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PETER HALL’S WORK ON HIGH-DIMENSIONAL
DATA AND CLASSIFICATION

BY RICHARD J. SAMWORTH1

University of Cambridge

In this article, I summarise Peter Hall’s contributions to high-dimensional
data, including their geometric representations and variable selection meth-
ods based on ranking. I also discuss his work on classification problems, con-
cluding with some personal reflections on my own interactions with him.
This article complements [Ann. Statist. 44 (2016) 1821–1836; Ann. Statist.
44 (2016) 1837–1853; Ann. Statist. 44 (2016) 1854–1866 and Ann. Statist.
44 (2016) 1867–1887], which focus on other aspects of Peter’s research.

1. High-dimensional data. Peter Hall wrote many influential works on high-
dimensional data, though notably he largely eschewed the notions of sparsity and
penalised likelihood that have become so popular in recent years. Nevertheless, he
was interested in variable selection, and wrote several papers that involved ranking
variables in some way. Perhaps his most well-known papers in this area, though,
concern geometrical representations of high-dimensional data.

1.1. Geometric representations of high-dimensional data. Hall and Li (1993)
were early pioneers of high-dimensional data analysis in trying to understand the
properties of low-dimensional projections of a high-dimensional isotropic random
vector X in R

p . As motivation, let γ ∈ R
p have ‖γ ‖ = 1 and suppose that

(1) ∀b ∈ R
p,∃αb,βb ∈ R, E

(
bT X|γ T X = t

) = αbt + βb.

This condition says that the regression function of bT X on γ T X is linear. Then,
using the isotropy of X,

0 = E
(
bT X

) = E
{
E

(
bT X|γ T X

)} = E
(
αbγ

T X + βb

) = βb.

Moreover,

bT γ = Cov
(
bT X,γ T X

) = E
{
E

(
bT XXT γ |γ T X

)} = αbγ
T
E

(
XXT )

γ = αb,

and we conclude that E(X|γ T X = t) = tγ , or equivalently,

(2)
∥∥E(

X|γ T X = t
)∥∥2 − t2 = 0.
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The left-hand side of (2) is always nonnegative, so can be used as a measure of the
extent to which the condition (1) holds. Remarkably, under very mild conditions
on the distribution of X, Hall and Li (1993) proved that if γ is drawn from the
uniform distribution on the unit Euclidean sphere in R

p , then∥∥E(
X|γ, γ T X = t

)∥∥2 − t2 p→ 0

as p → ∞. This is equivalent to the statement

sup
b∈Rp :‖b‖=1,bT γ=0

∣∣E(
bT X|γ, γ T X = t

)∣∣ p→ 0

as p → ∞. See also Diaconis and Freedman (1984), who showed that under mild
conditions, most low-dimensional projections of high-dimensional data are nearly
normal. Of course, when X has a spherically symmetric distribution, (1) holds for
every γ ∈ R

p with ‖γ ‖ = 1. But the result of this paper shows that even without
spherical symmetry, there is a good chance (in the sense of random draws of γ

as described above) that (1) holds, at least approximately, when p is large. An
important statistical consequence of this is that even if the relationship between a
response Y and a high-dimensional predictor is nonlinear, say Y = g(γ T X, ε) for
some unknown link function g and error ε, standard linear regression procedures
can often be expected to yield an approximately correct estimate of γ up to a
constant of proportionality. The generalisation of this result that replaces γ T X

with �T X, where � is a random p×k matrix with orthonormal columns, also plays
an important role in justifying the use of sliced inverse regression for dimension
reduction [Li (1991)].

Another seminal paper that articulated many of the key geometrical proper-
ties of high-dimensional data is Hall, Marron and Neeman (2005). This paper
begins with the simple, yet remarkable, observation that if Z ∼ Np(0, I ), then
‖Z‖ = p1/2 + Op(1) as p → ∞. Thus, data drawn from this distribution tend to
lie near the boundary of a large ball. Similarly, the pairwise distances between
points are almost a deterministic distance apart, and the observations tend to be al-
most orthogonal. In fact, the authors go on to explain that, under much weaker as-
sumptions than Gaussianity, the data lie approximately on the vertices of a regular
simplex, and that the stochasticity in the data essentially appears as a random ro-
tation of this simplex. As well as clarifying the relationship between Support Vec-
tor Machines [e.g., Christianini and Shawe-Taylor (2000)] and Distance Weighted
Discrimination classifiers [Marron, Todd and Ahn (2007)] in high dimensions, the
paper forced researchers to rewire their intuition about high-dimensional data, and
precipitated a flood of subsequent papers on high-dimensional asymptotics.

