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SEMIMARTINGALE DETECTION AND GOODNESS-OF-FIT TESTS

BY ADAM D. BULL1

University of Cambridge

In quantitative finance, we often fit a parametric semimartingale model to
asset prices. To ensure our model is correct, we must then perform goodness-
of-fit tests. In this paper, we give a new goodness-of-fit test for volatility-
like processes, which is easily applied to a variety of semimartingale models.
In each case, we reduce the problem to the detection of a semimartingale
observed under noise. In this setting, we then describe a wavelet-thresholding
test, which obtains adaptive and near-optimal detection rates.

1. Introduction. In quantitative finance, we often model asset prices as semi-
martingales; in other words, we assume prices are given by a sum of drift, diffu-
sion and jump processes. As these models can be difficult to fit to data, we often
restrict our attention to a parametric class, of which many have been suggested
by practitioners. To verify our choice of parametric class, we must then perform
goodness-of-fit tests.

As semimartingale models can be quite complex, there are many potential tests
to perform. In the following, we will be interested in testing whether models accu-
rately describe processes such as the volatility, covolatility, vol-of-vol or leverage.
We will further be looking for tests which can be shown to obtain good rates of
detection against a variety of alternatives.

While many goodness-of-fit tests exist in the literature, fewer have been shown
to obtain good detection rates. Those tests which do achieve good rates are gen-
erally designed for one type of semimartingale model, and one way of measuring
performance.

In the following, we will therefore describe a new goodness-of-fit test for
volatility-like processes in semimartingales. Our test can easily be applied to a
wide range of models, including stochastic volatility, jumps and microstructure
noise, and obtains good detection rates against both local and nonparametric alter-
natives.

Our method involves reducing any goodness-of-fit test to one of semimartingale
detection: given a series of observations, is the series white noise, or does it contain
a hidden semimartingale? We will show how this problem can be solved efficiently,
obtaining adaptive and near-optimal detection rates.
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We now describe in more detail the problems we consider, as well as rele-
vant previous work. Our goal will be to test the goodness-of-fit of a parametric
semimartingale model. Many such models have been described, including sim-
ple models such as Black–Scholes or Cox–Ingersoll–Ross; Lévy models such as
the generalised hyperbolic or CGMY processes; and stochastic volatility models
such as the Heston or Bates models. [For definitions, see Cont and Tankov (2004),
Papapantoleon (2008).]

In the simplest case, where our observations are known to come from a station-
ary or ergodic diffusion process, a great many authors have described goodness-
of-fit tests. We briefly mention some initial work [Aït-Sahalia (1996), Corradi
and White (1999), Kleinow (2002)] as well as more recent discussion [Chen,
Zheng and Pan (2015), González-Manteiga and Crujeiras (2013), Papanicolaou
and Giesecke (2014)].

In a financial setting, however, even if our model is stationary, we may need to
test it against non-stationary alternatives. When observations can come from a non-
stationary diffusion, goodness-of-fit tests have been described using the integrated
volatility [Corradi and White (1999)], estimated residuals [Lee (2006), Lee and
Wee (2008), Nguyen (2010)] and marginal density [Aït-Sahalia and Park (2012)].
Goodness-of-fit tests also exist for regressions between diffusions [Mykland and
Zhang (2006)].

In the following, we will be interested in goodness-of-fit tests which not only
detect non-stationary alternatives, but also achieve good detection rates. In this
setting, Dette and von Lieres und Wilkau (2003) propose a test which can detect
misspecification of the volatility at a rate n−1/4 in L2 norm [see also Dette, Podol-
skij and Vetter (2006), Papanicolaou and Giesecke (2014), Podolskij and Ziggel
(2008)].

A similar test proposed by Dette and Podolskij (2008) detects alternatives in a
fixed direction at the faster rate n−1/2, although the authors do not give rates in
Lp . This test can also be applied to more complex models, including stochastic
volatility [Vetter (2012)] and microstructure noise [Vetter and Dette (2012)].

In some volatility testing problems, previous work has described tests which
achieve optimal detection rates against nonparametric alternatives [Bibinger, Ji-
rak and Vetter (2015), Reiß, Todorov and Tauchen (2014)]. However, these tests
are specific to the problems considered, and do not assess the goodness-of-fit of
general models.

In the following, we will therefore describe a new method of goodness-of-fit
testing for volatility-like processes. We will show how our approach applies to
a wide variety of semimartingale models, including those with jumps, stochastic
volatility and microstructure noise. In each case, we will obtain adaptive detection
rates, with near-optimal behaviour not only against alternatives in a fixed direction,
but also against nonparametric alternatives.

To construct our tests, we will reduce each goodness-of-fit problem to one of
semimartingale detection: we will construct a series of observations Zi , which
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under the null hypothesis are approximately white noise, and then test whether the
Zi contain a hidden semimartingale St .

For example, suppose we have a semimartingale:

dXt = bt dt + √
μt dBt ,

where Bt is a Brownian motion, bt and μt are predictable processes, and we make
observations Xti , i = 0, . . . , n, where the times ti := i/n. Further suppose we have
a model μ(t,Xt) for the volatility, and wish to test the hypotheses:

H0 : μt = μ(t,Xt) versus H1 : μt unrestricted.

To estimate μt , we define the realised volatility estimates

Yi := n(Xti+1 − Xti )
2, i = 0, . . . , n − 1.

Since the scaled increments
√

n(Xti+1 − Xti ) are approximately N(0,μti ), the ob-
servations Yi have approximate mean μti and variance 2μ2

ti
. Under H0, we thus

have that the normalised observations:

Zi := (
Yi − μ(ti,Xti )

)
/σ(ti,Xti ), σ 2 := 2μ2,

are approximately white noise.
Under H1, we instead obtain

(1) Zi = Sti + εi,

where the semimartingale

St := (
μt − μ(t,Xt)

)
/σ(t,Xt),

and the approximately-centred noises

εi := (Yi − μti )/σ (ti,Xti ).

To test our hypotheses, we must therefore test whether the series Zi is approxi-
mately white noise, or contains a hidden semimartingale St .

If the noises εi were independent standard Gaussian, independent of St , we
could consider this a standard detection problem in nonparametric regression. Con-
ditioning on St , we could take the semimartingale as fixed, and then apply the
methods of Ingster and Suslina (2003), for example.

Under suitable assumptions on the process St , its sample paths would be almost
1
2 -smooth, and we would thus be able to detect a signal St at rate n−1/4 in supre-
mum norm, up to log terms. Alternatively, if we wished to detect signals St ∝ et ,
for a fixed direction et , we could do so at a rate n−1/2.

In general, however, the signal St may depend on past values of the noises εi ,
and vice versa. We will thus not be able to appeal directly to results in nonpara-
metric regression, and will instead need to use arguments developed specifically
for the semimartingale setting.
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In the following, we will show that testing problems like (1) can be solved with
detection rates similar to those of nonparametric regression. We will further show
that many semimartingale goodness-of-fit tests can be described in a form like (1),
including models with stochastic volatility, jumps or microstructure noise.

Our approach will be similar to wavelet thresholding [Donoho et al. (1995),
Hoffmann, Munk and Schmidt-Hieber (2012)]; essentially, we will reject the null
whenever a suitable wavelet-thresholding estimate of St is nonzero. While this
method is known to work well in the standard nonparametric setting, we will need
to prove new results to apply it to settings like (1).

Our proofs will use a Gaussian coupling derived from Skorokhod embeddings.
We note that as our results must apply in a general semimartingale setting, we
will not be able to use faster-converging couplings, such as the KMT approxima-
tion. We will show, however, that under reasonable moment bounds, a Skorokhod
embedding will suffice to achieve the desired detection rates.

