Electron. Commun. Probab. 21 (2016), no. 47, 1-12. ELECTRONIC

DOI: 10.1214/16-ECP5 COMMUNICATIONS
ISSN: 1083-589X in PROBABILITY

Site recurrence for coalescing random walk

Itai Benjamini * Eric Foxall T Ori Gurel-Gurevich* Matthew Junge®
Harry Kesten '

Abstract

Begin continuous time random walks from every vertex of a graph and have particles
coalesce when they collide. We use a duality relation with the voter model to prove
the process is site recurrent on bounded degree graphs, and for Galton-Watson trees
whose offspring distribution has exponential tail. We prove bounds on the occupation
probability of a site, as well as a general 0-1 law. Similar conclusions hold for a
coalescing process on trees where particles do not backtrack.

Keywords: random walk; interacting particle system; multiple random walks; recurrence.
AMS MSC 2010: 60J27.
Submitted to ECP on January 31, 2016, final version accepted on June 10, 2016.

1 Introduction

Coalescing random walk (CRW) starts with one particle at each vertex of a connected,
locally finite, and undirected graph. We make the graph directed by doubling the edge
set, then run independent rate-1 Poisson clocks at each edge. When an edge clock rings,
any particles at the tail of that edge move to the adjacent vertex. In this fashion, particles
occupying the same site have “coalesced” since they proceed as one. Say that CRW is
site recurrent if every site is almost surely visited infinitely often. If instead this occurs
with probability 0, call the process transient. Our main tool for proving site recurrence
is the following necessary and sufficient condition in terms of the expected occupation
time of a vertex.

Proposition 1.1. Site recurrence is equivalent to infinite expected occupation time at
any vertex. Moreover, CRW is either site recurrent or transient (i.e. it satisfies a 0-1
law).

Let p;(v) be the probability a particle is at the vertex v at time ¢, so that site recurrence
is equivalent to divergence of f pt(v)dt. We use duality with the voter model to obtain
non-integrable lower bounds on the following graphs:
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Site recurrence for coalescing random walk

Theorem 1.2. CRW is site recurrent on:

(i) Bounded degree graphs. If the maximum degree is D, then for all vertices v
pi(v) > (1+Dt)~
forallt > 0.

(ii) Galton-Watson trees with offspring distribution on Z+ and the probability of k
offspring bounded by e~“* for some ¢ > 0 and large enough k. Here

pe(v) > C(tlogt)™?
for all vertices v, large enough t, and some C > 0 that depends on c.

Note that there are unbounded degree graphs for which CRW is not site recurrent;
even the non-coalescing system of independent random walks is transient on trees with
rapidly increasing degree. We are not sure how much the exponential tail hypothesis
in (ii) can be weakened. See Further Questions (a) for more discussion. A corollary to
Theorem 1.2 is a general upper bound on the probability that a vertex v is unoccupied
on the interval (¢, u).

Corollary 1.3. Let o; be the first time aftert that v is occupied by a particle. It holds

that
t

<——-
t—i—ft ps(v)ds

And, for a graph with maximum degree D

P(or > u)

4
<
= t+ £ (log(1 + Du) — log(1 + Dt))

P(or > u) = 0O(1/log(u)).

We also give a universal upper bound for p;(v) on general graphs. It follows that the
occupation probability decays to 0 for any graph. The upper bound is a small modification
of an argument in [Gri78], so we also credit David Griffeath.

Proposition 1.4 (Griffeath). Let G be a connected, infinite graph. For all vertices v, any
e > 0, and large enough t (depending on €) it holds that p;(v) < (1 +¢€)/(2v/7t).