1.2. Variable selection and ranking. The last 15 years or so have seen vari-
able selection emerge as one of the most prominently studied topics in Statistics.
Although Peter’s instinct was to think nonparametrically [Cheng and Fan (2016),
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Delaigle (2016), Müller (2016)], he realised that he could contribute to a prominent
line of research in the variable selection literature, namely marginal screening [e.g.,
Fan and Lv (2008), Fan, Samworth and Wu (2009), Li, Zhong and Zhu (2012)],
via the deep understanding he developed for rankings. Hall and Miller (2009a) de-
fined variable rankings through their generalised correlation with a response, while
Delaigle and Hall (2012) studied variable transformations prior to ranking based
on correlation as a method for dealing with heavy-tailed data. For classification,
Hall, Titterington and Xue (2009a) proposed a cross-validation based criterion for
assessing variable importance, while in the unsupervised setting, Chan and Hall
(2010) suggested ranking the importance of variables for clustering based on non-
parametric tests of modality.

These works above were underpinned by Peter’s realisation that he could ex-
plain how perhaps his favourite tool of all, namely the bootstrap [Chen (2016)],
could be used to quantify the authority of a ranking [Hall and Miller (2009b)].
In fact, there are some subtle issues here, particularly surrounding the issue of
ties. Peter developed an ingenious method for proving that even though the stan-
dard n-out-of-n bootstrap does not handle this issue well, the m-out-of-n bootstrap
overcomes it in an elegant way.

2. Classification problems. I believe that Peter may have become interested
in classification problems in the early 2000s at least partly through ideas of boot-
strap aggregating, or bagging [Breiman (1996)]. Indeed, in Friedman and Hall
(2007), a preprint of which was already available in early 2000, Peter had at-
tempted to understand the effect of bagging in M-estimation problems. This is
a typical example of Peter’s extraordinary ability to explain empirically observed
effects through asymptotic expansions. One of the other interesting contributions
of this work is that subsampling (i.e., sampling without replacement) half of the
observations closely mimics ordinary n-out-of-n bootstrap sampling, a very useful
fact that has been observed and exploited in several other contexts, including sta-
bility selection for choosing variables in high-dimensional inference [Meinshausen
and Bühlmann (2010), Shah and Samworth (2013)] and stochastic search methods
for semiparametric regression [Dümbgen, Samworth and Schuhmacher (2013)].

Classification problems are ideally suited to bagging, because the discrete na-
ture of the response variable means that small changes to the training data can
often yield different outputs from a classifier; in the terminology of Breiman
(1996), many classifiers are “unstable”. Suppose we are given training data X :=
{(X1, Y1), . . . , (Xn,Yn)}, where each Xi is a covariate taking values in a general
normed space B, and Yi is a response taking values in {−1,1}. Assume further that
we have access to a classifier Ĉn(·) = Ĉn(·;X ) constructed from the training data,
so that x ∈ B is assigned to class Ĉn(x;X ). To form the bagged version Ĉ∗

n of the
classifier, we draw B bootstrap resamples {X ∗

b : b = 1, . . . ,B} from X , and set

Ĉ∗
n(x) := sgn

(
1

B

B∑
b=1

Ĉn

(
x;X ∗

b

))
.
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Peter got me interested in bagging nearest neighbour classifiers. Ironically, the
nearest neighbour classifier had been described by Breiman as stable, since the
nearest neighbour appears in more than half—in fact, around 1 − (1 − 1/n)n ≈
1 − e−1—of the bootstrap resamples; thus the bagged nearest neighbour classi-
fier is typically identical to the unbagged version. In Hall and Samworth (2005),
however, we studied the effect of drawing resamples (either with or without re-
placement) of smaller size m. Naturally, this reduces the probability of including
the nearest neighbour in the resample, and the bagged classifier is now well ap-
proximated by a weighted nearest neighbour classifier with geometrically decay-
ing weights; see also Biau and Devroye (2010). In order for bagging to yield any
asymptotic improvement over the basic nearest neighbour classifier, we require
m/n < 1/2 (when sampling without replacement) and m/n < log 2 (when sam-
pling with replacement); in order to converge to the theoretically-optimal Bayes
classifier, we require m = mn → ∞ but m/n → 0.

