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1 Introduction

A θ-sticky Brownian on the half line [0,∞) is a diffusion with generator

(Af)(x) =

{
1
2f
′′(x) if x > 0

θf ′(0+) if x = 0

and domain

D(A) =

{
f ∈ C2(0,∞) : f ∈ C0([0,∞)), f ′(0+),

f ′′(0+) exist, f ′′(0+) = 2θf ′(0+), lim
x→∞

f ′′(x) = 0

}
where θ > 0 is the stickiness parameter. This is a special case of Feller one dimensional
diffusions introduced by Feller by means of their infinitesimal generators [4]. For
comparison of the boundary condition f ′′(0+) = 2θf ′(0+) with other examples, see
[3]. Sticky Brownian motion has an intermediate behavior, depending on θ, between
Brownian motion absorbed at 0 and reflected Brownian motion. One possible path
construction of a θ-sticky Brownian motion X started from 0 consists in slowing down a
reflected Brownian motion R started from 0 whenever it is at 0 in the following way

Xt = Rinf{u:u+ 1
θLu>t}

where Lt = limε→0
1
2ε

∫ t
0

1{0≤Rs≤ε}ds is the local time of R [6, 7]. As a consequence of

this construction, the amount of time spent at 0 by X up to t,
∫ t
0

1{Xs=0}ds, has positive
probability of being greater than 0. More precisely, the following equality holds in law∫ t

0

1{Xs=0}ds
law
=
|N |
θ

√
t+

N2

4θ4
− N2

2θ2

where N ∼ N (0, 1) (see Proposition 5 in [6]).
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Application of stochastic flows to the sticky Brownian motion equation

In this paper, we are interested in sticky Brownian motion as solution of the following
stochastic differential equation

Xt = x+

∫ t

0

1{Xs>0}dWs + θ

∫ t

0

1{Xs=0}ds (1.1)

driven by a standard Brownian motion W and where θ > 0 is a given constant and
x ∈ [0,∞) is a given initial condition.

It has been proved by Chitashvili [2] that (1.1) has a weak solution X which is a
θ-sticky Brownian motion started from x, the law of (X,W ) is unique but X is not a
strong solution to (1.1). Later on, Warren [14] derived the following remarkable result
describing the law of Xt given W (the form given here follows Theorem 2 [15]).

Theorem 1.1. When X0 = 0, for all t ≥ 0 and all measurable bounded f ,

E[f(Xt)|FW ] = Gf (W+
t )

where W+
t = Wt − min0≤u≤tWu and Gf (y) = E[f((y − T )+)] with T an exponential

variable with mean 1
2θ .

This theorem shows, in particular, that X cannot be a strong solution to (1.1). Subse-
quently, Warren [15] described all couplings of solutions to (1.1) which leave the diagonal.
Before going on, we mention the work of Engelbert and Peskir [3] where a third proof of
the non strong solvability of (1.1) and a two sided version of it can be found (see also
[1]).

A remarkable and attractive fact in Warren’s conditional law identity is that it involves
the well known and habitual process W+ strong solution to

Yt = Wt + Lt(Y ) (1.2)

where Lt(Y ) = limε→0
1
2ε

∫ t
0

1{0≤Ys≤ε}ds. This raises the question whether there is a link
between (1.1) and (1.2) explaining Theorem 1.1.

In this paper, it is shown that stochastic flows of kernels [11] provide an answer to
the previous question. More precisely, define

ϕs,t(x) = (x+Wt −Ws)1{t≤τs(x)} +W+
s,t1{t>τs(x)} (1.3)

where τs(x) = inf{u ≥ s : x+Wu −Ws = 0}. Then ϕ is a stochastic flow of maps which
solves the flow version of (1.2)

ϕs,t(x) = x+Wt −Ws + Ls,t(x)

where Ls,t(x) = limε→0
1
2ε

∫ t
s

1{0≤ϕs,u(x)≤ε}du. Now, let

Ks,tf(x) =

{
f(ϕs,t(x)) if s ≤ t ≤ τs(x)

Gf (ϕs,t(x)) if t > τs(x)
(1.4)

Then K is a stochastic flow of kernels which is a strong solution to the flow of kernels
version of (1.1): for all t ≥ s, f ∈ D(A) and x ≥ 0 a.s.

