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CENTRAL LIMIT THEOREM FOR RANDOM WALKS IN DOUBLY
STOCHASTIC RANDOM ENVIRONMENT: H−1 SUFFICES

BY GADY KOZMA∗,1,3 AND BÁLINT TÓTH†,‡,2,3

The Weizmann Institute of Science∗, University of Bristol† and Rényi Institute‡

We prove a central limit theorem under diffusive scaling for the displace-
ment of a random walk on Z

d in stationary and ergodic doubly stochastic
random environment, under the H−1-condition imposed on the drift field.
The condition is equivalent to assuming that the stream tensor of the drift
field be stationary and square integrable. This improves the best existing re-
sult [Fluctuations in Markov Processes—Time Symmetry and Martingale Ap-
proximation (2012) Springer], where it is assumed that the stream tensor is
in L max{2+δ,d}, with δ > 0. Our proof relies on an extension of the relaxed
sector condition of [Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012) 463–476],
and is technically rather simpler than existing earlier proofs of similar re-
sults by Oelschläger [Ann. Probab. 16 (1988) 1084–1126] and Komorowski,
Landim and Olla [Fluctuations in Markov Processes—Time Symmetry and
Martingale Approximation (2012) Springer].

1. Introduction: Setup and main result. Since its appearance in the prob-
ability and physics literature in the mid-seventies, the general topics of random
walks/diffusions in random environment became the most complex and robust area
of research. For a general overview of the subject and its historical development
we refer the reader to the surveys Kozlov [14], Zeitouni [30], Biskup [4] or Kuma-
gai [16], written at various stages of this rich story. The main problem considered
in our paper is that of diffusive limit in the doubly stochastic (and hence, a priori
stationary) case.

1.1. The random walk and the H−1-condition. Let (�,F , π, τz : z ∈ Z
d) be

a probability space with an ergodic Z
d -action. Denote by E+ := {e1, . . . , ed : ei ∈

Z
d, ei · ej = δi,j } the standard generating basis in Z

d and let E := {±ej : ej ∈
E+} = {k ∈ Z

d : |k| = 1} be the set of possible steps of a nearest-neighbour walk
on Z

d . Assume that bounded measurable functions pk : � → [0, s∗], k ∈ E are
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given (s∗ denotes the common bound), and assume the pk satisfy bistochasticity,
by which we mean the following property:∑

k∈E

pk(ω) = ∑
k∈E

p−k(τkω).(1)

Lift these functions to the lattice Z
d by defining

Pk(x) = Pk(ω, x) := pk(τxω).(2)

Given these, define the continuous time nearest neighbour random walk X(t) as a
continuous time Markov chain on Z

d , with X(0) = 0 and conditional jump rates

Pω

(
X(t + dt) = x + k | X(t) = x

) = Pk(ω, x) dt + o(dt),(3)

where the subscript ω denotes that the random walk X(t) is a continuous time
Markov chain on Z

d conditionally, with ω ∈ � sampled according to π . Note that
(1) is equivalent to ∑

k∈E

Pk(ω, x) = ∑
k∈E

P−k(ω, x + k),

which is exactly bistochasticity of the random walk defined in (3) above. Since the
pk are bounded, so will be the total jump rate of the walk

p(ω) := ∑
k∈E

pk(ω) ≤ 2ds∗.

Thus, there is no difference between the long time asymptotics of this walk and
the discrete time (possibly lazy) walk n �→ Xn ∈ Z

d with jump probabilities

Pω(Xn+1 = y | Xn = x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
2ds∗)−1

Pk(ω, x) if y − x = k ∈ E ,

1 − (
2ds∗)−1 ∑

l∈E

Pl(ω, x) if y − x = 0,

0 if y − x /∈ E ∪ {0}.
We speak about continuous time walk only for reasons of convenience, in order
to easily quote facts and results from Kipnis–Varadhan theory of CLT for additive
functionals of Markov processes, without tedious reformulations.

We formulate our problem and prove our main result in the context of nearest
neighbour walks. This is only for convenience reason. The main result of this paper
holds true for finite range bistochastic RWREs under the appropriate conditions.
For more details on this, see the remark after Theorem 1, further down in the paper.

We will use the notation Pω(·), Eω(·) and Varω(·) for quenched probability,
expectation and variance. That is: probability, expectation, and variance with re-
spect to the distribution of the random walk X(t), conditionally, with given fixed
environment ω. The notation P(·) := ∫

� Pω(·) dπ(ω), E(·) := ∫
� Eω(·) dπ(ω) and

Var(·) := ∫
� Varω(·) dπ(ω) + ∫

� Eω(·)2 dπ(ω) − E(·)2 will be reserved for an-
nealed probability, expectation and variance, that is, probability, expectation and
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variance with respect to the random walk trajectory X(t) and the environment ω,
sampled according to the distribution π .

It is well known (and easy to check see; e.g., [14]) that due to double stochas-
ticity (1) the annealed set-up is stationary and ergodic in time: the process of the
environment as seen from the position of the random walker (to be formally de-
fined soon) is stationary and ergodic in time under the probability measure π and
consequently the random walk t �→ X(t) will have stationary and ergodic annealed
increments.

Next, we define, for k ∈ E , vk : � → [−s∗, s∗], sk : � → [0, s∗], and ψ,ϕ :
� →R

d ,

vk(ω) := pk(ω) − p−k(τkω)

2
, ϕ(ω) := ∑

k∈E

kvk(ω),(4)

sk(ω) := pk(ω) + p−k(τkω)

2
, ψ(ω) := ∑

k∈E

ksk(ω).(5)

Their corresponding lifting to Z
d are

Vk(x) = Vk(ω, x) := vk(τxω), 	(x) = 	(ω,x) := ϕ(τxω),

Sk(x) = Sk(ω, x) := sk(τxω), 
(x) = 
(ω,x) := ψ(τxω).
(6)

Note that

−s∗ ≤ vk(ω) ≤ s∗, 0 ≤ sk(ω) ≤ s∗,∣∣ϕ(ω)
∣∣ ≤ 2

√
ds∗,

∣∣ψ(ω)
∣∣ ≤ √

ds∗, a.s.

The local quenched drift of the random walk is

Eω

(
dX(t) | X(s) : 0 ≤ s ≤ t

) = (


(
ω,X(t)

)+ 	
(
ω,X(t)

))
dt + o(dt).

Note that from (1) and the definitions (4), (5) it follows that for π -almost all ω ∈ �:

vk(ω) = −v−k(τkω),
∑
k∈E

vk(ω) = 0,(7)

sk(ω) = s−k(τkω),
∑
k∈E

sk(ω) =: s(ω).(8)

Equation (7) means that Vk : Zd → [−s∗, s∗] is π -almost surely a bounded and
sourceless flow on Z

d , or equivalently, 	 : Zd →R
d is a bounded divergence-free

vector field on Z
d . On the other hand, (8) implies that

ψi(ω) = sei
(ω) − sei

(τ−ei
ω),


i(ω, x) = Sei
(ω, x) − Sei

(ω, x − ei).
(9)
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That is, the vector field 
 : Zd → R
d is component-wise a directional derivative.

