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OPTIMAL ESTIMATION FOR THE FUNCTIONAL COX MODEL

BY SIMENG QU∗, JANE-LING WANG1,† AND XIAO WANG2,∗

Purdue University∗ and University of California, Davis†

Functional covariates are common in many medical, biodemographic and
neuroimaging studies. The aim of this paper is to study functional Cox models
with right-censored data in the presence of both functional and scalar covari-
ates. We study the asymptotic properties of the maximum partial likelihood
estimator and establish the asymptotic normality and efficiency of the estima-
tor of the finite-dimensional estimator. Under the framework of reproducing
kernel Hilbert space, the estimator of the coefficient function for a functional
covariate achieves the minimax optimal rate of convergence under a weighted
L2-risk. This optimal rate is determined jointly by the censoring scheme, the
reproducing kernel and the covariance kernel of the functional covariates. Im-
plementation of the estimation approach and the selection of the smoothing
parameter are discussed in detail. The finite sample performance is illustrated
by simulated examples and a real application.

1. Introduction. The proportional hazard model, known as the Cox model,
was introduced by Cox (1972), where the hazard function of the survival time T

for a subject with covariate Z(t) ∈R
p is represented by

h(t |Z) = h0(t)e
θ ′

0Z(t),(1.1)

where h0 is an unspecified baseline hazard function and θ0 ∈ R
p is an unknown

parameter. Some or all of the p components in Z may be time-independent, mean-
ing that they are constant over time t , or may depend on t . The aim of this paper is
to develop a different type of model, the functional Cox model, by incorporating
functional predictors along with scalar predictors. Chen et al. (2011) first pro-
posed such a model when studying the survival of diffuse large-B-cell lymphoma
(DLBCL) patients, which is thought to be influenced by genetic differences. The
functional predictor, denoted by X(·) : S →R on a compact domain S , is a smooth
stochastic process related to the high-dimensional microarray gene expression of
DLBCL patients. The entire trajectory of X has an effect on the hazard function,
which makes it different from the Cox model (1.1) with time-varying covariates,
where only the current value of X at time t affects the hazard function at time t .
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Specifically, the functional Cox model with a vector covariate Z and functional
covariate X(t) represents the hazard function by

h(t |X) = h0(t) exp
{
θ ′

0Z +
∫
S

X(s)β0(s) ds

}
,(1.2)

where β0 is an unknown coefficient function. Without loss of generality, we take
S to be [0,1].

Under the right censorship model and letting T u and T c be, respectively, the
failure time and censoring time, we observe i.i.d. copies of (T ,�,X(s), s ∈ S),
(T1,�1,X1), . . . , (Tn,�n,Xn), where T = min{T u,T c} is the observed time
event and � = I {T u ≤ T c} is the censoring indicator. Our goal is to estimate
α0 = (θ0, β0(·)) to reveal how the functional covariates X(·) and other scalar co-
variates Z relate to survival.

Let α̂ = (θ̂ , β̂(·)) be an estimate from the data. It is critical to define the risk
function to measure the accuracy of the estimate. Let W = (Z,X) and

ηα(W) = θ ′Z +
∫ 1

0
β(s)X(s) ds.

Define an L2-distance such that

d2(α̂, α0) = E
{
�

(
ηα̂(W) − ηα0(W)

)2}
.(1.3)

Based on this L2-distance, we show that the accuracy of θ̂ is measured by the
usual L2-norm ‖θ̂ − θ‖2 and the accuracy of β̂ is measured by a weighted L2-
norm ‖β̂ − β0‖C� , where

C�(s, t) = Cov
(
�X(s),�X(t)

)
and ‖β‖2

C�
=

∫ ∫
β(s)C�(s, t)β(t) ds dt.

We now explain why we do not consider the convergence of β̂ with respect to the
usual L2-norm in the present paper. In general, ‖β̂ − β0‖2

2 = ∫ 1
0 (β̂(t) − β0(t))

2 dt

may not converge to zero in probability, and to obtain the convergence of ‖β̂−β0‖2
2

one needs additional smoothness conditions linking β to the functional predic-
tor X; see Crambes, Kneip and Sarda (2009) for a discussion of this phenomenon
for functional linear models. On the other hand, in the presence of censoring, the
Kullback–Leibler distance between two probability measures Ph0,α̂ and Ph0,α0 is
equivalent to the L2 distance d in (1.3). When failure times T u are fully observed,
that is, � = 1 is true regardless of X(s), the ‖ · ‖C� norm becomes ‖ · ‖C , where
C(t, s) = Cov(X(t),X(s)) is the covariance function of X. This norm ‖ · ‖C has
been widely used for functional linear models [e.g., Cai and Yuan (2012)].

Many people have studied parametric, nonparametric, or semiparametric mod-
eling of the covariate effects using the Cox model [e.g., Sasieni (1992a, 1992b),
Hastie and Tibshirani (1986, 1990), Huang (1999) and references therein] and Cox
(1972) proposed to use partial likelihood to estimate θ in (1.1). The advantage
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of using partial likelihood is that it estimates θ without knowing or involving the
functional form of h0. The asymptotic equivalence of the partial likelihood estima-
tor and the maximum likelihood estimator has been established by several authors
[Cox (1975), Tsiatis (1981), Andersen and Gill (1982), Johansen (1983), Jacobsen
(1984)]. On the other hand, the literature on functional regression, in particular
for functional linear models, is too vast to be summarized here. Hence, we only
refer to the well-known monographs Ramsay and Silverman (2005) and Ferraty
and Vieu (2006), and some recent developments such as James and Hastie (2002),
Müller and Stadtmüller (2005), Hall and Horowitz (2007), Crambes, Kneip and
Sarda (2009), Yuan and Cai (2010), Cai and Yuan (2012) for further references. Re-
cently, Kong et al. (2014) studied a similar functional Cox model to establish some
asymptotic properties but without investigating the optimality property. Moreover,
their estimate of the parametric component converges at a rate which is slower
than root-n. Thus, it is desirable to develop new theory to systematically investi-
gate properties of the estimates and establish their optimal asymptotic properties.
In addition, instead of assuming that both β0 and X can be represented by the same
set of basis functions, we adopt a more general reproducing kernel Hilbert space
framework to estimate the coefficient function.

In this paper, we study the convergence of the estimator α̂ = (θ̂ , β̂) under the
framework of the reproducing kernel Hilbert space and the Cox model. The true
coefficient function β0 is assumed to reside in a reproducing kernel Hilbert space
H(K) with the reproducing kernel K , which is a subspace of the collection of
square integrable functions on [0,1]. There are two main challenges for our asymp-
totic analysis, the nonlinear structure of the Cox model, and the fact that the re-
producing kernel K and the covariance kernel C� may not share a common or-
dered set of eigenfunctions, so β0 cannot be represented effectively by the leading
eigenfunctions of C�. We obtain the estimator by maximizing a penalized partial
likelihood and establish

√
n-consistency, asymptotic normality and semiparamet-

ric efficiency of the estimator θ̂ of the finite-dimensional regression parameter.
A second optimality result is on the estimator of the coefficient function, which

achieves the minimax optimal rate of convergence under the weighted L2-risk.
The optimal rate of convergence is established in the following two steps. First,
the convergence rate of the penalized partial likelihood estimator is calculated.
Second, in the presence of the nuisance parameter h0, the minimax lower bound
on the risk is derived, which matches the convergence rate of the partial likeli-
hood estimator. Therefore, the estimator is rate-optimal. Furthermore, an efficient
algorithm is developed to estimate the coefficient function. Implementation of the
estimation approach, selection of the smoothing parameter, as well as calculation
of the information bound I (θ) are all discussed in detail.

The rest of the paper is organized as follows. Section 2 summarizes the main
results regarding the asymptotic analysis of the penalized partial likelihood predic-
tor. Implementation of the estimation approach is discussed in Section 3, including
a GCV method to select the smoothing parameter and a method of calculating the
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information bound of θ based on the alternating conditional expectations (ACE)
algorithm. Section 4 contains numerical studies, including simulations and a data
application. Proofs are relegated to Section 5, and more technical details are pro-
vided in the supplemental article [Qu, Wang and Wang (2016)].