Ks,tf(x) = f(x) +

∫ t

s

Ks,u(f ′1(0,∞))(x)dWu +
1

2

∫ t

s

Ks,uf
′′(x)du (1.5)

K, called the Wiener solution of (1.5) in [11], is characterized by being the unique (up to
modification), strong solution of (1.5). This leads to Theorem (1.1) as the conditional law
of Xt given W should coincide with K0,t(0, dy). Note that Equation (1.5) encapsulates
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Application of stochastic flows to the sticky Brownian motion equation

the flow property (iv) of Definition 2.1 for K. Therefore, identifying the complete flow
Ks,t(x, dy) for every s, t and x is crucial in proving this result, not only for s = 0 and
x = 0. The semigroup and Feller properties also play an important role in this fact.
See [11] for further discussion on E[f(Xt)|FW ] satisfying Equation (1.5). As a complete
proof, we argue that (1.4) being the Wiener flow satisfies this equation and the theorem
follows for Gf (W+

t ) in the special case X0 = 0.
The rest of the paper is organized as follows. Section 2 gives details and proofs of the

previously claimed facts. It can be remarked that the proofs only rely on the definition
of stochastic flows with no additional results of the theory. Finally Section 3 discusses
Wiener chaos expansion of the conditional law.

2 Proof of Theorem 1.1

2.1 The generalized sticky Brownian motion equation

Let us now recall the definition of stochastic flows from [11]. In this definition P(R+)

denotes the space of all probability measures on R+ and B(E) indicates the Borel σ-field
of E.

Definition 2.1. A stochastic flow of kernels K on R+, defined on a probability space
(Ω,A,P), is a family (Ks,t)s≤t such that

1. For all s ≤ t, Ks,t is a measurable mapping from (R+ × Ω,B(R+) ⊗ A) to
(P(R+),B(P(R+)));

2. For all h ∈ R, s ≤ t, Ks+h,t+h is distributed like Ks,t;

3. For all s1 ≤ t1 ≤ · · · ≤ sn ≤ tn, the family {Ksi,ti , 1 ≤ i ≤ n} is independent;

4. For all s ≤ t ≤ u and all x ∈ R+, a.s. Ks,u(x) = Ks,tKt,u(x) and Ks,s(x) = δx;

5. For all f ∈ C0(R+), s ≤ t,

lim
(u,v)→(s,t)

sup
x∈R+

E[(Ku,vf(x)−Ks,tf(x))2] = 0;

6. For all f ∈ C0(R+), x ∈ R+, s ≤ t,

lim
y→x

E[(Ks,tf(y)−Ks,tf(x))2] = 0;

7. For all s ≤ t, f ∈ C0(R+), limx→∞E[(Ks,tf(x))2] = 0.

We say that ϕ is a stochastic flow of mappings onR+ if Ks,t(x) = δϕs,t(x) is a stochastic
flow of kernels on R+.

For K, a stochastic flow of kernels on R+,

Pnt f(x1, · · · , xn) = E

[∫
Rn+

f(y1, · · · , yn)K0,t(x1, dy1) · · ·K0,t(xn, dyn)

]
(2.1)

defines a Feller semigroup on Rn+. Moreover (Pn)n≥1 is a compatible family (in a sense
explained in [11]) of Feller semigroups acting respectively on C0(Rn+) that uniquely
characterize the law of K. Conversely, it has been proved in [11] that to each family of
compatible Feller semigroups (Pn)n≥1 is associated a (unique in law) stochastic flow of
kernels such that (2.1) holds for every n ≥ 1.

Definition 2.2. (Real white noise) A family (Ws,t)s≤t is called a real white noise if there
exists a Brownian motion on the real line (Wt)t∈R, that is (Wt)t≥0 and (W−t)t≥0 are two
independent standard Brownian motions such that for all s ≤ t, Ws,t = Wt −Ws (in
particular, when t ≥ 0, Wt = W0,t and W−t = −W−t,0).

For a family of random variables Z = (Zs,t)s≤t, define FZs,t = σ(Zu,v, s ≤ u ≤ v ≤ t)

for all s ≤ t.
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Definition 2.3. Let K be a stochastic flow of kernels and W be a real white noise defined
on the same probability space. We say that (K,W ) is a (generalized) solution of the
sticky equation if for all f ∈ D(A), t ≥ s and x ∈ R+ a.s.

