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PETER HALL’S MAIN CONTRIBUTIONS TO DECONVOLUTION

BY AURORE DELAIGLE1

University of Melbourne

Peter Hall died in Melbourne on January 9, 2016. He was an extremely
prolific researcher and contributed to many different areas of statistics. In
this paper, I talk about my experience with Peter and I summarise his main
contributions to deconvolution, which include measurement error problems
and problems in image analysis.

1. My experience with Peter. I met Peter for the first time at a workshop in
Belgium in 2001 when I was a Ph.D. student. I was a nobody and he was a god in
Statistics, but he took the time to discuss my work, which left me with the impres-
sion that he was a very nice person. That was the general experience that young
researchers had when meeting Peter. Even if you were very insignificant in a de-
partment with many senior statisticians, he managed to make you feel included just
through the shear warmth of his personality. Indeed, Peter was a wonderful person.
He was gentle, generous, passionate, enthusiastic, optimistic and very supportive.
He not only inspired me, but he also had a massive impact on hundreds of other
young statisticians all over the world.

Two years after I met Peter for the first time, he visited the University of Cal-
ifornia at Davis where I was a postdoc. We were office neighbours, and again I
was amazed at how gentle and accessible he was. He discussed with me as if we
were equal, which made me feel very comfortable. I told him about the topic of
my Ph.D. thesis (deconvolution), and a few days later, when I got into my office,
there was a 20-page document waiting for me on my chair. It was Peter who had
essentially written a paper on a new problem in the area, and he was asking if I
would be interested in joining him to work on it. This is a story I share with many.
He continuously had academic visitors from overseas who talked to him about a
problem they had. Often he got very enthusiastic about it, or about a modified ver-
sion of it, and soon after there was a 20-page document with a solution and long
proofs waiting under their door.

Peter was extremely prolific, his work was deep and very creative and the
breadth of problems he tackled was very unique. Although I worked with him
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FIG. 1. Left: Jianqing Fan, Jiashun Jin, Peter Hall, Aurore Delaigle and Maozai Tian on a trip to
Puffing Billy. Right: lunch break on that day.

continuously, he kept on managing to surprise me regularly with some of his unbe-
lievably creative and beautiful ideas. I often told him: “how on earth did you even
get to think about this in the first place?” It seemed like this came out of nowhere,
I was wondering how such inventive things could come out of someone’s brain.
Peter also had the reputation of being able to prove almost any theoretical result,
which was essentially true. He was a problem solver; he really enjoyed the chal-
lenge of solving a new problem and he was absolutely passionate about science
and mathematics in general.

Peter won the most prestigious awards a statistician can get, including Fellow-
ships of the Royal Society of London and of the Australian Academies of Science
and Social Sciences, the election to Foreign associate of the US National Academy
of Sciences and to the Officer of the Order of Australia. Yet, he was the most unas-
suming person I have ever met.

He liked having visitors around the department, which he found very stimulat-
ing. He had lunch with them every day, but at lunch he much preferred talking
about the news, politics, trains, planes or cats than about statistics. When he had
time on the weekend, he enjoyed taking them to the countryside of his beautiful
Australia that he loved so much. In Melbourne, his favourite activity with visi-
tors was to take them for a ride on a steam train called “Puffing Billy”. See Fig-
ures 1 and 2. We went there many times after he acquired a digital camera, and his
biggest pleasure was to photograph the locomotive under every possible angle. He
developed his passion for trains and photography at a young age. It was he who
introduced photography to his sister, Fiona Hall, who later became a distinguished
artist in Australia and of whom he was very proud [Delaigle and Wand (2016)].

Peter loved animals, and cats in particular. He often told me that when he got
home, he used to stroke his cat Pumpkin 150 times, and that she complained if he
stopped before 150. When he was at the Australian National University, he also
developed an interest in cockatoos. He liked their company so much that he had
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FIG. 2. Peter Hall, Aurore Delaigle and Raymond Carroll on a trip to Puffing Billy.

bags of bird seeds in his office, from which he would feed the cockatoos through
his window. Many visitors still remember the noise of the cockatoos knocking on
his window, begging for food.

