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Abstract

Let U “ pUkqkPZ be a centered Gaussian stationary sequence satisfying some minor
regularity condition. We study the asymptotic behavior of its weighted `2-norm small
deviation probabilities. It is shown that

lnP

˜

ÿ

kPZ

d2kU
2
k ď ε2

¸

„ ´Mε
´ 2

2p´1 , as εÑ 0,

whenever

dk „ d˘|k|
´p for some p ą

1

2
, k Ñ ˘8,

using the arguments based on the spectral theory of pseudo-differential operators by
M. Birman and M. Solomyak. The constant M reflects the dependence structure of U
in a non-trivial way, and marks the difference with the well-studied case of the i.i.d.
sequences.
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1 Introduction

Let pY ptqqtPT be a centered Gaussian process defined on some parametric measure
space pT, µq. Many studies have been devoted to the asymptotic behavior of its small
deviation probabilities

P

¨

˝||Y ||22 “

ż

T

|Y ptq|2µpdtq ď ε2

˛

‚, as εÑ 0,

see e.g. [9, 11, 12, 16, 22, 23, 24], to mention just a small sample. Since by the
Karhunen–Loève expansion (see for instance [1, Section 1.4])

||Y ||22 “
8
ÿ

k“1

d2kX
2
k
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Small deviations for Gaussian dependent sequences

where pXkqkě0 is a standard Gaussian i.i.d. sequence and d2k are the eigenvalues of the
covariance operator of Y , the small deviation probability may be written as

P

˜

8
ÿ

k“1

d2kX
2
k ď ε2

¸

, as εÑ 0.

Sharp evaluation of this asymptotics is available when the limiting behavior of the
eigenvalues d2k is understood well enough. Moreover, a considerable amount of results
is known also for the case where pXkq is an i.i.d. non-Gaussian sequence, see e.g.
[9, 26, 27]. The importance of small deviation probabilities in a broader context and
the wide spectrum of their applications are described in the surveys [18, 19]; for an
extensive up-to-date bibliography see [20].

In this paper, we move towards a different direction and examine the asymptotic
behavior of the small deviation probabilities of dependent sequences. That is,

P

˜

8
ÿ

k“1

d2kU
2
k ď ε2

¸

, as εÑ 0, (1.1)

for some stationary centered Gaussian random sequence U “ pUkqkPZ that is dependent
and only satisfies some mild regularity condition.

The motivation for looking at this small deviation problem under dependence (1.1) is
twofold. First, it is an interesting mathematical question in its own right. The existing
literature on small deviation probability for sums of random variables has been strictly
confined to the i.i.d. framework, so the dependent case is still an open field of research.
Second, there are several potential statistical applications where this extension could be
found useful. In functional statistics literature, it is well-known that the convergence
rates of nonparametric estimators depend upon the asymptotics of the associated small
deviation probabilities, see e.g. [10], [21] and references therein. Yet in many practical
situations where the functional variable of interest is discrete-valued, strict independence
assumption between the coordinate variables is too restrictive, so the extent to which
the existing small deviation results can be feasible is limited and the asymptotics of (1.1)
should be understood. We refer the reader to [14] for more details.

Consider a random vector Z P `2pZq defined by its coordinates Zk “ dkUk, k P Z,
where the positive coefficients dk satisfy the assumption

dk „ d˘|k|
´p, for some p ą

1

2
, k Ñ ˘8, (1.2)

where at least one of the numbers d˘ is strictly positive. This assumption is typical of
the literature on small deviations of Gaussian processes and related matters; see for
example [16, 17, 25].

We are interested in the asymptotics of the small deviation probabilities

P p||Z||2 ď εq “ P

˜

ÿ

kPZ

d2kU
2
k ď ε2

¸

, as εÑ 0. (1.3)

In particular, one wonders to what extent this asymptotics is the same as that for the
i.i.d. Gaussian sequence having the same variance with Uk.

