set of vertices
{1, . . . , εn}. As long as there is a half-edge h attached to a vertex at distance 2 or less
fromW, we choose this as the elected half-edge, pick another half-edge h′ uniformly at
random from H \ {h}, and do the operations in (3.4). When there is no longer any such
half-edge, the graph is still incomplete, but we can already decide ifW is well separated,
since we have revealed all the 3-neighbourhoods of vertices inW (and nothing more). If
the set is not well separated, we can stop. On the event that the set is well separated,
we continue our construction of the graph, with the aim of showing thatW will contain
a good subset of size εn/5 with high probability.

Let F be the set of vertices still having (d + 1) half-edges at this point. We call
elements of F fresh vertices (they are still unseen by our construction of the graph).
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Phase transition of the contact process on random regular graphs

Elements ofW will be called seeds. Recall that since we consider only the event thatW
is well separated, for every seed ρ, the 3-neighbourhood of ρ, rooted at ρ, is isomorphic
to (o,T3); moreover, every vertex x at distance 3 from ρ has exactly d half-edges attached
to it at this point.

Below we will give a procedure to continue electing half-edges and thus continue
the construction of the graph; at any point in the construction, we say that a seed ρ is
active if there are at least 3 half-edges attached to vertices at distance 3 from ρ (as of
now, there are (d+ 1)d3 such half-edges).

A seed that is not active will be called quiet. As of now, every seed is active. We let ρ
be any active seed (as of now, this only means that we take ρ ∈ W), and run the pass
described below.

The pass started from the active seed ρ.

Let V be the set of vertices at distance 3 or less from ρ and let E be the set of edges
with both extremities in V . Let H be the set of half-edges attached to vertices of V ; by
the definition of an active seed, H has at least 3 elements.

z〉 Let v ∈ V be at distance strictly less than ` + 4 from ρ as measured in the graph
(V , E), and such that there is a half-edge h ∈ H attached to it. If such a v does not exist,
then declare that the pass is a success and stop. Otherwise, pick h′ uniformly at random
in H \ {h}, and let v′ be the vertex to which it is attached. If v′ /∈ F , then declare that
a collision occurs (say that it is a short collision if moreover, v′ ∈ V ; that it is a long
collision otherwise).

• If it is the second time during the pass that a collision occurs, then declare that the
pass is a failure, do the updates

E ← E ∪ {h+ h′}, H ← H \ {h, h′}, (3.5)

and stop the pass.

• If it is the first time during the pass that a collision occurs, do the updates

E ← E ∪ {h+ h′}, H ← H \ {h, h′}, H ← H \ {h, h′}, (3.6)

and go back to z〉.
• If a collision does not occur (that is, if v′ ∈ F), then do the updates

E ← E ∪ {h+ h′}, H ← H \ {h, h′}, H ← H \ {h},
V ← V ∪ {v′}, F ← F \ {v′}, E ← E ∪ {h+ h′},

and finally add the remaining half-edges of v′ to H. Then go back to z〉.

Observation 3.8. In (3.6), we only need to remove h′ from H in case of a short collision;
if the collision is long, then h′ is not an element of H at this point.

We then iterate this pass, always starting with an active seed that has not been
the starting point of any previous pass, until every seed is quiet or has already been
used as the starting point of a pass.

We now list some important observations concerning the effect of passes.

Observation 3.9 (The effect of a successful pass). If the pass is a success, we define
G′ρ = (V , E). This subgraph of Gn is a tree satisfying:

(a) ρ is in the vertex set,
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Phase transition of the contact process on random regular graphs

(b) there exists x ∈ V such that distG′ρ(ρ, x) = 4 and (x,G′ρ) embeds (o,T`).

Let us verify (b); to this end, we introduce some notation. Given a vertex x ∈ V , we let V x
be the set of vertices y ∈ V such that the unique path in G′ρ from y to ρ contains x, then

let Ex be the set of edges of E with both extremities in V x, and finally let G′ρ,x = (V x, Ex).
Now, if there were no collisions in the pass, then there are at least three distinct vertices
x1, x2, x3 such that distG′ρ(xi, ρ) = 4 and (xi, G

′
ρ,xi) is isomorphic to (o,T`) for each i, so

(b) holds. If one collision occurred in the pass, then at most two of these subtrees is
compromised by missing edges, so that there still exists some x with distG′ρ(x, ρ) = 4 and
(x,G′ρ,x) isomorphic to (o,T`).