Peter was someone really special. His sheer presence made the whole atmo-
sphere around him peaceful, joyful and exciting. He was an extraordinary, kind,
gentle and generous person, of the type most people do not even have the chance
to meet once in their lifetime. I feel blessed for having had him as a friend, collab-
orator and mentor for many years, but I miss him terribly, and I will miss him for
the rest of my life.

2. Peter and errors-in-variables deconvolution problems.

2.1. Introduction. Peter made important and groundbreaking contributions to
deconvolution problems in statistics, also referred to as nonparametric errors-in-
variables or measurement errors problems. For an excellent introduction to mea-
surement errors problems, the reader is referred to Carroll et al. (2006). For a dis-
cussion of Peter’s other main contributions to nonparametric problems, Cheng and
Fan (2016). In the measurement errors literature, one can principally distinguish
two types of errors called classical errors and Berkson errors. Peter contributed
to nonparametric density and regression estimation problems for the two types of
errors.

In its most basic form, the classical errors-in-variables problem can be described
as follows. Suppose we are interested in estimating the density fX of a variable X,
but we can observe only an i.i.d. sample W1, . . . ,Wn where, for each i,

(2.1) Wi = Xi + Ui.

Here, the Xi’s are i.i.d. with unknown density fX , the Ui ’s are i.i.d. with symmetric
known or estimable density fU , and the Xi’s are independent of the Ui’s. In this
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model, the Ui’s typically represent measurement errors made when collecting the
data. If we let fW denote the density of the Wi ’s, then fW is the convolution of fX

and fU , that is, fW = fX ∗ fU , and we have to de-convolve this equation in order
to estimate fX from an estimator of fW , hence the name “deconvolution”.

Throughout this article, φT will denote the characteristic function of a random
variable T or the Fourier transform of a function T . Assuming that

(2.2) inf
t∈R

∣∣φU(t)
∣∣ > 0,

and using the fact that φW = φXφU , combined with the Fourier inversion theorem,
Carroll and Hall (1988) and Stefanski and Carroll (1990) proposed the deconvolu-
tion kernel density estimator of fX , defined by

f̂X(x) =
∫

e−itx φ̂W (t)φK(ht)/φU(t) dt = (nh)−1
n∑

j=1

KU

(
x − Wj

h

)
,(2.3)

where KU(x) = (2π)−1
∫

eituφK(t)/φU(t/h) dt.(2.4)

Here, φ̂W (t) = n−1 ∑n
j=1 eitWj denotes the empirical characteristic function of

the Wi’s, h > 0 is a smoothing parameter called bandwidth, and φK denotes the
Fourier transform of a function K called kernel, and used to dampen the effect of
the unreliability of φ̂W (t) for |t | large.

In the regression context, the classical errors-in-variables problem consists in
estimating a regression curve m from i.i.d. data (W1, Y1), . . . , (Wn,Yn) generated
by the model

(2.5) Yi = m(Xi) + εi, Wi = Xi + Ui,

where the Wi ’s are as in (2.1), the Xi’s, the Ui ’s and the εi ’s are completely in-
dependent, and the εi ’s are i.i.d. with mean zero and finite variance. Recall the
definition of KU in (2.4). Fan and Truong (1993) proposed the following kernel
estimator of m(x):

(2.6) m̂(x) =
n∑

j=1

YjKU

(
x − Wj

h

)/ n∑
j=1

KU

(
x − Wj

h

)
.

In the Berkson error model, the roles of Xi and Wi are reversed compared to
the classical error model. Specifically, in the Berkson errors-in-variables regres-
sion model, we wish to estimate a regression curve m(x) = E(Y |X = x), but we
observe only i.i.d. data (W1, Y1), . . . , (Wn,Yn), where, for each i,

(2.7) Yi = m(Xi) + εi, Xi = Wi + Ui,

with the Wi ’s, the Ui’s and the εi ’s completely independent. The unobservable Xi’s
are i.i.d. with unknown density fX , the errors Ui are i.i.d. with known symmetric
density fU , and the εi ’s are i.i.d. with mean zero and finite variance.
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2.2. Peter’s first influential contribution to classical error problems. Peter’s
first work in the area was the influential Carroll and Hall (1988) paper. There, the
authors were the first to establish minimax convergence rates for nonparametric
estimation of the density fX in the model at (2.1). Let Ck(B) denote the class
of k-times differentiable densities f such that ‖f ‖∞ ≤ B and ‖f (k)‖∞ ≤ B , and
for each fX ∈ Ck(B), let f̂X(x0) denote any nonparametric estimator of fX(x0),
constructed from the Wi ’s at (2.1), where x0 is a fixed real number.