One example of mild dependence structure one can think of would be linear regularity
(in the sense of [6, Chapter VII, p.248] and [15, Chapter 17, p.303]). We say that a
stationary sequence U “ pUkqkPZ is linearly regular if

H´8 :“
č

mPZ

Hm “ t0u,
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Small deviations for Gaussian dependent sequences

where Hm denotes the closed linear span of tUkukďm. It is a type of asymptotic indepen-
dence condition that roughly means the process has no significant influence from the
distant past. When the process is Gaussian, linear regularity is implied by the class of
mixing-type conditions, a popular notion of dependence under which probability theories
have been extensively studied in the literature; see e.g. [5] and [8] for the precise
definition and a comprehensive review.

Since a consequence of the Wold decomposition theorem suggests that any stationary
linearly regular Gaussian sequence admits a causal moving average representation (cf.
[6, Chapter VII, Theorem 13]):

Uk “
8
ÿ

m“0

amXk´m “

k
ÿ

j“´8

ak´jXj ,

where
ř8

m“0 a
2
m ă 8 and pXjqjPZ is an i.i.d. standard Gaussian sequence, it follows that

many popular dependent processes such as strongly mixing sequences do have such
representations.

In the sequel we shall consider a more general assumption than causality, and
postulate that

Uk “
8
ÿ

m“´8

amXk´m “

8
ÿ

j“´8

ak´jXj , (1.4)

where pamq P `2pZq, and pXjq is i.i.d. standard Gaussian as above. In fact, this repre-
sentation exists iff the stationary sequence pUkq has a spectral density (cf. Remark 2.1
below) but we will not develop this point of view any further.

Our main result is as follows:

Theorem 1.1. Let a stationary centered Gaussian sequence pUkqkPZ admit a representa-
tion (1.4) and let the coefficients pdkqkPZ have the asymptotics (1.2). For p ă 1 suppose
in addition that pamq P `rpZq with some r ă 2. Then

lnP

˜

ÿ

kPZ

d2kU
2
k ď ε2

¸

„ ´Bp

ˆ

C

ε2

˙
1

2p´1

, as εÑ 0, (1.5)

with the constants

Bp “
2p´ 1

2

˜

π

2p sin
`

π
2p

˘

¸

2p
2p´1

,

C “

¨

˝

1

2π

2π
ż

0

ˇ

ˇ

ˇ

8
ÿ

m“´8

am e
imx

ˇ

ˇ

ˇ

1{p

dx

˛

‚

2p
´

d
1{p
´ ` d

1{p
`

¯2p

. (1.6)

Remark 1.2. The power term in the logarithmic small deviation asymptotics is the same
as that in the i.i.d. case (characterized by am “ a01tm“0u), but the constant C in front
of it depends on the sequence pamq in a nontrivial way, no matter how weak the linear
dependence in pUkq is (in other words, how fast am decays).

Remark 1.3. We do not know whether the extra assumption on pamq for p ă 1 is
essential or purely technical.

Remark 1.4. For sharper results on small deviations, one would need to know a sharper
spectral asymptotics (the so-called two-term asymptotics). This seems to be a much
harder problem in general.

Remark 1.5. Similar technique can be applied in the study of the weighted L2-norm
small deviations for continuous time stationary processes. This will be done elsewhere.
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Small deviations for Gaussian dependent sequences

2 Proof of Theorem 1.1

Recall that we have a random vector Z “ pdkUkq P `2pZq and a random vector with
independent coordinates X “ pXjq, j P Z. It follows from the definitions that

Z “ DU “ DAX,

where D is the diagonal matrix with elements dkj “ dk1tk“ju and A is the Toeplitz matrix
with elements akj “ ak´j . Therefore, the covariance operator of Z that maps `2pZq into
`2pZq can be expressed as

KZ “ covpZq “ pDAqpA˚Dq,

and by the Karhunen–Loève expansion (see [1, Section 1.4]),

||Z||2 “
8
ÿ

n“1

λn ξ
2
n ,

where pξnqnPN is an i.i.d. standard Gaussian sequence and pλnqnPN are the eigenvalues
of KZ .