Indeed, with this construction we will show our tests detect semimartingales St

at a rate n−1/4 in supremum norm, up to log terms, even when St contains finite-
variation jumps. Furthermore, our tests will simultaneously detect simpler signals
at faster rates; for example, we will be able to detect signals St in a fixed direction
et at a rate n−1/2 up to logs, without knowledge of the direction et .

We will finally show that in each case, the rates obtained are near-optimal. Ap-
plying our tests to problems like (1), we will thus be able to construct goodness-
of-fit tests for a wide variety of semimartingale models, obtaining adaptive and
near-optimal detection rates.

The paper will be organised as follows. In Section 2, we give a rigorous de-
scription of the problems we consider, and discuss examples. In Section 3, we then
construct our tests, and state our theoretical results. In Section 4, we then give
empirical results, and in Section 5, proofs.

2. Semimartingale detection problems. We now describe our concept of a
semimartingale detection problem. Our setting will include volatility goodness-of-
fit problems like (1), as well as many other semimartingale goodness-of-fit tests.

We begin with some examples of the problems we will consider. In each case,
we will describe a semimartingale model with a volatility-like process μt . We
will wish to test the null hypothesis that μt is given by some known function
μ(θ0, t,Xt), for an unknown paramter θ0 ∈ �, and an estimable covariate process
Xt ∈ R

q ; our alternative hypothesis will be that μt is not given by μ.
To test our hypothesis, we will construct Fti+1 -measurable observations Yi , and

a variance function σ 2. Under the null, and conditional on Fti , the observations
Yi will have approximate mean and variance μ(θ0, ti,Xti ) and σ 2(θ0, ti,Xti ). To
estimate these means and variances, we will further construct estimates θ̂ and X̂i

of the parameters θ0 and covariates Xti .
We will then be able to estimate the difference between the observations Yi

and their means μ, scaled according to their variances σ 2; we will reject the null
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hypothesis when the size of these scaled differences are large. In Section 3, we
describe in detail how we perform such tests, as well as giving theoretical results
on their performance.

For now, we proceed with some examples of semimartingale goodness-of-fit
problems in this form. Let Bt and B ′

t be independent Brownian motions, λ(dx, dt)

be an independent Poisson random measure with intensity dx dt , bt and b′
t be

predictable locally-bounded processes, and ft (x) be a predictable function with∫
R

1 ∧ |ft (x)|β dx locally bounded, for some β ∈ [0,1). Further define times t ′i :=
i/n2.

We then have the following examples.

Local volatility. We wish to test a model μ for μt in the process

(2) dXt = bt dt + √
μt dBt ,

making observations Xti , i = 0, . . . , n. We set X̂i := Xti , and estimate μti by
the realised volatility [Andersen et al. (2001), Barndorff-Nielsen and Shephard
(2002)],

Yi := n(Xti+1 − Xti )
2.

We then define the variance function σ 2 := 2μ2.
Jumps. We wish to test a model μ for μt in the process

dXt = bt dt + √
μt dBt +

∫
R

ft (x)λ(dx, dt),

making observations Xti , i = 0, . . . , n. We set X̂i := Xti , and estimate μti by the
truncated realised volatility [Jacod and Reiss (2014), Mancini (2009)],

Yi = gn

(√
n(Xti+1 − Xti )

)
, gn(x) = x21x2<αn

,

for any sequence αn > 0 satisfying

(3) log(n) = o(αn), αn = o
(
nκ) for all κ > 0.

We then define the variance function σ 2 := 2μ2.
Microstructure noise. We wish to test a model μ for μt in the process

dX1,t = bt dt + √
μt dBt .

We make observations

X̃1,i := X1,t ′i + εi, i = 0, . . . , n2,

where the noises εi are measurable in the filtrations F+
t ′i

:= ⋂
s>t ′i Fs , and satisfy

E[εi |Ft ′i ] = 0,

E
[
ε2
i |Ft ′i

] = X2,t ′i ,

E
[|εi |κ |Ft ′i

] ≤ C,
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for an Itô semimartingale X2,t with locally-bounded characteristics, and constants
κ > 8, C > 0. We estimate Xtj and μtj by their pre-averaged counterparts [Jacod
et al. (2009), Reiß (2011)],

X̂1,j := n−1
n−1∑
i=0

X̃1,nj+i ,

X̂2,j := (2n)−1
n−1∑
i=0

(X̃1,nj+i+1 − X̃1,nj+i )
2,

Yj := π2

(
2n−1

(
n−1∑
i=0

cos
(
π

(
i + 1

2

)
/n

)
X̃1,nj+i

)2

− X̂2,j

)
.

We then define the variance function σ 2 := 2(μ + π2X2,t )
2.

Stochastic volatility. We wish to test a model μ for μt in the processes

dX1,t = bt dt +
√

X2,t dBt ,

dX2,t = b′
t dt + √

μt dB ′
t ,

making observations X1,t ′i , i = 0, . . . , n2. We define volatility estimates

X̃2,i := n2(X1,t ′i+1
− X1,t ′i )

2, i = 0, . . . , n2 − 1,

which we use to estimate Xtj and μtj [Barndorff-Nielsen and Veraart (2009),
Vetter (2012)],

X̂1,j := X1,tj ,

X̂2,j := n−1
n−1∑
i=0

X̃2,nj+i ,

Yj := 2π2

(
n−1

(
n−1∑
i=0

cos
(
π

(
i + 1

2

)
/n

)
X̃2,nj+i

)2

− X̂2
2,j

)
.

We then define the variance function σ 2 := 2(μ + 2π2X2
2,t )

2.
Others. Many other models, for example, including covolatility or leverage, or

combining any of the above features, can be described similarly. For simplicity, we
assume in the following that the times ti are deterministic and uniform; however,
models with uneven or random times that are suitably dense and predictable can
be addressed in a similar fashion.

To concisely describe these examples, and others, we will state a set of assump-
tions on the observations Yi , mean and variance functions μ and σ 2, parameters θ ,
covariates Xt and estimates X̂i . It will be possible to show that the above models
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all lie within our assumptions, and we may thus work within these assumptions
with some generality.

To begin, we define some notation. Let ‖ · ‖ denote any finite-dimensional
vector norm; write a = O(b) if ‖a‖ ≤ C‖b‖, for some universal constant C;
and write a = Op(b) if for each ε > 0, the random variables a and b satisfy
P(‖a‖ > Cε‖b‖) ≤ ε, for universal constants Cε .

We stress here that the implied constants C and Cε are universal; in state-
ments such as a = O(1), we require the supremum sup‖a‖ over all such a to
be bounded. Given a function f : X → R, we also define the supremum norm
‖f ‖∞ := supx∈X |f (x)|.

Our assumptions are then as follows.

ASSUMPTION 1. Let (�,F, (Ft )t∈[0,1],P) be a filtered probability space,
with adapted unobserved mean, variance and covariate processes μt ∈ R, σ 2

t ≥ 0,
and Xt ∈ R

q , respectively. For 0 ≤ t ≤ t + h ≤ 1, letting Wt denote either of the
processes μt or Xt , we have

(4)

Wt = O(1),

E[Wt+h − Wt |Ft ] = O(h),

E
[‖Wt+h − Wt‖2|Ft

] = O(h).

For i = 0, . . . , n − 1, we have Fti+1 -measurable estimates X̂i of Xti , satisfying

(5)
E
[‖X̂i − Xti‖2|Fti

] = O
(
n−1),

E
[‖X̂i − Xti‖4|Fti

] = O
(
n−1).