2. Main results. We estimate α0 = (θ0, β0) ∈ R
p ×H(K) by maximizing the

penalized log partial likelihood,

α̂λ = arg min
α∈Rp×H(K)

ln(α) + λJ (β),(2.1)

where the negative log partial likelihood is given by

ln(α) = −1

n

n∑
i=1

�i

{
ηα(Wi) − log

∑
Tj≥Ti

exp
(
ηα(Wj )

)}
,(2.2)

J is a penalty function controlling the smoothness of β , and λ is a smoothing
parameter that balances the fidelity to the model and the plausibility of β . The
choice of the penalty function J (·) is a squared seminorm associated with H and
its norm. In general, H(K) can be decomposed with respect to the penalty J as
H =NJ +H1, where NJ is the null space defined as

NJ = {
β ∈H(K) : J (β) = 0

}
,

and H1 is its orthogonal complement in H. Correspondingly, the kernel K can be
decomposed as K = K0 + K1, where K0 and K1 are kernels for the subspace NJ

and H1, respectively. For example, for the Sobolev space,

W2,m = {
f : [0,1] → R|f,f ′, . . . , f (m−1) are absolutely continuous, f (m) ∈ L2

}
,

endowed with the norm

‖f ‖W2,m
=

m−1∑
v=0

f (v)(0) +
∫ 1

0

(
f (m)(s)

)2
ds,(2.3)

where the penalty J (·) in this case can be assigned as J (f ) = ∫ 1
0 (f (m)(s))2 ds.

We first present some main assumptions:

(A1) Assume E(�Z) = 0 and E(�X(s)) = 0, s ∈ [0,1].
(A2) The failure time T u and the censoring time T c are conditionally indepen-

dent given W .
(A3) The observed event time Ti,1 ≤ i ≤ n is in a finite interval, say [0, τ ],

and there exists a small positive constant ε such that: (i) P(� = 1|W) > ε, and
(ii) P(T c > τ |W) > ε almost surely with respect to the probability measure of W .

(A4) The covariate Z takes values in a bounded subset of Rp , and the L2-norm
‖X‖2 of X is bounded almost surely.

(A5) Let 0 < c1 < c2 < ∞ be two constants. The baseline joint density
f (t,� = 1) of (T ,� = 1) satisfies c1 < f (t,� = 1) < c2 for all t ∈ [0, τ ].
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Condition (A1) requires Z and X to be suitably centered. Since the partial like-
lihood function (2.2) does not change when centering Zi as Zi − ∑

�iZi/
∑

�i

or Xi as Xi − ∑
�iXi/

∑
�i , centering does not impose any real restrictions.

In addition, centering by E(�Z) and E(�X), instead of centering by E(Z) and
E(X), simplifies the asymptotic analysis. Conditions (A2) and (A3) are common
assumptions for analyzing right-censored data, where (A2) guarantees the censor-
ing mechanism to be noninformative while (A3) avoids the unboundedness of the
partial likelihood at the end point of the support of the observed event time. This
is a reasonable assumption since the experiment can only last for a certain amount
of time in practice. Assumption (A3)(i) further ensures the probability of being
uncensored to be positive regardless of the covariate and (A3)(ii) controls the cen-
soring rate so that it will not be too heavy. Assumption (A4) places a boundedness
restriction on the covariates. This assumption can be relaxed to the sub-Gaussianity
of ‖X‖2, which implies that with a large probability, ‖X‖2 is bounded. Condition
(A5) and condition (A1) together guarantee the identifiability of the model. More-
over the joint density f (T ,Z,X,� = 1) is bounded away from zero and infinity
under assumptions (A3)–(A5), which is used to calculate the information bound
and convergence rate later in Theorem 2.1 and Theorem 2.2.

Let r(W) = exp(ηα(W)), then the counting process martingale associated with
model (1) is

M(t) = M(t |W) = �I {T ≤ t} −
∫ t

0
I {T ≥ u}r(W)dH0(u),

where H0(t) = ∫ t
0 h0(u) du is the baseline cumulative hazard function. For two

sequences ak : k ≥ 1 and bk : k ≥ 1 of positive real numbers, we write ak � bk if
there are positive constants c and C independent of k such that c ≤ ak/bk ≤ C for
all k ≥ 1.

THEOREM 2.1. Under (A1)–(A5), the efficient score for the estimation of θ

is

l∗θ (T ,�,W) =
∫ τ

0

(
Z − a∗(t) − ηg∗(X)

)
dM(t),

where (a∗, g∗) ∈ L2 ×H(K) is a solution that minimizes

E
{
�

∥∥Z − a(T ) − ηg(X)
∥∥2}

.

Here, a∗ can be expressed as a∗(t) = E[Z − ηg∗(X)|T = t,� = 1]. The informa-
tion bound for the estimation of θ is

I (θ) = E
[
l∗θ (T ,�,W)

]⊗2 = E
{
�

[
Z − a∗(T ) − ηg∗(X)

]⊗2}
,

where y⊗2 = yy′ for column vector y ∈R
d .
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Recall that K and C� are two real, symmetric and nonnegative definite func-
tions. Define a new kernel K1/2C�K1/2 : [0,1]2 →R, which is a real, symmetric,
square integrable and nonnegative definite function. Let LK1/2C�K1/2 be the cor-
responding linear operator L2 → L2. Then Mercer’s theorem [Riesz and Sz-Nagy
(1990)] implies that there exists a set of orthonomal eigenfunctions {φk : k ≥ 1}
and a sequence of eigenvalues s1 ≥ s2 ≥ · · · > 0 such that

K1/2C�K1/2(s, t) =
∞∑

k=1

skφk(s)φk(t), LK1/2C�K1/2(φk) = sk.

THEOREM 2.2. Assume (A1)–(A5) hold:

(i) (Consistency) d(α̂, α0)
p→ 0, provided that λ → 0 as n → ∞.

(ii) (Convergence rate) If the eigenvalues {sk : k ≥ 1} of K1/2C�K1/2 satisfy
sk � k−2r for some constant 0 < r < ∞, then for λ = O(n−2r/(2r+1)) we have

d(α̂, α0) = Op

(
n−r/(2r+1)).

(iii) If I (θ) is nonsingular, then ‖θ̂ − θ0‖2 = Op(n−r/(2r+1)) and

lim
A→∞ lim

n→∞ sup
β0∈H(K)

Ph0β0

{‖β̂λ − β0‖C� ≥ An−r/(2r+1)} = 0.

Theorem 2.2 indicates that the convergence rate is determined by the decay rate
of the eigenvalues of K1/2C�K1/2, which is jointly determined by the eigenvalues
of both reproducing kernel K and the conditional covariance function C� as well
as by the alignment between K and C�. When K and C� are perfectly aligned,
meaning that K and C� have the same ordered eigenfunctions, the decay rate of
{sk : k ≥ 1} equals to the summation of the decay rates of the eigenvalues of K and
C�. Cai and Yuan (2012) established a similar result for functional linear models,
for which the optimal prediction risk depends on the decay rate of the eigenvalues
of K1/2CK1/2, where C is the covariance function of X.

The next theorem establishes the asymptotic normality of θ̂ with root-n consis-
tency.

THEOREM 2.3. Suppose (A1)–(A5) hold, and that the Fisher information
I (θ0) is nonsingular. Let α̂ = (θ̂ , β̂) be the estimator given by (2.1) with λ =
O(n−2r/(2r+1)). Then

√
n(θ̂ − θ0) = n−1/2I−1(θ0)

n∑
i=1

l∗θ0
(Ti,�i,Wi) + op(1)

d→ N (0,�),

where � = I−1(θ0).

For the nonparametric coefficient function β , it is of interest to see whether the
convergence rate of β̂ in Theorem 2.2 is optimal. In the following, we derive a
minimax lower bound for the risk.
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THEOREM 2.4. Assume that the baseline hazard function h0 ∈ F = {h :
H(t) = ∫ t

0 h(s) ds < ∞, for any 0 < t < ∞}. Suppose that the eigenvalues {sk :
k ≥ 1} of K1/2C�K1/2 satisfy sk � k−2r for some constant 0 < r < ∞. Then

lim
a→0

lim
n→∞ inf

α̂
sup

α0∈Rp×H(K)

sup
h0∈F

Pα0,h0

{‖β̂ − β0‖C� ≥ an−r/(2r+1)} = 1,

where the infimum is taken over all possible predictors α̂ based on the observed
data.