The main result of the paper states that if, for a sequence of positive constants
an,n ≥ 1 we have

lim inf
n→∞ inf

fX∈Ck(B)
PfX

{∣∣f̂X(x0) − fX(x0)
∣∣ ≤ an

} = 1 for each B > 0,

then if fU is a standard normal density, limn→∞(logn)k/2an = ∞ and if fU is such
that |φU(t)| decreases like |t |−α as |t | → ∞, then limn→∞ nk/(2k+2α+1)an = ∞.
In other words, in the class of densities in Ck(B), no nonparametric estimator
can converge at a faster rate than (logn)−k/2 in the normal error case, and than
n−k/(2k+2α+1) in the algebraically decaying case. Moreover, the deconvolution ker-
nel estimator reaches those rates.

The distinction between these two rates of decay has now become standard in
the deconvolution literature. Error densities whose Fourier transform decays ex-
ponentially fast are usually referred to as supersmooth error densities, and error
densities whose Fourier transform decays algebraically fast are referred to as ordi-
nary smooth error densities; see Fan (1991), who generalised the results of Carroll
and Hall (1988) to those two classes of errors. In the supersmooth error case, un-
less the density fX is itself supersmooth, the convergence rates of nonparametric
estimators are only logarithmic, whereas in the ordinary smooth error case, these
rates are polynomial in n.

2.3. Classical error problems with unknown error distribution. Some of Pe-
ter’s most important contributions to deconvolution focus on relaxing the assump-
tion that the error density fU in the model at (2.1) is known.

Diggle and Hall (1993) were among the first to relax this assumption. In this pa-
per, the authors assume that, in addition to the sample W1, . . . ,Wn, an i.i.d. sample
U1, . . . ,Um, with Ui ∼ fU , is also available. Using this additional sample, they
estimate the unknown φU(t) by φ̂U (t) = m−1 ∑m

j=1 eitUj , and then replace φU

in (2.3) by φ̂U . Moreover, instead of using commonly employed finite order ker-
nels, they use the infinite order sinc kernel K , defined by φK(t) = 1{|t | ≤ 1}. They
derive asymptotic properties of their density estimator in this case, from which
they conclude that, as long as m 
= o(n), estimating φU has no first-order asymp-
totic effect on the mean squared error of the estimator of fX . This problem was
taken up later by other authors, including Neumann (1997).

Discouraged by the slow convergence rates in the case of normally distributed
errors, Peter essentially stopped working in the area for nearly ten years. How-
ever, in 2002, he considered a more optimistic model where the variance of the



PETER HALL AND DECONVOLUTION 1859

errors is regarded as tending to zero as sample size increases. That is, var(Ui) → 0
as n → ∞. To justify this assumption, we can view the asymptotic behaviour of
an estimator as a way to reflect the estimator’s behaviour when the sample be-
comes ideal. In the traditional sense, “ideal” means “sample size tending to in-
finity”. In the measurement error setting, it is sometimes reasonable to regard an
ideal sample as a sample whose size increases, but also whose error contamina-
tion decreases. Asymptotics based on the assumption that var(Ui) → 0 as n → ∞
can suitably reflect the finite sample scenario where the error variance is relatively
small compared to the variance of the Xi ’s. In other words, methods that have good
theoretical properties under this scenario can work reasonably well in practice (in-
deed, better than standard deconvolution approaches) as long as var(Ui) is rela-
tively small. In other cases, they can produce seriously biased estimator [Delaigle
(2008)].