We also have Fti+1 -measurable observations Yi , satisfying

(6)

E[Yi |Fti ] = μti + O
(
n−1/2),

Var[Yi |Fti ] = σ 2
ti

+ O
(
n−1/4),

E
[|Yi |4+ε|Fti

] = O(1),

for a constant ε > 0.
Under the null hypothesis H0, we suppose our observations Yi are described by

a parametric model,

μt = μ(θ0, t,Xt), σ 2
t = σ 2(θ0, t,Xt),

for known functions μ,σ 2 : � × [0,1] × R
q → R, and an unknown parameter

θ0 ∈ �. We suppose that � ⊆ R
p is closed, and σ 2 is positive. We also suppose

the functions μ and σ 2 are locally Lipschitz in θ , continuously differentiable in t

and twice continuously differentiable in X. Finally, we suppose we have a good
estimate θ̂ of θ0, satisfying

θ̂ − θ0 = Op

(
n−1/2).
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Under the alternative hypothesis H1, we instead allow μt, σt unrestricted, and re-
quire only that θ̂ = Op(1).

To ensure the examples given above lie within Assumption 1, we must require
that the parameter space � ⊆ R

p be closed, and the model function μ be locally
Lipschitz in θ , continuously differentiable in t , and twice continuously differen-
tiable in Xt . These conditions should all be satisfied for most common models.

We must further require the semimartingales Xt to be bounded, and have
bounded characteristics. In general, this assumption may not hold directly; how-
ever, we can assume it without loss of generality using standard localisation argu-
ments.

In the supplemental material [Bull (2016b)], we then check that the above ex-
amples satisfy our conditions on the processes μt , σt and Xt ; estimates X̂i ; and
observations Yi . Most of these conditions follow from standard results on stochas-
tic processes where necessary, higher-moment bounds can be proved using our
Lemma 1 below.

To satisfy Assumption 1, it remains to choose an estimate θ̂ of θ0, having error
Op(n−1/2) under H0, and being Op(1) under H1. While our results are agnostic
as to the choice of θ̂ , a simple choice is given by the least-squares estimate

(7) θ̂ := arg min
θ∈�

n−1∑
i=0

(
Yi − μ(θ, ti, X̂i)

)2
,

which can be found by numerical optimisation. Under standard regularity assump-
tions for nonlinear regression, this estimate θ̂ can be shown to satisfy our condi-
tions arguing, for example, as in Section 5 of Vetter and Dette (2012).

Finally, we note that in the microstructure noise and stochastic volatility models,
we need to make n2 + 1 observations of the underlying process Xt to construct the
n estimates Yi . We may thus expect to achieve the square-root of any convergence
rates given below; such behaviour, however, is common to all approaches to these
problems in the literature.

We have thus shown that many different semimartingale goodness-of-fit prob-
lems can be described by our Assumption 1. Next, we will describe our solutions
to these problems.

3. Wavelet detection tests. To state our tests for the problems given by As-
sumption 1, we first consider the signal function:

St (θ) := (
μt − μ(θ, t,Xt)

)
/σ(θ, t,Xt).

This function measures the distance of the model mean μ from the true mean μt ,
weighted by the model variance σ 2. Under H0, we have

St (θ̂) ≈ St (θ0) = 0,
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while under H1, we can in general expect |St (θ̂)| to be large. We may thus reject
H0 whenever an estimate of St (θ̂) is significantly different from zero.

To estimate the signal St (θ), we will use wavelet methods. Let ϕ and ψ be the
Haar scaling function and wavelet,

ϕ := 1[0,1), ψ := 1[0,1/2) − 1[1/2,1),

and for j = 0,1, . . . , k = 0, . . . ,2j − 1, define the Haar basis functions

ϕj,k(t) := 2j/2ϕ
(
2j t − k

)
, ψj,k(t) := 2j/2ψ

(
2j t − k

)
.

We can then describe St (θ) in terms of its scaling and wavelet coefficients

αj,k(θ) :=
∫ 1

0
ϕj,k(t)St (θ) dt, βj,k(θ) :=

∫ 1

0
ψj,k(t)St (θ) dt.

To estimate these coefficients, we first pick a resolution level J ∈ N0, so that 2J

is of order n1/2. We then estimate the scaling coefficients αJ,k(θ) by

α̂J,k(θ) := n−1
n−1∑
i=0

ϕJ,k(ti)Zi(θ),

where the normalised observations

Zi(θ) := (
Yi − μ(θ, ti, X̂i)

)
/σ(θ, ti, X̂i).

We note that for fixed θ , these estimates can be computed in linear time, as each
observation Yi contributes to only one coefficient α̂J,k(θ).

To estimate the coefficients α0,0(θ) and βj,k(θ), 0 ≤ j < J , we then perform a
fast wavelet transform, obtaining estimates

α̂0,0(θ) := ∑
l

α̂J,l(θ)

∫ 1

0
ϕJ,lϕ0,0, β̂j,k(θ) := ∑

l

α̂J,l(θ)

∫ 1

0
ϕJ,lψj,k.

We note that efficient implementations of this transformation, running in linear
time, are widely available.

To test our hypotheses, we will take the maximum size of these estimated coef-
ficients, producing test statistics

T̂ (θ) := max
0≤j<J,k

∣∣α̂0,0(θ)
∣∣, ∣∣β̂j,k(θ)

∣∣.
We will show that under H0, T̂ (θ̂ ) is asymptotically Gumbel distributed, while
under H1, T̂ (θ̂ ) will tend to be greater.

THEOREM 1. Let Assumption 1 hold:
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(i) Under H0,

a−1
2J

(
n1/2T̂ (θ̂ ) − b2J

) d→ G

uniformly, where the constants

am := (
2 log(m)

)−1/2
,

bm := a−1
m − 1

2
am log

(
π log(m)

)
,

and G denotes the standard Gumbel distribution.
(ii) Under H1,

T̂ (θ̂ ) − T (θ̂) = Op

(
n−1/2 log(n)1/2)

uniformly, where

T (θ) := max
0≤j<J,k

∣∣α0,0(θ)
∣∣, ∣∣βj,k(θ)

∣∣.
We thus obtain that under H0, T̂ (θ̂ ) concentrates around zero at a rate

n−1/2 log(n)1/2. Under H1, it concentrates at the same rate around the quantity
T (θ̂), which measures the size of the signal St (θ̂). We can use this result to con-
struct tests of our hypotheses, and prove bounds on their performance; we first
note that for some of our bounds, we will require the following assumption.

ASSUMPTION 2. The processes μt and Xt are Itô semimartingales,

μt =
∫ t

0

(
bμ
s ds + (

cμ
s

)T
dBs +

∫
R

f μ
s (x)λ(dx, ds)

)
,

Xi,t =
∫ t

0

(
bX
i,s ds + (

cX
i,s

)T
dBs +

∫
R

f X
i,s(x)λ(dx, ds)

)
,

for a Brownian motion Bs ∈ R
q+1, independent Poisson random measure λ(dx,

ds) having compensator dx ds, predictable processes b
μ
s , bX

i,s , c
μ
s , cX

i,s = O(1),
and predictable functions f

μ
s (x), f X

i,s(x) satisfying
∫
R

1 ∧ |fs(x)|dx = O(1).

Under Assumption 2, we thus have that μt and Xt are Itô semimartingales,
with bounded characteristics and finite-variation jumps. This assumption holds for
many common financial models, if necessary after a suitable localisation step. Us-
ing this condition, we are now ready to describe our tests, and bound their perfor-
mance.

THEOREM 2. Let Assumption 1 hold, and for α ∈ (0,1), define the Gumbel
quantile

qn,α := −a2J log
(− log(1 − α)

) + b2J ,
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and critical region

Cn,α := {
n1/2T̂ (θ̂ ) > qn,α

}
.