History

The study of coalescing systems began in the 1970’s with the paper of Erdés and
Ney [EN74]. The duality relationship to the voter model, which we rely heavily upon,
was first observed in [HL75]. Variations of coalescing random walk continue to find new
applications. For example, random coalescence involving multiple types of particles,
and particle interaction rules, is used to model certain chemical reactions (see [Hol83],
[BL88] and [vdBKO0O0]). Non-spatial models such as Kingman coalescence ([Kin82]) find
applications in modeling ancestry in biology. A survey of coalescence models can be
found in [Ber09]. Arratia [Arr83] looks at site recurrence for discrete time walks, and
annihilating systems, both with possibly vacant sites in the starting configuration. CRW
is applied to the voter model in [BL15]. Also, it is studied in more generality in [RV15]
and [GPTZ15]. Other recent articles have focussed on different settings. Its behavior
on finite graphs is of interest to computer scientists. The model on the d-dimensional
torus is introduced in [Cox89]. There, they study the expected time for the process to
coalesce into a single particle. In [CEOR12] the coalescence time is studied on a variety
of finite graphs. Elsewhere, in a continuous spatial setting, recurrence is studied with
coalescing diffusions by Cabezas, Rolla and Sidoravicious in [CRS13].
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Early results for coalescing random walk focused on the lattices 72, In [Gri78]
Griffeath shows that both coalescing and annihilating random walk on Z< is a.s. weakly
recurrent, under certain restrictions on the vacant sites in the starting configuration.
Weakly recurrent means that each site is occupied infinitely often, but for a decreasing
fraction of time. An important ingredient in the proof of recurrence is an estimate
for the function p;, the probability a particle occupies the origin at time ¢. In [BG80],
Bramson and Griffeath study p; in the coalescing case and compute its asymptotics for
every d > 1. Rather nicely, for d > 3 it holds that p; ~ (y4¢t)~! with v, the probability a
random walk on Z¢ never returns to its starting point. The proof of this is computational;
later, [vdBKO02] Kesten gives a probabilistic argument that revolves around the heuristic

P = —vap;.

Overview

The main idea is to obtain information about p;(v) from a dual voter model. This
dual was first applied to CRW in [HL75], and subsequently utilized in [HS79, Gri78,
Arr81, Arr83]. In Corollary 2.2 we deduce that p;(v) is equivalent to the probability a
time-changed nearest neighbor simple random walk avoids O up to time ¢. All of our
estimates come from studying this random walk.

Further questions

We record several questions regarding coalescing and annihilating random walk
here:

(a) Can the assumptions on the degree in Theorem 1.2 (ii) be weakened? We expect
that our approach extends (at least) to stationary graphs with finite expected
degree.

(b) Suppose G is an infinite unimodular random graph in which each vertex is assigned
an infinite trajectory in an ergodic invariant way (see [BC12]). Particles, one from
each vertex, start moving along their trajectory in continuous time and annihilate
when meeting. Is the resulting process recurrent? Start by showing it on Euclidean
lattices.

(c) Place e-balls (meteors) in Euclidean space with centers according to a unit intensity
Poisson process. At time 0 each chooses a direction uniformly randomly and
proceeds along this direction at unit speed (non-random). When two meteors
collide, they annihilate. Is the origin a.s. occupied by infinitely many meteors for
all d > 1? This is discussed in more detail in Section 3.

(d) Have particles perform annihilating random walk on a graph where the particle
started at = steps according to an exponential clock with mean an independent
uniform(0, 1) random variable. Is this model on Z still recurrent? If so, what can
be said of the limiting speed of the particles visiting the origin? Possibly slower
moving particles survive longer, and the average speed of particles visiting the
origin decays with time.

Outline

Section 2 starts with the proof of Proposition 1.1. We also establish, in Lemma 2.1,
that infinite expected occupation time is equivalent to survival of a nearest neighbor
random walk in the voter model. Corollary 2.2 relates this back to p;. Sections 2.1
and 2.2 contain the proofs of Theorem 1.2 (i) and (ii), respectively. Section 3 discusses
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some non-backtracking variants, and contains the proof of site recurrence for a non-
backtracking model on bounded degree trees and Galton-Watson trees with exponential
tail.

2 Site recurrence for coalescing random walk

Coalescing random walk on a graph, G = (V, E), has a graphical representation as
follows: each edge is replaced with two directed edges and an independent Poisson
process with unit intensity is placed on each directed edge, indexed by time. When the
bell of a Poisson process for the edge (u,w) rings we check if there’s a particle at u
and if so, we move it to w. If there’s already a particle at w, they merge. We denote
the process (&):>0 with & € {0,1}V equal to the set of occupied vertices at time ¢, and
occasionally &/ for the location at time ¢ of the particle that began at v. In this notation
we have p;(v) = P(&(v) = 1) is the probability that v is occupied by a particle at time ¢.
Thus, fooo pt(v)dt is the expected occupation time of v.