In Hall and Simar (2002) and Carroll and Hall (2004), the authors con-
sider two estimation problems under this small error variance assumption where
var(Ui) → 0 as n → ∞. Aware of the fact that it is often merely an approxima-
tion to the truth, they argue that instead of attempting to consistently estimate fX

directly, using methods which have poor convergence rates, one should instead
estimate an approximation to fX obtained under that assumption, but which can
be estimated at standard error-free nonparametric rates. In addition, instead of re-
quiring knowledge of the whole error density, the small error assumption permits
to develop approaches that require only a few low order moments of the Ui ’s. In
Hall and Simar (2002), the goal is to estimate changepoints and discontinuities
of fX from data generated by (2.1). Under the small error variance assumption,
the authors derive estimators that converge at standard polynomial rates, rather
than the slow typical deconvolution rates. In Carroll and Hall (2004), the authors
propose two nonparametric estimators of fX (kernel and orthogonal series) con-
structed from data generated by (2.1). Under the small error variance assumption,
they show that these estimators converge at fast algebraic rates.

These two papers reignited Peter’s interest in deconvolution problems, to which
he made contributions until the end of his life. In Delaigle, Hall and Meister
(2008), Peter tackled again the case where the error density fU is unknown in
model (2.1), this time assuming that replicated contaminated measurements of the
Xi’s are available. That is, for each i, we observe Wij = Xi + Uij , where j ≥ 2
and the Xi’s and the Uij ’s are totally independent, with Uij ∼ fU . Noting that, for
j 
= k, we have Wij − Wik = Uij − Uik , and recalling that fU is symmetric, we
can construct a consistent estimator of |φU |2 from the Wij −Wik’s. Assuming that
φU(t) ≥ 0 for all t , we deduce an estimator φ̂U of φU , which can replace φU in the
estimator at (2.3). More precisely, to avoid getting too close to zero, the authors
replace φU by φ̂U + ρ, where ρ ≥ 0 is a small ridge parameter. Proceeding simi-
larly, they also extend the regression estimator at (2.6) to this context. They show,
in both the density and the regression cases, that estimating φU only has second-
order impact on the asymptotic properties of the curve estimators, although in the
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ordinary smooth case, for this to hold they require fX to be a little smoother than
fU . This problem was also studied in Li and Vuong (1998) in a more complex
setting, but under a set of assumptions that are difficult to satisfy.

Peter’s last paper in the area [Delaigle and Hall (2016)] was one of his favourite
contributions to deconvolution. In that paper, he considers the density deconvo-
lution problem in the difficult case where fU is unknown and no additional data
are available. Several authors [Butucea and Matias (2005), Meister (2006) and
Butucea, Matias and Pouet (2008)] had considered this problem before, but un-
der the assumption that fU belonged to a known parametric family. In Delaigle
and Hall (2016), the only assumptions about fU are that it is symmetric and satis-
fies (2.2). Arguing that the real world is dominated by irregular distributions, the
density fX is assumed to be sufficiently irregular for it to be distinguishable from
the nice symmetric error density fU . Specifically, it is assumed that fX cannot be
expressed as a mixture of two densities, one of which is symmetric. Peter showed
that, under this assumption, the density of X can be estimated from its phase func-
tion, which itself can be easily estimated from the Wi ’s. The authors propose a
data-driven method that gives surprisingly good results.

2.4. Other contributions to classical error problems. In Hall and Meister
(2007), the authors relax assumption (2.2) by proposing a ridge-based procedure.
As in Stefanski and Carroll (1990), their method is based on the Fourier inversion
theorem, but unlike the deconvolution kernel estimator at (2.3), the authors regu-
larise their estimator of fX through a positive ridge parameter function ρ(t). Let
φ̂W as defined above, and let r ≥ 0 be a tuning parameter. Using data generated by
the model at (2.1), in order to avoid dividing by a number too close to zero, they
propose to estimate fX(x) by

f̂X(x) = 1

2π

∫
e−itx φ̂W (t)φ̄U (t)|φU(t)|r

max{|φU(t)|, ρ(t)}r+2 dt.

They also suggest a version of their estimator in the regression case at (2.5), and
establish optimality of their estimators in a wide variety of settings.