(i) Under H0, we have P[Cn,α] → α uniformly.
(ii) Under H1, let Mn > 0 be a fixed sequence with Mn → ∞. If En is one of the

events:
(a) {‖S(θ̂)‖∞ ≥ Mnn

−1/4 log(n)1/2}, given also Assumption 2; or

(b) {max0≤j≤J,k 2j/2| ∫ 2−j (k+1)

2−j k
St (θ̂ ) dt | ≥ Mnn

−1/2 log(n)1/2};
we have P[En \ Cn,α] → 0 uniformly.

We thus obtain that the test which rejects H0 on the event Cn,α is of asymptotic
size α, and under Assumption 2, can detect signals St (θ̂) at the rate n−1/4 log(n)1/2

in supremum norm. We further have that, even without Assumption 2, our test can
detect a signal whenever the size of its mean over a dyadic interval is large.

In particular, if St (θ̂) ∝ et for some nonzero deterministic process et , then et

must have nonzero integral over some dyadic interval 2−j [k, k + 1). We deduce
that our test can detect signals in the fixed direction et at the rate n−1/2 log(n)1/2,
without prior knowledge of et .

We can further show that these detection rates are near-optimal.

THEOREM 3. Let Assumption 1 hold, and δn > 0 be a fixed sequence with
δn → 0. If En is one of the events:

(i) {‖S(θ̂)‖∞ ≥ δnn
−1/4}, given also Assumption 2; or

(ii) {maxk 2jn/2| ∫ 2−jn (k+1)

2−jnk
St (θ̂ ) dt | ≥ δnn

−1/2}, for some jn = 0, . . . , J ;

then no sequence of critical regions Cn can satisfy

lim sup
n

P[Cn] < 1

uniformly over H0, and

P[En \ Cn] → 0

uniformly over H1.

We thus conclude that our goodness-of-fit tests achieve the near-optimal detec-
tion rate of n−1/4 log(n)1/2 against general nonparametric alternatives, in a wide
variety of semimartingale models. This result is already a significant improvement
over previous work; we note that similar methods do not establish near-optimality
for the procedures of Dette and von Lieres und Wilkau (2003), for example, where
the corresponding lower bound would be n−1/3.

Furthermore, we have shown that our method simultaneously provides near-
optimal detection rates against alternatives which are easier to detect, including the
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case where the signal St (θ̂) lies in a fixed direction et . We may thus achieve good
detection rates in a fully nonparametric setting, without sacrificing performance
against fixed alternatives.

4. Finite-sample tests. We next consider the empirical performance of our
tests. As convergence to the Gumbel distribution can be quite slow, in the follow-
ing, we will consider a bootstrap version of our tests, which will be more accurate
in finite samples.

The general procedure is as follows. First, we estimate the parameters θ from
the data, using some estimate θ̂ . Next, we simulate many sets of observations Y

(j)
i

from the null hypothesis, with parameters chosen by θ̂ . Any components of the
null hypothesis not described by θ , such as drift or jump processes, are set to zero.

For each set of simulated observations Y
(j)
i , we then compute a parameter es-

timate θ̂ (j), and statistic T̂ (j)(θ̂ (j)). Finally, we reject the null hypothesis if the
original statistic T̂ (θ̂ ) is larger than the (1 − α)-quantile of the simulated statistics
T̂ (j)(θ̂ (j)).

We now perform some simple Monte Carlo experiments on these tests. We
will compare our tests to those of Dette and von Lieres und Wilkau (2003),
Dette, Podolskij and Vetter (2006) and Dette and Podolskij (2008), using the same
methodology as Dette and Podolskij. As in that paper, we will generate Monte
Carlo observations in the local volatility setting (2). We will then use our tests to
evaluate the goodness-of-fit of various parametric models for the volatility.

In each case, we consider receiving n = 100, 200 or 500 observations, and con-
structing confidence tests at the α = 5% or 10% level. We then generate 1000 re-
alisations of simulated data, compare our statistic against 1000 bootstrap samples
in each realisation, and report the proportion of runs in which the null hypothesis
is rejected.

In our tests, we set the resolution level J := �log2(n)/2�, and use the least-
squares parameter estimates θ̂ given by (7). As the models we consider will be
linear in the parameters θ , we will be able to compute these estimates in closed
form, as linear regressions.

Table 1 then gives the observed rejection probabilities of our tests in two mod-
els: a constant volatility model, where μ(x, t, θ) = θ ; and a proportional volatility
model, where μ(x, t, θ) = θx2. In each case, we give results for our tests under a
variety of null and alternative hypotheses.

We note the hypotheses tested are the same as in Tables 1–4 of Dette and Podol-
skij (2008), as well as Table 3 of Dette and von Lieres und Wilkau (2003), and
Tables 3.1 and 3.4 of Dette, Podolskij and Vetter (2006). We may thus directly
compare the performance of our tests to those given in previous work.

We find that in both models, our tests have good coverage under the null hypoth-
esis, and reliably reject under the alternative hypothesis. The power of our tests is
competitive with previous work under the constant volatility model, and generally
improves upon previous work under the proportional volatility model.



1266 A. D. BULL

TABLE 1
Observed rejection probabilities for bootstrap test

n 100 200 500

α 5% 10% 5% 10% 5% 10%

Constant volatility, null, μt = 1
bt = 0 0.048 0.105 0.056 0.101 0.035 0.089
bt = 2 0.055 0.114 0.057 0.103 0.044 0.084
bt = Xt 0.056 0.101 0.041 0.093 0.037 0.092
bt = 2 − Xt 0.048 0.095 0.052 0.105 0.051 0.100
bt = tXt 0.038 0.094 0.060 0.101 0.063 0.111

Constant volatility, alternative, bt = Xt√
μt = 1 + Xt 0.777 0.840 0.898 0.932 0.976 0.985√
μt = 1 + sin 5Xt 0.964 0.977 0.997 0.999 1.000 1.000√
μt = 1 + Xt exp t 0.954 0.975 0.987 0.994 0.999 0.999√
μt = 1 + Xt sin 5t 0.851 0.908 0.970 0.982 0.994 0.995√
μt = 1 + tXt 0.742 0.796 0.883 0.914 0.951 0.972

Proportional volatility, null, μt = X2
t

bt = 0 0.062 0.119 0.044 0.090 0.043 0.087
bt = 2 0.073 0.120 0.056 0.106 0.043 0.081
bt = Xt 0.070 0.115 0.055 0.100 0.043 0.098
bt = 2 − Xt 0.053 0.085 0.055 0.100 0.034 0.081
bt = tXt 0.070 0.106 0.062 0.123 0.045 0.106

Proportional volatility, alternative, bt = 2 − Xt

μt = 1 + X2
t 0.602 0.673 0.700 0.766 0.844 0.884

μt = 1 0.832 0.871 0.927 0.951 0.979 0.991
μt = 5|Xt |3/2 0.580 0.669 0.672 0.760 0.854 0.902
μt = 5|Xt | 0.896 0.932 0.963 0.974 0.995 0.998
μt = (1 + Xt )

2 0.831 0.878 0.894 0.929 0.964 0.979

We conclude that our tests not only achieve good theoretical detection rates, but
also provide strong finite-sample performance. They may thus be recommended
for many different goodness-of-fit problems, whether previously discussed in the
literature, or newly described by our more general assumptions.

5. Proofs. We now give proofs of our results. In Section 5.1, we will state
some technical results, in Section 5.2 give our main proofs and in the supplemental
material [Bull (2016b)] prove our technical results.