It follows in particular that

E(
) = 0.(10)

We assume that a similar condition holds for the drift field 	, too:

E(	) = ∑
k∈E

k

∫
�

vk(ω)dπ(ω) = 0,(11)

which due to (7), in the nearest neighbour set-up, is obviously the same as assum-
ing that for k ∈ E ∫

�
vk(ω)dπ(ω) = 0.(12)

From (10) and (11), it follows that in the annealed mean drift of the walk is nil:

E
(
X(t)

) =
∫
�

Eω

(
X(t)

)
dπ(ω) = 0.

Under these conditions, the law of large numbers

lim
t→∞ t−1X(t) = 0, a.s.(13)

follows directly from the ergodic theorem.
Our next assumption is an ellipticity condition for the symmetric part of the

jump rates: there exists another constant s∗ ∈ (0, s∗] such that for π -almost all
ω ∈ � and all k ∈ E

sk(ω) ≥ s∗, π-a.s.(14)

Note that no ellipticity condition is imposed on the jump probabilities (pk)k∈E : it
may happen that pk = 0 with positive π -probability. Using a time change, we may
assume s∗ = 1, and we will occasionally make this assumption for simplicity.

Regarding fluctuations around the law of large numbers (13), we will soon prove
that under the ellipticity condition (14) a diffusive lower bound holds: for any fixed
vector v ∈ R

d

lim
t→∞

t−1E
((

v · X(t)
)2)

> 0.(15)

Explicit lower bound will be provided in Proposition 1 below.
A diffusive upper bound also holds under a subtle condition on the covariances

of the drift field 	 : Zd →R
d . Denote

Cij (x) := Cov
(
	i(0),	j (x)

) =
∫
�

ϕi(ω)ϕj (τxω)dπ(ω), x ∈ Z
d,

Dij (x) := Cov
(

i(0),
j (x)

) =
∫
�

ψi(ω)ψj (τxω)dπ(ω), x ∈ Z
d,

(16)
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Ĉij (p) := ∑
x∈Zd

e
√−1x·pCij (x), p ∈ [−π,π)d,

D̂ij (p) := ∑
x∈Zd

e
√−1x·pDij (x), p ∈ [−π,π)d.

(17)

The Fourier transform is meant as a distribution on [−π,π)d . More precisely, by
Herglotz’s theorem, Ĉ and D̂ are positive definite d × d matrix-valued measures
on [−π,π)d . Hence, (12) is equivalent to Ĉij ({0}) = 0, for all i, j = 1, . . . , d .

The fact that 
 is a spatial derivative of an L2 function (9) implies that∫
[−π,π)d

(
d∑

j=1

(1 − cospj )

)−1 d∑
i=1

D̂ii(p) dp < ∞.(18)

A similar infrared bound imposed on the covariances of the field x �→ 	(x) is the
notorious H−1-condition referred to in the title of this paper.

H−1-condition (first formulation): We assume∫
[−π,π)d

(
d∑

j=1

(1 − cospj )

)−1 d∑
i=1

Ĉii(p) dp < ∞.(19)

For later use, we define the positive definite and bounded d × d matrices

C̃ij :=
∫
[−π,π)d

(
d∑

j=1

(1 − cospj )

)−1

Ĉij (p) dp < ∞,(20)

D̃ij :=
∫
[−π,π)d

(
d∑

j=1

(1 − cospj )

)−1

D̂ij (p) dp < ∞.(21)

The probabilistic content of the infrared bounds (18) and (19) is the following.
Let t �→ S(t) be a continuous time simple symmetric random walk on Z

d with
jump rate 1, fully independent of the random fields x �→ (	(x),
(x)). Then (18)
and (19) are in turn equivalent to

lim
T →∞T −1E

(∣∣∣∣∫ T

0


(
S(t)

)
dt

∣∣∣∣2) < ∞,

and
H−1-condition (second formulation):

lim
T →∞T −1E

(∣∣∣∣∫ T

0
	
(
S(t)

)
dt

∣∣∣∣2) < ∞.(22)

The expectations in the last two expressions are taken over the random walk
t �→ S(t) and the random scenery x �→ (	(x),
(x)). We omit the straightfor-
ward proof of these equivalences. Two more equivalent formulations of the H−1-
condition (19)/(22) will appear later in the paper.
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The infrared bounds (18) and (19) imply a diffusive upper bound: for any fixed
vector v ∈ R

d

lim
t→∞ t−1E

((
v · X(t)

)2)
< ∞.(23)

An explicit upper bound will be provided in Proposition 1 below.
Now, (15) and (23) jointly suggest that the central limit theorem

t−1/2X(t) ⇒ N
(
0, σ 2)(24)

should hold with some nondegenerate d × d covariance matrix σ 2. Attempts to
prove the CLT (24) under the minimal conditions of bistochasticity (1), ellipticity
(14), no drift (12) and H−1 (19) have a notorious history. In Kozlov [14], a similar
CLT is announced under the somewhat restrictive condition that the random field
x �→ P(x) in (2) be finitely dependent. However, as pointed out in Komorowski
and Olla [12] the proof in [14] is incomplete. In the same paper [12], the CLT (24)
is stated, but as pointed out in [10] this proof is yet again defective. Finally, in [10]
a complete proof is given, however, with more restrictive conditions: instead of the
H−1-condition (19) a rather stronger integrability condition on the field x �→ 	(x)

is assumed. See the comments in Section 6. More detailed historical comments on
this story can be found in the notes after Chapter 3 of [10]. Our main result in
the present paper is a complete proof of the CLT (24), under the conditions listed
above.

1.2. Central limit theorem for the random walk. We define the environment
process, as seen from the random walker:

η(t) := τX(t)ω

This is a pure jump process on � with bounded total jump rates. So, its construc-
tion does not pose any technical difficulty. As already mentioned, it is well known
(and easy to check, see; e.g., Kozlov [14]) that due to condition (1) the probability
measure π is stationary and ergodic for the Markov process t �→ η(t). We will
denote by (Ft )t≥0 the filtration generated by this process:

Ft := σ
(
η(s) : 0 ≤ s ≤ t

)
.

It is most natural to decompose X(t) as

X(t) =
{
X(t) −

∫ t

0

(
ψ
(
η(s)

)+ ϕ
(
η(s)

))
ds

}
+
∫ t

0

(
ψ
(
η(s)

)+ ϕ
(
η(s)

))
ds

(25)
=: M(t) + I (t).