Apart from satisfying the properties listed above, G′ρ does not intersect any subgraph
G′ρ̂ obtained from previous passes.

Observation 3.10 (Many fresh sites). During one pass, at most

c` := (d+ 1)d3 + (d+ 1)d4 + · · ·+ (d+ 1)d`+4

iterations of the instruction z are performed, so in particular at most c` vertices are
removed from the set F of fresh vertices. Initially, there are

n− |W|(1 + (d+ 1) + (d+ 1)d+ (d+ 1)d2)

fresh vertices. Since we start with |W| active seed vertices, we can run the pass no more
than |W| times. At any given time, there are thus at least n− c′`|W| fresh vertices, where

c′` := 1 + (d+ 1) + (d+ 1)d+ · · ·+ (d+ 1)d`+4.

Observation 3.11 (Many passes). It may occur, due to half-edges being removed in
collisions, that a seed becomes inactive before it is used in a pass (let us say that it is
then ruined ). Recall that for a seed ρ,

• there are initially (d+ 1)d3 half-edges attached to vertices at distance 3 from ρ;

• ρ remains active as long as at least 3 of these half-edges are still present;

• any given pass which starts from some other seed ρ′ can cause the removal of at
most two of these half-edges.

In conclusion, it takes at least (d+1)d3−3
2 passes started from other seeds to ruin the seed

ρ. Taking this into account we see that, if we run the pass t times, then at most

t+ t · 2

(d+ 1)d3 − 3

seeds become inactive (namely, those that are being explored by each pass and those
that are ruined by collisions). In other words, since we start with |W| = εn seeds, we
can run the pass at least (

1 +
2

(d+ 1)d3 − 3

)−1

|W| > 4

5
εn

times without running out of active seeds (since d > 2).

Let us now estimate the probability that a pass is a failure. By observation 3.10, the
probability to find a collision while running an iteration of instruction z (that is, at each
moment in the pass in which we pick a half-edge uniformly at random) is bounded above
by

dc′`|W|
(d+ 1)(n− c′`|W|)

6
c′`ε

1− c′`ε
.
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Phase transition of the contact process on random regular graphs

Hence, the probability that a double collision is found during a pass (or in other words:
the pass fails due to the occurrence of two collisions) is smaller than

P

[
Bin

(
c`,

c′`ε

1− c′`ε

)
> 2

]
,

where we used the fact that during one pass, we iterate instruction z at most c` times.
Hence, we can choose ε sufficiently small (depending on d and `) so that

the probability for a pass to fail is less than c′ε2, (3.7)

where c′ = (c`c
′
`)

2.
The probability that at least 3

5εn passes fail due to double collisions is thus bounded
by

P

[
Bin

(
|W|, c′ε2

)
>

3

5
εn

]
= P

[
Bin

(
εn, c′ε2

)
>

3

5
εn

]
,

using (3.7) and the fact that we run at most |W| passes. Applying Lemma 3.1 with
m = εn = |W| , p = c′ε2 and p+ δ = 3

5 , we see that this probability is bounded by

exp

{
−|W|

[
3

5
log

(
3

5c′ε2

)
+

2

5
log

(
2

5(1− c′ε2)

)]}
.

Hence, the probability above is bounded by (cε
6
5 )|W| for some constant c independent of

ε.
To sum up, we have shown that in our procedure, we

• run at least 4
5εn passes;

• have at most 3
5εn failed passes with probability larger than 1− (cε

6
5 )|W|.

This is exactly what we need to conclude, as was explained in Observation 3.9.

Corollary 3.12. For every ` ∈ N and ε > 0 sufficiently small,

P

[
from every well-separated set W ⊆ Vn of size εn,
one can extract an `-regenerative subset of size εn/5

]
n→∞−−−−→ 1.

Proof. Take c, ε corresponding to ` as in Proposition 3.6. For large enough n, the
probability for a given well-separated set W ⊆ Vn of size εn not to contain any `-
regenerative subset of size εn/5 is smaller than (cε

6
5 )εn. We prove the corollary by a

union bound, counting the total number of sets W ⊆ Vn of size εn. This number is(
n

εn

)
6

nεn

(εn)!
.