5.1. Technical results. We first state the technical results we will require. Our
main technical result will be a central limit theorem for martingale difference se-
quences, bounding the exponential moments of the distance from Gaussian.

LEMMA 1. Let (�,F, (Fj )
n
j=0,P) be a filtered probability space, and let Xi ,

i = 0, . . . , n − 1, be Fi+1-measurable real random variables. Suppose that for
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some κ ≥ 1,

E[Xi |Fi] = 0,

n−1∑
i=0

E
[|Xi |4κ |Fi

] = O
(
n1−2κ).

(i) If also

E

[∣∣∣∣∣
n−1∑
i=0

E
[
X2

i |Fi

] − 1

∣∣∣∣∣
2κ ∣∣∣F0

]
= O

(
n−κ),

then on a suitably-extended probability space, we have real random variables ξ , η

and M , independent of F given Fn, such that

n−1∑
i=0

Xi = ξ + η;

ξ is standard Gaussian given F0; we have

E
[|η|4κ |F0

] = O
(
n−κ);

for u ∈ R,

E

[
exp

(
uη − 1

2
u2M

)∣∣∣F0

]
≤ 1;

and M ≥ 0 satisfies

(8) E
[
M2κ |F0

] = O
(
n−κ).

(ii) For random variables ci = O(1), let υc := ∑n−1
i=0 ciXi . Then on a suitably-

extended probability space, we have a constant A = O(1) and real random vari-
able M , independent of F given Fn, such that

sup
c

E
[|υc|4κ |F0

] = O(1);

for u ∈ R,

sup
c

E

[
exp

(
uυc − 1

2
u2(A + M)

)∣∣∣F0

]
≤ 1;

and M ≥ 0 satisfies (8).

We will also need the following result on combining exponential moment
bounds.
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LEMMA 2. Let (�,F,P) be a probability space, with real random variables
(Xi)

n−1
i=0 and M . Suppose that for u ∈ R,

E

[
exp

(
uXi − 1

2
u2M

)]
= O(1),

and M = Op(rn) for some rate rn > 0. Then

max
i

|Xi | = Op

(
r1/2
n log(n)1/2).

Our next technical result will bound the moments of our observations Yi , and
their normalisations Zi(θ). The result will be stated using the Hölder spaces Cs ,
defined as follows. Given a function f : X → R, for suitable X ⊆ R

d , we define
the 1-Hölder norm

‖f ‖C1 := ‖f ‖∞ ∨ sup
x,y∈X

∣∣f (x) − f (y)
∣∣/‖x − y‖,

and the 2-Hölder norm

‖f ‖C2 :=
⎧⎨⎩‖f ‖∞ ∨ d

max
i=1

∥∥(∇f )i
∥∥
C1, f is differentiable,

∞, otherwise.

We also say f is Cs if ‖f ‖Cs < ∞.

LEMMA 3. Under H0 or H1, suppose the X̂i = O(1), and � is bounded:

(i) For fixed i and Yi , the variables Zi(θ) are C1 functions of θ and X̂i , with
Hölder norm O(1 + |Yi |).

(ii) The variables St (θ) are C1 functions of θ , t , μt and Xt , and for fixed θ

and t , also C2 functions of μt and Xt , both with Hölder norm O(1).
(iii) For θ ∈ �, we have

E
[
Zi(θ)|Fti

] = Sti (θ) + O
(
n−1/2),

E
[∣∣Zi(θ)

∣∣4+ε|Fti

] = O(1),

and under H0, also

E
[
Zi(θ0)

2|Fti

] = 1 + O
(
n−1/4).

(iv) Define times

(9) sk := ⌈
n2−J k

⌉
/n, k = 0, . . . ,2J .

Then

max
k

n−1/2
nsk+1−1∑
i=nsk

Y 2
i = Op(1).
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Finally, we will need a result controlling the behaviour of the processes St (θ)

under Assumption 2.

LEMMA 4. Under H1, suppose � is bounded, let �n ⊆ � be a sequence of
finite sets, of size O(nκ) for some κ ≥ 0, and let δn = O(n−1/2). Given Assump-
tion 2, we have

St (θ) = S̃t (θ) + St (θ),

where the processes S̃t (θ) and St (θ) are as follows:

(i) We have

sup
θ∈�n,|s−t |≤δn

∣∣S̃s(θ) − S̃t (θ)
∣∣ = Op

(
n−1/4 log(n)1/2).

(ii) In L2([0,1]), let PJ f denote the orthogonal projection of f onto the sub-
space spanned by the scaling functions ϕJ,k , and define the remainder RJ f :=
f − PJ f . Then

sup
θ∈�n

∥∥RJ S̃(θ)
∥∥∞ = Op

(
n−1/4 log(n)1/2).

(iii) We have a random variable N ∈ N, and random times 0 = τ0 < · · · <

τN = 1, such that the processes St (θ), θ ∈ �n, are constant on intervals [τi, τi+1),
[τN−1, τN ], and

P

[
min

i
(τi+1 − τi) < δn

]
→ 0.

5.2. Main proofs. We may now proceed with our main proofs. We first prove
Theorem 1, beginning with a lemma controlling the variance of our estimated scal-
ing coefficients α̂J,k(θ).

LEMMA 5. For k = 0, . . . ,2J − 1, θ ∈ �, define scaling-coefficient variance
terms

α̃J,k(θ) := n−1
n−1∑
i=0

ϕJ,k(ti)
(
Zi(θ) −E

[
Zi(θ)|Fti

])
.

(i) Under H0, suppose the X̂i = O(1). Then on a suitably-extended probability
space, we have a filtration (Gk)

2J

k=0, and Gk+1-measurable real random variables
ξk , ηk , Mk , such that

n1/2α̃J,k(θ0) = ξk + ηk;
the variables ξk are standard Gaussian given Gk ;

E

[
exp

(
uηk − 1

2
u2Mk

)∣∣∣Gk

]
≤ 1;
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and the variables Mk ≥ 0 satisfy

(10) E
[
M

2+ε/2
k |Gk

] = O
(
n−(1/2+ε/8)).

(ii) Under H1, suppose � is bounded, and the X̂i = Xti . We then have constants

Ak = O(1), and on a suitably-extended probability space, a filtration (Gk)
2J

k=0 and
real random variables Mk , such that

sup
θ∈�

E

[
exp

(
un1/2α̃J,k(θ) − 1

2
u2(Ak + Mk)

)∣∣∣Gk

]
≤ 1;

the variables Mk ≥ 0 satisfy (10); and the α̃J,k(θ) and Mk are Gk+1-measurable.

PROOF. We first prove part (i), and argue by induction on k. Let G0 = F0, and
suppose that for i = 0, . . . , k − 1 we have constructed, on an extended probability
space, σ -algebras Gi+1, and random variables ξi , ηi , Mi satisfying our conditions.
We suppose also that Gk has been chosen to be independent of F given Fsk , where
the times sk are given by (9); we note this condition is trivially satisfied for G0.

We can then write

n1/2α̃J,k(θ0) =
nsk+1−1∑
i=nsk

ζi,

where the m := n(sk+1 − sk) summands

ζi := n−1/22J/2(Zi(θ0) −E
[
Zi(θ0)|Fti

])
.