Proof of Proposition 1.1. If there is positive probability of infinite occupation time at
v, then the expected occupation time is infinite. For the other direction we generalize
[Arr83, Lemma 2].

Suppose that [;* p;(v) = co. For any ¢ € [0,00) let oy = inf{s > ¢: £ (v) = 1} € [0, 00],
the first time after ¢ that v is occupied by a particle. We wish to establish that

P(o; < 0) =1, vt > 0.

The basic coupling ¢ = {¢7: x € A} for A C V has the property that A C B C V
implies ¢ C ¢P C &, so the Markov process (¢/': A C V), with state space {0,1}V =
{A: A CV} ordered by set inclusion, is attractive. Define p;* = P(¢{*(v) = 1), and also
I(t,u) = [, ps(v)ds. By assumption,

lim I(t,u) = oo, Vvt > 0. 2.1)
uU—r 00
Let f,, be the density function of o, and E,, denote the expectation taken over all
possible realizations of &,, given that o, = . Let A = 5(‘,2 . Using the strong Markov
property we have for ¢t < u,

) =8 [ 160 == [ 08 (B[ 100 = as)ar
< [ s (B [ vie0 = nas)ar

r=t

< P(or <u)(t+I(0,u)).
Dividing both sides by ¢ + (0, u) we arrive at the inequality
Poy <w) > I(t,u)/(t+ 1(0,u)). (2.2)

For fixed ¢, taking v — oo yields P(o; < c0) > 1 by (2.1).

We conclude by describing the 0 — 1 law. The above argument establishes that if CRW
occupies a site for infinite time with positive probability, then it does so with probability
1. As G is assumed to be connected, it follows that all sites are occupied infinitely often
with probability 1. Therefore, the process is either site recurrent (recall this is defined
as an almost sure event) or transient. O
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Proof of Corollary 1.3. The lower bound on P (o, < u) at (2.2) yields an upper bound on
the probability v is unoccupied from time ¢ to u:
I(t,u) t
t+I(tu) ¢+ j;ups(v)ds'

Ploy >u) <1 (2.3)

Which is the first part of the corollary. The second part follows by applying the bound on
p¢(v) in Theorem 1.2 (i) and integrating. O

Proposition 1.1 allows for site recurrence to be deduced by proving p;(v) is non-
integrable. Our approach is to express p;(v) in another way. Consider the dual process
to this model, which is called the voter model. In the dual model we start with a partition
of the space into clusters, where initially each vertex corresponds to a different cluster.
When the bell at (u, w) rings the vertex w is added to the cluster containing u. We denote
the process ((}'):>0 where ¢/ is the set of vertices belonging to the cluster that initially
consists of the vertex v. If we run this model in reverse time, from time ¢ to 0, we see
the cluster that began at v at time ¢ at time 0 consists of exactly the particles that in the
coalescing model are at v at time ¢. In particular,

pi(v) =P(&(v) =1) = P(( # 2). (2.4)

The advantage of working with the voter model is that the size of {; is a nearest-
neighbor symmetric random walk with transition rate depending on the number of
boundary edges. Indeed, at any moment there are some directed edges going out of the
cluster, and the same number of edges coming in. More precisely, the cluster size is a
skip-free process on the integers that moves with rate equal to the size of the current
boundary of the cluster. We record this fact in the following lemma. Let | - | denote either
the counting measure of a finite set.