Theorem 2.4 shows that the minimax lower bound of the convergence rate for
estimating β0 is n−r/(2r+1), which is determined by r and the decay rate of the
eigenvalues of K1/2C�K1/2. We have shown that this rate is achieved by the pe-
nalized partial likelihood predictor and, therefore, this estimator is rate-optimal.

3. Computation of the estimator.

3.1. Penalized partial likelihood. In this section, we present an algorithm to
compute the penalized partial likelihood estimator. Let {ξ1, . . . , ξm} be a set of
orthonormal basis of the null space with m = dim(NJ ). The next theorem provides
a closed form representation of β̂ from the penalized partial likelihood method.

THEOREM 3.1. The penalized partial likelihood estimator of the coefficient
function is given by

β̂λ(t) =
m∑

k=1

dkξk(t) +
n∑

i=1

ci

∫ 1

0
Xi(s)K1(s, t) ds,(3.1)

where dk (k = 1, . . . ,m) and ci (i = 1, . . . , n) are constant coefficients.

Theorem 3.1 is a direct application of the generalized version of the well-known
representer lemma for smoothing splines [see Wahba (1990) and Yuan and Cai
(2010)]. We omit the proof here. In fact, the algorithm can be made more efficient
without using all n bases

∫ 1
0 Xi(s)K1(s, t) ds, i = 1, . . . , n in (3.1). Gu (2013)

showed that, under some conditions, a more efficient estimator, denoted by β∗
λ ,

sharing the same convergence rate with β̂λ, can be calculated in the data-adaptive
finite-dimensional space

H∗ = NJ ⊕ {
K1(X̃j , ·), j = 1, . . . , q

}
,

where {X̃j } is a random subset of {Xi : �i = 1} and

K1(X̃j , ·) =
∫ 1

0
X̃j (s)K1(s, ·) ds.
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Here, q = qn � n2/(ps+1)+ε for some s > 1 and p ∈ [1,2], and for any ε > 0.
Therefore, β∗

λ is given by

β∗
λ(t) =

m∑
k=1

dkξk(t) +
q∑

j=1

cjK1(X̃j , t).

The computational efficiency is more prominent when n is large, as the number of
coefficients is significantly reduced from n + m to q + m.

For the Sobolev space W2,m, the penalty function J (·) is

J (f ) =
∫ 1

0

(
f (m)(s)

)2
ds,

and (2.1) becomes

(θ̂ , β̂λ) = arg min
θ∈Rp,β∈W2,m

−1

n

n∑
i=1

�i

{
ηα(Wi) − log

∑
Tj>Ti

exp
(
ηα(Wj )

)}
(3.2)

+ λ

∫ 1

0

(
β(m)(s)

)2
ds.

Let ξν = tν−1/(ν − 1)!, ν = 1, . . . ,m, be the orthonormal basis of the null space

NJ =
{
β ∈ W2,m,

∫ 1

0

(
β(m)(s)

)2
ds = 0

}
.

Write Gm(t, u) = (t − u)m−1+ /(m − 1)!, then the kernels are in forms of

K0(s, t) =
m∑

ν=1

ξν(s)ξν(t) and K1(s, t) =
∫ 1

0
Gm(s,u)Gm(t, u) du.

Hence, the estimator is given by

β̂λ(t) =
m∑

ν=1

dvξν(t) +
n∑

i=1

ci

∫ 1

0
Xi(s)K1(s, t) ds.(3.3)

We may obtain the constants ci and dj as well as the estimator θ̂ by maximizing
the objective function (3.2) after plugging β̂λ(t) back into the objective function.

3.2. Choosing the smoothing parameter. The choice of the smoothing param-
eter λ is always a critical but difficult question. In this section, we borrow ideas
from Gu (2013) and provide a simple GCV method to choose λ. The key idea is
to draw an analogy between the partial likelihood estimation and weighted density
estimation, which then allows us to define a criterion analogous to the Kullback–
Leibler distance to select the best performing smoothing parameter. Below we pro-
vide more details.
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Let i1, . . . , iN be the index for the uncensored data, that is, �ik = 1, for k =
1, . . . ,N and N = ∑n

1 �i . Define weights wik (·) as wik (t) = I {t ≥ Tik } and

fα|ik (t,w) = wik (t)e
ηα(w)∑N

k=1 wik (t)e
ηα(w)

.

Following the suggestion in Section 8.5 of Gu (2013), we extend the Kullback–
Leibler distance for density functions to the partial likelihood as follows:

KL(α̂λ, α) = 1

N

N∑
k=1

Efα0|ik

{
log

fα0|ik (Tik ,Wik )

fα̂|ik (Tik ,Wik )

}

= 1

N

N∑
k=1

Efα0|ik

{
log

eηα0 (Wik
)∑n

j=1 wik (Tj )e
ηα0 (Wj )

− log
e
ηα̂λ

(Wik
)∑n

j=1 wik (Tj )e
ηα̂λ

(Wj )

}
.

Dropping off terms not involving α̂λ, we have a relative KL distance

RKL(α̂λ, α) = − 1

N

N∑
k=1

Efα0|ik
ηα̂λ

(W) + 1

N

N∑
k=1

log
n∑

j=1

wik (Tj )e
ηα̂λ

(Wj )
.

The second term is ready to be computed once we have an estimate α̂λ, but the first
term involves α0 and needs to be estimated. We approximate the RKL by

R̂KL(α̂λ, α0) = −1

n

n∑
i=1

η
[i]
α̂λ

(Wi) + 1

N

n∑
i=1

�i log
∑

Tj≥Ti

exp
{
ηα̂λ

(Wj )
}
.

Based on this R̂KL(α̂λ, α0), a function GCV(λ) can be derived analytically when
replacing the penalized partial likelihood function by its quadratic approximation,

GCV(λ) = −1

n

n∑
i=1

ηα̂λ
(Wi) + 1

n(n − 1)
tr

[(
SH−1S

)(
diag� − �1′/n

)]

+ 1

N

n∑
i=1

�i log
∑

Tj≥Ti

exp
{
ηα̂λ

(Wj )
}
.

Details of deriving GCV(λ) are given in the supplemental article [Qu, Wang and
Wang (2016)].

3.3. Calculating the information bound I (θ). To calculate the information
bound I (θ), we apply the ACE method [Breiman and Friedman (1985)], the es-
timator of which is shown to converge to (a∗, g∗). For simplicity, we take Z as a
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one-dimensional scalar. When Z is a vector, we just need to apply the following
procedure to all dimensions of Z separately.

Theorem 2.1 shows that

I (θ) = E
{
�

[
Z − a∗(t) − ηg∗(X)

]⊗2}
with (a∗, g∗) ∈ L2 ×H(K) being the unique solution that minimizes

E
{
�

∥∥Z − a(T ) − ηg(X)
∥∥2}

.

Furthermore, the proof of Theorem 2.1 reveals that this is equivalent to the follow-
ing: (a∗, g∗) is the unique solution to the equations:

E
(
Z − a∗ − ηg∗ |T ,� = 1

) = 0, a.s. P
(u)
T ,

E
(
Z − a∗ − ηg∗|X,� = 1

) = 0, a.s. P
(u)
X ,

where P
(u)
T and P

(u)
X represent, respectively, the measure space of (T ,� = 1) and

(X,� = 1).
The idea of ACE is to update a and g alternatively until the objective function

e(a, g) = E�‖Z − a(T ) − ηg(X)‖2 stops to decrease. In our case, the procedure
is as follows:

(i) Initialize a and g,
(ii) Update a by

a(T ) = E(Z − ηg|T ,� = 1) = 0,

(iii) Update g such that

ηg(X) = E(Z − a|X,� = 1) = 0, a.s. P
(u)
X ,

(iv) Calculate e(a, g) = E�‖Z − a(T )− ηg(X)‖2 and repeat (ii) and (iii) until
e(a, g) fails to decrease.