To compute the moments of the ζi , we may apply Lemma 3(iii), noting that since
we are only interested in θ = θ0, we may assume � is bounded. We thus have

E[ζi |Fti ,Gk] = 0,

nsk+1−1∑
i=nsk

E
[
ζ 2
i |Fti ,Gk

] = 1 + O
(
m−1/2),

nsk+1−1∑
i=nsk

E
[|ζi |4+ε|Fti ,Gk

] = O
(
m−(1+ε/2)),

using also that the ζi are independent of Gk given Fti .
We may therefore apply Lemma 1(i) to the variables n1/2α̃J,k(θ0). On a further-

extended probability space, we obtain random variables ξk , ηk , Mk satisfying the
conditions of part (i), independent of F given Gk and Fsk+1 . Defining Gk+1 to be
the σ -algebra generated by Gk , Fsk+1 , ξk , ηk and Mk , we deduce that Gk+1 satisfies
the conditions of our inductive hypothesis. By induction, we conclude that part (i)
of our result holds.
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To prove part (ii), we argue similarly, noting that the random variables

n1/2α̃J,k(θ) =
nsk+1−1∑
i=nsk

ci(θ)ζ̃i ,

where the Fti+1 -measurable summands

ζ̃i := n−1/22J/2(Yi −E[Yi |Fti ]
)
,

and the Fti -measurable coefficients

ci(θ) := 1/σ(θ, ti,Xti ).

As the function σ is continuous and positive, and θ and Xt are bounded, we have
the variables ci(θ) = O(1). We may thus apply Lemma 1(ii), producing random
variables Ak , Mk satisfying the conditions of part (ii). The result then follows as
before. �

We now prove a lemma bounding the variance of our estimated scaling and
wavelet coefficients α̂0,0(θ), β̂j,k(θ).

LEMMA 6. Suppose the X̂i = O(1), and for j = 0, . . . , J −1, k = 0, . . . ,2j −
1 and θ ∈ �, define the wavelet-coefficient variance terms

β̃j,k(θ) := n−1
n−1∑
i=0

ψj,k(ti)
(
Zi(θ) −E

[
Zi(θ)|Fti

])
.

Similarly, define scaling-coefficient variance terms α̃0,0(θ) using ϕ0,0.

(i) Under H0, suppose θ̂ − θ0 = O(n−1/2). Then on a suitably-extended prob-
ability space, we have real random variables ξ̃j,k, η̃j,k, υ̃j,k such that

n1/2α̃0,0(θ̂) = ξ̃−1,0 + η̃−1,0 + υ̃−1,0;
n1/2β̃j,k(θ̂ ) = ξ̃j,k + η̃j,k + υ̃j,k;

the ξ̃j,k are independent standard Gaussian; and for some ε′ > 0,

max
j,k

|η̃j,k| = Op

(
n−ε′)

, max
j,k

2j/2|υ̃j,k| = Op(1).

(ii) Under H1, suppose � is bounded. Then

sup
j,k,θ∈�

∣∣α̃0,0(θ)
∣∣, ∣∣β̃j,k(θ)

∣∣ = Op

(
n−1/2 log(n)1/2).

PROOF. We will consider the wavelet-coefficient variance terms β̃j,k(θ); we
note we may include scaling-coefficient variance terms α̃0,0(θ) similarly. To prove
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part (i), we then apply Lemma 5(i). We obtain a filtration Gl , and variables Ml , ξl

and ηl as in the statement of the lemma. Since

β̃j,k(θ) = ∑
l

bj,k,l α̃J,l(θ),

where the coefficients

bj,k,l :=
∫ 1

0
ψj,kϕJ,l,

we have

n1/2β̃j,k(θ̂ ) = ξ̃j,k + η̃j,k + υ̃j,k,

for terms

ξ̃j,k := ∑
l

bj,k,lξl, η̃j,k := ∑
l

bj,k,lηl

and

υ̃j,k := n1/2(β̃j,k(θ̂ ) − β̃j,k(θ0)
)
.

We first describe the terms ξ̃j,k . Since the ξl are jointly centred Gaussian, so are
the ξ̃j,k . Furthermore, we have

Cov[̃ξj,kξ̃j ′,k′ ] = ∑
l

bj,k,lbj ′,k′,l

=
∫ 1

0

(∑
l

bj,k,lϕJ,l

)(∑
l′

bj ′,k′,l′ϕJ,l′
)

=
∫ 1

0
ψj,kψj ′,k′

= 1(j,k)=(j ′,k′).

(11)

We deduce that the ξ̃j,k are independent standard Gaussian.
We next bound the η̃j,k . Setting

M := max
l

Ml,

we have that

E
[
M2+ε/2] ≤ ∑

l

E
[
M

2+ε/2
l

] = O
(
n−ε/8),

so M = Op(n−ε′
) for some ε′ > 0. Using (11), we also have

E

[
exp

(
uη̃j,k − 1

2
u2M

)]
≤ E

[∏
l

exp
(
ubj,k,lηl − 1

2
u2b2

j,k,lMl

)]
≤ 1.

The desired result follows by applying Lemma 2.
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Finally, we control the υ̃j,k . Since we are only interested in θ = θ0, θ̂ , we may
assume � is bounded. For θ, θ ′ ∈ �, |θ − θ ′| = O(n−1/2), we then have

sup
j,k,θ,θ ′

2j/2∣∣β̃j,k(θ) − β̃j,k

(
θ ′)∣∣

= max
j,k

O
(
n−3/22j/2) n−1∑

i=0

∣∣ψj,k(ti)
∣∣(1 + |Yi |),

using Lemma 3(i),

= O
(
n−1/2)(1 + max

k
n−1/2

nsk+1−1∑
i=nsk

|Yi |
)

= O
(
n−1/2)(1 +

(
max

k
n−1/2

nsk+1−1∑
i=nsk

Y 2
i

)1/2)
,

by Cauchy–Schwarz,

(12) = Op

(
n−1/2),

using Lemma 3(iv). We deduce that

sup
j,k

2j/2|υ̃j,k| = Op(1).

To prove part (ii), we first claim we may assume the X̂i = Xti . To prove the
claim, we define terms

Z′
i (θ) := (

Yi − μ(θ, ti,Xti )
)
/σ(θ, ti,Xti )

and

β̃ ′
j,k(θ) := n−1

n−1∑
i=0

ψj,k(ti)
(
Z′

i (θ) −E
[
Z′

i(θ)|Fti

])
.

We then have

sup
j,k,θ∈�

∣∣β̃j,k(θ) − β̃ ′
j,k(θ)

∣∣
= O

(
n−1)max

j,k

n−1∑
i=0

∣∣ψj,k(ti)
∣∣(1 + |Yi |)‖X̂i − Xti‖,

using Lemma 3(i),

= O
(
n−1/2)(max

j,k
n−1

n−1∑
i=0

ψ2
j,k(ti)

(
1 + Y 2

i

))1/2

×
(

n−1∑
i=0

‖X̂i − Xti‖2

)1/2

,
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by Cauchy–Schwarz,

= Op

(
n−1/2)(1 + max

k
n−1/2

nsk+1−1∑
i=nsk

Y 2
i

)1/2

,

since E[∑n−1
i=0 ‖X̂i − Xti‖2] = O(1),

= Op

(
n−1/2),

using Lemma 3(iv).
We may thus assume the X̂i = Xti , and so apply Lemma 5(ii). On an extended

probability space, we obtain a filtration Gl , constants Al = O(1), and variables Ml

as in the statement of the lemma. Setting

M := max
l

(Al + Ml),

we obtain that M = Op(1), and

sup
θ∈�

E

[
exp

(
un1/2β̃j,k(θ) − 1

2
u2M

)]
≤ 1,

arguing as in part (i). Letting �n denote a n−1/2-net for � ⊂ R
p , of size O(np/2),

we thus have

max
j,k,θ∈�n

∣∣β̃j,k(θ)
∣∣ = Op

(
n−1/2 log

(
np/2)1/2)

= Op

(
n−1/2 log(n)1/2),

using Lemma 2.
Next, for any θ ∈ �, we have a point θ ∈ �n with θ −θ = O(n−1/2). Using (12),

we deduce that

sup
j,k,θ∈�

∣∣β̃j,k(θ) − β̃j,k(θ)
∣∣ = Op

(
n−1/2).

