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Abstract. Consider taking a random sample of size n from a finite popu-
lation that consists of N categories with Mi copies in the ith category for
i = 1, . . . ,N . Each observed unit in a sample is presumed to have a prob-
ability 1 − p (0 < p < 1) of getting lost from the sample. Let S denote the
number of categories not observed in the sample and Sj denote the number of
categories where j samples are observed for j = 1, . . . , n. In this paper, the
probability distribution and factorial moments of S and Sj are studied. A ma-
trix inversion algorithm is used in order to facilitate numerical computations
in obtaining the probabilities and factorial moments. A couple of examples of
the problem considered in this paper may include a filing or storage process,
where objects are randomly assigned to files or storage bins, and from time
to time, objects may be missing or have disappeared, species as categories in
a capture-recapture problem, or DNA sequence study.

1 Introduction

Consider taking a random sample of size n from a finite population with N cat-
egories with Mi copies in the ith category for i = 1, . . . ,N . Let S denote the
number of unobserved categories in the sample and Sj denote the number of cat-
egories where j samples are observed for j = 1, . . . , n. Each observed sample is
presumed to have a probability 1 − p, 0 < p < 1, of being lost. In this paper,
the probability distribution and factorial moments of S and Sj are studied and we
use a matrix inversion method to facilitate numerical computations using the re-
lationship between probabilities and factorial moments. Several examples of the
problem are as follows: a filing or storage process, where objects are randomly
assigned to files or storage bins, and from time to time, objects may be missing
or have disappeared; spicies as categories in a capture-recapture problem; a DNA
sequence study, where categories are created by combinations of A, C, G and T in
a sequence. For example, when taking a sample of sequence with size 10, there are
410 categories.

The random variable S explored in this article originates in the context of the
classical occupancy problem. In Feller (1957), the probability that exactly S cat-
egories are remain empty is given in the context of a multinomial sampling, and
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the example of finding S days of the year which are not birthdays in a village
of 1900 people is mentioned as an application. Samuel-Cahn (1974) discussed
the number of observed categories N − S, and derived the mean and variance of
N −S. Korwar (1988) considers a general framework applied to various classes of
multivariate distributions. The probability distribution of the number of observed
classes sampling from a multivariate hypergeometric population was derived in
Walton (1986). However, the method used in this paper is different from his work,
and our method is more general in that we discuss the case when the proportion of
number of copies in ith category tends to be pi as Mi and N tend to be infinity. To
our knowledge, a study about the probability distribution of Sj has not appeared
in literature. Various asymptotic results were produced in Feller (1957), Harris et
al. (1987), Park (1972, 1981) and Samuel-Cahn (1974). For instance, Feller (1957)
and Samuel-Cahn (1974) proved that S is approximately a Poisson random vari-
able for large n and N , and Park (1972, 1981) and Harris et al. (1987) proved that
S is asymptotically a normal random variable.

Our paper is composed of the following sections. Section 1 is an Introduction.
In Section 2 and 3, we present the results for S in cases of having equal number of
copies among N categories and of unequal number of copies among N categories,
respectively. In Section 4, we present the results for Sj , followed by numerical
examples and concluding remarks in Section 5 and 6, respectively.

2 Results for S with equal number of copies in each categories

2.1 Case when M is a finite number

In this section, we begin with the following lemma.

Lemma 1. Assume that the number of copies in each category is equal to M . Let
Hn,M(k) denote the number of ways exactly k out of N categories are occupied.
Then,

Hn,M(k) =
k−1∑
j=0

(−1)j

(
k

j

)(
M(k − j)

n

)
I[M(k−j)≥n].

Proof. Let Xi = 0 if category i is empty and Xi = 1 if category i is occupied.
Hence, we need | ∩l

i=1 {Xi = 1}|, where |{Xi = 1}| = (M
n

)
. This can be calculated

by using the inclusion-exclusion principle. �

Using Lemma 1, we have the following results.

Proposition 1. The probability distribution of S is given by

P(S = s) =
(N

s

)
Hn,M(N − s)(NM

n

) .
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Let Xi denote the number of units observed in the ith category for i = 1, . . . ,N .
Let Yi = 1 for Xi = 0 and otherwise, Yi = 0. Then, S = ∑N

i=1 Yi denotes the num-
ber of unobserved categories, and N − S denotes the number of distinct categories
included in a sample of size n. Now, let Tn(k) denote the number of possible
combination of a subset k of N , that is, Tn(k) = (N

k

)(Mk
n

)
for k = 1, . . . ,N . Since

S = ∑N
i=1 Yi , E(S) = N Tn(N−1)

Tn(N)
.