We remark that the small deviations (1.3) depend heavily on the asymptotic behavior
of λn. In particular, if we can show that

λn „ C n´2p, as nÑ8, (2.1)

then (1.5) will follow from [9, p.67] or [28], and [23]. The decay rate for λn would then
be the same as that of d2n, and the constant C in front of the power rate would depend
on the sequence pamq in a non-trivial way, cf. (1.6).

Therefore it now remains to prove the eigenvalue asymptotics (2.1), and to specify
the constant C.

Since all separable Hilbert spaces are isomorphic, we may replace `2pZq with the
more appropriate space L2 pr0, 2πs, νq with νpdyq “ dy

2π , equipped with the standard
exponential basis empxq “ exppimxq, m P Z.

Notice that in this space A becomes the multiplication operator Af “ af related to
the function

apxq “
8
ÿ

m“´8

am empxq,

while D becomes the convolution operator

pDfqpxq “

2π
ż

0

Dpx´ yqfpyq νpdyq

with the kernel

Dpxq “
ÿ

k

dk ekpxq. (2.2)

Indeed, if f “
ř

j fj ej , then

af “
ÿ

m,j

amfj em`j “
ÿ

k

˜

ÿ

j

ak´jfj

¸

ek
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Small deviations for Gaussian dependent sequences

and

2π
ż

0

Dpx´ yqfpyq νpdyq “
ÿ

j,k

dkfj

2π
ż

0

ekpx´ yqejpyq νpdyq

“
ÿ

j,k

dkfjekpxq

2π
ż

0

ej´kpyq νpdyq “
ÿ

k

dkfkekpxq.

Remark 2.1. Interestingly, |ap¨q|2 is the spectral density of the stationary sequence pUkq.

In our spectral analysis, we will first slightly reinforce condition (1.2) by assuming
that pdkq is exactly equal to the non-isotropic power function

dk “ dpsgnpkqq |k|´p, (2.3)

where dp˘1q “ d˘ are two constants and d0 “ 0.
In the sequel, our main argument will be a reduction of the operator A˚D to a special

case of the pseudo-differential operators (ΨDO) studied by M. Birman and M. Solomyak
(hereafter BS) in [2, 3]1, see also [7].

The following exposition provides an interpretation of [2] and [3] adapted to our
case. The aim of the papers BS is the spectral analysis of the following operator (in their
notation)

pFuqpxq “ bpxq

ż

Rm

Fpx, x´ yqcpyqupyqdy.

Here and elsewhere by spectral analysis of an operator, we understand the study of the
asymptotic behavior of its singular values.

In our case the space dimension m “ 1, and we can assume that the function F

depends only on the second argument, i.e.

pFuqpxq “ bpxq

ż

R

Fpx´ yqcpyqupyqdy. (2.4)

The kernel Fp¨q in [2] is of specific Fourier transform form, namely,

F “ ­pζ ¨ dq (2.5)

Here ζp¨q is any smooth function that vanishes on a neighborhood of zero and equals to
one on a neighborhood of infinity, while dp¨q in the one-dimensional case is a homogeneous
function as in (2.3) but considered in continuous time, i.e., in the notation of BS

dpξq “ dpsgnpξqq |ξ|´α, ξ P Rzt0u, (2.6)

where dp˘1q “ d˘ are two constants. For us, the homogeneity index α in (2.6) is p.
Notice immediately that the “mysterious” formula (2.5) is, apart from the inessential
smoothing term ζ, a version of our former kernel definition (2.2) for continuous time.