Ks,tf(x) = f(x) +

∫ t

s

Ks,u(f ′1(0,∞))(x)dWu +
1

2

∫ t

s

Ks,uf
′′(x)du

Let us explain the link between this equation and the original sticky equation (1.1).
We start with the following

Lemma 2.4. If (K,W ) is a solution of the generalized sticky equation, then

Ks,tf(x) = f(ϕs,t(x)) if s ≤ t ≤ τs(x)

and in particular, FWs,t ⊂ FKs,t for all s ≤ t.

Proof. Let Ws,t := Wt − Ws for 0 ≤ s ≤ t. Fix x > 0 and, for small ε ∈]0, x[, define
τ εs (x) = inf{u ≥ s : x+Ws,u = ε}. Then along the same lines of the proof of Lemma 3.1
in [12], one can show that Ks,t(x) = δx+Ws,t

for all s ≤ t ≤ τ εs (x). As ε > 0 is arbitrarily
small, Ks,t(x) = δx+Ws,t

also for t ≤ τs(x) := inf{u ≥ s : x+Ws,u = 0}. Since this holds
for x arbitrarily distant from 0, the lemma follows.

In view of Lemma 2.4, we may sometimes say K is a solution of the generalized sticky
equation without specifying the white noise since it is determined by K.

Assume now (K,W ) satisfies Definition 2.3 and set

Qt(f ⊗ g)(x,w) = E[K0,tf(x)g(w +Wt)]

By the previous lemma, (Qt)t defines a Feller semigroup. Denote by L its generator and
D(L) its domain. A simple application of Itô’s formula shows that D1 ⊗ C2

K(R) ⊂ D(L)

where D1 = {f ∈ D(A) : f ′(0+) = 0} and C2
K(R) denotes the space of C2 functions on R

with compact supports. Moreover for all f ∈ D1 and g ∈ C2
K(R),

L(f ⊗ g)(x,w) =
1

2
f(x)g′′(w) +

1

2
g(w)f ′′(x) + f ′(x)g′(w).

Let (X,B) be the Markov process associated to (Qt)t and started from (x, 0). Then X is
a θ-sticky Brownian motion started from x and B is a standard Brownian motion started
from 0. Now for f ∈ D1 and g ∈ C2

K(R),

f(Xt)g(Bt)−
∫ t

0

L(f ⊗ g)(Xs, Bs) is a martingale. (2.2)

As X is a θ-sticky Brownian motion, it satisfies Xt = x + Mt + θ
∫ t
0

1{Xs=0}ds with M

a martingale with quadratic variation 〈M〉t =
∫ t
0

1{Xs>0}ds. Writing Itô’s formulas for
f(X)g(B) and using (2.2) shows that∫ t

0

f ′(Xs)g
′(Bs)d〈M,B〉s =

∫ t

0

f ′(Xs)g
′(Bs)ds. (2.3)

Now, one can find a sequence (fn) ⊂ D1 such that f ′n(x)→ 1(0,∞)(x) as n→∞ for each
x > 0 and supx f

′
n(x) ≤ 1. On the other hand, there exists a sequence (gn) ⊂ C2

K(R)

such that the support of gn is [−n, n] with supx g
′
n(x) ≤ 1 and g′n(x) → 1 as n → ∞

for each x ∈ R. In view of (2.3), it follows from bounded convergence theorem that
1{Xs>0}d〈M,B〉s = 1{Xs>0}ds since the integrals

∫ t
0
f ′n(Xs)g

′
n(Bs)ds are bounded by t, for

each t > 0. Consequently, Mt =
∫ t
0

1{Xs>0}dBs is in L2(P). So finally, (X,B) is a weak
solution to the sticky equation.
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More generally, considering the semigroups Qnt (f ⊗ g)(x,w) = E[K⊗n0,t f(x)g(w +Wt)]

for n ≥ 1, one can prove that there exists a one to one correspondence between the laws
of stochastic flows of kernels satisfying Definition 2.3 and compatible weak solutions to
the sticky equation (see Proposition 2.1 in [5] for more details in a similar context).

To close this subsection, we mention that if ϕ is a flow of mappings such that K = δϕ
satisfies Definition 2.3, then necessarily ϕ is a flow of mappings solution of

ϕs,t(x) = x+

∫ t

s

1{ϕs,u(x)>0}dWu + θ

∫ t

s

1{ϕs,u(x)=0}ds

and vice versa. Warren [16] proved that such a flow ϕ exists and its law is uniquely
determined. This flow can also be constructed by applying the general results of [11].