We conclude that

sup
j,k,θ∈�

∣∣β̃j,k(θ)
∣∣ = Op

(
n−1/2 log(n)1/2).

�

Next, we prove a lemma bounding the bias of our estimated scaling and wavelet
coefficients α̂0,0(θ), β̂j,k(θ).

LEMMA 7. Suppose the X̂i = O(1), and for j = 0, . . . , J −1, k = 0, . . . ,2J −
1 and θ ∈ �, define the wavelet-coefficient bias terms

βj,k(θ) := n−1
n−1∑
i=0

ψj,k(ti)E
[
Zi(θ)|Fti

] − βj,k(θ).

Similarly, define scaling-coefficient bias terms α0,0(θ) using ϕ0,0:



SEMIMARTINGALE DETECTION AND GOODNESS-OF-FIT TESTS 1275

(i) Under H0, suppose θ̂ − θ0 = O(n−1/2). Then

max
j,k

∣∣α0,0(θ̂)
∣∣,2j/2∣∣βj,k(θ̂ )

∣∣ = Op

(
n−1/2).

(ii) Under H1, suppose � is bounded. Then

sup
j,k,θ∈�

∣∣α0,0(θ)
∣∣, ∣∣βj,k(θ)

∣∣ = Op

(
n−1/2).

PROOF. We will bound the wavelet-coefficient bias terms βj,k(θ); we note
we may include the scaling-coefficient bias terms α0,0(θ) similarly. For t ∈ [0,1],
define t := �nt�/n, and set

β
j,k

(θ) :=
∫ 1

0
ψj,k(t)

(
St (θ) − St (θ)

)
dt.

In each part (i) and (ii), we will show that βj,k(θ) is close to β
j,k

(θ), which is
small.

We note that in either part we may assume � is bounded, since in part (i), we
are only interested in θ = θ0, θ̂ . We then have

∣∣βj,k(θ) − β
j,k

(θ)
∣∣ ≤ n−1

n−1∑
i=0

∣∣ψj,k(ti)
∣∣∣∣E[

Zi(θ)|Fti

] − Sti (θ)
∣∣

+
∫ 1

0

∣∣ψj,k(t) − ψj,k(t)
∣∣∣∣St (θ)

∣∣dt(13)

= O
(
n−1/22−j/2),

using Lemma 3(ii) and (iii). It thus remains to bound the β
j,k

(θ).
To prove part (i), we note that

β
j,k

(θ0) =
n−1∑
i=0

ζi,j,k,

where the Fti+1 -measurable summands

ζi,j,k := −
∫ ti+1

ti

ψj,k(t)
(
St (θ0) − Sti (θ0)

)
dt.

Using Lemma 3(ii) and Taylor’s theorem, we also have that

St (θ0) − Sti (θ0) = ci(μt − μti ) + dT
i (Xt − Xti )

+ O
(|μt − μti |2 + ‖Xt − Xti‖2 + n−1),

for bounded Fti -measurable random variables ci ∈ R, di ∈R
q .

We deduce that

E[ζi,j,k|Fti ] = O
(
n−22j/2),



1276 A. D. BULL

and similarly

Var[ζi,j,k|Fti ] ≤ E
[
ζ 2
i,j,k|Fti

] = O
(
n−32j ).

Furthermore, for fixed j and k, we have that all but O(n2−j ) of the ζi,j,k are
almost-surely zero. We thus have

E
[
β

j,k
(θ0)

2] = O
(
n−2).

We deduce that

E

[
max
j,k

β
j,k

(θ0)
2
]
≤ ∑

j,k

E
[
β

j,k
(θ0)

2]
≤ O

(
n−2)∑

j

2j

= O
(
n−3/2),

so maxj,k |β
j,k

(θ0)| = Op(n−3/4). We also have

β
j,k

(θ0) − β
j,k

(θ̂ ) = O
(
n−1/22−j/2),

using Lemma 3(ii). We conclude that

max
j,k

2j/2∣∣βj,k(θ̂)
∣∣ ≤ max

j,k
2j/2∣∣β

j,k
(θ0)

∣∣
+ max

j,k
2j/2∣∣β

j,k
(θ0) − β

j,k
(θ̂ )

∣∣
+ max

j,k
2j/2∣∣β

j,k
(θ̂ ) − βj,k(θ̂ )

∣∣
= Op

(
n−1/2),

using (13).
To prove part (ii), using Lemma 3(ii), we have

St (θ) − St (θ) = O
(|μt − μt | + ‖Xt − Xt‖ + n−1).

We deduce that

sup
j,k,θ∈�

∣∣β
j,k

(θ)
∣∣

= O(1) sup
j,k

∫ 1

0

∣∣ψj,k(t)
∣∣(|μt − μt | + ‖Xt − Xt‖ + n−1)dt

= O(1)

(
sup
j,k

∫ 1

0
ψ2

j,k(t) dt

)1/2

×
(∫ 1

0

(|μt − μt |2 + ‖Xt − Xt‖2 + n−2)dt

)1/2
,
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by Cauchy–Schwarz,

= Op

(
n−1/2),

since
∫ 1

0 ψ2
j,k(t) dt = 1, and

E

[∫ 1

0

(|μt − μt |2 + ‖Xt − Xt‖2 + n−2)dt

]
= O

(
n−1).

Using (13), we conclude that

sup
j,k,θ∈�

∣∣βj,k(θ)
∣∣ = Op

(
n−1/2). �

We can now prove our limit theorem for the statistic T̂ (θ̂ ).

PROOF OF THEOREM 1. We first note that our estimated scaling and wavelet
coefficients are equivalently given by

α̂0,0(θ) = n−1
n−1∑
i=0

ϕ0,0(t)Zi(θ), β̂j,k(θ) = n−1
n−1∑
i=0

ψj,k(t)Zi(θ).

We may thus make the variance-bias decomposition

α̂0,0(θ) − α0,0(θ) = α̃0,0(θ) + α0,0(θ),

β̂j,k(θ) − βj,k(θ) = β̃j,k(θ) + βj,k(θ),

where the terms α̃0,0, α0,0, β̃j,k and βj,k are defined by Lemmas 6 and 7. We will
proceed to bound the distribution of T̂ (θ̂ ) using these lemmas.

We begin by showing we may assume the estimated covariates X̂i = O(1). We
note that

E

[
max

i
‖X̂i‖2

]
≤ E

[
sup

t
‖Xt‖2

]
+ ∑

i

E
[‖X̂i − Xti‖2] = O(1),

so maxi ‖X̂i‖ = Op(1). For a constant R > 0, define the variables

X̃i :=
{
X̂i, ‖X̂i‖ ≤ R,

Xti , otherwise.

Then as R → ∞, the probability that the X̃i and X̂i agree tends to one, uniformly
in n. It thus suffices to prove our results replacing the X̂i with the X̃i ; equivalently,
we may assume the X̂i = O(1).

We now prove part (i). Since θ̂ − θ0 = Op(n−1/2), we may similarly assume
θ̂ − θ0 = O(n−1/2). Let J2 = �J/2�, and write

T̂ (θ) = max
(
T (θ), T̃ (θ)

)
,
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where the terms

T (θ) := max
0≤j<J2,k

∣∣α̂0,0(θ)
∣∣, ∣∣β̂j,k(θ)

∣∣,
T̃ (θ) := max

J2≤j<J,k

∣∣β̂j,k(θ)
∣∣.