Lemma 2.1. Define (f C V to be the set of vertices in the cluster of v at time t. For
each x € (f let 0y(x) = {(z,y) € E: y & ¢/}. Let 3 ... |0:(x)| be the number of edges
leading out of (/. The process has the following properties:

() [¢5] = 1.
(ii) Let T =inf{¢: |(:| = 0}. For allt > 7 it holds that |(}'| = 0.
(iii) The process is a martingale that transitions to |(}| + 1 at rate Zmeqj |0y ()]

Proof. Properties (i) and (ii) follow from the construction of ¢f. We turn our attention to
property (iii). For each z € ¢/, x is removed from ¢} at rate |0;(z)| and each of the |0;(z)|
sites in 0;(x) is added to (} at rate 1. Since the rates balance,

E[G TG =16,

which establishes |(}| is a martingale. Summing the rates over x € ¢/ shows that |(}|
transitions to |(;| + 1, and to |(/| — 1, each at rate ercg |0¢ ()] O

This lets us describe p; in terms of the voter model.

Corollary 2.2. p,(v) = P(|¢:(v)| > 0). This is the probability a nearest neighbor ran-
dom walk with transition rate ) ., |0:(x)| to each of its two neighboring states, and
absorbing state at 0 is yet to reach zero at time t.

It follows that p; — 0 on any infinite, connected graph.
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Proof of Proposition 1.4. The transition rate in (; is always at least two. By Corollary 2.2
and a straightforward coupling we have p; is at most p; = P(X; > 0, Vs < t), with X, a
rate-2 continuous time simple symmetric random walk started at 1. Using the reflection
principle together with the local central limit theorem, j; ~ 1/(2y/7t) as t — oo, and the
result follows. O

Remark 2.3. For coalescing walk on Z with nearest neighbour connections, since ¢/
is always of the form {z,z + 1,...,x + k} for some = € Z, k € Z*, its transition rate is
exactly 2 - 2 = 4, so the above inequality is an equality, and gives the exact asymptotics
pi ~ 1/(2y/7t), as observed in [BG80]. Compared to [BG80] there is an extra factor of
1/2; our convention differs from theirs in that the transition of a particle at v is equal to
degv and not 1, since in our case degv is allowed to vary.

2.1 Site recurrence for bounded degree graphs

Now we turn our attention to proving site recurrence on general graphs. Define
T, = inf{t: {} = @}. Integrating over ¢ in the duality relation (2.4) we find

Er, :/ P(|¢]] > 0)dt = / P(&(v) = 1)dt :/ pe(v)dt.
0 Jo 0
So, proving site recurrence is equivalent to showing that the first hitting time of 0 for
the simple random walk |(}'| (with random and time-varying transition rate) has infinite
expectation. We start with the case when G has bounded degree.

Proof of Theorem 1.2 (i). Let v € V with the maximum degree of vertices in G bounded
by D. Lemma 2.1 establishes that the transition rate of ;' to either increase or decrease
by 1 is less than or equal to D|(}|. Let W; be a continuous time nearest-neighbour
random walk on Z* U {0} with W, = 1. The walk transitions from k¥ € Z* U {0} to
k £ 1 each at rate Dk, and is absorbed at 0. Letting 6(t) = P(W; > 0), if follows from
Corollary 2.2 and a straightforward coupling of |(}| with W; that p;(v) > 6(t), so it
suffices to control 6(t).

The process W; can be interpreted as the number of particles in a branching process
with a single initial particle in which each particle independently dies, or gives birth to
a single offspring, each at rate D. Let p(t) = P(W; = 0). From [AN72, Ch.III, Sec. 4,
Eq.2], p(t) satisfies the DE

%p(t) =u(p(t)) with wu(x)=2D-(1/2+2%/2 —2) = D(1 — )%

Since 6(t) =1 — p(t), we find
d
—0(t) = —0(t)?
Z0(t) = —0(t)%,

and since 6(0) = 1 we obtain the unique solution 6(¢) = 1/(1 + Dt). O

2.2 Site recurrence for Galton-Watson trees

A more general upper bound on the transition rate is
|maximum exposed degree| - |-

Our hypothesis that the offspring distribution of our Galton-Watson tree has expo-
nential tail guarantees that the maximum exposed degree is asymptotically bounded
by log(number of steps). Ultimately this lets us compare with the divergent integral
ffzo (tlogt)~'dt. This is made rigorous below.
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Proof of Theorem 1.2 (ii). Again, by Corollary 2.2 it suffices to prove that ¢} has infinite
expected survival time. For convenience we denote (; by ¢;. Let H; = U;<:(; be the
vertices visited up to time ¢. Define the random times 0 = ¢t; < t; < ... as when a vertex
is added to H;, and list them as vy, vo, ... in the order they are discovered, with v; being
the root (p). The transition rate of |(;| — |(;| & 1 is at most M;|(;| where

M, = sup{degv: v € H;}.