In this decomposition, the first term is clearly a square integrable (Ft )-martingale
with stationary and ergodic increments and conditional covariances (or, quadratic
variation)

E
(
dMi(t)dMj(t) | Ft

) = δi,j

(
pei

(
η(t)

)+ p−ei

(
η(t)

))
dt.(26)
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Thus, due to the martingale CLT (see, e.g., [7])

t−1/2M(t) ⇒ N
(
0, σ 2

M

)
,

where (
σ 2

M

)
ij = 2δi,j

∫
�

sei
(ω)dπ(ω).(27)

The difficulty is caused by the compensator integral term I (t).
The following proposition quantifies assertions (15) and (23).

PROPOSITION 1. Let t �→ X(t) be a random walk in doubly stochastic (1)
random environment with no drift (12). Then the ellipticity (14) and H−1 (19)
conditions imply the following diffusive lower and upper bounds: For any vector
v ∈R

d ,

2s∗|v|2 ≤ lim
t→∞

t−1E
((

v · X(t)
)2)

(28)

≤ 6s∗|v|2 + 24

s∗

d∑
i,j=1

(C̃ij + D̃ij )vivj ,

where C̃ij and D̃ij are the matrices defined in (20) and (21).

The proof of Proposition 1 is postponed to the next section. Note that the el-
lipticity condition (14) is relevant in both (lower and upper) bounds, while the
H−1-condition (19) is relevant for the upper bound only.

Let us formally state the main result of the present paper.

THEOREM 1. Let t �→ X(t) be a nearest neighbour random walk (3) in ran-
dom environment, which is bistochastic (1), has no drift (12) and is elliptic (14). If
in addition the H−1-condition (19) holds, then:

(i) The asymptotic covariance matrix(
σ 2)

ij := lim
t→∞ t−1E

(
Xi(t)Xj (t)

)
exists, and it is finite and nondegenerate

2s∗I ≤ σ 2 ≤ 6s∗Id + 24s−1∗ (C̃ + D̃),(29)

where I is the d × d unit matrix and C̃, D̃ are the matrices defined in (20), (21).
(ii) Moreover, for any m ∈ N, t1, . . . , tm ∈ R+ and any continuous and bounded

test function F :Rmd →R

lim
T →∞

∫
�

∣∣∣∣Eω

(
F

(
X(T t1)√

T
, . . . ,

X(T tm)√
T

))

− E
(
F
(
W(t1), . . . ,W(tm)

))∣∣∣∣dπ(ω) = 0,
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where t �→ W(t) ∈ R
d is a Brownian motion with

E
(
Wi(t)

) = 0, E
(
Wi(s)Wj (t)

) = min{s, t}(σ 2)
ij .

REMARK (Remark on the jump range of the walk). Throughout the paper,
we speak about nearest neighbour random walk with jump range E . However, we
could consider a more general setup, with jump range U ⊂ Z

d , with the assump-
tions that (i) |U | < ∞; (ii) the jump rates are bounded: pk(ω) ≤ s∗ almost surely
for k ∈ U ; (iii) the ellipticity condition (14) holds for a subset U ′ ⊂ U which gen-
erates Z

d . Under these more general assumptions, Theorem 1 remains still valid.
The proof remains essentially the same apart of notational changes.

It is worth noting here that (unlike in the self-adjoint/reversible cases) the H−1-
condition is certainly stronger than assuming just finiteness of the asymptotic vari-
ance of the walk, (23). So H−1 seems to be a sufficient but by no means necessary
condition for the CLT to hold. The following question arises very naturally.

QUESTION. Let X be a stationary, ergodic random walk in a bistochastic
random environment, and assume E(|X(t)|2) ≤ Ct . Does it follow that X satisfies
a central limit theorem?

Structure of the paper. The proof of this theorem is the content of Sections 2–4.
Section 2 contains Hilbert space generalities and most of the notation. Section 3
describes and slightly extends the relaxed sector condition of [8] on which we rely.
Proofs of the extensions are given in an Appendix (the proofs are similar to those
of [8], but the statements are stronger). In Section 4, we check the conditions of
the relaxed sector condition for the concrete case. Remarks, comments (historical
and other) and concrete examples are postponed to Sections 5–7.

Let us remark that assuming that sk is constant for all k ∈ E , in other words that
the walk is divergence-free, removes a number of technical difficulties in the proof.
Readers who prefer to see the easier version can see it in the first arxiv version of
this paper [15].

2. In the Hilbert space L 2(�,π).

2.1. Spaces and operators. It is most natural to put ourselves into the Hilbert
space over C:

H :=
{
f ∈ L 2(�,π) :

∫
�

f dπ = 0
}
.

We denote by Tx , x ∈ Z
d , the spatial shift operators

Txf (ω) := f (τxω),
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and note that they are unitary:

T ∗
x = T−x = T −1

x .(30)

The L 2-gradients ∇k , k ∈ E , respectively, L 2-Laplacian 
, are

∇k := Tk − I, ∇∗
k = ∇−k, ‖∇k‖ ≤ 2,

(31)


 := ∑
l∈E

∇l = −1

2

∑
l∈E

∇l∇−l , 
∗ = 
 ≤ 0, ‖
‖ ≤ 4d.

We remark that the norm inequalities above are in fact equalities in any nondegen-
erate case, but we will not need this fact.

Due to ergodicity of the Z
d -action (�,F , π, τz : z ∈ Z

d),

Ker(
) = {0}.(32)

Indeed, 
f = 0 implies that 0 = 〈f,
f 〉 = −1
2
∑

k∈E 〈∇kf,∇kf 〉 and since all
terms are non-negative, they must all be 0 and f must be invariant to translations.
Ergodicity to Z

d actions means that f is constant, and since our Hilbert space is
that of functions averaging to zero, f must be zero.

We define the bounded positive operator |
|1/2 in terms of the spectral theo-
rem (applied to the bounded positive operator |
| := −
). Note that due to (32)
Ran |
| is dense in H , and hence so is Ran |
|1/2 which is a superset of it. Hence,
it follows that |
|−1/2 := (|
|1/2)−1 is an (unbounded) positive self-adjoint oper-
ator with Dom |
|−1/2 = Ran |
|1/2 and Ran |
|−1/2 = Dom |
|1/2 = H . Note
that the dense subspace Dom |
|−1/2 = Ran |
|1/2 is invariant under, and the op-
erators |
|1/2 and |
|−1/2 commute with the translations Tx , x ∈ Z

d .
We define the Riesz operators: for all k ∈ E ,

�k : Dom |
|−1/2 → H , �k = |
|−1/2∇k = ∇k|
|−1/2,(33)

and note that for any f ∈ Dom |
|−1/2

‖�kf ‖2 = 〈|
|−1/2f,∇−k∇k|
|−1/2f
〉 ≤ 〈|
|−1/2f, |
||
|−1/2f

〉 = ‖f ‖2.