Under H0, using Lemmas 6(i) and 7(i), we can then write

n1/2T (θ̂) = max
0≤j<J2,k

|̃ξj,k| + Op(1),

n1/2T̃ (θ̂ ) = max
J2≤j<J,k

|̃ξj,k| + Op

(
n−ε′)

,

for some ε′ > 0, and independent standard Gaussians ξ̃j,k .
By standard Gumbel limits, we also have

a−1
2J2

(
max

0≤j<J2,k
|̃ξj,k| − b2J2

)
d→ G,

a−1
2J

(
max

J2≤j<J,k
|̃ξj,k| − b2J

)
d→ G,

we note that in the second limit, we may use the constants a2J and b2J , rather than
a2J −2J2 and b2J −2J2 , as the difference is negligible. We deduce that

P
[
T̂ (θ̂ ) = T̃ (θ̂ )

] → 1,

and so

a−1
2J

(
n1/2T̂ (θ̂ ) − b2J

) = a−1
2J

(
n1/2T̃ (θ̂ ) − b2J

) + op(1)

= a−1
2J

(
max

J2≤j<J,k
|̃ξj,k| − b2J

)
+ op(1)

d→ G.

Next, we prove part (ii). As before, since θ̂ = Op(1), we may assume θ̂ = O(1),
and hence that � is bounded. Using Lemmas 6(ii) and 7(ii), we then have

T̂ (θ̂ ) − T (θ̂) = O(1) max
0≤j<J,k

∣∣α̂0,0(θ̂) − α0,0(θ̂)
∣∣, ∣∣β̂j,k(θ̂ ) − βj,k(θ̂ )

∣∣
= Op

(
n−1/2 log(n)1/2).

Finally, we note that the rates of convergence proved depend only upon the
bounds assumed on the inputs. They therefore hold uniformly over models satis-
fying our assumptions. �

Next, we will prove our results on test coverage and detection rates.
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PROOF OF THEOREM 2. We first note that part (i) is immediate from Theo-
rem 1(i). To prove part (ii), we consider separately the cases (a) and (b). In each
case, we will prove that with probability tending to one, the event En implies

T (θ̂) ≥ M ′
nn

−1/2 log(n)1/2,

for a fixed sequence M ′
n → ∞. The result will then follow from Theorem 1(ii).

In case (a), we note that arguing as in Theorem 1, we may assume � is bounded.
Let �n be an n−1/4-net for �, of size O(np/4), and θ̂ be an element of �n satis-
fying

θ̂ − θ̂ = O
(
n−1/4).

Using Lemma 3(ii), we have

St (θ̂) = St (θ̂) + O
(
n−1/4),

so on En, ∥∥S(θ̂)
∥∥∞ ≥ ∥∥S(θ̂)

∥∥∞ − O
(
n−1/4) ≥ Mnn

−1/4 log(n)1/2/2,

for large n. We may thus assume further that θ̂ ∈ �n.
We then apply Lemma 4, obtaining processes S̃t (θ), St (θ) and times τi . On the

event En, for some point u ∈ [0,1], we have∣∣Su(θ̂)
∣∣ ≥ Mnn

−1/4 log(n)1/2.

We thus have u ∈ [τi, τi+1) for some i < N − 1, or u ∈ [τi, τi+1] for i = N − 1.
From Lemma 4(iii), with probability tending to one we also have

τi+1 − τi ≥ 21−J ,

and so there exists a point v ∈ [τi + 2−J , τi+1 − 2−J ], |u − v| ≤ 2−J .
We deduce that with probability tending to one,

∣∣α0,0(θ̂)
∣∣ + J−1∑

j=0

2j/2∣∣βj,2−j �2j v�(θ̂)
∣∣

= ∣∣α0,0(θ̂)ϕ0,0(v)
∣∣ + ∑

0≤j<J,k

∣∣βj,k(θ̂ )ψj,k(v)
∣∣

≥
∣∣∣∣α0,0(θ̂)ϕ0,0(v) + ∑

0≤j<J,k

βj,k(θ̂)ψj,k(v)

∣∣∣∣
= ∣∣PJ Sv(θ̂)

∣∣,
writing the projection PJ in terms of the wavelet functions ψj,k ,

≥ ∣∣Su(θ̂)
∣∣ − ∣∣Sv(θ̂) − Su(θ̂)

∣∣ − ∣∣RJ Sv(θ̂)
∣∣

≥ ∣∣Su(θ̂)
∣∣ − ∣∣S̃v(θ̂ ) − S̃u(θ̂ )

∣∣ − ∣∣RJ S̃v(θ̂)
∣∣,
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since St (θ̂) is constant within a distance 2−J of v,

≥ Mnn
−1/4 log(n)1/2/2,

using Lemma 4(i) and (ii). We deduce that

T (θ̂) ≥ max
(∣∣α0,0(θ̂)

∣∣, ∣∣βj,2−j �2j v�(θ̂)
∣∣ : j = 0, . . . , J − 1

)
,

≥ 2−(J+3)/2

(∣∣α0,0(θ̂)
∣∣ + J−1∑

j=0

2j/2∣∣βj,2−j �2j v�(θ̂)
∣∣)

≥ M ′
nn

−1/2 log(n)1/2,

for a sequence M ′
n → ∞.

In case (b), on the event En, we likewise have

∣∣α0,0(θ̂)
∣∣ + jn−1∑

j=0

2j/2∣∣βj,2−j �2j−jnkn�(θ̂)
∣∣

≥ ∣∣PjnS2−jnkn
(θ̂ )

∣∣
= 2jn

∣∣∣∣∫ 2−jn (kn+1)

2−jnkn

St (θ̂ ) dt

∣∣∣∣
≥ Mn2jn/2n−1/2 log(n)1/2,

for some jn = 0, . . . , J and kn. The result then follows as in part (i). �

Finally, we can prove our lower bound on detection rates.

PROOF OF THEOREM 3. In each case (i) and (ii), we will reduce the statement
to a known testing inequality. We will consider the model

Yi := δ1/2
n n−1/22jn(Bti∨τ − Bτ ) + εi,

where Bt is an adapted Brownian motion, the independent Fti+1 -measurable vari-
ables εi are standard Gaussian given Fti , τ ∈ [0,1] is to be defined, and in case (i)
we set jn := J . It can be checked that this model satisfies our assumptions.

Under H0, we set τ := 1, so we have mean and variance functions

μ := 0, σ 2 := 1.

Under H1, we instead set τ := tm, where m := �n(1 − 2−jn)�. We then have

St = δ1/2
n n−1/22jn(Bt∨τ − Bτ ),

so in case (i),

P[En] = P
[‖S‖∞ ≥ δnn

−1/4] → 1.
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Similarly, in case (ii),

P[En] ≥ P

[
2jn/2

∣∣∣∣∫ 1

1−2−jn
St dt

∣∣∣∣ ≥ δnn
−1/2

]
→ 1.

It remains to show that no sequence of critical regions Cn can satisfy
lim supn P[Cn] < 1 under H0, and P[Cn] → 1 under H1. We note that under H0,
we have Y ∼ N(0, I ), while under H1, Y ∼ N(0, I +δn�), for a covariance matrix

�k,l = 0 ∨ 22jn(k ∧ l − m)/n2.

As � is nonnegative definite, and has Frobenius norm O(1), the result follows
from Lemma 2.1 of Munk and Schmidt-Hieber (2010). �

Acknowledgements. All research data was randomly generated using soft-
ware given in Bull (2016a).
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Supplement to “Semimartingale detection and goodness-of-fit tests” (DOI:
10.1214/16-AOS1484SUPP; .pdf). Proofs of technical results.
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