BS consider the operator F either on Rm or on a cube. The latter means that the
weights b and c in (2.4) are supported by a cube. In our case the weight function bp¨q

from (2.4) is ap¨q, and the function cp¨q is the indicator on the interval r0, 2πs that plays
the role of a cube. Moreover, the index µ “ m

α used by BS for the description of singular

1The referee mentioned [4] which also provides estimates relevant to small deviations. However, these
estimates are not sharp enough to establish the asymptotic behavior of singular values up to equivalence that
we need here.
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Small deviations for Gaussian dependent sequences

values behavior is 1
p in our notation. Notice that [2] distinguishes three cases µ ą 1,

µ “ 1 and µ ă 1, which in our notation are p P p 12 , 1q, p “ 1 and p ą 1, respectively.
The weight size restrictions in [2] are b P Lq1 , c P Lq2 . Our assumptions give q1 “ 2 for

p ě 1 and q1 “
r
r´1 ą 2 for p ă 1 (the latter fact is due to the Hausdorff–Young inequality,

see, e.g. [13, § 8.5]). Without loss of generality we can suppose r
r´1 ă

1
p . Further, q2 ě 1

may be taken arbitrarily.
The main results of BS are stated in Theorems 1 and 2 of [2]. Let us first check the

weight assumptions of Theorem 1 in [2].
If p ą 1, then µ ă 1 and Theorem 1(b) applies with q1 “ q2 “ 2.
If p “ 1, then µ “ 1 and Theorem 1(c) applies with q1 “ 2 and any q2 ą 2. This case is

relevant to Wiener process and its relatives such as Brownian bridge, OU-process etc.
If p P p 12 , 1q, then 2 ą µ ą 1, and Theorem 1(a) applies with q1 ą 2 and q2 ą 2 chosen

from the relation 1
q2
“ p´ r´1

r , as required in Theorem 1(a).
Theorem 2 in [2] is disregarded because it requires some extra assumptions and only

applies to the case of infinite q1 or q2.
Now let us proceed to follow the BS result. They denote the singular values of F by

snpFq and study the corresponding distribution function

NFpsq :“ #tn : snpFq ě su

and its asymptotics at zero. This is indeed an equivalent setting because

NFpsq „ ∆ ¨ s´1{p, as sÑ 0 ðñ snpFq „ ∆p ¨ n´p, as nÑ8. (2.7)

Next, BS introduce the following notations

∆µ :“ lim sup
sÑ0`

sµNFpsq, δµ :“ lim inf
sÑ0`

sµNFpsq. (2.8)

In their Theorem 2 of [2] BS prove that ∆µ “ δµ and find the common value for the
upper and the lower limit

lim
sÑ0`

sµNFpsq “ ∆µ “ δµ.

Namely, they introduce the “operator symbol” Gps, ξq, see formula (14) of [2]. In the
one-dimensional case the symbol is a scalar defined by

Gpx, ξq “ apxqdpξq “ apxq ¨ 1r0,2πspxq ¨ dpsgnpξqq |ξ|´p.

Further, formula (18) of [2] suggests that in our case (recall that µ “ 1
p )

∆µ “ p2πq´1

2π
ż

0

ż

Rzt0u

1t|Gpx,ξq|ě1udξdx

“ p2πq´1

2π
ż

0

ż

Rzt0u

1t|apxq| |dpsgnpξqq| |ξ|´pě1udξdx

“ p2πq´1

2π
ż

0

ż

Rzt0u

1t|apxq|1{p |dpsgnpξqq|1{p ě|ξ|udξdx

“ p2πq´1

2π
ż

0

|apxq|1{pdx
´

|dp´1q|1{p ` |dp1q|1{p
¯

.

ECP 21 (2016), paper 41.
Page 6/9

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4708
http://www.imstat.org/ecp/


Small deviations for Gaussian dependent sequences

Now we compare the spectral behavior of the operator of our interest A˚D with that
of the operator F in (2.4), assuming that the parameters d˘ in (2.3) coincide with their
counterparts d˘ in (2.6), and substituting b “ a ¨ 1r0,2πs and c “ 1r0,2πs in (2.4).