2.2 The Wiener flow

Definition 2.5. Let (K,W ) be a solution of the generalized sticky equation. If FKs,t ⊂ FWs,t
for all s ≤ t, then (K,W ) is called a Wiener solution.

The Wiener solution was introduced in [10] (it is called statistical solution there) by
means of its Wiener chaos expansion with respect to W only depending on the semigroup
of the diffusion (sticky Brownian motion here). Interestingly, this solution exists and is
unique under weak assumptions.

Proposition 2.6. Let (K1,W ) and (K2,W ) be two Wiener solutions of the sticky equa-
tion relatively to the same Brownian motion. Then for all s ≤ t and x ∈ R, with probability
one, K1

s,t(x) = K2
s,t(x).

Proof. We follow the proof of Proposition 4.2 [5]. Note that Ks,t(x, y) = K1
s,t(x)⊗K2

s,t(y)

is a stochastic flow of kernels on R2
+ and

Qt(f ⊗ g ⊗ h)(x, y, w) := E[K1
0,tf(x)K2

0,tg(y)h(w +Wt)]

is a Feller semigroup on (R+)2 × R. Fix x ∈ R+ and let (X1, X2, B) be the Markov
process associated to Q started from (x, x, 0), then B is a standard Brownian motion and
X1, X2 are two θ-sticky Brownian motions. Moreover X1, X2 are solutions of the sticky
equation driven by B and in particular (X1, B) and (X2, B) have the same law. Since
K1 and K2 are two Wiener solutions, there exist two measurable functions F 1

t,x, F
2
t,x :

C([0, t],R) → P(R) such that K1
0,t(x) = F 1

t,x(Wu, u ≤ t),K2
0,t(x) = F 2

t,x(Wu, u ≤ t). Let
N1

0,t(x) = F 1
t,x(Bu, u ≤ t) and N2

0,t(x) = F 2
t,x(Bu, u ≤ t). We will prove that for all

measurable bounded f : R→ R a.s.

N i
0,tf(x) = E[f(Xi

t)|σ(Bu, u ≤ t)], i = 1, 2 (2.4)

To prove (2.4), we will check by induction on n that for all t1 ≤ · · · ≤ tn−1 ≤ tn = t and
all bounded functions f, g1, · · · , gn : R→ R, we have

E
[
Ki

0,tf(x)

n∏
j=1

gj(Wtj )
]

= E
[
f(Xi

t)

n∏
j=1

gj(Btj )
]
, i = 1, 2. (2.5)

Let us prove this for i = 1 and set Q1
t (f⊗g) = Qt(f⊗Id⊗g). For n = 1, (2.5) is immediate

from the definition of Q. Let us prove (2.5) for n = 2. We have

E[K1
0,tf(x)g1(Wt1)g2(Wt)] = E[K1

0,t1(Q1
t−t1(f ⊗ g2)(·,Wt1))(x)g1(Wt1)].

On the other hand

E[f(X1
t )g1(Bt1)g2(Bt)] = E[Q1

t−t1(f ⊗ g2)(X1
t1 , Bt1)g1(Bt1)].
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Now (2.5) holds using a uniform approximation of Q1
t2−t1(f⊗g) by a linear combination of

functions of the form h⊗k, h, k ∈ C0(R+). It is clear now from (2.4), that N1
0,t(x) = N2

0,t(x)

since (X1, B) and (X2, B) have the same law.

Now in the rest of the paper, we take W a real white noise and will check that K
defined in (1.4) is the Wiener solution of the generalized sticky equation. This gives
Theorem (1.1) in view of what precedes.

Proposition 2.7. K is the, unique up to modification, Wiener stochastic flow of kernels
solution of the generalized sticky equation driven by W .