So, our first goal is to construct the voter model in such a way that M; can be easily
controlled. A simple way to do this is to construct G “on the fly.” That is, let (X;);>1 be
an i.i.d. sequence of copies of the offspring distribution, and at time ¢;, sample X; to
determine the offspring distribution of v;, which is then fixed for all ¢ > ¢;. This does not
disturb the sample path distribution of (;, and has the advantage that the quantity

D;. = maxdegv;
k i<k g Ui

is equal to max;<; X; where X is a fixed (as opposed to being a randomly indexed) i.i.d.
sequence. Since, by assumption, P(X; > z) < e~°* for some ¢ > 0 and large enough z, a
union bound gives P(Dy, > z) < ke~ “*, and setting = (3/c¢) logk,

P(Dy, > (3/c)logk) < k=2 (2.5)

for large enough k.

Now, let 0 =ty < t; < t2 < ... denote the jump times of (;. In what follows we will
want the set of jump times to be infinite, so if (;;, = 0 (i.e. the cluster dies out), just
include jumps back to 0 at rate 1. Since |(;,| is a martingale with E|(;,| = |(o| = 1 for all
1, Doob’s martingale inequality implies that for all n > 0

P(sup [, | > bn) < (bn)~? (2.6)

for any b > 0. Note that M, is nondecreasing in ¢ and M;, < D4, since vertices are
exposed one at a time. Thus, the transition rate of |(;,| is at most D;;1|(;,|. Combining
these observations with (2.5) and (2.6), we find that with probability at least 1 — (bn)*1 —
n~2, for t < t,» the transition rate in ¢; is at most

(3/c)log(n? 4 1)bn < (6b/c)nlog(n + 1). (2.7)

Let my, = my (b, c) = (6b/c)nlog(n + 1). A quick summary: with high probability the first
n? transitions happen at rate no more than m,,. Equivalently, the time ¢, is bounded
below by the sum of n? independent exponentials with rate m,. This is an Erlang
distribution, Y,,2, with shape parameter n? and rate m,,. Thus, we have

2

mean: j, = n—, and variance: o,, = Hn
My My
Chebyshev’s inequality guarantees that
L,/ 4 4

(/-Ln/z)2 B Hn My, n

One side of the above estimate is
P(Y,2 < j1n/2) < 4n~2 (2.8)
By comparison, and using (2.7) and (2.8), we have

P(t,: >n%/(2my)) >1— (bn) ™t —n=2 —4n~2
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From the well-known first passage distribution for random walk, for the random variable
N = inf{n: |¢;,| = 0} we have P(N > n?) > ¢/n for some possibly smaller ¢ > 0. Note
that although m,, depends on ¢, shrinking c does not affect the estimate. Letting 7 =
inf{¢: |¢:| = 0} as before, and letting a,, = p1,/2 = cn/(12blog(n + 1)), for a,—1 <t < ay,
(n—1) n

(log(n — 1) — log(12b/c) — loglogn) > a

C
tlogt >
08t = = 24b

12blogn

i.e., n < (24b/c)tlogt for n large enough. For the same ¢, then,
P(r > 1) =P(|¢] > 0) > P(|¢t,,| > 0,102 > an).

Since the embedded chain of the cluster size is independent of the rate at which it
transitions we have

P(r >t)>c¢/n(l— (bn)~' —O(n™?)), ap—1 <t < ap.

The right side is at least ¢/(2n) for n greater than some ng. Letting tg = a,, and using
the upper bound on n,

2 o0

> — dt
T 48b J,, tlogt

Er = / P(r > t)dt
0

3 Non-backtracking coalescing random walk on trees

We are also interested in understanding similar, but less random processes. A lack of
symmetry in these settings makes it difficult to apply known techniques. We are hopeful
that progress will lead to new ideas.