Proposition 2. The kth factorial moment of S is given by

E
(
S(k)) = k!Tn(N − k)

Tn(N)
= N !

(N − k)!
(M(N−k)

n

)
(MN

n

) .

For example,

E(S) =
(N

1

)(M(N−1)
n

)
(MN

n

) and E
(
S(2)) = 2!

(N
2

)(M(N−2)
n

)
(MN

n

) .

Theorem 2.1. The probability distribution of S is given by

P(S = s) = 1

s!
N−s−1∑

j=0

(−1)j
E(S(s+j))

j ! .

Proof.

P(S = s) =
(N

s

)
Hn,M(N − s)(NM

n

) =
(N

s

)∑N−s−1
j=0 (−1)j

(N−s
j

)(M(N−s−j)
n

)
(NM

n

)
and

E(S(s+j))

s!j ! = (s + j)!
( N
s+j

)(M(N−s−j)
n

)
j !(NM

n

) =
(N

s

)(N−s
j

)(M(N−s−j)
n

)
(NM

n

) .
�

Equivalently, we write

P(S = s) =
N−1∑
k=s

(−1)k−s

(
k

s

)
E(S(k))

k! .

Note that we can write as P = CT , where P is a N × 1 vector with P(S = s) as

an element, T is a N × 1 vector with E(S(k))
k! as an element for k = 0, . . . ,N − 1,
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and C is N × N coefficients matrix shown below.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0

0

)
(−1)1

(
1

1

) (
2

2

)
· · · (−1)N−2

(
N − 2

N − 2

)
(−1)N−1

(
N − 1

N − 1

)

0

(
1

0

)
(−1)1

(
2

1

)
· · · (−1)N−3

(
N − 2

N − 3

)
(−1)N−2

(
N − 1

N − 2

)

.

.

.
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . .
.
.
.

0 0
. . .

. . .

(
N − 2

0

)
(−1)1

(
N − 1

1

)

0 0 0 · · · 0

(
N − 1

0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When N = 5, C is given by
⎛
⎜⎜⎜⎜⎜⎝

1 −1 1 −1 1
0 1 −2 3 −4
0 0 1 −3 6
0 0 0 1 −4
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

Note that the Xth column of C is the coefficient of AX−1−kBk in the binomial
expansion of (A−B)X−1 = ∑X−1

k=0 (−1)X−1−k
(X−1

k

)
AX−1−kBk for X = 1, . . . ,N .

Now it can be verified that P(S ≤ s) = ACE, where E is the vector of factorial
moments and A is the lower triangular matrix with 1’s. The following lemma gives
the key instrument for computing the factorial moments.

Lemma 2. The upper triangular Pascal’s matrix has the inverse that is the same
matrix, except with every other sub-diagonal multiplied by −1.

For the case of N = 5,

⎛
⎜⎜⎜⎜⎜⎝

1 −1 1 −1 1
0 1 −2 3 −4
0 0 1 −3 6
0 0 0 1 −4
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

Theorem 2.2. The factorial moment of S is given by the

E
(
S(k)) = k!

N−1∑
s=k

(
s

k

)(
N

s

)
P(S = s).
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Theorem 2.3. Assume that an observed unit has a probability 1 − p of being lost.
Then, the kth factorial moment of S is given by

E
(
S(k)) =

n∑
t=0

k!
(N
k

)(M(N−k)
t

)
(MN

t

)
(
n

t

)
pt(1 − p)n−t .

Proof.

E
(
S(k)) =

n∑
t=0

E
(
S(k)|t)

(
n

t

)
pt(1 − p)n−t =

n∑
t=0

k!Tt (N − k)

Tt (N)

(
n

t

)
pt(1 − p)n−t

=
n∑

t=0

k!
(N
k

)(M(N−k)
t

)
(MN

t

)
(
n

t

)
pt(1 − p)n−t .

�

2.2 Asymptotic results for S as M tends to infinity

From Theorem 2.1, we get the following result.

Proposition 3. As M tends to infinity, the factorial moment of S is given by

E
(
S(k)) M→∞−→ k!

(
N

k

)(
1 − k

N

)n

.

Proposition 4. As M tends to infinity, the probability distribution of S is given by

P(S = s)
M→∞−→ N !

(N − s)!Nn
S(n,N − s),

where S(·) denotes the Sterling’s number of the second kind.

Proof.

P(S = s)
M→∞−→

N−1∑
k=s

(−1)k−s

(
k

s

)(
N

k

)(
1 − k

N

)n

=
(N

s

)
Nn

N−1∑
k=s

(−1)k−s

(
N − s

k − s

)
(N − k)n.