In Delaigle, Hall and Müller (2007), the authors consider a subtle vari-
ant of the Berkson model at (2.7). As in the Berkson model, they observe
data (W1, Y1), . . . , (Wn,Yn) and are interested in estimating the curve m(x) =
E(Yi |Xi = x), where Wi , Xi and Ui are as in (2.7). However, a crucial difference
with (2.7) is that the Yi ’s satisfy Yi = g(Wi) + ηi , where the ηi’s are i.i.d. with
zero mean. Thus instead of being generated by the Xi ’s, the Yi ’s are generated by
the Wi ’s. This difference makes the problem in Delaigle, Hall and Müller (2007)
much simpler than the Berkson one, and the authors propose a nonparametric es-
timator of m that converges at the parametric rate. That work was taken further in
Carroll, Delaigle and Hall (2009), where the authors consider more general similar
phenomena in a prediction setting.
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In Hall and Ma (2007), the authors propose a bootstrap procedure for testing
whether a regression curve is polynomial, using data generated by the model at
(2.5). As a side result, they also suggest a nonparametric estimator of the cumula-
tive distribution function (c.d.f.) of the Xi ’s, a problem which was later studied in
depth by Hall and Lahiri (2008), where the authors also propose moment and quan-
tile estimators. In Hall and Lahiri (2008), the authors showed that, in the ordinary
smooth error case, as long as the distribution of the Xi’s is sufficiently smooth,
the c.d.f. can be estimated at the parametric convergence rate. They also make the
striking discovery that the convergence rate is not always the same at all points.

In Delaigle and Hall (2008), the authors propose an approximation method for
selecting smoothing parameters in general deconvolution problems. In standard
error-free nonparametric curve estimation problems, a standard and popular ap-
proach to choosing smoothing parameters is the so-called plug-in method. It con-
sists in constructing an estimator of the smoothing parameter that minimises the
asymptotic mean squared error of the nonparametic curve estimator. A difficulty
in the errors-in-variables context is that, in some problems [e.g., for the regres-
sion estimator at (2.6)], this asymptotic mean squared error is so complex that
it is not possible to construct a reasonable estimator of it. To overcome these
difficulties, Delaigle and Hall (2008) suggest applying simulation extrapolation
(SIMEX) methods to smoothing parameter choice. SIMEX methods were origi-
nally introduced by Cook and Stefanski (1994) in the parametric context. Delaigle
and Hall (2008) proved that, although SIMEX methods generally provide noncon-
sistent nonparametric curve estimators [Staudenmayer and Ruppert (2004)], when
used appropriately they yield bandwidths of the right order, which, in turn, result
in consistent nonparametric curve estimators.

Their method consists of two steps (simulation and extrapolation), which we
explain in the density estimation case, for simplicity: (i) generate data which
contain more noise than the Wi ’s: for i = 1, . . . , n, let W ∗

i = Wi + U∗
i and

W ∗∗
i = W ∗

i + U∗∗
i , with U∗

i ∼ fU and U∗∗
i ∼ fU . Note that W ∗

i and W ∗∗
i de-

note contaminated versions of, respectively, Wi and W ∗
i , which are all available.

(ii) Consider temporarily that, instead of fX , the densities of interest are fW and
fW ∗ , and construct their deconvolution kernel estimators f̂W and f̂W ∗ using the
contaminated data W ∗

i and W ∗∗
i , respectively. Construct also standard kernel esti-

mators f̃W and f̃W ∗ using the error-free versions Wi and W ∗
i . Since f̃W and f̃W ∗

converge faster to fW and fW ∗ than f̂W and f̂W ∗ do, bandwidths h∗ and h∗∗ that
are appropriate for f̂W and f̂W ∗ can be defined by h∗ = argmin

∫
(f̂W − f̃W )2 and

h∗∗ = argmin
∫
(f̂W ∗ − f̃W ∗)2. Since W ∗∗ and W ∗ measure W ∗ and W in the same

way as W measures X, then it is reasonable to expect that h∗∗ measures h∗ in the
same way as h∗ measures h, where h is a bandwidth appropriate for computing f̂X

at (2.3). This motivates taking h = h∗∗/(h∗)2. The same ideas can be used to select
the smoothing parameters of other errors-in-variables problems. See, for example,
Delaigle and Hall (2011) and Delaigle, Hall and Jamshidi (2015).
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In Carroll, Delaigle and Hall (2011), the authors considered modified tilted de-
convolution estimators, where, instead of giving equal weight n−1 to each obser-
vation in the estimators at (2.3) and (2.6), the ith observation receives a nonneg-
ative weight pi . The weights satisfy