Thus, the operators �k , k ∈ E , extend as bounded operators to the whole space H .
The following properties are easy to check:

�∗
k = �−k, ‖�k‖ ≤ 1,

1

2

∑
l∈E

�l�
∗
l = I.(34)

As before, in fact ‖�k‖ = 1 in any nondegenerate case, but we will not need this
fact.

A third equivalent formulation of the H−1-condition (19)/(22) is the following:
H−1-condition (third formulation):

ϕi ∈ Dom |
|−1/2 = Ran |
|1/2, i = 1, . . . , d.(35)

In the case of nearest neighbour walks, this is further equivalent to

vk ∈ Dom |
|−1/2 = Ran |
|1/2, k ∈ E .(36)
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LEMMA 1. (i) Conditions (35) and (22) are equivalent.
(ii) Furthermore, in the case of nearest neighbour walks conditions (35) and

(36) are also equivalent.

PROOF. (i) Recall that (22) is formulated in terms of continuous time simple
random walk S. In operator theory language,

Eω

(
	i

(
S(t)

)) = et
ϕi(ω).(37)

Hence,

1

t
E
(∣∣∣∣∫ t

0
	
(
S(s)

)
ds

∣∣∣∣2) (∗)=
d∑

i=1

∫ t

0

t − s

t
E
(
2	i(0)	i

(
S(s)

))
ds

(37)=
d∑

i=1

2
∫ t

0

t − s

t

〈
ϕi, e

s
ϕi

〉
ds,

where (∗) follows from space stationarity of 	 [recall that S is independent of 	,
so 	i(S) is just some average of some fixed translations of 	i ]. An application
of the spectral theorem for |
| shows that this is bounded in t if and only if all
ϕi ∈ Dom |
|−1/2, i = 1, . . . , d .

(ii) To conclude from ϕ ∈ Dom |
|−1/2 that v ∈ Dom |
|−1/2 we recall that
ϕi = (I + T−ei

)vei
= (2I + ∇−ei

)vei
. Since �−ei

= |
|−1/2∇−ei
is bounded, we

get that ∇−ei
vei

∈ Dom(|
|−1/2). Rearranging gives

ϕi − 2vei
∈ Dom

(|
|−1/2)
which shows that ϕi ∈ Dom(|
|−1/2) if and only if so is vei

. �

REMARK. Note that equivalence of (35) and (36) holds only in the case of
nearest neighbour jumps. If a larger jump range U is allowed (see the remark
after the formulation of Theorem 1) then (36) is stronger than (35). However, the
formulation (36) will not be used in the proof of our main result. It will have a
role only in the complementary Section 5, which is not part of the proof. That part
could also be reformulated in the context of finite jump rate, relying only on (35)
but as the main result does not rely on it we will not bother to do that.

Finally, we also define the multiplication operators Mk,Nk , k ∈ E ,

Mkf (ω) := vk(ω)f (ω), M∗
k = Mk, ‖Mk‖ ≤ s∗,(38)

Nkf (ω) := (
sk(ω) − s∗

)
f (ω), N∗

k = Nk ≥ 0, ‖Nk‖ ≤ s∗(39)

[recall that s∗ is the overall upper bound on p and s∗ is the lower bound on the
symmetric parts s in the ellipticity condition (14)]. It is easy to check that the
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following commutation relations hold due to (7) and (8):∑
l∈E

Ml∇l = −∑
l∈E

∇−lMl,

(40) ∑
l∈E

Nl∇l = ∑
l∈E

∇−lNl = −1

2

∑
l∈E

∇−lNl∇l .

The infinitesimal generator of the stationary environment process t �→ η(t),
acting on the Hilbert space L 2(�,π) is

Lf (ω) = pk(ω)
(
f (τkω) − f (ω)

)
,

which in terms of the operators introduced above is written as

L = −D − T + A,(41)

with

D := −s∗
,(42)

T := −∑
l∈E

Nl∇l = 1

2

∑
l∈E

∇−lNl∇l ,

A := ∑
l∈E

Ml∇l = −∑
l∈E

∇−lMl.(43)

Note that D = D∗, T = T ∗, A = −A∗ and

0 ≤ T ≤ ds∗s−1∗ D.(44)

The inequalities are meant in operator sense. The last one follows from

D−1/2T D−1/2 = 1

2s∗
∑
l∈E

�−lNl�l,

and hence, due to (34) and (39)∥∥D−1/2T D−1/2∥∥ ≤ ds∗

s∗
follows, which implies the upper bound in (44).

2.2. Proof of Proposition 1.
PROOF OF THE LOWER BOUND IN (28). We decompose the displacement

process t → X(t) in such a way that the forward-and-backward martingale part
will be uncorrelated with the rest. The variance of this forward-and-backward mar-
tingale will serve as lower bound for the variance of the displacement. Let

uk(ω) := sgn
(
vk(ω)

)
min

{∣∣vk(ω)
∣∣, s∗}, wk(ω) := sgn

(
vk(ω)

)(∣∣vk(ω)
∣∣− s∗

)
+,

qk(ω) := s∗ + uk(ω), rk(ω) := (
sk(ω) − s∗

)+ wk(ω).
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Note that the skew symmetry (7) of vk(ω) is inherited by uk(ω) and wk(ω):

uk(ω) + u−k(τkω) = 0, wk(ω) + w−k(τkω) = 0.(45)

Further on,

uk(ω) + wk(ω) = vk(ω), qk(ω) + rk(ω) = pk(ω),

qk(ω) ≥ 0, rk(ω) ≥ 0.

We further define

q(ω) := ∑
l∈E

ql(ω) ≥ 0, ϕ̃(ω) := ∑
l∈E

lql(ω) ∈R
d,

r(ω) := ∑
l∈E

rl(ω) ≥ 0, ψ̃(ω) := ∑
l∈E

lrl(ω) ∈ R
d,

and note that

q(ω) + r(ω) = p(ω), ϕ̃(ω) + ψ̃(ω) = ϕ(ω) + ψ(ω).

Now let 0 = θ0 < θ1 < θ2 < · · · be the successive jump times of the environment
process t �→ η(t) [or, what is the same, of the random walk t �→ X(t)]:

θ0 := 0, θn+1 := inf
{
t > θn : η(t) �= η(θn)

}
,

and define extra random variables αn ∈ {0,1}, n = 0,1,2, . . . with the following
conditional law, given the trajectory t �→ η(t): for N ∈ N and an ∈ {0,1}, n =
0,1, . . . ,N ,

P
(
αn = an,n = 0,1, . . . ,N | η(t)t≥0

) =
N∏

n=0

(
q(η(θn))

p(η(θn))

)an
(

r(η(θn))

p(η(θn))

)1−an

.