Proof. To check that K is a stochastic flow of kernels, we will only check the flow
property for all f ∈ C0(R+), s ≤ t ≤ u and x ∈ R+, with probability 1,

Ks,uf(x) = Ks,tKt,uf(x) (2.6)

The other claims in Definition 2.1 are easy to verify. Let us now check (2.6). For
this, we will use the fact that ϕ defined in (1.3) is a stochastic flow of mappings (for non
specialists of stochastic flows, this is a rather simple exercise). Note that Gf writes as
(with λ = 2θ)

Gf (y) = f(0)e−λy + λe−λy
∫ y

0

f(u)eλudu (2.7)

We first check (2.6) for x = 0. By the flow property of ϕ, Ks,uf(0) = Gf (ϕs,u(0)) =

Gf (ϕt,u ◦ ϕs,t(0)) and Ks,tKt,uf(0) = GKt,uf (ϕs,t(0)). Using the independence of incre-
ments of ϕ, it suffices to prove that for all y ≥ 0, a.s Gf (ϕt,u(y)) = GKt,uf (y) which is
equivalent to

eλyGf (ϕt,u(y)) = Gf (ϕt,u(0)) + λ

∫ y

0

Kt,uf(a)eλada

To prove this identity, note that for all y > 0, z 7→ ϕt,u(z) is differentiable at y with
derivative given by 1{u<τt(y)}. Thus by a simple calculation, the derivative of z 7→
eλzϕt,u(z) at y coincides with λeλyKt,uf(y). This proves (2.6) for x = 0.

Now take x > 0 and let y = ϕs,t(x).
On the event {u ≤ τs(x)}, we have τs(x) = τt(y), Ks,uf(x) = f(ϕs,u(x)),

Ks,t(Kt,uf)(x) = (Kt,uf)(y) = f(ϕt,u(y)) since u ≤ τt(y) and so (2.6) holds by the flow
property of ϕ.

On the event {t ≤ τs(x) < u}, we still have τs(x) = τt(y) and Ks,uf(x) = Gf (ϕs,u(x)) =

Gf (ϕt,u(y)). Moreover Ks,t(Kt,uf)(x) = GKt,uf (y) and so the flow property holds by the
calculations above.

On the event {τs(x) ≤ t}, we have Ks,uf(x) = Gf (ϕs,u(x)) = Gf (ϕs,u(0)) = Ks,uf(0).
Moreover Ks,t(Kt,uf)(x) = GKt,uf (y) = GKt,uf (ϕs,t(0)) = Ks,t(Kt,uf)(0) and the flow
property holds again from the case x = 0.

Thus K is a stochastic flow of kernels. Note that FKs,t ⊂ FWs,t for all s ≤ t. It remains
now to check that K solves the generalized equation. We take s = 0 and first x = 0.
Denote W+

0,t simply by W+
t . Let

D = {g ∈ C2(0,∞) : g ∈ C0([0,∞)), g′(0+) = 0, g′′(0+) exists}

By Itô’s formula, for all g ∈ D

g(W+
t ) = g(0) +

∫ t

0

g′(W+
u )dWu +

1

2

∫ t

0

g′′(W+
u )du

Let f ∈ D(A) and set g(y) = Gf (y). Then g is continuous on R+, C2 on R∗+ and

g′(y) = −λf(0)e−λy − λ2e−λy
∫ y

0

f(u)eλudu+ λf(y) (2.8)
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In particular g′(0+) = 0. Moreover

g′′(y) = λ2f(0)e−λy + λ3e−λy
∫ y

0

f(u)eλudu− λ2f(y) + λf ′(y)

and so Gf ∈ D. Consequently for all f ∈ D(A),

Gf (W+
t ) = Gf (0) +

∫ t

0

(Gf )′(W+
u )dWu +

1

2

∫ t

0

(Gf )′′(W+
u )du

= f(0) +

∫ t

0

(Gf )′(W+
u )dWu +

1

2

∫ t

0

(Gf )′′(W+
u )du

We now check that for all f ∈ D(A) and y ≥ 0,

Gf ′1(0,∞)
(y) = (Gf )′(y) and Gf ′′(y) = (Gf )′′(y)

Using (2.7), we see that

Gf ′1(0,∞)
(y) = λe−λy

∫ y

0

f ′(u)eλudu

which is also equal to (Gf )′(y) given in (2.8) by a simple integration by parts. Again from
(2.7), we have

Gf ′′(y) = f ′′(0)e−λy + λe−λy
∫ y

0

f ′′(u)eλudu

Integrating twice by parts, we see that

Gf ′′(y) = f ′′(0)e−λy − λf ′(0)e−λy + λf ′(y)− λ2f(y) + λ2f(0)e−λy + λ3e−λy
∫ y

0

f(u)eλudu

which is the same as (Gf )′′(y) using the hypothesis f ′′(0) = λf ′(0) as f ∈ D(A). Finally
for all f ∈ DA,