In practice, we replace E�‖Z − a(T ) − ηg(X)‖2 by the sample mean

e(a, g) = 1

n

n∑
i=1

�i

∥∥Zi − a(Ti) − ηg(Xi)
∥∥2

.

As for a and g, we need to employ some smoothing techniques. For a given g ∈
H(K), we calculate

ãi = ∑
Tj=Ti

�j

[
Zj − ηg(Xj )

]/ ∑
Tj=Ti

�j ,

and update a(t) as the local polynomial regression estimator for the data
(T1, ã1), . . . , (Tn, ãn). For a given a ∈ L2, we calculate

yi = Zi − a(Ti), for all �i = 1,
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and update g by fitting a functional linear regression

y =
∫

g(s)X(s) ds + ε,

based on the data (yi,Xi) with �i = 1. More details can be find in Yuan and Cai
(2010). When (a∗, g∗) is obtained, I (θ) is estimated by

Î (θ) = 1

n

n∑
i=1

�i

[
Zi − a∗(Ti) − ηg∗(Xi)

]⊗2
.

4. Numerical studies. In this session, we first carry out simulations under
different settings to study the finite sample performance of the proposed method
and to demonstrate practical implications of the theoretical results. In the second
part, we apply the proposed method to data that were collected to study the effect
of early reproduction history to the longevity of female Mexican fruit flies.

4.1. Simulations. We adopt a similar design as that in Yuan and Cai (2010).
The functional covariate X is generated by a set of cosine basis functions, φ1 = 1
and φk+1(s) = √

2 cos(kπs) for k ≥ 1, such that

X(s) =
50∑

k=1

ζkUkφk(s),

where the Uk are independently sampled from the uniform distribution on [−3,3]
and ζk = (−1)k+1k−v/2 with v = 1,1.5,2,2.5. In this case, the covariance func-
tion of X is C(s, t) = ∑50

k=1 3k−vφk(s)φk(t). The coefficient function β0 is

β0 =
50∑
i=1

(−1)kk−3/2φk,

which is from a Sobolov space W2,2. The reproducing kernel takes the form:

K(s, t) = 1 + st +
∫ 1

0
(s − u)+(t − u)+ du,

and K1 = ∫ 1
0 (s − u)+(t − u)+ du. The null space becomes NJ = span{1, s}. The

penalty function as mentioned before is J (f ) = ∫
(f ′′)2. The vector covariate Z is

set to be univariate with distribution N (0,1) and corresponding slope θ = 1. The
failure time T u is generated based on the hazard function

h(t) = h0(t) exp
{
θ ′Z +

∫ 1

0
X(s)β0(s) ds

}
,

where h0(t) is chosen as a constant or a linear function t . Given X, T u follows an
exponential distribution when h0 is a constant, and follows a Weibull distribution
when h0(t) = t . The censoring time T c is generated independently, following an
exponential distribution with parameter γ which controls the censoring rate. When
h0(t) is constant, γ = 19 and 3.4 lead to censoring rates around 10% and 30%,
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respectively. Similar censoring rates result from γ = 15 and 3.9 for the case when
h0(t) = t . (T ,�) is then generated by T = min{T u,T c} and � = I {T u ≤ T c}.

The criterion to evaluate the performance of the estimators β̂ is the mean
squared error, defined as

MSE(β̂) =
{

1∑n
i=1 �i

n∑
i=1

�i

(
η

β̂
(Xi) − ηβ0(Xi)

)}1/2

,

which is an empirical version of ‖β̂ − β0‖C� . To study the trend as the sample
size increases, we vary the sample size n according to n = 50,100,150,200 for
each value v = 1,1.5,2,2.5. For each combination of censoring rate, h0, v and
n, the simulation is repeated 1000 times, and the average mean squared error was
obtained for each scenario.

Note that for a fixed γ , E(�|X) is roughly a constant for different values of v.
Therefore, C�(s, t) is approximately proportional to C(s, t) = ∑50

k=1 k−vφk(s) ×
φk(t). In this case, v controls the decay rate of the eigenvalues of C� and
K1/2C�K1/2. It follows from Theorem 2.2 that a faster decay rate of the eigen-
values leads to a faster convergence rate. Figure 1 displays the average MSE based
on 1000 simulations. The simulation results are in agreement with Theorem 2.2;
it is very clear that when v increases from 1 to 2.5 with the remaining parameters
fixed, the average MSEs decrease steadily. The average MSEs also decrease with
the sample sizes. Besides, for both the exponential and Weibull distribution, the
average MSEs are lower for each setting at the 10% censoring rate comparing to
the values for the 30% censoring rate. This is consistent with the expectation that
the lower the censoring rate is, the more accurate the estimate will be.

Averages and standard deviations of the estimated θ̂ , for each setting of v and
n over 1000 repetition for the case of h0 = c and 30% censoring rate, are given
in Table 1. For each case of v, as n increases, the average of θ̂ gets closer to
the true value and the standard deviation decreases. Noting that the results do not
vary much across different values of v, as v is specially designed to examine the
estimation of β and has little effect on the estimation of θ .

For each simulated dataset, we also calculated the information bound I (θ)

based on the ACE method proposed in Section 3.3. The inverse of this information
bound, as suggested by Theorem 2.3, can be used to estimate the asymptotic vari-
ance of θ̂ . We further used these asymptotic variance estimates to construct a 95%
confidence interval for θ . Table 2 shows the observed percentage the constructed
95% confidence interval covered the true value 1 for the various settings. As ex-
pected, the covering rates increase toward 95% as n gets larger. Results for other
choices of h0 and censoring rates were about the same and are omitted.

4.2. Mexican fruit fly data. We now apply the proposed method to the Mexi-
can fruit fly data in Carey et al. (2005). There were 1152 female flies in that paper
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FIG. 1. The average MSE based on 1000 simulations. The top panel is for the constant baseline
hazard function and the bottom panel is for the linear baseline hazard function. For each panel,
from left to right, the censoring rate is controlled to be around 10% and 30%. The sample sizes are
n = 50,100,150,200 and the decay rate parameters are v = 1,1.5,2,2.5.
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TABLE 1
Average and standard deviation of θ̂

(h0 = c, 30% censoring rate)

n v = 1 v = 1.5 v = 2 v = 2.5

50 1.061 1.064 1.064 1.065
(0.264) (0.265) (0.264) (0.265)

100 1.027 1.030 1.031 1.031
(0.164) (0.164) (0.164) (0.163)

150 1.013 1.016 1.017 1.018
(0.133) (0.132) (0.131) (0.131)

200 1.011 1.013 1.015 1.016
(0.111) (0.111) (0.110) (0.110)

coming from four cohorts; for illustration purposes, we are using the data from co-
hort 1 and cohort 2, which consist of the lifetime and daily reproduction (in terms
of number of eggs laid daily) of 576 female flies.

We are interested in whether and how early reproduction will affect the lifetime
of female Mexican fruit flies. For this reason, we exclude 28 infertile flies from
cohort 1 and 20 infertile flies from cohort 2. The period for early reproduction
is chosen to be from day 6 to day 30 based on the average reproduction curve
(Figure 2), which shows that no flies laid any eggs before day 6 and the peak of
reproduction was day 30. Once the period of early reproduction was determined
to be [6,30], we further excluded flies that died before day 30 to guarantee a fully
observed trajectory for all flies and this leaves us with a total of 479 flies for further
exploration of the functional Cox model. The mean and median lifetime of the
remaining 224 flies in cohort 1 is 56.41 and 58 days, respectively; the mean and
the median lifetime of the remaining 255 flies in cohort 2 is 55.78 and 55 days,
respectively.

The trajectories of early reproduction for these 479 flies are of interest to re-
searchers but they are very noisy, so for visualization we display the smoothed

TABLE 2
Covering rate of the 95% confidence intervals for θ

(h0 = c, 30% censoring rate)

n v = 1 v = 1.5 v = 2 v = 2.5

50 91.5% 91.9% 92.0% 91.5%
100 93.3% 92.4% 92.4% 93.0%
150 93.5% 93.1% 93.9% 93.4%
200 93.6% 93.7% 93.9% 93.8%
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FIG. 2. Average number of eggs laid daily for both cohorts.

egg-laying curves for the first 100 flies (Figure 3). The data of these 100 flies were
individually smoothed with a local linear smoother, but the subsequent data anal-
ysis for all 479 flies was based on the original data without smoothing.