Now, substitute q for k − s,

=
(N

s

)
Nn

N−s−1∑
q=0

(−1)q

(
N − s

q

)
(N − s − q)n.

�

From Theorem 2.2, we get the following result.
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Proposition 5. For M → ∞,

E(S(k))
M→∞−→ N(k)(1 − kp

N
)n.

Using the relationship between the probability generating function and the factorial
moment generating function, we establish the following proposition.

Proposition 6. For M → ∞, the asymptotic probability distribution of S is given
by

P(S = s)
M→∞−→

N−1∑
k=s

(−1)k−s

(
k

s

)(
N

k

)(
1 − kp

N

)n

.

3 Results for S with unequal number of copies in each categories

3.1 Case when Mi ’s are finite numbers

Suppose there are N categories and the ith category consists of Mi copies.

Lemma 3. Let Hn(k) denote the number of ways (N −k) categories is unobserved
for a given subset of k out of N categories. Then, it can be calculated using the
recursive formula shown below.

Hn(k) =
k−1∑
j=0

(−1)j
∑

i1,...,ik−j

(∑k−j
u=1 Miu

n

)
I[∑k−j

u=1 Miu≥n],

where the summation is over all possible subsets of size k − j .

Proof. First, note that
∑

i1,...,ik−j

(∑k−j
u=1 Miu

n

)
I[∑k−j

u=1 Miu≥n] is the number of ways

at least j categories are unobserved among a given set of k categories. Denote
it by Hn∗(j). By using the inclusion-exclusion principle, we have the following
recursive formula

Hn(k) =
k−1∑
j=0

(−1)jHn∗(j).
�

Using Lemma 3, the following theorem is established.

Theorem 3.1. When the number of copies in N categories are not all the same,
the probability distribution of S is given by

P(S = s) =
(N

s

)∑N−s−1
j=0 (−1)j

∑
i1,...,iN−s−j

(∑N−s−j
u=1 Miu

n

)
(∑N

i=1 Mi

n

) .
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Theorem 3.2. The kth factorial moment of S is given by

E(S(k)) = k! ∑
i1,...,iq

(
1 −

∑k
q=1 Miq∑N
i=1 Mi

)n

3.2 Asymptotic results as Mi ’s tend to infinity

Denote Mi∑N
i=1 Mi

= pi as Mi’s tend to infinity and
∑N

i=1 pi = 1.

Proposition 7. As Mi ’s tend to infinity,

E(S(k)) −→ k! ∑
i1,...,ik

(
1 −

k∑
q=1

piq

)n

,

where the summation is over all possible subsets of size k.

Using the relationship between the probability generating function and the factorial
moment generating function, we establish the following proposition.

Proposition 8. The asymptotic probability distribution of S is given by

P(S = s) −→
N−1∑
k=s

(−1)k−s

(
k

s

)
T n(k) =

N−1∑
k=s

(−1)k−s

(
k

s

) ∑
i1,...,ik

(
1 −

k∑
q=1

piq

)n

.

Proposition 9. Assume that an observed unit has a probability 1−p of being lost.
Then

E
(
S(k)) −→ k! ∑

i1,...,ik

(
1 − p

k∑
q=1

piq

)n

.

Proof.

E
(
S(k)) −→

n∑
t=0

E
(
S(k)|t)

(
n

t

)
pt(1 − p)n−t

= k! ∑
i1,...,ik

n∑
t=0

(
n

t

)(
p − p

k∑
q=1

piq

)t

(1 − p)n−t .
�

Let B = ∑N
j=1 Zj , where Zj = 1 if j th category is observed in a sample of size n,

and Zj = 0 otherwise, for j = 1, . . . ,N . Then, B is the sum of N dependent
Bernoulli random variables Zj , where P(Zj = 1) = 1 − (1 − pj )

n. Hence, the
asymptotic distribution of S(= N − B) is given in the following theorem.
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Theorem 3.3. As N and Mi ’s tend to infinity,

S − E(S)

(Var(S))1/2 −→ N(0,1),

where

E(S) =
N∑

j=1

(1 − pj )
n and

Var(S) =
N∑

j=1

[
(1 − pj )

n(1 − (1 − pj )
n)

]

+
N∑

i �=k

[
(1 − pi − pk)

n − (1 − pi)
n(1 − pk)

n]
.