In plain words, conditionally on the trajectory t �→ η(t), the random variables αn,
n = 0,1,2, . . . , are independent biased coin tosses, with probability of head or
tail (1 or 0 respectively) equal to the value of q(η(t))

p(η(t))
, respectively, r(η(t))

p(η(t))
, in the

interval t ∈ [θn, θn+1). Now, extend piecewise continuously

α(t) :=
∞∑

n=0

αn1{t∈(θn,θn+1]}.

Mind, that t �→ α(t) is defined as a caglad, not a cadlag process. We decompose
the displacement t �→ X(t) as follows:

X(t) = K(t) + L(t) + J (t),
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where

K(t) :=
∫ t

0
α(s) dX(s) −

∫ t

0
ϕ̃(s) ds,

L(t) :=
∫ t

0

(
1 − α(s)

)
dX(s) −

∫ t

0
ψ̃(s) ds,

J (t) :=
∫ t

0

(
ϕ̃(s) + ψ̃(s)

)
ds.

Note the following three facts.
(1) t �→ K(t) and t �→ L(t), being driven by conditionally independent Poisson

flows, are uncorrelated martingales, with respect to their own joint filtration.
(2) t �→ K(t) is forward-and-backward martingale with respect to its own past,

respectively, future filtration. This is due to (45) and to the fact that the symmetric
part of its jump rates is constant, s∗. Indeed,

E
(
K(t + dt) − K(t) | ηt = ω

) = ∑
l∈E

lql(ω) − ϕ̃(ω)dt

= ∑
l∈E

lul(ω) − ϕ̃(ω)dt = 0dt,

E
(
K(t) − K(t − dt) | ηt = ω

) = −∑
l∈E

lq−l(τlω) − ϕ̃(ω)dt

= −∑
l∈E

lu−l(τlω) − ϕ̃(ω)dt

= ∑
l∈E

lul(ω) − ϕ̃(ω)dt = 0dt,

and hence the claim.
(3) t �→ J (t), being an integral, is forward-and-backward predictable with re-

spect to the same filtrations.
From these three facts, it follows that the process t �→ K(t) is uncorrelated with

t �→ L(t) + J (t). Hence, for any vector v ∈ R

E
((

v · X(t)
)2) = E

((
v · K(t)

)2)+ E
((

v · (L(t) + J (t)
))2)

≥ E
((

v · K(t)
)2) = 2s∗|v|2. �

PROOF OF THE UPPER BOUND IN (28). We provide upper bounds on the vari-
ance of the various terms on the right-hand side of the decomposition X = M + I

(25).
As shown in (26)–(27) the variance of the martingale term M(t) on the right-

hand side of (25) is computed explicitly: for v ∈ R
d ,

1

t
E
((

v · M(t)
)2) =

d∑
i=1

v2
i

∫
�

(
pei

(ω) + p−ei
(ω)

)
dπ(ω) ≤ 2s∗|v|2.(46)
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In order to bound the variance of the integral term I (t) on the right-hand side
of (25), we quote Proposition 2.1.1 in Olla [20] (alternatively, Lemma 2.4 in [10]
contains the same result with a different constant).

LEMMA 2. Let t �→ η(t) be a stationary and ergodic Markov process on the
probability space (�,π), whose infinitesimal generator acting on L 2(�,π) is L.
Let g ∈ L 2(�,π) such that

∫
� g dπ = 0. Then

lim
t→∞

1

t
E
(

max
0≤s≤t

∣∣∣∣∫ s

0
g
(
η(u)

)
du

∣∣∣∣2) ≤ 16 lim
λ→0

(
g,

(
λI − L − L∗)−1

g
)
.

[Olla denotes the right-hand side by ‖g‖−1—his definition of ‖g‖−1, (2.1.2)
ibid., is different but it is easy to see that it is equivalent to the above, up to a factor
of 2.]

The decomposition (41) of the infinitesimal generator gives that −L − L∗ ≥
2s∗|
|, and hence by Löwner’s theorem (see [5], Theorem 2.6, or [17]) (−L −
L∗)−1 ≤ 1/(2s∗)|
|−1. It then follows that for any vector v ∈ R

d

lim
t→∞ t−1E

((∫ t

0
v · ϕ(η(s)

)
ds

)2)
≤ 8

s∗
(
(v · ϕ), |
|−1(v · ϕ)

)
(47)

= 8

s∗

d∑
i,j=1

viC̃ij vj ,

lim
t→∞ t−1E

((∫ t

0
v · ψ(

η(s)
)
ds

)2)
≤ 8

s∗
(
(v · ψ), |
|−1(v · ψ)

)
(48)

= 8

s∗

d∑
i,j=1

viD̃ij vj .

From (25), by applying the Cauchy–Schwarz inequality we readily obtain

E
((

v · X(t)
)2) ≤ 3E

((
v · M(t)

)2)+ 3E
((∫ t

0
v · ϕ(η(s)

)
ds

)2)

+ 3E
((∫ t

0
v · ψ(

η(s)
)
ds

)2)
.

Finally, the upper bound in (28) follows from here, due to (46), (47) and (48). �

3. Relaxed sector condition. In this section, we recall and slightly extend
the relaxed sector condition from [8]. This is a functional analytic condition on
the operators D, T and A from (41) which ensures that the efficient martingale
approximation à la Kipnis–Varadhan of integrals of the type of I (t) in (25) exists.

A clarification is due here. The relaxed sector condition (Theorem RSC1 below)
is essentially equivalent to the condition that the range LH−1 of the infinitesimal
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generator L be dense in the H−1-topology of L 2(�,π) [defined by the symmetric
part S := (L + L∗)/2 of the infinitesimal generator]. This latter one appears in
earlier work (see, e.g., Olla [20]). But, to the best of our knowledge it has never
been exploited directly, without stronger sufficient assumptions. The strong and
graded sector conditions of Varadhan [29], respectively of Sethuraman, Varadhan
and Yau [25], are stronger sufficient conditions for this to hold, and applicable in
various circumstances. Nevertheless, the equivalent formulation in [8] proved to be
a very useful one, applicable in conditions where the graded sector condition does
not work. In particular, in the context of the present paper. Let us also stress that
the graded sector condition itself gets a very transparent and handy proof through
the relaxed sector condition. For more details, see [8].

Since in the present case the infinitesimal generator L = −D − T + A and all
operators in the decomposition (41) are bounded we recall the result of [8] in a
slightly restricted form: we do not have to worry now about domains and cores of
the various operators D, T or A. This section will be fairly abstract.

3.1. Kipnis–Varadhan theory. Let (�,F , π) be a probability space: the state
space of a stationary and ergodic pure jump Markov process t �→ η(t) with
bounded jump rates. We put ourselves in the complex Hilbert space L 2(�,π).
Denote the infinitesimal generator of the semigroup of the process by L. Since the
process η(t) has bounded jump rates, the infinitesimal generator L is a bounded
operator. We denote the self-adjoint and skew-self-adjoint parts of the generator L

by

S := −1

2

(
L + L∗) ≥ 0, A := 1

2

(
L − L∗).