Using the original egg-laying curves from day 6 to day 30 as the longitudi-
nal covariates and the cohort indicator as a time-independent covariate, the func-
tional Cox model resulted in an estimate θ̂ = 0.0562 with 95% confidence interval
[−0.1235,0.2359]. Since zero is included in the interval, we conclude that the co-
hort effect is not significant. Figure 4 shows the estimated coefficient function β̂

for the longitudinal covariate. The shaded area is the 95% pointwise bootstrap con-
fidence interval. Under the functional Cox model, a positive β̂(s) yields a larger
hazard function and a decreased probability of survival and vice versa for a nega-
tive β̂(s).

FIG. 3. Pre-smoothed individual curves for the first 100 observations.
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FIG. 4. Estimated coefficient function β̂(s) using all 479 observations and 95% pointwise c.i. for
β(s).

Checking the plot of β̂(s), we can see that β̂(s) starts with a large positive
value, but decreases fast to near zero on day 13 and stays around zero until day
22, then declines again mildly towards day 30. The pattern of β̂(s) indicates that
higher early reproduction before day 13 results in a much higher mortality rate
suggesting the high cost of early reproduction, whereas a higher reproduction that
occurs after day 22 tends to lead to a relatively lower mortality rate, suggesting
that reproduction past day 22 might be sign of physical fitness. However, the lat-
ter effect is less significant than the early reproduction effect as indicated by the
bootstrap confidence interval. Reproduction between day 13 and day 22 does not
have a major effect on the mortality rate. In other words, flies that lay a lot of
eggs in their early age (before day 13) and relatively fewer eggs after day 22
tend to die earlier, while those with the opposite pattern tend to have a longer
life span.

The Mexfly data contains no censoring, so it is easy to check how the proposed
method works in the presence of censored data. We artificially randomly censor
the data by 10% and then again by 30% using an exponential censoring distribu-
tion with parameter γ = 450 and 150, respectively. See Table 3. The estimated
coefficient θ̂ and corresponding 95% confidence intervals are given in Table 4.
Regardless of the censoring conditions, all the confidence intervals contain zero
and, therefore, indicate a insignificant cohort effect. This is consistent with the
previous result for noncensored data. The estimated coefficient functions β̂ and
the corresponding pointwise bootstrap confidence intervals are displayed in Fig-
ure 5. Despite the slightly different results for different censoring proportions and
choice of tuning parameters, all the β̂ have a similar pattern. This indicates that
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TABLE 3
Values of fixed cut-off point and parameters for generating random cut-off point, followed by the

actual censored percentage for both cohorts and the whole data

Fixed cut-off point Random cut-off point

T c = 71 T c = 62 T c ∼ exp(450) T c ∼ exp(150)

(10%) (30%) (10%) (30%)

Cohort 1 0.138 0.339 0.071 0.353
Cohort 2 0.067 0.259 0.110 0.251

Total 0.100 0.296 0.092 0.300

the proposed method is quite stable with respect to right censorship, as long as the
censoring rate is below 30%.

5. Proofs of theorems. We first introduce some notation by denoting
d(β1, β2) = ‖β1 − β2‖C� , for any β1, β2 ∈ H(K); Y(t) = 1{T ≥t}; Yj (t) = 1{Tj≥t},
1 ≤ j ≤ n; and ηβ(Xi) = ∫ 1

0 β(s)Xi(s) ds.
Recall that W = (Z,X) represents the covariates, α = (θ, β) represents the cor-

responding regression coefficient with θ the coefficient for Z and β the coefficient
function for X(·), and the true coefficient is denoted as α0 = (θ0, β0). The index
ηα(W) = θ ′Z + ∫ 1

0 β(s)X(s) ds summarizes the information carried by the covari-
ate W . To measure the distance between two coefficients α1 and α2, we use

d(α1, α2)
2 = E

(
�

[
ηα1(W) − ηα2(W)

]2)
.

Furthermore, we denote

S0n(t, α) = 1

n

n∑
j=1

Yj (t)e
ηα(Wj ), S0(t, α) = E

{
Y(t)eηα(W)},

TABLE 4
The estimated θ̂ and 95% confidence interval for θ under different

censoring conditions

10% censoring 30% censoring

Fixed cut-off point 0.0929 0.0757
[−0.0914, 0.2772 ] [−0.1268, 0.2870]

Random cut-off point 0.0104 0.1863
[−0.1705, 0.1913] [−0.0177, 0.3903]
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FIG. 5. Estimation for β(s) with censored data and 95% pointwise c.i.

and for α̃ ∈ L2 ×H(K),

S1n(t, α)[α̃] = 1

n

n∑
j=1

Yj (t)e
ηα(Wj )ηα̃(Wj ),

S1(t, α)[α̃] = E
[
Y(t)eηα(W)ηα̃(W)

]
.

Define

mn(t,W,α) = [
ηα(W) − logS0n(t, α)

]
1{0≤t≤τ },

and

m0(t,W,α) = [
ηα(W) − logS0(t, α)

]
1{0≤t≤τ }.

Let Pn and P be the empirical and probability measure of (Ti,�i,Wi) and
(T ,�,W), respectively, and P�n and P� be the subprobability measure with
�i = 1 and � = 1 accordingly. The logarithm of the partial likelihood is Mn(α) =
P�nmn(·, α). Let M0(α) = P�m0(·, α). Note that P� is restricted to T ∈ [0, τ ]
due to the 1{0 ≤ t ≤ τ } term.

A useful identity due to Lemma 2 in Sasieni (1992b) is

S1(t, α)[α̃]
S0(t, α)

= E
[
ηα̃(W)|T = t,� = 1

]
.(5.1)
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5.1. Proof of Theorem 2.1. The log-likelihood for a single sample (t,�,Z,

X(·)) is

l(h0, θ, β) = �

[
logh0(t) + Z′θ +

∫ 1

0
X(s)β(s) ds

]

− H0(t) exp
[
Z′θ +

∫ 1

0
X(s)β(s) ds

]
,

where H0(t) = ∫ t
0 h0(u) du is the baseline cumulative hazard function. Consider a

parametric and smooth submodel {h(μ1) : μ1 ∈ R} satisfying h(0) = h0 and

∂ logh(μ1)

∂μ1
(t)

∣∣∣∣
μ1=0

= a(t).

Let η(μ2)(X) = ηβ(X) + ημ2g(X), for g ∈ H(K). Therefore, η(0) = ηβ(X) and

∂η(μ2)

∂μ2
(X)

∣∣∣∣
μ2=0

= ηg(X).

Recall that r(W) = exp(ηα(W)), and M(t) is the counting process martingale as-
sociated with model (1),

M(t) = M(t |W) = �I {T ≤ t} −
∫ t

0
I {T ≥ u}r(W)dH0(u).

The score operators for the cumulative hazard H0, coefficient function β and the
score vector for θ are the partial derivatives of the likelihood l(h(μ1), θ, η(μ2)) with
respect to μ1, μ2 and θ evaluated at μ1 = μ2 = 0,

iHa := �a(T ) − r(W)

∫ ∞
0

Y(t)a(t) dH0(t) =
∫ ∞

0
a(t) dM(t),

iβg := ηg(X)
[
� − r(W)H0(T )

] =
∫ ∞

0
ηg(X)dM(t),

iθ := Z
[
� − r(W)H0(T )

] =
∫ ∞

0
Z dM(t).

Define L(P
(u)
T ) := {a ∈ L2 : E[�a2(T )] < ∞} and L(P

(u)
X ) := {g ∈ H(K) :

E[�ηg(X)] = 0;E[�η2
g(X) < ∞]}. Let

AH = {
iH a : a ∈ L

(
P

(u)
T

)}
,

and

G = {
iβg : g ∈ L

(
P

(u)
X

)}
.