Using the fact that log n! > n log n− n (which can be proved by induction on n), we see
that

log

(
n

εn

)
6 εn log n− εn log(εn) + εn = εn

(
1 + log

(
1

ε

))
.

By reducing the value of ε > 0 if necessary, we can ensure that

(cε
6
5 )εn exp

[
εn

(
1 + log

(
1

ε

))]
tends to 0 as n tends to infinity, and this proves the result.
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Proof of Theorem 3.4. The number of cycles in Gn of size bounded above by 3 remains
tight as n tends to infinity (in order to see this, it suffices to check that the expectation
of the number of such cycles remains bounded). In particular, with probability tending
to 1, there are less than

√
n cycles of size bounded by 3. We assume from now on that

the event that there are no more than
√
n cycles of size bounded by 3 is realized.

For any site v ∈ V , the size of its 6-neighbourhood is no more than

1 + (d+ 1) + (d+ 1)d+ · · ·+ (d+ 1)d5 6 4d6.

We observe that if m ∈ N and U is a set of m vertices, we can extract from U a subset of
m/(4d6) vertices whose 3-neighbourhoods are pairwise disjoint. To see this, let x1 be an
arbitrary point of U . Then, the set U ′ obtained by removing from U all points that belong
to the 6-neighbourhood of x1 has size at least m− 4d6. Moreover, the 3-neighbourhood of
any point of U ′ is disjoint from the 3-neighbourhood of x1. We then let x2 be an arbitrary
point of U ′, and continue this procedure until xm/(4d6) is defined.

Now assume that W is a set of εn vertices. By the above, we can find W ′ ⊆ W

with at least εn/(4d6) vertices so that the 3-neighbourhoods of vertices in W ′ are all
disjoint. As there are no more than

√
n cycles of size bounded above by 3, assuming n is

large enough that
√
n < εn/(8d6), we can further obtain W ′′ ⊆W ′ with |W ′′| > εn/(8d6)

vertices so that W ′′ is well-separated. The desired conclusion then follows immediately
from Corollary 3.12.

4 Subcritical regime

We start from the following consequence of well-known estimates for the subcritical
contact process on trees.

Proposition 4.1. For any λ < λ1(T), there exists C > 0 such that

lim
n→∞

sup
A⊆T:|A|=n

PT,λ
[
τ
A
T > C log n

]
= 0.

Proof. The proof will depend on the fact that, for any λ < λ1(T), there exist c0, C0 > 0

such that
ET,λ [|ξot |] 6 C0e

−c0t, t > 0. (4.1)

This is proved as follows. For λ < λ1(T), (2.6) and (2.7) give β(λ) < 1
d . Together with

(2.5), this shows that φλ(ρ) = 1 for some ρ > 1. Then, using (2.3), we get φλ(1) < 1, and
then (2.2) gives the desired equation (4.1).

Let us now show how (4.1) completes the proof of our proposition. Noting that
|ξAt | = |∪x∈A ξxt | 6

∑
x∈A |ξxt |, we have

PT,λ
[
|ξAt | 6= ∅

]
6 ET,λ

[
|ξAt |

]
6 C0|A|e−c0t.

The proof is completed by taking C = 2/c0.

Part (a) of Theorem 1.2 is a consequence of the above proposition and the following
result:

Lemma 4.2. For any finite graph G = (V,E) with degree bounded by d+ 1, A ⊆ V and
t > 0,

PG,λ
[
τ
A
G > t

]
6 sup
B⊆T:|B|=|A|

PT,λ
[
τ
B
T > t

]
.

Proof. Since the contact process is unaffected by the presence of edges that start and
end at the same vertex (loops), we assume that G has none.
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We will now recall the concept of universal covering of the graph G; we will construct
from G a new graph T = (V, E) with certain desirable properties. We start fixing a
reference vertex x ∈ V . We say that a sequence γ = (~e1, . . . , ~en) of oriented edges of
~E is a non-backtracking path from x if v0(~e1) = x and, for 1 6 i < n, v1(~ei) = v0(~ei+1)

and u(~ei) 6= u(~ei+1) (recall that, for an oriented edge ~e, v0(~e), v1(~e) and u(~e) respectively
denote the starting vertex, ending vertex and undirected edge associated to ~e). Let
V be the set of all non-backtracking paths from x, including an empty path which we
denote by o. For any γ, γ′ ∈ V with γ = (~e1, . . . , ~en) and γ′ = (~e1, . . . , ~en, ~en+1), we connect
γ and γ′ by an edge; this defines the edge set E of T . Finally, put ψ(o) = x and, for
γ = (~e1, . . . , ~en), put ψ(γ) = v1(~en), the ending vertex of the path γ. It is now easy to
check that T and ψ satisfy the properties:

(a) T is a tree with degree bounded by d+ 1;

(b) for every γ ∈ V, letting x = ψ(γ) ∈ V , we have

for all y ∈ V, |{edges of E with extremities x and y}|
= |{γ′ ∈ V : γ and γ′ are neighbours in T , ψ(γ′) = y}| .

(in case x is connected to each of its neighbours by a single edge, this just says
that ψ maps the neighbourhood of γ bijectively to the neighbourhood of x).

For v ∈ V , the set ψ−1(v) is called the fiber of v. Define the set of configurations of
{0, 1}V that have at most one particle per fiber,

ΩT =

ζ ∈ {0, 1}V :
∑

γ∈ψ−1(v)

ζ(γ) ∈ {0, 1} for all v ∈ V

 .

Define the projection π : ΩT → {0, 1}V by [π(ζ)](v) =
∑
γ∈ψ−1(v) ζ(γ) for v ∈ V . We abuse

notation and, for a set B ⊆ V, we write B ∈ ΩT if 1B ∈ ΩT .

Given B ∈ ΩT , we define the constrained contact process on T , (ζBt )t>0, as follows.
We set ζB0 = B and let ζ evolve as a contact process on T with the restriction that we
suppress every transition which would result in a configuration not in ΩT , that is, births
on vertices belonging to fibers already containing infected vertices. Formally, (ζt) has
generator

Lf(ζ) =
∑
γ∈V

[
f(ζ0→γ)− f(ζ)

]
+ λ ·

∑
{γ,γ′}∈E:
ζ(γ)=1

[
1{ζ1→γ′∈ΩT } ·

(
f(ζ1→γ′)− f(ζ)

)]
,

where ζi→γ
′

is the configuration obtained by modifying ζ so that γ′ is set to state i.
Noting that G is finite, and hence ζ has at most |V | infected vertices at any given time,
it is not hard to see that the above generator indeed gives rise to a Feller process on
Ω

[0,∞)
T . In fact, ζ can be constructed from a Harris system on T , with the extra care of

ignoring any transmission mark which would cause a fiber to become doubly occupied.
Also, using property (b) of T and ψ stated above, it is easy to show that (π(ζBt ))t>0 has
the same distribution as the contact process on G started from π(B).

Now, if we start from A ⊆ V , we can choose an arbitrary B ∈ ΩT such that π(B) = A

and conclude that τAG has the same distribution as inf{t : ζBt = ∅}. By seeing T (and
hence B) as a subset of T, we have that ζB is stochastically dominated by the contact
process on T started from B infected, and hence inf{t : ζBt = ∅} is stochastically
dominated by τBT . This completes the proof.
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Let G be a graph and x a vertex of G. Given the contact process on G started from a
single infection at x, (ξxt )t>0, define

κ
x
G = sup{dist(x, y) : y ∈ ξxt for some t > 0}.

Lemma 4.3. For any finite graph G with degree bounded by d + 1, any vertex x of G
and k > 0,

P [κxG > k] 6 P [κoT > k] .

Proof. Repeating the construction in the previous lemma, we note that, if ψ(γ) = x and
ψ(γ′) = y, then distT (γ, γ′) > distG(x, y), and we then see that κxG is stochastically domi-

nated by sup{distT (γ, γ′) : γ′ ∈ ζ{γ}t for some t > 0}. The latter is in turn stochastically
dominated by κoT, completing the proof.

Proof of Theorem 1.4. In order to show that the contact process on G dies out, it suffices
to show, for any vertex x, that P [τxG <∞] = 1. Denote by BG(x, r) the subgraph of G
induced by the set of vertices at graph distance at most r from x. Then,

P [τxG <∞] = lim
r→∞

P [κxG 6 r] = lim
r→∞

P
[
κ
x
BG(x,r+1) 6 r

]
> lim
r→∞

P [κoT 6 r] = 1.
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