∑
i pi = 1, and the pi’s are chosen so that

the estimators at (2.3) and (2.6) satisfy a shape constraint. In Delaigle and Hall
(2011), the authors consider a heteroscedastic version of the model at (2.5), where
the εi ’s are replaced by σ(Xi)ηi , with the ηi ’s i.i.d. with mean zero and variance
one, and independent of the Xi’s and the Ui’s, and with σ a nonnegative function.
They propose parametric and nonparametric estimators of σ . In Delaigle, Hall and
Jamshidi (2015), the authors construct pointwise confidence bands for the estima-
tor m̂ at (2.6). In the error-free case, constructing such bands is complex because of
the difficulty of choosing the smoothing parameters in practice, a problem which
remains largely unsolved. An interesting aspect of Delaigle, Hall and Jamshidi’s
(2015) contribution is that, exploiting SIMEX ideas from Delaigle and Hall (2008),
they manage to derive data-driven smoothing parameters relatively easily.

Other notable contributions of Peter to the deconvolution problem include Hall
and Qiu (2005), where the authors propose to estimate fX from data generated by
the model at (2.1) using a cosine-series estimator, in the case where fX is supported
on a known compact interval; Delaigle and Hall (2006), where the authors discuss
the choice of an optimal kernel for deconvolution; Hall and Maiti (2009) where the
authors analyse clustered data using deconvolution techniques; Chen, Delaigle and
Hall (2010) where the authors exploit deconvolution techniques for inference in a
class of Lévy processes; and Lee et al. (2013), where the authors consider the case
where the distribution of X is a mixture of a finite number of discrete atoms and
a continuous distribution. They use a sieve estimator, which they compute using
penalised likelihood.

2.5. Peter’s main contributions to Berkson error problems. Peter made sev-
eral contributions to the nonparametric Berkson errors-in-variables model at (2.7).
Estimating fX from data W1, . . . ,Wn generated as in (2.7) is trivial because
fX = fW ∗ fU , where fU is known and fW can be estimated directly from the
Wi’s. By contrast, estimating the regression curve m is complex. To understand
this, let g(w) = E(Y |W = w) = E{m(X)|W = w} = m ∗ fU(w). We can estimate
g from the (Wi, Yi)’s, and since we know fU , in principle we can obtain an esti-
mator of m by deconvolving this equation. However, deconvolving Berkson errors
causes a number of difficulties which do not arise when deconvolving classical
errors.

Delaigle, Hall and Qiu (2006) highlighted a problem which arises when fW

and fU are compactly supported. Let [aW ,bW ] and [−δ, δ] denote the support
of fW and fU , respectively, with δ > 0. Since Wi ∈ [aW ,bW ] for all i, we can
estimate g(·) = E(Y |W = ·) nonparametrically only on [aW ,bW ]. Now g = m ∗
fU , which means that we can estimate m only on [aW + δ, bW − δ]; however, often
m(·) = E(Y |X = ·) has the same support as fX . Since X = W + U with W and U
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independent, this support is [aW − δ, bW + δ]. Thus often we cannot estimate m

nonparametrically on its entire support.
This example illustrates that, in the Berkson errors-in-variables problem, the

regression curve m is not always identifiable, especially when the curves are
compactly supported. Under identifiability conditions, Delaigle, Hall and Qiu
(2006) propose and study properties of a sine-cosine series estimator of m.
They also suggest a kernel estimator, but Fourier transform-based kernel ap-
proaches are really the topic of Carroll, Delaigle and Hall (2007). There, the
authors also consider a more general case with a mixture of Berkson and clas-
sical errors, this time without compact support assumptions. However, the non-
compactly supported case causes problems, too. In order to deconvolve g =
m ∗ fU using Fourier transforms, that is, in order to use an estimator of the
type m(x) = (2π)−1 ∫

e−itx φ̂g(t)φK(ht)/φU(t) dt , where φ̂g(t) = ∫
eitx ĝ(x) dx

denote the Fourier transform of a nonparametric estimator ĝ of g, the estimator ĝ

needs to be sufficiently good to be integrated over the whole real line. This makes
the problem particularly complex.