To calculate the information bound for θ , we need to find the (least favorable)
direction (a∗, g∗) such that iθ − iH a∗ − iβg∗ is orthogonal to the sum space A =
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AH + G. That is, (a∗, g∗) must satisfy

E
[(

iθ − iH a∗ − iβg∗)
iH a

] = 0, a ∈ L
(
P

(u)
T

)
,

E
[(

iθ − iHa∗ − iβg∗)
iβg

] = 0, g ∈ L
(
P

(u)
X

)
.

Following the proof of Theorem 3.1 in Huang (1999), we can show that (a∗, g∗)
satisfies

E
[
�

(
Z − a∗ − ηg∗

)
a
] = 0, a ∈ L

(
P

(u)
T

)
,(5.2)

E
[
�

(
Z − a∗ − ηg∗

)
ηg

] = 0, g ∈ L
(
P

(u)
X

)
.(5.3)

Therefore, (a∗, g∗) is the solution to the following equations:

E
(
Z − a∗ − ηg∗ |T ,� = 1

) = 0, a.s. P
(u)
T ,

E
(
Z − a∗ − ηg∗|X,� = 1

) = 0, a.s. P
(u)
X .

So, (a∗, g∗) ∈ L(P
(u)
T ) × L(P

(u)
X ) minimizes

E
{
�

∥∥Z − a(T ) − ηg(X)
∥∥2}

.(5.4)

It follows from Conditions A3 and A4 that the space L(P
(u)
T ) × L(P

(u)
X ) is closed,

so that the minimizer of (5.4) is well defined. Further, the solution can be obtained
by the population version of the ACE algorithm of Breiman and Friedman (1985).

5.2. Proof of Theorem 2.2. For some large number M , such that ‖θ0‖∞ <

M and ‖β0‖K < M , define RM = {θ ∈ R
p,‖θ‖∞ < M} and HM = {β ∈

H(K),‖β‖K < M}. Let αM = (θM,βM) be the penalized partial likelihood es-
timator with minimum taken over LM ×HM , that is,

αM = arg min
α∈RM×HM

−n−1
n∑

i=1

�i

{
ηα(Wi) − log

∑
Tj>Ti

exp
{
ηα(Wj )

}}
(5.5)

+ λ · J (β).

We first prove that

sup
α∈RM×HM

∣∣Mn(α) − M0(α)
∣∣ P→ 0.(5.6)

Observe that∣∣Mn(α) − M0(α)
∣∣

≤ ∣∣P�nmn(·, α) − P�nm0(·, α)
∣∣ + ∣∣P�nm0(·, α) − P�m0(·, α)

∣∣
≤ P�n

∣∣logS0n(T ,α) − logS0(T ,α)
∣∣1{0≤T ≤τ } + ∣∣(Pn − P)�m0(·, α)

∣∣
� sup

0≤t≤τ

|S0n(t, α) − S0(t, α)| + ∣∣(Pn − P)�m0(·, α)
∣∣

= sup
0≤t≤τ

∣∣(Pn − P)Y (t)eηα(W)
∣∣ + ∣∣(Pn − P)�m0(·, α)

∣∣.
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Lemma 3 shows that F1 = {�m0(t,W,α) : α ∈ RM × HM} and F2 = {Y(t) ×
eηα(W) : α ∈ RM × HM,0 ≤ t ≤ τ } are P-Glivenko–Cantelli, which means that
both terms on the right-hand side above converge to zero in probability uniformly
with respect to α ∈ RM ×HM . Therefore, (5.6) holds.

The definition of αM in (5.5) indicates that

−Mn

(
αM) + λJ

(
βM) ≤ −Mn(α0) + λJ (β0).

Rearranging the inequality with Mn(α
M) on one side and the fact that λ → 0 as

n → ∞ lead to

Mn

(
αM) ≥ Mn(α0) − op(1).(5.7)

On the other hand, Lemma 2 implies that supd(α,α0)≥ε M0(α) < M0(α0). Com-
bining this with (5.6) and (5.7) and by the consistency result in van der Vaart
(2000), Theorem 5.7 on page 45, we can show that αM is consistent, that is,

d(αM,α0)
P→ 0.

Part (i) now follows from

d(α̂, α0) ≤ d
(
α̂, αM) + d

(
αM,α0

)
,

and P(α̂ = αM) = P(‖β̂‖K < M,‖θ̂‖∞ < M) → 1, as M → ∞, that is,
d(α̂, αM) → 0 a.s.

For part (ii), we follow the proof of Theorem 3.4.1 in van der Vaart and Wellner
(1996). We first show that

E∗ sup
δ/2≤d(α,α0)≤δ

√
n
∣∣(Mn − M0)(α − α0)

∣∣ � φn(δ),(5.8)

where φn(δ) = δ(2r−1)/(2r). Direct calculation yields that

(Mn − M0)(α − α0)

= P�nmn(·, α) − P�nmn(·, α0) − P�m0(·, α) + P�m0(·, α0)

= (P�n − P�)
(
m0(·, α) − m0(·, α0)

)
+ P�n

(
mn(·, α) − mn(·, α0) − m0(·, α) + m0(·, α0)

)
= (P�n − P�)

(
m0(·, α) − m0(·, α0)

)
+P�n

(
log

S0(T ,α)

S0(T ,α0)
− log

S0n(T ,α)

S0n(T ,α0)

)
= I + II.

For the first term, I = (P�n −P�)(m0(·, α)−m0(·, α0)). By Lemma 4, we have

sup
δ/2≤d(α,α0)≤δ

|I | = O
(
δ(2r−1)/(2r)n−1/2)

.
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For the second term II, we have

sup
δ/2≤d(α,α0)≤δ

|II|

≤ sup
δ/2≤d(α,α0)≤δ

t∈[0,τ ]

∣∣∣∣log
S0(t, α)

S0(t, α0)
− log

S0n(t, α)

S0n(t, α0)

∣∣∣∣
≤ sup

δ/2≤d(α,α0)≤δ

t∈[0,τ ]

c

∣∣∣∣ S0n(t, α)

S0n(t, α0)
− S0(t, α)

S0(t, α0)

∣∣∣∣
= sup

δ/2≤d(α,α0)≤δ

t∈[0,τ ]

c

∣∣∣∣S0n(t, α)S0(t, α0) − S0n(t, α0)S0(t, α)

S0(t, α0)S0n(t, α0)

∣∣∣∣.
For t ∈ [0, τ ], the denominator S0(t, α0)S0n(t, α0) is bounded away from zero with
probability tending to one. The numerator satisfies

S0n(t, α)S0(t, α0) − S0n(t, α0)S0(t, α)

= S0(t, α0)
[
S0n(t, α) − S0n(t, α0) − S0(t, α) + S0(t, α0)

]
− [

S0n(t, α0) − S0(t, α0)
][

S0(t, α) − S0(t, α0)
]
.

For the first term on the right-hand side, we have S0(t, α0) = O(1) and[
S0n(t, α) − S0n(t, α0) − S0(t, α) + S0(t, α0)

]
= (Pn − P)

{
Y(t)

[
exp

(
ηα(W)

) − exp
(
ηα0(W)

)]}
.

Define the above (Pn − P){Y(t)[exp(ηα(W)) − exp(ηα0(W))]} def= III.
Lemma 4 implies that

sup
δ/2≤d(α,α0)≤δ

|III| = O
(
δ(2r−1)/(2r)n−1/2)

.

For the second term, the central limit theorem implies S0n(t, α0) − S0(t, α0) =
Op(n−1/2), and∣∣S0(t, α) − S0(t, α0)

∣∣ ≤ E
{
Y(t)

∣∣exp
(
ηα(W)

) − exp
(
ηα0(W)

)∣∣}
�

(
E

[
ηα(W) − ηα0(W)

]2)1/2

� d(α,α0).

Therefore,

sup
δ/2≤d(α,α0)≤δ

|II| ≤ O
(
δ(2r−1)/(2r)n−1/2) + O

(
δn−1/2) = O

(
δ(2r−1)/(2r)n−1/2)

.
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Combining I and II yields

E∗ sup
δ/2≤d(α,α0))≤δ

√
n
∣∣(Mn − M0)(α − α0)

∣∣ � O
(
δ(2r−1)/(2r)).