Once classification problems had piqued his interest, Peter set about trying to
answer some of the key questions on rates of convergence and tuning parameter
selection that would naturally have occurred to him given his earlier work on non-
parametric inference. Hall and Kang (2005) studied the performance of classifiers
constructed from kernel density estimates of the class conditional distributions on
B = R

d . A particularly curious discovery he made there is that even in the simplest
case where d = 1 and where the class conditional densities f and g cross only at
the single point x0, the rate of convergence and order of the asymptotically opti-
mal bandwidth depends on the sign of f ′′(x0)g

′′(x0). In Hall, Park and Samworth
(2008), we considered similar problems in the context of k-nearest neighbour clas-
sification, obtaining an asymptotic expansion for the regret (i.e., the difference
between the risk of the k-nearest neighbour classifier and that of the Bayes classi-
fier) which implied that the usual nonparametric error rate of order n−4/(d+4) was
attainable with k chosen to be of order n4/(d+4). The form of the expansion made
me realise that the limiting ratio of the regrets of the bagged nearest neighbour
classifier and the k-nearest neighbour classifier (with both the resample size m and
the number of neighbours k chosen optimally) depended only on d , and not on the
underlying distributions. To my great surprise, this limiting ratio was greater than
1 when d = 1, equal to 1 when d = 2 and less than 1 for d ≥ 3 (though approach-
ing 1 for large d). It took me some years to explain this phenomenon in terms of
the optimal weighting scheme [Samworth (2012)].

In more recent years, Peter turned his attention to a wealth of other important,
though perhaps less well studied, issues in classification. Some of these were mo-
tivated by what he saw as drawbacks of existing classifiers. For instance, in Hall,
Titterington and Xue (2009b), he developed classifiers based on componentwise
medians, to alleviate the difficulties of both computing and interpreting multivari-
ate medians; such methods can be highly effective for high-dimensional data that
may have heavy tails. In Chan and Hall (2009a), he studied robust versions of
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nearest neighbour classifiers for high-dimensional data that try to perform an ini-
tial variable selection step to reduce variability. Chan and Hall (2009b) presented
simple scale adjustments to make distance-based classifiers (primarily designed to
detect location differences) less sensitive to scale variation between populations;
see also Hall and Pham (2010). Hall and Xue (2010) and Hall, Xia and Xue (2013)
concerned settings where one might want to incorporate the prior probabilities into
a classifier, and where these prior probabilities may be significantly different from
1/2, respectively. Finally, Ghosh and Hall (2008) discovered the phenomenon that
estimating the risk of a classifier, and estimating the tuning parameters to min-
imise that risk, are two rather different problems, requiring the use of different
methodologies.

3. Some personal reflections. I first met Peter as a Ph.D. student when he
visited Cambridge in 2002. I spent an hour or so discussing a problem I was work-
ing on that involved using ideas of James–Stein estimation to find small confidence
sets for the location parameter of a spherically symmetric distribution [Samworth
(2005)]. I was blown away at the speed with which he was able to understand
where my difficulties lay, and make helpful suggestions. Shortly afterward, he in-
vited me to spend six weeks at the Australian National University in Canberra in
July–August 2003. I arrived utterly exhausted after nearly 24 hours in the air, but
Peter was full of energy when he kindly picked me up from the bus station. Al-
most the first thing he said to me was “I’ve got a problem I thought we could think
about. . .”, and he proceeded to take out a pen and pad of paper; one could not help
but be drawn along by his enthusiasm for research.

Everything with Peter happened at breakneck speed, whether it was dashing
around the supermarket, a driving tour through the rural Australian Capital Ter-
ritory (see Figure 1) or, of course, writing papers. Many of his collaborators will
have experienced discussing a problem with Peter one evening and returning to the
office the following morning to find that he had typed up a draft manuscript that
would form the basis of a joint paper. His prose was always elegant, and he had a
wonderful ability to see his way through technical asymptotic arguments, aided by
almost physicist-like intuition for what ought to be true.

One of my favourite Peter stories, which I initially heard second-hand but which
he later confirmed was true, concerned a time when he’d been asked to teach an
elementary Statistics course to students with really very little quantitative back-
ground. Realising that he had lost some of the students along the way, and in order
not to ruin their grades, Peter had a cunning idea and spent the last class before
the final going through the problems that he had set on the exam. To his horror,
however, the students still flunked the exam. When Peter bumped into one of the
students and asked in bemusement, “What happened? I went through the questions
in the last class”. The student replied, “Yes, but you did them in a different order”!

Peter had seemingly boundless energy and capacity to work, but he was also a
very gentle individual in many ways. He was extraordinarily generous to others,
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FIG. 1. Peter with Juhyun Park (Lancaster University), the author and Nick Bingham (Imperial
College London) on a blustery day in rural Australian Capital Territory in 2003.

and particularly junior researchers for whom he did so much. He was a remarkable
person and I miss him very deeply.
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