The non-backtracking coalescing random walk is defined in the same way as the
coalescing random walk with particles instead performing non-backtracking random
walk. More precisely, the state of a particle is specified by a vertex-edge pair (u, {u,v}),
and when an edge clock rings at a directed edge (u,w), the particle moves to w if and
only if w # v. If the particle moves from « to w, its state is updated to (w, {w,u}), so that
its next jump cannot be back to u. It will be convenient to assume that each particle
is initialized with a uniformly chosen edge along which it cannot move, that is, the
particle initially at v has state (v, {v,u}) where w is a uniform random neighbour of v.
With particles coalescing there is ambiguity about whose path to remember. There are
several well-defined ways to assign priority. On a rooted tree, we analyze the special
case where we always remember the path of particles moving towards the root. With
the model defined in this way we do not quite have a voter model dual, but a closely
related process does. Analogous to Proposition 1.1 we prove a necessary and sufficient
condition for site recurrence.

Proposition 3.1. Consider coalescing non-backtracking random walk on a rooted tree
with priority given to particles moving towards the root. The process is site recurrent at
the root if and only if the expected survival time of the cluster of the root in a certain
voter model is infinite.

We can deduce site recurrence on bounded degree trees and some trees with un-
bounded degree.

Theorem 3.2. The process from Proposition 3.1 is site recurrent at the root of either
a bounded degree tree or a Galton-Watson tree whose offspring distribution is as in
Theorem 1.2 (ii).
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Non-backtracking removes a vital symmetry from the argument. The proof goes by,
once again, constructing a dual voter process and showing the cluster of the root survives
for an infinite expected amount of time. Our “priority to the root” rule is hand-picked to
preserve monotonicity and the existence of a dual voter model. Neither property exists
in other equally natural non-backtracking models. Further progress in these different
settings will likely require a new approach. Consider the following conjecture:

Conjecture 3.3. Non-backtracking coalescing random walk with any priority scheme is
site recurrent on bounded degree trees.

The inspiration for studying non-backtracking processes comes from the following
meteor model on R?. Place e-balls in Euclidean space with centers according to a unit
intensity Poisson process. At time 0 each chooses a direction uniformly randomly and
proceeds along this direction at unit speed (non-random). When two meteors collide,
they annihilate.

Conjecture 3.4. The origin a.s. is occupied by infinitely many meteors for all d > 1.

This problem appears quite difficult. It could be discretized to an annihilating system
of random walks by uniformly assigning each particle a geodesics to co from which it
never deviates and steps along according to a Poisson clock. The integer lattice is a
natural graph to start with. Or, perhaps hyperbolic space—in which random walk paths
stay within a logarithmic neighborhood of a geodesic—would be a more tractable place
to study this problem.

3.1 Recovering a dual

Since the graph is a tree, a particle either moves towards the root, or away, at each
jump. Once it has moved away for the first time, at subsequent jumps it must always
move away, since the only way back towards the root requires backtracking. To simplify
matters, we suppose that at each vertex, the initial forbidden edge is chosen uniformly
from the edges that lead away from the root.

Since coalescing particles may have different histories we must decide which one to
remember. Therefore, upon collision we define the following rule for annihilating exactly
one of the two colliding particles; in the original setting with memoryless walks, any
such rule leads to the coalescing model.

» If one particle has not yet moved away from [edit] the root, and the other particle
is moving away, annihilate the particle moving away.

* Otherwise, annihilate the particle currently occupying the site (i.e. keep the particle
that just moved).

As currently stated, this process depends on past information. Running the process
in reverse would require information about the future. Thus, it does not have a dual
voter model. Still, a simple observation yields a related model that does have a dual.

Let Xt be the occupation time of the root up to time 7. Notice that particles moving
away from the root are inert; based on the rule above they cannot block upward moving
particles, and as noted before they cannot revisit the root. Thus, X is unchanged if we
delete particles the instant they turn away from the root. This modification gives the
following model; for a vertex v, let d,, = degwv.

* Suppose v is not the root.