Furthermore, Lemma 2 implies

sup
δ/2≤d(α,α0)≤δ

P�m0(·, α) − P�m0(·, α0) � −δ2.

Let rn = nr/(2r+1). It is easy to check that rn satisfies r2
nφn(

1
rn

) ≤ √
n, and

Mn(α̂λ) ≥ Mn(α0) + λ
[
J (β̂λ) − J (β0)

] ≥ Mn(α0) − Op

(
r−2
n

)
with λ = O(r−2

n ) = O(n−2r/(2r+1)).
So far, we have verified all the conditions in Theorem 3.4.1 of van der Vaart and

Wellner (1996), and thus conclude that

d(α̂, α0) = Op

(
r−1
n

) = Op

(
n−r/(2r+1)).

For part (iii), recall the projections a∗ and g∗ defined in Theorem 2.1, then

d(α̂, α0)
2 = E�

[
ηα̂(W) − ηα0(W)

]2

= E�
[
Z′(θ̂ − θ0) + (

η
β̂
(X) − ηβ0(X)

)]2

= E�
[(

Z − a∗(T ) − ηg∗(X)
)′
(θ̂ − θ0) + (

a∗(T ) + ηg∗(X)
)
(θ̂ − θ0)

(5.9)
+ (

η
β̂
(X) − ηβ0(X)

)]2

= E�
[(

Z − a∗(T ) − ηg∗(X)
)′
(θ̂ − θ0)

]2

+E�
[(

a∗(T ) + ηg∗(X)
)
(θ̂ − θ0) + (

η
β̂
(X) − ηβ0(X)

)]2
.

Since I (θ) is nonsingular, it follows that‖θ̂ −θ0‖2 = Op(n−2r/(2r+1)). This in turn
implies

d(β̂, β0)
2 = Op

(
n−2r/(2r+1)).

5.3. Proof of Theorem 2.3. Let u = (t,Z,X(·)). For g ∈ H(K), define

sn(u,α)[g] = ηg(X) − S1n(t, α)[g]
S0n(t, α)

, s(u,α)[g] = ηg(X) − S1(t, α)[g]
S0(t, α)

,

and for Z ∈ R
d and the identify map I (Z) = Z, define

sn(u,α)[Z] = Z − S1n(t, α)[I ]
S0n(t, α)

, s(u,α)[Z] = ηg(X) − S1(t, α)[I ]
S0(t, α)

,

where S1n(t, α)[I ] = 1
n

∑n
j=1 Yj (t)e

ηα(Wj )Zj and S1(t, α)[I ] = EY(t)eηα(W)Z.
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By analogy to the score function, we call the derivatives of the partial likelihood
with respect to the parameters the partial score functions. The partial score function
based on the partial likelihood for θ is

inθ (α) = P�nsn(·, α)[Z].
The partial score function based on the partial likelihood for β in a direction g ∈
H(K) is

inβ(α)[g] = P�nsn(·, α)[g].
Recall that (θ̂ , β̂) is defined to maximize the penalized partial likelihood, that is,

−P�nmn(·, θ̂ , β̂) + λJ (β̂) ≤ −P�nmn(·, θ, β) + λJ (β),

for all θ ∈ R
p and β ∈ H(K). Since the penalty term is unrelated to θ , the partial

score function should satisfy

inθ (α̂) = P�nsn(·, α̂)[Z] = 0.

On the other hand, the partial score function for β satisfies

inβ(α̂)[g] = P�nsn(·, α)[g] = O(λ) = op

(
n−1/2)

, for all g ∈ H(K).

Combining this with Lemma 5 and Lemma 6, we have

n1/2P�

{
s(·, g0)

[
Z − h∗]}⊗2

(θ̂ − θ0) = −n1/2P�nsn(·, α0)
[
Z − g∗] + op(1).

Let

Mi(t) = �iI {Ti ≤ t} −
∫ t

0
Yi(u) exp

(
ηα0(Wi)

)
dH0(u), 1 ≤ i ≤ n.

We can write

n1/2P�nsn(·, α0)
[
Z − g∗]

= n−1/2
n∑

i=1

∫ τ

0

[
Zi − ηh∗(Xi) − S1n(t, α0)[Z − g∗]

S0n(t, α0)

]
dMi(t).

Thus,

n1/2P�nsn(·, α0)
[
Z − g∗] − n−1/2

n∑
i=1

∫ τ

0

[
Zi − ηh∗(Xi)

− S1(t, α0)[Z − g∗]
S0(t, α0)

]
dMi(t)

= n−1/2
n∑

i=1

∫ τ

0

[
S1(t, α0)[Z − g∗]

S0(t, α0)
− S1n(t, α0)[Z − g∗]

S0n(t, α0)

]
dMi(t).
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Because

n−1
n∑

i=1

∫ τ

0

[
S1(t, α0)[Z − g∗]

S0(t, α0)
− S1n(t, α0)[Z − g∗]

S0n(t, α0)

]
Yi(t)

× exp
[
ηα0(Wi)

]
dHi(t)

P→ 0,

by Lenglart’s inequality, as stated in Theorem 3.4.1 and Corollary 3.4.1 of Fleming
and Harrington (1991), we have

n1/2P�nsn(·, α0)
[
Z − g∗]

= n−1/2
n∑

i=1

∫ τ

0

[
Zi − ηh∗(Xi) − S1(t, α0)[Z − g∗]

S0(t, α0)

]
dMi(t) + op(1).

Recall that

S1(t, α0)[Z − g∗]
S0(t, α0)

= E
[[

Z − ηg∗(W)
]|T = t,� = 1

] = a∗(t).

By the definition of the efficient score function l∗θ , we have

n1/2P�nsn(·, α0)
[
Z − g∗] = n−1/2

n∑
i=1

l∗θ (Ti,�i,Wi) + op(1)
d→ N

(
0, I (θ0)

)
.

5.4. Proof of Theorem 2.4. To get the minmax lower bound, it suffices to show
that, when the true baseline hazard function h0 and the true θ0 are fixed and known,
for a subset H∗ of H(K),

lim
a→0

lim
n→∞ inf

β̂

sup
β0∈H∗

Ph0,θ0,β0

{
d(β̂, β0) ≥ an−r/(2r+1)} = 1.(5.10)

If we can find a subset {β(0), . . . , β(N)} ⊂ H∗ with N increasing with n, such
that for some positive constant c and all 0 ≤ i < j ≤ N ,

d2(
β(i), β(j)) ≥ cγ 2r/(2r+1)n−2r/(2r+1),(5.11)

and

1

N

N∑
j=1

KL(Pj ,P0) ≤ γ logN,(5.12)

then we can conclude, according to Tsybakov (2009), Theorem 2.5 on page 99,
that

inf
β̂

sup
β∈H∗

P
(
d2(

β(i), β(j)) ≥ cγ 2r/(2r+1)n−2r/(2r+1))

≥
√

N

1 + √
N

(
1 − 2γ −

√
2γ

logN

)
,
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which yields

lim
a→0

lim
n→∞ inf

β̂

sup
β0∈H∗

P
(
d
(
β(i), β(j)) ≥ an−r/(2r+1)) ≥ 1.

Hence, Theorem 2.4 will be proved.
Next, we are going to construct the set H∗ and the subset {β(0), . . . , β(N)} ⊂ H∗,

and then show that both (5.11) and (5.12) are satisfied.
Consider the function space

H∗ =
{
β =

2M∑
k=M+1

bkM
−1/2LK1/2ϕk : (bM+1, . . . , b2M) ∈ {0,1}M

}
,(5.13)

where {ϕk : k ≥ 1} are the orthonomal eigenfunctions of T (s, t) = K1/2C� ×
K1/2(s, t) and M is some large number to be decided later.

For any β ∈H∗, observe that

‖β‖2
K =

∥∥∥∥∥
2M∑

k=M+1

bkM
−1/2LK1/2ϕk

∥∥∥∥∥
2

K

=
2M∑

k=M+1

b2
kM

−1‖LK1/2ϕk‖2
K

≤
2M∑

k=M+1

M−1‖LK1/2ϕk‖2
K

= 1,

which follows from the fact that

〈LK1/2ϕk,LK1/2ϕl〉K = 〈LKϕk,ϕl〉K = 〈ϕk,ϕl〉L2 = δkl.