4 Asymptotic results for Sj

Let fij = 1(0) if xi = j (�= j), where xi denotes the frequency counts of ith
category. Then, Sj = ∑N

i fij denotes the number of categories with j sam-
ples with

∑n
j Sj = N and

∑n
j jSj = n, and the number of possible sequences

(S0, S1, . . . , SN) is
(N+n−1

n

)
. Denote Mi∑N

i=1 Mi
−→ pi as Mi −→ ∞ for i =

1, . . . ,N and
∑N

i=1 pi = 1.
Note that we get

E(Sj ) −→
N∑
i

(
n

j

)
p

j
i (1 − pi)

n−j and

E
(
S

(2)
j

) −→ ∑
i1,i2

n!
j !j !(n − 2j)!p

j
i1
p

j
i2
(1 − p1i

− pi2)
n−2j ,

since E(fij ) −→ (n
j

)
p

j
i (1 − pi)

n−j and E(fi1j fi2j ) −→ n!
j !j !(n−2j)!p

j
i1
p

j
i2
(1 −

p1i
− pi2)

n−2j . Hence, the following proposition follows.

Proposition 10.

E
(
S

(k)
j

) −→ ∑
i1,...,ik

n!
(j !)k(n − kj)!

k∏
m=1

p
j
im

(
1 −

k∑
m=1

pim

)n−kj
.

Similarly to the case for S, we obtain the probabilities of Sj as shown in the
following matrix notation,

Pj = CTj ,
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where Pj is (N + 1) × 1 vector of [P(Sj = 0), . . . ,P (Sj = N)]′, C is the (N +
1)× (N + 1) matrix and Tj is (N + 1)× 1 vector of [1, Tj (1), . . . , Tj (N)]′, where

Tj (k) = E
(
S

(k)
j

)
k! .

Proposition 11. Suppose that an observed unit has a probability 1 − p of being
lost, the kth factorial moment of S is written as

E
(
S

(k)
j

) −→
(
N

k

)
n!

(j !)k(n − kj)!
k∏

m=1

(ppim)j
(
1 − p

k∑
m=1

pim

)n−kj
.

Proof.

E
(
S

(k)
j

) −→
n∑

t=0

E
(
S

(k)
j |t)

(
n

t

)
pt(1 − p)n−t

=
n∑

t=0

∑
i1,...,ik

t !
(j !)k(t − kj)!

k∏
m=1

p
j
im

(
1 −

k∑
m=1

p
j
im

)t−kj

(
n

t

)
pt(1 − p)n−t

= ∑
i1,...,ik

n!
(j !)k(n − kj)!

k∏
m=1

(ppim)j
(
1 − p

k∑
m=1

pim

)n−kj
.

�

5 Numerical examples

In this section, we present simple numerical exercises using the proposed algo-
rithms. In the following example, we have 4 categories having unequal number of
copise, where p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4, and the sample size is
given by 5.

5.1 Case for S

In this exercise, we use

W4 =

⎛
⎜⎜⎝

1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1

⎞
⎟⎟⎠ .

Using Proposition 8, we compute

T1(1) = E(S1) = 1.164,

T1(2) = E(S
(2)
1 )

2! = 0.20175,

T1(3) = E(S
(3)
1 )

3! = 0.013.
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The probabilities of S by
⎛
⎜⎜⎝

P(S = 0)

P (S = 1)

P (S = 2)

P (S = 3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
1.164

0.20175
0.013

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.02475
0.7995
0.16275
0.013

⎞
⎟⎟⎠ .

5.2 Case for S1

In this exercise, we have

W5 =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 1 −1 1
0 1 −2 3 −4
0 0 1 −3 6
0 0 0 1 −4
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

Using Proposition 10, the factorial moments are given by

E(S1) = 0.2714,
E(S

(2)
1 )

2! = 0.0151,

E(S
(3)
1 )

3! = 0.0024 and
E(S

(4)
1 )

4! = 0.

We compute the probabilities of S1 as shown below.⎛
⎜⎜⎜⎜⎜⎝

P(S1 = 0)

P (S1 = 1)

P (S1 = 2)

P (S1 = 3)

P (S1 = 4)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 1 −1 1
0 1 −2 3 −4
0 0 1 −3 6
0 0 0 1 −4
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1
0.2714
0.0151
0.0024

0

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0.7413
0.2484
0.0079
0.0024

0

⎞
⎟⎟⎟⎟⎟⎠

6 Concluding remarks

We investigate the problem of sampling from a multivariate hypergeometric dis-
tribution. We propose the probability distribution and factorial moments of the
number of unobserved categories and the number of categories with j samples for
j = 1, . . . , n. The asymptotic results are also provided in this paper. Some of appli-
cations of the proposed results include: a filing or storage process, where objects
are randomly assigned to files or storage bins, and from time to time, objects may
be missing or have disappeared, species of insects as categories in a Biological
application, or a DNA experimental study. We hope that our readers find this paper
useful for theoretical developments and practical applications in their researches.
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