Gf (W+
t ) = f(0) +

∫ t

0

Gf ′1(0,∞)
(W+

u )dWu +
1

2

∫ t

0

Gf ′′(W+
u )du

or equivalently

K0,tf(0) = f(0) +

∫ t

0

K0,u(f ′1(0,∞))(0)dWu +
1

2

∫ t

0

K0,uf
′′(0)du

Now the case x > 0 holds by discussing t ≤ τ0(x) and t > τ0(x) and using the fact that
K0,t(x) = K0,t(0) for t ≥ τ0(x).

3 Wiener chaos expansion

When the canonical flow is filtered with respect to FW , it can be be expanded into
a series of iterated Wiener integrals, see e.g. [11, pg.57] and [10]. In this section, we
derive the Wiener chaos expansion of E[f(Xt)|FW ] using the semigroup P of the sticky
Brownian motion. This semigroup can be obtained explicitly by the inverse Laplace
transform of the resolvent [14, Prop.13] for x, y ∈ R+ and t > 0 as

Pt(x, dy) = pt(x, y) dy − pt(x,−y) dy + 2gt(x+ y) dy +
1

θ
gt(x) δ0(dy) (3.1)

where pt(x, ·) is the probability density function of a Gaussian random variable with
mean x and variance t, and

gt(x) = θ exp(2θx+ 2θ2t) erfc

(
x√
2t

+ θ
√

2t

)
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with erfc(x) = 2√
π

∫∞
x
e−y

2

dy [9, Cor.3.11]. The following lemma will be useful for

deriving an equation to iterate for Wiener chaos expansion. Let S := {f : [0,∞) → R :

f ∈ C2(0,∞), f(0+), f ′(0+) and f ′′(0+) are finite, limx→∞ f(x) = 0}.
Lemma 3.1. If f ∈ S, then Ptf ∈ D(A) and (Ptf)′1(0,∞) ∈ S for each t > 0.

Proof. Note that pt(x, y) = pt(0, y − x) and pt(x,−y) = pt(0, x+ y) and let p′t denote the
derivative of pt(0, ·). For x ≥ 0, we have

(Ptf)′(x) = −
∫ ∞
0

p′t(0, y − x)f(y) dy −
∫ ∞
0

p′t(0, x+ y)f(y) dy

+2

∫ ∞
0

g′t(x+ y)f(y) dy +
1

θ
g′t(x)f(0)

and

(Ptf)′′(x) =

∫ ∞
0

p′′t (0, y − x)f(y) dy −
∫ ∞
0

p′′t (0, x+ y)f(y) dy

+2

∫ ∞
0

g′′t (x+ y)f(y) dy +
1

θ
g′′t (x)f(0) .

By a change of variable y − x to y in the first integral in the expression for (Ptf)′ above,
we get

(Ptf)′(x) = −
∫ ∞
−x

p′t(0, y)f(y + x) dy −
∫ ∞
x

p′t(0, x+ y)f(y) dy

+2

∫ ∞
x

g′t(y)f(y − x) dy +
1

θ
g′t(x)f(0) .

Then, limx→∞(Ptf)′(x) = 0 since f , p′t, and g′t all vanish at infinity, f is bounded, and the
third integral above also goes to 0 as x→∞. Moreover, (Ptf)′(0), (Ptf)′′(0), (Ptf)′′′(0)

are all finite since pt, gt and their derivatives are continuous and bounded. It follows that
the function (Ptf)′1(0,∞), and its first and second derivatives are all finite at 0+. Hence,
(Ptf)′1(0,∞) ∈ S.

On the other hand, one can easily verify that

g′′t (x) = 2θ g′t(x) + 2θ (x/
√

2πt3) exp(−x2/2t) .

In view of this and the identity p′t(0, y) = (−y/t)pt(0, y), we get (Ptf)′′(0+) = 2θ (Ptf)′(0+).
The other properties in D(A) are also satisfied by Ptf and Ptf ∈ D(A) follows.