Therefore, H∗ ⊂ H(K) = {β : ‖β‖k < ∞}.
The Varshamov–Gilbert bound shows that for any M ≥ 8, there exists a set

B = {b(0), b(1), . . . , b(N)} ⊂ {0,1}M such that:

1. b(0) = (0, . . . ,0)′;
2. H(b, b′) > M/8 for any b �= b′ ∈ B, where H(·, ·) = 1

4
∑M

i=1(bi − b′
i )

2 is the
Hamming distance;

3. N ≥ 2M/8.

The subset {β(0), . . . , β(N)} ⊂ H∗ is chosen as β(i) = ∑2M
k=M+1 b

(i)
k−MM−1/2 ×

LK1/2ϕk , i = 0, . . . ,N .
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For any 0 ≤ i < j ≤ N , observe that

d2(
β(i), β(j)) = E�

(
ηβ(i)(X) − ηβ(j)(X)

)2

=
∥∥∥∥∥LC

1/2
�

2M∑
k=M+1

(
b

(i)
k−M − b

(j)
k−M

)
M−1/2LK1/2ϕk

∥∥∥∥∥
2

L2

=
2M∑

k=M+1

(
b

(i)
k−M − b

(j)
k−M

)2
M−1∥∥L

C
1/2
�

LK1/2ϕk

∥∥2
L2

=
2M∑

k=M+1

(
b

(i)
k−M − b

(j)
k−M

)2
M−1sk.

On one hand, we have

d2(
β(i), β(j)) =

2M∑
k=M+1

(
b

(i)
k−M − b

(j)
k−M

)2
M−1sk

≥ s2MM−1
M∑

k=1

(
b

(i)
k − b

(j)
k

)2

= 4s2MM−1H
(
b(i), b(j))

≥ s2M/2.

On the other hand, we have

d2(
β(i), β(j)) =

2M∑
k=M+1

(
b

(i)
k−M − b

(j)
k−M

)2
M−1sk

≤ sMM−1
M∑

k=1

(
b

(i)
k − b

(j)
k

)2

≤ sM.

So altogether,

s2M/2 ≤ d2(
β(i), β(j)) ≤ sM.(5.14)

Let Pj , j = 1, . . . ,N , be the likelihood function with data {(Ti,�i,Wi(s)), i =
1, . . . , n} and β(j), that is,

Pj =
n∏

i=1

[
fT u|W(Ti)ST c|W(Ti)

]�i · [
fT c|W(Ti)ST u|W(Ti)

]1−�i .
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Let cT c = ∏n
i=1[ST c|W(Ti)]�i [ST u|W(Ti)]1−�i , which does not depend on β(j),

then

Pj = cT c

n∏
i=1

[
h0(Ti) exp

(
θ ′

0Zi + ηβ(j)(Xi)
)]�i · exp

{−H0(Ti) · eθ ′
0Zi+η

β(j) (Xi)}.
We calculate the Kullback–Leibler distance between Pj and P0 as

KL(Pj ,P0) = EPj
log

Pj

P0

= EPj

{
�i

n∑
i=1

{
ηβ(j)−β(0) (Xi)

}

+
n∑

i=1

H0(Ti)e
θ ′

0Zi
[
exp

(
ηβ(0) (Xi)

) − exp
(
ηβ(j)(Xi)

)]}

= nEPj
�

[
ηβ(j)−β(0) (X)

]
+ nEPj

H0(T )eθ ′
0Z

[
exp

(
ηβ(0) (X)

) − exp
(
ηβ(j)(X)

)]
= nEW

Pj
E

T ,�
Pj

{
H0(T )|W}

eθ ′
0Z

[
exp

(
ηβ(0) (X)

) − exp
(
ηβ(j)(X)

)]
,

where

E
T ,�
pj

(
H0(T )|W )

= E
T c{

E
T ,�
pj

(
H0(T )|T c,W

)∣∣W}
= E

T c
{∫ T c

0
H0(t)fT u|W(t) dt + H0

(
T c)

P
(
T u > T c|T c,W

)∣∣W}
,

∫ T c

0
H0(t)fT u|W(t) dt

=
∫ T c

0
H0(t) · h0(t) exp

[
θ ′

0Z + ηβ(j)(X)
]
exp

{−H0(t)e
θ ′

0Z+η
β(j) (X)}

dt

= e
−θ ′

0Z−η
β(j) (X)

∫ T c

0
e
θ ′

0Z+η
β(j) (X)

H0(T )

× exp
{−H0(T ) · eθ ′

0Z+η
β(j) (X)}

de
θ ′

0Z+η
β(j) (X)

H0(T )

= exp
(−θ ′

0Z + ηβ(j)(X)
) ∫ a

0
ue−u du

∣∣∣∣
a=e

θ ′
0Z+η

β(j) (X)
H0(T

c)

= exp
(−θ ′

0Z − ηβ(j)(X)
)[

1 − e−a − ae−a]∣∣
a=e

θ ′
0Z+η

β(j) (X)
H0(T

c)
,
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and

P
(
T u > T c|T c,W

) = ST u|W
(
T c)

= exp
{−H0

(
T c)eθ ′

0Z+η
β(j) (X)}

.

Therefore,

E
T ,�
pj

(
H0(T )|T c,W

)
= e

−θ ′
0Z−η

β(j) (X)[
1 − exp

{−H0
(
T c)eθ ′

0Z+η
β(j) (X)}] − H0

(
T c)

× exp
{−H0

(
T c)eθ ′

0Z+η
β(j) (X)} + H0

(
T c) exp

{−H0
(
T c)eθ ′

0Z+η
β(j) (X)}

= e
−θ ′

0Z−η
β(j) (X)[

1 − exp
{−H0

(
T c)eθ ′

0Z+η
β(j) (X)}]

= e
−θ ′

0Z−η
β(j) (X)[

FT u|W
(
T c)]

= e
−θ ′

0Z−η
β(j) (X)

P
(
T u ≤ T c|T c,W

)
,

and further

E
T ,�
pj

(
H0(T )|W ) = E

T c{
E

T ,�
pj

(
H0(T )|T c,W

)|W}
= e

−θ ′
0Z−η

β(j) (X)
P

(
T u ≤ T c|W )

= e
−θ ′

0Z−η
β(j) (X)

E[�|W ].
Then the KL distance becomes

KL(Pj ,P0) = nEW
Pj
E[�|W ]e−θ ′

0Z−η
β(j) (X)

eθ ′
0Z

[
exp

(
ηβ(0) (X)

) − exp
(
ηβ(j)(X)

)]
= nE

W,�
Pj

�
[
exp

(
ηβ(0) (X) − ηβ(j)(X)

) − 1
]

= nE
W,�
Pj

[1
2�

(
ηβ(0) (X) − ηβ(j)(X)

)2 + o
(
�

(
ηβ(0) (X) − ηβ(j)(X)

)2)]
≤ nEX

Pj

[1
2

(
ηβ(0) (X) − ηβ(j)(X)

)2 + o
((

ηβ(0) (X) − ηβ(j)(X)
)2)]

� nd2(
β(j), β(0))

� nsM.

Therefore, for some positive constant c1, we have shown that

KL(Pj ,P0) ≤ c1nM−2r .

By taking M to be the smallest integer greater than c2γ
−1/(2r+1)n1/(2r+1) with

c2 = (c1 · 8 log 2)1/(1+2r), we verified (5.12) that

1

N

N∑
j=1

KL(Pj ,P0) ≤ γ logN.
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Meanwhile, since d2(β(i), β(j)) ≥ s2M/2 and s2M � (2M)−2r , condition (5.11)
is verified by plugging in M .

SUPPLEMENTARY MATERIAL

Supplement to “Optimal estimation for the functional Cox model” (DOI:
10.1214/00-AOS1441SUPP; .pdf). Due to space constraint, the derivation of
GCV(λ) and proofs of lemmas are relegated to the supplementary file [Qu, Wang
and Wang (2016)].
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