Let us prove that
NA˚Dpsq „ NFpsq, as sÑ 0. (2.9)

Notice that since we are working on the interval of length 2π, it is sufficient to
consider only the restriction of our periodical function D to r´2π, 2πs.

Let h be the cut-off function equal to one on r 3π2 , 2πs and zero on r´2π, πs. Then it
follows that the function h0pxq :“ 1´ hpxq ´ hp´xq equals to one on r´π, πs and vanishes
outside of the interval r´ 3π

2 ,
3π
2 s.

Comparing the kernels of two operators, we have the following decomposition

Dpxq ´ Fpxq “ Dpxq
`

hpxq ` hp´xq
˘

`D1pxq, x P r´2π, 2πs. (2.10)

We claim that the function D1 :“ D ¨ h0pxq ´ F satisfies

xD1pξq “ op|ξ|´pq as |ξ| Ñ 8, (2.11)

where xD1 denotes the Fourier transform of D1. Indeed, we have

{D ¨ h0pξq “
ÿ

k‰0

dpsgnpkqq |k|´pph0pξ ´ kq,

and then by spliting the series into two sums,

{D ¨ h0pξq “ Σ1 ` Σ2 :“

¨

˝

ÿ

|k´ξ|ď
?
ξ

`
ÿ

|k´ξ|ą
?
ξ

˛

‚dpsgnpkqq |k|´pph0pξ ´ kq.

Since ph0 rapidly decays at infinity, we have Σ2 “ op|ξ|´pq as |ξ| Ñ 8. Further,

Σ1 “ dpsgnpξqq |ξ|´p
ÿ

|k´ξ|ď
?
ξ

ph0pξ ´ kq ` op|ξ|
´pq

“ dpsgnpξqq |ξ|´p
ÿ

k

ph0pξ ´ kq ` op|ξ|
´pq “ dpsgnpξqq |ξ|´p ` op|ξ|´pq

by the Poisson summation formula (see, e.g., [29, Ch. II, Sect. 13]), so that (2.11) follows.
Decomposition (2.10) generates the corresponding operator representation

A˚D´ F “ pD` `D´q `D1.

By corollary 4) in [3], relation (2.11) gives limsÑ0` s
1{pND1

psq “ 0. Further, since D is
2π-periodic, the singular values of D` coincide with the singular values of the operator

apx` πq1r0,πspxq

ż

R

Dpx´ yqhpx` 2π ´ yq1rπ,2πspyqupyqdy.

For this operator, we have supppbq “ r0, πs and supppcq “ rπ, 2πs in terms of (2.4), and
Lemma 3 in [3] gives limsÑ0` s

1{pND`psq “ 0. By the same reason, limsÑ0` s
1{pND´psq “

0, yielding (2.9).
Using the equivalence in (2.7), we obtain

snpA
˚Dq „ ∆p

µ n
´p

“

¨

˝

1

2π

2π
ż

0

|apxq|1{pdx

˛

‚

p
´

|dp´1q|1{p ` |dp1q|1{p
¯p

n´p.
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Small deviations for Gaussian dependent sequences

Since λn “ s2npA
˚Dq by the definition of singular values, it follows that

λn „

¨

˝

1

2π

2π
ż

0

|apxq|1{pdx

˛

‚

2p
´

|dp´1q|1{p ` |dp1q|1{p
¯2p

n´2p, nÑ8,

as required in (2.1), and the conclusion for small deviations follows.
So far, the result of the theorem is obtained only for the homogeneous coefficients

(2.3). However, since any finite number of terms in the sequence pdkq is irrelevant for
small deviation probability asymptotics, by monotonicity of the quadratic form

ř

kPZ d
2
kU

2
k

in pdkq, it follows that (1.5) also holds for any pdkq satisfying (1.2). l
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