Proposition 3.2. For f ∈ S, we have

E[f(Xt)|FW ] = Ptf(0) +

∞∑
n=1

Jnt f

where

Jnt f =

∫
0<s1<...<sn<t

Ps1(D(Ps2−s1 . . . D(Pt−snf)))(0) dWs1 . . . dWsn

and Dg = 1(0,∞)g
′.

Proof. Let H(s, x) := Pt−sf(x) for 0 < s < t, x ≥ 0 and f ∈ S, and recall that

Pt−sf(x) =

∫ ∞
0

pt−s(0, y − x)f(y) dy −
∫ ∞
0

pt−s(0, x+ y)f(y) dy

+2

∫ ∞
0

gt−s(x+ y)f(y) dy +
1

θ
gt−s(x)f(0) .

By continuity of p and g, it follows that H is differentiable when f is measurable and
bounded, in particular when f ∈ S. By Itô’s formula for H(s,Xs), we get
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Application of stochastic flows to the sticky Brownian motion equation

H(s,Xs) = H(0, 0) +

∫ s

0

∂

∂u
H(u,Xu) du

+

∫ s

0

∂

∂x
H(u,Xu) dXu +

1

2

∫ s

0

∂2

∂x2
H(u,Xu) d〈Xu〉

= H(0, 0) +

∫ s

0

[(Pt−uf)′(Xu)] 1{Xu>0} dWu

+

∫ s

0

A(Pt−uf)(Xu) du+

∫ s

0

[
d

du
Pt−uf

]
(Xu) du

where we have identified A as Pt−uf ∈ D(A) by Lemma 3.1. Then, the sum of the last
two terms is 0 because for a transition semigroup P

d

dt
Ptf = lim

v→0

1

v
[Pt+vf − Ptf ] = lim

v→0

1

v
[Pv(Ptf)− Ptf ] = A(Ptf)

by definition of the generator of an infinitesimal semigroup; in particular, d
duPt−uf =

−A(Pt−uf). So, we have

H(s,Xs) = H(0, 0) +

∫ s

0

[(Pt−uf)′(Xu)] 1{Xu>0} dWu .

By letting s ↑ t, it follows that

f(Xt) = Ptf(0) +

∫ t

0

(Pt−uf)′(Xu)1{Xu>0} dWu .

By conditioning with respect to FW and interchanging conditional expectation and
integration (see e.g. [12, Lem.4.7]), we get

E[f(Xt)|FW ] = Ptf(0) +

∫ t

0

E[(Pt−uf)′1(0,∞)(Xu)|FW ] dWu . (3.2)

Note that since the integrand is adapted and the quadratic variation of W is an absolutely
continuous function of t, trivially, the stochastic integral can be defined uniquely in
almost sure sense (see e.g. [8, Rem.3.2.11]). That is, we can work with a progressively
measurable modification of E[(Pt−uf)′1(0,∞)(Xu)|FW ].

Let the Wiener chaos expansion of E[f(Xt)|FW ] be given by

E[f(Xt)|FW ] = Ptf(0) +

∞∑
n=1

Jnt f

which exists in L2 sense [13, pg.202]. Now, in view of Lemma 3.1 (Ptf)′1(0,∞) ∈ S and
we can iterate Equation (3.2) to get

J1
t f =

∫ t

0

∫
(0,∞)

Ps(0, dx)(Pt−sf)′(x) dWs

and similarly

Jnt f =

∫
0<s1<...<sn<t

Ps1(D(Ss2−s1 . . . D(Pt−snf)))(0) dWs1 . . . dWsn

where Dg = 1(0,∞)g
′.

Note that Proposition 3.2 uniquely characterizes the conditional law of Xt given W
since S is dense in C0([0,∞)). It also gives the Wiener chaos expansion for Gf (W+

t ) as
well by Theorem 1.1. We can alternatively consider the semigroup for W+, denoted by
P+ to obtain an expansion for Gf (W+

t ). By similar calculations as above, we find
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Gf (W+
t ) = P+

t Gf (0) +

∞∑
n=1

Jn+t f (3.3)

where

Jn+t f =

∫
0<s1<...<sn<t

P+
s1(D+(P+

s2−s1 . . . D
+(P+

t−snf)))(0) dWs1 . . . dWsn

and D+g(x) = g′(x). Then, the Wiener chaos expansions of E[f(Xt)|FW ] and Gf (W+
t )

must be equal. In particular, Ptf(0) = P+
t Gf (0), and Jn = Jn+ for n ≥ 1. Vice versa,

showing directly the equality of the Wiener chaos expansions of E[f(Xt)|W ] and Gf (W+
t )

would be an alternative approach to verify the conditional law. Instead, our proof in this
paper has drawn upon the broader perspective of the generalized equation satisfied by
flows induced by the sticky equation and the Wiener flow is completely described.