3. Peter and deconvolution problems in image analysis. Through his inter-
est in photography, Peter made a number of contributions to image analysis, which
also extensively use the Fourier inversion techniques employed in the deconvolu-
tion problems discussed above. Images are often obtained in a blurred and noisy
way. Specifically, letting X denote the ideal image, the observed image Z is often
modelled by

(3.1) Z(r) =
∫

T (u)X(r + u)du + δ(r),

where T is a point spread function blurring the signal, δ represents additive noise
and r ∈ R

d (or a bounded subset of Rd ). Often, for images, d = 2 or 3, but the
techniques can be employed for more general d-dimensional signals. Since im-
ages are only observed discretely, often the model at (3.1) is replaced by a discrete
version of it. Peter worked under the two models (continuous and discrete), and
for simplicity, in our discussion below we shall not make the distinction between
the two. Often but not always, Peter took T to be a multivariate double exponen-
tial point-spread function (or a discrete version of it when working with discrete
models), but we shall not specify the form of T in our discussion below.

As in the deconvolution problems discussed above, because of the convolution
structure in (3.1), techniques for reconstructing the image X from Z are often
based on inverse Fourier transforms. Assuming that the Fourier transform of Z

never vanishes, without the error δ and with T known, X could be recovered by
direct Fourier inversion of the equation φX = φZ/φT . However, the presence of
the noise δ makes that inversion unstable, especially at points where φT is close to
zero. One way to address this difficulty is to use some form of regularisation of the
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Fourier inversion, for example, φZ/φT can be replaced by zero when φT becomes
too small.

A first body of work by Peter in the area was dedicated to establishing theoreti-
cal properties of such image reconstruction methods. Hall and Titterington (1986)
studied theoretical properties of several commonly employed regularised Fourier-
based techniques. Other properties, including lower bounds, were established in
Hall (1987a). Further properties were also derived in Hall (1987b), where Peter
also made the interesting discovery that, in some cases, blurring a blurred image
can produce an image of better quality than the originally blurred image. Optimal
convergence rates for image recovery were established in Hall (1990), where it
was also shown that Fourier-based techniques reach those rates. Further theoreti-
cal properties were developed in Hall and Koch (1990), and practical choices for
the level of regularisation were suggested in Hall and Koch (1992).

Peter also tackled other related problems. In Hall and Qiu (2007a), the point-
spread function T is known up to the value of one or several unknown parameters
θ . Motivated by the fact that images often contain sharp edges, they propose to
estimate θ by the value θ̂ for which the reconstructed image gives the most plau-
sible edges. In Hall and Qiu (2007b), T is also unknown, but no parametric model
is available for it. The authors propose to estimate T in such as way that a test
signal Xtest is best recovered. Motivated by the fact that, in image restoration, it is
often desirable for rectangular shapes to be well reconstructed, they suggest taking
Xtest to be a d-dimensional version of a rectangle. Then, to estimate T , they use
inverse Fourier inversion techniques, where on this occasion it is X that is known
(and equal to Xtest) and T that is unknown. A problem with this approach is that
the Fourier transform of their test signal vanishes periodically, and to overcome
this difficulty they use a ridge-based technique similar to the one used in Hall and
Meister (2007).

Peter’s last contribution to the area was his work in Carroll, Delaigle and Hall
(2012), where rather than recovering the image X, the goal was to classify noisy
data of the same type as Z into two groups. The authors proposed to use a para-
metric model for T , where the parameters are chosen so as to minimise a cross-
validation estimate of classification error. They showed that, in general, the optimal
inversion is not necessarily the one that gives the best image reconstruction.

Peter also made a lot of contributions in the related field of functional data
analysis; see Müller (2016).
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