We assume that S is itself ergodic, that is,

Ker(S) = {c1 : c ∈ C},
and restrict ourselves to the subspace of codimension 1, orthogonal to the constant
functions:

H := {
f ∈ L 2(�,π) : 〈1, f 〉 = 0

}
.

In the sequel, the operators (λI +S)±1/2, λ ≥ 0, will play an important role. These
are defined in terms of the spectral theorem applied to the self-adjoint and positive
operator S. The unbounded operator S−1/2 is self-adjoint on its domain

Dom
(
S−1/2) = Ran

(
S1/2)

=
{
f ∈ H : ∥∥S−1/2f

∥∥2 := lim
λ→0

∥∥(λI + S)−1/2f
∥∥2

< ∞
}
.

Let f ∈ H . We ask about CLT/invariance principle for the rescaled process

YN(t) := 1√
N

∫ Nt

0
f
(
η(s)

)
ds(49)

as N → ∞.
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We denote by Rλ the resolvent of the semigroup s �→ esL:

Rλ :=
∫ ∞

0
e−λsesL ds = (λI − L)−1, λ > 0,(50)

and given f ∈ H , we will use the notation

uλ := Rλf.

The following theorem is a direct extension to general nonreversible setup of
the Kipnis–Varadhan theorem [9]. It yields the efficient martingale approximation
of the additive functional (49). See Tóth [27], or the surveys [20] and [10].

THEOREM KV. With the notation and assumptions as before, if the following
two limits hold in (the norm topology of) H :

lim
λ→0

λ1/2uλ = 0, lim
λ→0

S1/2uλ = v ∈ H ,(51)

then

σ 2 := 2 lim
λ→0

〈uλ,f 〉 = 2‖v‖2 ∈ [0,∞),

exists, and there also exists a zero mean, L 2-martingale M(t), adapted to the
filtration of the Markov process η(t), with stationary and ergodic increments and
variance

E
(
M(t)2) = σ 2t,

such that for t ∈ (0,∞)

lim
N→∞ E

(∣∣∣∣YN(t) − M(Nt)√
N

∣∣∣∣2) = 0.

COROLLARY KV. With the same setup and notation, for any m ∈ N,
t1, . . . , tm ∈ R+ and F :Rm →R continuous and bounded

lim
N→∞

∫
�

∣∣Eω

(
F
(
YN(t1), . . . , YN(tm)

))− E
(
F
(
W(t1), . . . ,W(tm)

))∣∣dπ(ω) = 0,

where t �→ W(t) ∈ R is a 1-dimensional Brownian motion with variance
E(W(t)2) = σ 2t .

3.2. Relaxed sector condition. Let, for λ > 0,

Cλ := (λI + S)−1/2A(λI + S)−1/2.(52)

These are bounded and skew-self-adjoint.
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THEOREM RSC1. Assume that there exist a dense subspace C ⊆ H and an
operator C : C → H which is essentially skew-self-adjoint on the core C and
such that for any vector ψ ∈ C there exists a sequence ψλ ∈ H such that

lim
λ→0

‖ψλ − ψ‖ = 0 and lim
λ→0

‖Cλψλ − Cψ‖ = 0.(53)

Then for any f ∈ Dom(S−1/2) the limits (51) hold, and thus the martingale ap-
proximation and CLT of Theorem KV follow.

REMARKS. 1. The conditions of Theorem RSC1 can be shown to be equiva-
lent to that the sequence of bounded skew-self-adjoint operators Cλ converges in
the strong graph limit sense to the unbounded skew-self-adjoint operator C; see
Lemma 7(ii) below. For various notions of graph limits of operators over Hilbert
or Banach spaces, see Chapter VIII of [24], especially Theorem VIII.26 ibid.

2. Theorem RSC1 is a slightly stronger reformulation of Theorem 1 from [8]
where the condition (53) was slightly stronger. There it was assumed that for any
ϕ ∈ C , limλ→0 ‖Cλϕ − Cϕ‖ = 0. It turns out that the weaker and more natural
condition (53) suffices and this has some importance in our next extension, The-
orem RSC2. For sake of completeness, we give the proof of this theorem in the
Appendix.

3. The operator C is heuristically some version of S−1/2AS−1/2. However, it
is not sufficient that a naturally densely defined version of S−1/2AS−1/2 is skew-
Hermitian. One must show that its closure is actually skew-self-adjoint. The con-
ditions of Theorem RSC1 require to be careful with domains and with point-wise
convergence as λ → 0, as above.

RSC refers to relaxed sector condition: indeed, as shown in [8] this theorem
contains the strong sector condition of [29] and the graded sector condition of [25]
as special cases. See the comments at the beginning of Section 3 for the precise
relation of RSC to other sector conditions. For comments on history, content and
variants of Theorem KV, we refer the reader to the monograph [10]. For some
direct consequences of Theorem RSC1, see [8].

Now, we slightly extend the validity of Theorem RSC1. Assume that the sym-
metric part of the infinitesimal generator decomposes as

S = D + T ,

where D = D∗, T = T ∗ and the “diagonal” part D dominates T in the following
sense: there exists c < ∞ so that

0 ≤ T ≤ cD.(54)

Further, denote

Bλ := (λI + D)−1/2A(λI + D)−1/2.(55)

The following statement is actually a straightforward consequence of Theo-
rem RSC1.
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THEOREM RSC2. Assume that there exist a dense subspace B ⊆ H and an
operator B : B → H which is essentially skew-self-adjoint on the core B and
such that for any vector ϕ ∈ B there exists a sequence ϕλ ∈ H such that

lim
λ→0

‖ϕλ − ϕ‖ = 0 and lim
λ→0

‖Bλϕλ − Bϕ‖ = 0.(56)

Then for any f ∈ Dom(D−1/2) the limits (51) hold, and thus the martingale ap-
proximation and CLT of Theorem KV follow.

The proof of Theorem RSC2 is also postponed to the Appendix.

4. The operator B = D−1/2AD−1/2 and proof of Theorem 1. We apply
Theorem RSC2 to our concrete setup, with the operators D and A defined using
(42) and (43), respectively. Recall that without loss of generality we have fixed
s∗ = 1 [see the remark after the ellipticity condition (14)]. Let

B := Dom |
|−1/2 = Ran |
|1/2,

and recall from (33) and (38) the definition of the operators �l and Ml , l ∈ E .
Define the unbounded operator B : B → H

B := −∑
l∈E

�−lMl|
|−1/2.