- A particle at v moves towards the root at rate 1.

- A particle at v is deleted at rate d, — 2.
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* Suppose v = p is the root. A particle at p is deleted at rate d, — 1.

We can think of this model as follows: each particle attempts to travel up to the root,
coalescing with other particles upon collision, and particles (or coalesced collections of
particles) are instantaneously zapped out of existence at some rate that depends on their
present location.

We can simplify the description somewhat by introducing a single absorbing vertex a
and considering the process on V U {a}, where every vertex has a directed edge pointing
to v which rings at rate described below.

Particles at a do not move. The transitions for particles at v € V' are as follows.

e Suppose v is not the root.

- Move towards the root at rate 1.

- Move directly to a at rate d, — 2.
* Suppose v is the root. Move to a at rate d, — 1.

A graphical representation of this model can be obtained by placing an independent
Poisson process with rate 1 at each upward directed edge, with rate d, — 2 at each vertex
v # p, and with rate d, — 1 at p.

The model enjoys the same monotonicity as the coalescing random walks - resetting
to the initially full configuration maximizes the probability of occupying the root in the
future. Then, as for the coalescing random walks, there is a dual voter model. In this
case, deletion of a particle at v corresponds to the addition of v to the cluster of a.
Note that since the direction of motion is reversed in the voter model, clusters on the
tree must expand away from the root. Altogether, the voter model has the following
transitions. A down-going directed edge (w,u) is an edge directed away from the root.
These are the rules we use in the proof of Lemma 3.5. We box it for emphasis:

» Along each down-going edge (w, u), at rate 1, u is added to the cluster contain-
ing w.

» At each vertex v # p on the tree, at rate d, — 2, v is added to the cluster of a.

* The root is added to the cluster of a at rate d, — 1.

The existence of a dual lets us establish Proposition 3.1.

Proof of Proposition 3.1. We have established that X in the non-backtracking coalesc-
ing random walk has the same distribution as in the simpler model. Since the simpler
model has monotonicity and a voter model dual, the same argument used to prove
Proposition 1.1 gives the desired equivalence. O

3.2 Site recurrence

Now we can turn our attention to proving infinite expected survival time of the root
cluster in the voter model. The voter model from Section 3.1 also has the martingale
property. As before, let (' denote the cluster that began at v.

Lemma 3.5. Consider the voter model ¢ € V U {a} described above. For eachv € V,
so long as |(}| < oo, the size of the cluster (} is a martingale. It transitions to each of
the two states || =1 atrate ., (dw — 1) — [{(w,u): w,u € (F}.
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Proof. Fix a vertex v € V for which we will consider the cluster ¢; = ¢}'. Let r = r;7 (v)

and r, = r; (v) denote the rate at which |(;| — |{;] = 1, respectively. Note that the
transition rules prohibit a € {,. Moreover, (; is unchanged if we assume that initially, all
vertices but v belong to the cluster of a. Therefore, it is enough to check that for any
finite W, if ¢; = W and (¢ = V U {a} \ W then r;” — r; = 0. For a vertex w ¢ {a,p} let 0
denote its unique parent vertex, i.e., the unique vertex such that there is a down-going
edge to w, and let o(w) denote the set of child vertices. From the transition rules it
follows that
= 3 (= 1w # ) — {u € o(w): u € W})

weWw

and

rp= Y ([dw—1=1Lw#p)+1d g W)= > ((dw—L(w # p)) - 1(h € W))

weWw weW

and since ), .y {u € o(w) : uw € W}| and ) .y 1(w € W) are both equal to
{(w,u): u,w € W}

A Z Hu€o(w): ue W} + Z 1(weW)=0.
weWw weWw
O
Proof of Theorem 3.2. With Lemma 3.5 we can bound the transition rate of |¢/| by
Y v ¢r d,. To prove the part of Theorem 3.2 concerning bounded degree trees we can
follow the same approach as Theorem 1.2 (i); again we use the transition rate bound

D - |¢?]. Similarly, we can use the same technique as the proof of Theorem 1.2 (ii) to
deduce site recurrence for Galton-Watson trees. O
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