References

[1] R. Bass A stochastic differential equation with a sticky point. Electron. J. Probab. 19, (2014),
1–22. MR-3183576

[2] R. Chitashvili. On the nonexistence of a strong solution in the boundary problem for a sticky
Brownian motion. Proc. A. Razmadze Math. Inst. 115, (1997), 17–31. MR-1639096

[3] H.-J. Engelbert and G. Peskir. Stochastic differential equations for sticky Brownian motion.
Stochastics, 86, (2014), 993–1021. MR-3271518

[4] W. Feller. The parabolic differential equations and the associated semi-groups of transforma-
tions. Ann. of Math. (2), 55, (1952), 468–519. MR-0047886

[5] H. Hajri. On flows associated to Tanaka’s SDE and related works. Electronic Communications
in Probability 20, (2015), 1–12. MR-3314651

[6] C.J. Howitt. Stochastic flows and sticky Brownian motion. PhD thesis, University of Warwick,
2007. Available at http://wrap.warwick.ac.uk/56226/.

[7] K. Itô and H.P. McKean, Jr. Diffusion processes and their sample paths. Springer-Verlag,
Berlin-New York, 1974. Second printing, corrected, Die Grundlehren der mathematischen
Wissenschaften, Band 125. MR-0345224

[8] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag,
Berlin-New York, 1998. MR-1121940

[9] V. Kostrykin, J. Potthoff, and R. Schrader. Brownian motions on metric graphs: Feller brownian
motions on intervals revisited. Available on arxiv, arXiv:1008.3761v2, 2010.

[10] Y. Le Jan and O. Raimond. Integration of Brownian vector fields. Ann. Probab. 30, (2002),
826–873. MR-1905858

[11] Y. Le Jan and O. Raimond. Flows, coalescence and noise. Ann. Probab. 32, (2004), 1247–1315.
MR-2060298

[12] Y. Le Jan and O. Raimond. Flows associated to Tanaka’s SDE. ALEA Lat. Am. J. Probab. Math.
Stat. 1, (2006), 21–34, 2006. MR-2235172

[13] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin-
New York, 1999. MR-1725357

[14] J. Warren. Branching processes, the Ray-Knight theorem, and sticky Brownian motion. Sémi-
naire de probabilités de Strasbourg, volume 1655 of Lecture Notes in Math., Springer, Berlin,
1997, 1–15 pp. MR-1478711

[15] J. Warren. On the joining of sticky Brownian motion. Séminaire de Probabilités, XXXIII,
volume 1709 of Lecture Notes in Math., Springer, Berlin, 1999, 257–266 pp. MR-1767999

[16] J. Warren. The noise made by a poisson snake. Electron. J. Probab., 7, 2002, 1–21. MR-
1943894

ECP 22 (2017), paper 3.
Page 10/10

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=3183576
http://www.ams.org/mathscinet-getitem?mr=1639096
http://www.ams.org/mathscinet-getitem?mr=3271518
http://www.ams.org/mathscinet-getitem?mr=0047886
http://www.ams.org/mathscinet-getitem?mr=3314651
http://wrap.warwick.ac.uk/56226/
http://www.ams.org/mathscinet-getitem?mr=0345224
http://www.ams.org/mathscinet-getitem?mr=1121940
http://arXiv.org/abs/1008.3761v2
http://www.ams.org/mathscinet-getitem?mr=1905858
http://www.ams.org/mathscinet-getitem?mr=2060298
http://www.ams.org/mathscinet-getitem?mr=2235172
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1478711
http://www.ams.org/mathscinet-getitem?mr=1767999
http://www.ams.org/mathscinet-getitem?mr=1943894
http://www.ams.org/mathscinet-getitem?mr=1943894
http://dx.doi.org/10.1214/16-ECP37
http://www.imstat.org/ecp/

	Introduction
	Proof of Theorem 1.1
	The generalized sticky Brownian motion equation
	The Wiener flow

	Wiener chaos expansion
	References