(The definition of B uses our assumption that s∗ = 1, otherwise with our defini-
tions of D and A we would have needed a factor of 1/s∗ before it.) First, we verify
(56), that is, Bλ → B pointwise on the core B, where the bounded operator Bλ is
expressed by inserting the explicit form of D and A, (42), respectively, (43), into
the definition (55) of Bλ:

Bλ = −∑
l∈E

(λI − 
)−1/2∇−lMl(λI − 
)−1/2.

From the spectral theorem for the commutative C∗-algebra generated by the shift
operators Tei

, i = 1, . . . , d (see, e.g., Theorem 1.1.1 on page 2 of [1]), we obtain
that ‖(λI − 
)−1/2∇l‖ ≤ 1, ‖(λI − 
)−1/2|
|1/2‖ ≤ 1 and, moreover, for any
ϕ ∈ H ,

(λI − 
)−1/2∇lϕ → �lϕ, (λI − 
)−1/2|
|1/2ϕ → ϕ, as λ ↘ 0.

When ϕ ∈ B, we get (λI − 
)−1/2ϕ → |
|−1/2ϕ which allows us to write

Bλϕ = − ∑
l∈E d

(λI − 
)−1/2∇−lMl(λI − 
)−1/2ϕ

= − ∑
l∈E d

(λI − 
)−1/2∇−lMl|
|−1/2ϕ

+ O
(∥∥(λI − 
)−1/2ϕ − |
|−1/2ϕ

∥∥).
Hence, (56) follows readily for any ϕ ∈ B.
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With (56) established, we need to show that B is essentially skew-self-adjoint
on B. We start with a light lemma.

LEMMA 3. (i) B : B → H is skew-Hermitian, that is, 〈ϕ,Bψ〉 = −〈Bϕ,ψ〉
for all ϕ,ψ ∈ B.

(ii) The full domain of B∗ is

B∗ =
{
f ∈ H : ∑

l∈E

Ml�lf ∈ B

}
(57)

and B∗ acts on B∗ by

B∗ := −|
|−1/2
∑
l∈E

Ml�l.(58)

REMARK. It is of crucial importance here that B∗ in (57) is the full domain of
the adjoint operator B∗, that is, the subspace of all f such that the linear functional
g �→ 〈f,Bg〉 is bounded on B. It will not be enough for our purposes just to show
that B∗ is some core of definition.

PROOF OF LEMMA 3. (i) Let f,g ∈ B. Then, due to (40)

〈f,Bg〉 = −∑
l∈E

〈|
|−1/2f,∇−lMl|
|−1/2g
〉

(40)= ∑
l∈E

〈∇−lMl|
|−1/2f, |
|−1/2g
〉 = −〈Bf,g〉,

(ii) Next,

Dom
(
B∗) =

{
f ∈ H : (∃c(f ) < ∞)

(∀g ∈ B) :∣∣∣∣〈f,
∑
l∈E

�−lMl|
|−1/2g

〉∣∣∣∣ ≤ c(f )‖g‖
}

=
{
f ∈ H : (∃c(f ) < ∞)

(∀g ∈ B) :∣∣∣∣〈∑
l∈E

Ml�lf, |
|−1/2g

〉∣∣∣∣ ≤ c(f )‖g‖
}

=
{
f ∈ H : ∑

l∈E

Ml�lf ∈ B

}
,

as claimed. In the last step, we used the fact that B is the full domain of the
self-adjoint operator |
|−1/2. The action (58) of B∗ follows from straightforward
manipulations. �
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Note that Lemma 3 in particular implies that B ⊆ B∗, that B∗ : B∗ → H is in
principle an extension of −B, and hence the operator B : B → H is closable as
the adjoint of any operator is automatically closed. We actually ought to prove that

B∗ = −B.

We apply von Neumann’s criterion (see, e.g., Theorem VIII.3 of Reed and Simon
[24]): If for some α > 0,

Ker
(
B∗ ± αI

) = {0}(59)

then B∗ = −B . For reasons which will become clear very soon, we will choose
α = s∗. (Actually any α ≥ s∗ would work equally well.) Thus, (59) is equivalent
to showing that the equations∑

l∈E

Ml�lμ + s∗|
|1/2μ = 0,(60)

∑
l∈E

Ml�lμ − s∗|
|1/2μ = 0(61)

admit only the trivial solution μ = 0. We will prove this for (60). The other case is
done very similarly.

Note that assuming μ ∈ B the problem becomes fully trivial. Indeed, inserting
μ = |
|1/2χ in (60) and taking inner product with χ we get∑

l∈E

〈Ml∇lχ,χ〉 − s∗〈
χ,χ〉 = 0.

The first term is pure imaginary (40) while the second term is real (31), giving
that 〈
χ,χ〉 = 0 which, due to (32), admits only the trivial solution χ = 0. The
point is that μ is not necessarily in B so |
|−1/2μ is not necessarily well defined
as an element of H . Nevertheless, we are able to define a scalar random field

 : � × Z

d → R of stationary increments (rather than stationary) which can be
thought of as the lifting of |
|−1/2μ to the lattice Z

d .
Let, therefore, μ be a putative solution for (60) and define, for each k ∈ E ,

uk := �kμ.(62)

These are vector components and they also satisfy the gradient condition: ∀k, l ∈ E

uk + Tku−k = 0, uk + Tkul = ul + Tluk.(63)

Note also that ∑
l∈E

ul = |
|1/2μ.

The eigenvalue equation (60) becomes∑
l∈E

vlul + s∗∑
l∈E

ul = 0.(64)
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We lift this equation to Z
d . By defining the lattice vector fields V,U : � × Z

d →
R

d as

Vk(ω, x) := vk(τxω), Uk(ω, x) := uk(τxω),

we obtain the following lifted version of equation (64):∑
l∈E

Vl(ω, x)Ul(ω, x) + s∗∑
l∈E

Ul(ω, x) = 0.(65)

Note that U is the Z
d -gradient of a scalar field 
 : � × Z

d → R, determined
uniquely by


(ω,0) = 0, 
(ω,x + k) − 
(ω,x) = Uk(ω,x).(66)

As promised, the scalar field 
 has stationary increments (or, in the language of
ergodic theory: it is a cocycle), that is,


(ω,y) − 
(ω,x) = 
(τxω,y − x) − 
(τxω,0).(67)

Equation (65) gets the form

s∗∑
l∈E

(

(ω,x + l) − 
(ω,x)

)
(68)

+∑
l∈E

Vl(ω, x)
(

(ω,x + l) − 
(ω,x)

) = 0.

Denote the first term by lap
 and the second by grad
 (these are the usual Zd

Laplacian and gradient, resp.), so the equation becomes

s∗ lap
 + V · grad
 = 0.(69)

We prove that equation (68)/(69) admits 
 ≡ 0 as the only solution satisfying
E(
(x)) = 0 for all x ∈ Z

d . This will be done using an auxiliary random walk in
random environment which will be denoted by Y . We remark that in the specific
case where X is divergence-free that is, s ≡ 1, or in general when s is constant, we
get that Y is the same as X, but in general they differ.

We define the environment for Y on the same probability space � as X. The
transfer rates pY

k , k ∈ E are given by

pY
k (ω) = s∗ + vk(ω).

In other words, we take from X the anti-symmetric part vk = (pk − p−k)/2 but
replace the symmetric part with the constant s∗. The walk Y is also bistochastic,
so all results proved so far [in particular, stationarity and ergodicity of Y ’s envi-
ronment process t �→ ηY (t) := τY (t)ω, and the diffusive lower and upper bounds
for t �→ Y(t)] are in force.
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Note that equation (68)/(69) means exactly that for a given ω ∈ � fixed (i.e., in
the quenched setup) the field 
(ω, ·) : Zd → R is harmonic for the random walk
Y(t). Thus, the process

t �→ R(t) := 

(
Y(t)

)
(70)

is a martingale [with R(0) = 0] in the quenched filtration σ(ω,Y (s)0≤s≤t )t≥0.
Hence, t �→ R(t) is a martingale in its own filtration σ(R(s)0≤s≤t )t≥0, too. We
will soon show that E(R(t)2) < ∞. From stationarity and ergodicity of the en-
vironment process t �→ ηY

t and (67), it follows that the process t �→ R(t) has
stationary and ergodic increments with respect to the annealed measure P(·) :=∫
� Pω(·) dπ(ω). Indeed, let F(R(·)) be an arbitrary bounded and measurable func-

tional of the process t �→ R(t), t ≥ 0. Using (67), a straightforward computation
shows that

Eω

(
F
(
R(t0 + ·) − R(t0)

)) = Eω

(
Eη(t0)

(
F
(
R(·)))).

Hence, by stationarity and ergodicity of the environment process t �→ η(t), the
claim follows.

Thus, the process t �→ R(t) is a martingale [with R(0) = 0] with stationary
and ergodic increments, in its own filtration σ(R(s)0≤s≤t )t≥0, with respect to the
annealed measure P(·).

LEMMA 4. Let μ be a solution of equation (60), 
 the harmonic field con-
structed in (66) and R(t) the martingale defined in (70). Then

E
(
R(t)2) = 2s∗‖μ‖2t.(71)

PROOF. Since t �→ R(t) is a martingale with stationary increments [with re-
spect to the annealed measure P(·)], we automatically have E(R(t)2) = �2t with
some � ≥ 0. We now compute �.

�2 := lim
t→0

E(R(t)2)

t

1= lim
t→0

∫
�

Eω(
(ω,Y (t))2)

t
dπ(ω)

2=
∫
�

lim
t→0

Eω(
(ω,Y (t))2)

t
dπ(ω)

3= ∑
l∈E

∫
�

(
s∗ + vl(ω)

)∣∣ul(ω)
∣∣2 dπ(ω)

4= s∗∑
l∈E

∫
�

∣∣ul(ω)
∣∣2 dπ(ω)

5= s∗∑
l∈E

‖�lμ‖2 6= 2s∗‖μ‖2.

Step 1 is annealed averaging. Step 2 is easily justified by dominated conver-
gence. Step 3 drops out from explicit computation of the conditional variance
of one jump. In step 4, we used that due to (7) and (63) v−l(ω)|u−l(ω)|2 =
−vl(τ−lω)|ul(τ−lω)|2 and translation invariance of the measure π on �. In step 5,
we use the definition (62) of ul . Finally, in the last step 6 we used the third identity
of (34). �
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PROPOSITION 2. The unique solution of (60)/ (61) is μ = 0, and consequently
the operator B is essentially skew-self-adjoint on the core B.

PROOF. Let μ be a solution of the equation (60), 
 the harmonic field con-
structed in (66) and R(t) the martingale defined in (70). From the martingale cen-
tral limit theorem (see, e.g., [7]) and (71) it follows that

R(t)√
t

⇒ N
(
0,2s∗‖μ‖2), as t → ∞.(72)

On the other hand, we are going to prove that

R(t)√
t

P−→ 0, as t → ∞.(73)

Jointly, (72) and (73) clearly imply μ = 0, as claimed in the proposition.
The proof of (73) will combine
(A) the (sub)diffusive behaviour of the displacement

lim
T →∞T −1E

(
Y(T )2) < ∞,

which follows from the H−1-condition [see (28)]; and
(B) the fact that the scalar field x �→ 
(x) having zero mean and stationary

increments [cf. (67)], increases sublinearly with |x|. The sublinearity is the issue
here. Since 
 has stationary, mean zero increments, due to the individual (point-
wise) ergodic theorem, it follows that in any fixed direction 
 increases sublin-
early almost surely. However, this does not warrant that 
 increases sublinearly
uniformly in Z

d , d ≥ 2, which is the difficulty we will now tackle.
Let δ > 0 and K < ∞. Then

P
(∣∣R(t)

∣∣ > δ
√

t
) ≤ P

({∣∣R(t)
∣∣ > δ

√
t
}∩ {∣∣Y(t)

∣∣ ≤ K
√

t
})

(74)
+ P

(∣∣Y(t)
∣∣ > K

√
t
)
.

From (sub)diffusivity (28) and Chebyshev’s inequality, it follows directly that

lim
K→∞ lim

t→∞ P
(∣∣Y(t)

∣∣ > K
√

t
) = 0.(75)

We present two proofs of

lim
t→∞ P

({∣∣R(t)
∣∣ > δ

√
t
}∩ {∣∣Y(t)

∣∣ ≤ K
√

t
}) = 0,(76)

with δ > 0 and K < ∞ fixed. One with bare hands, valid in d = 2 only, and an-
other one valid in any dimension which relies on a heat kernel (upper) bound from
Morris and Peres [18].

PROOF OF (76) IN d = 2, WITH BARE HANDS. We follow here the approach
of [3] where the argument was applied in a different context. In order to keep it
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short (as another full proof valid in all dimensions follows), we assume separate
ergodicity, that is, (�,F , π, τei

) is ergodic for both i = 1,2.
First, note that

P
({∣∣R(t)

∣∣ > δ
√

t
}∩ {∣∣Y(t)

∣∣ ≤ K
√

t
}) ≤ P

(
max

|x|<K
√

t

∣∣
(x)
∣∣ > δ

√
t
)
.(77)

Next, since 
 is harmonic with respect to the random walk Y(t), it obeys the
maximum principle (this is true for any random walk, no special property of Y is
used here). Thus,

max|x|∞≤L

∣∣
(x)
∣∣ = max|x|∞=L

∣∣
(x)
∣∣,(78)

where |x|∞ := max{|x1|, |x2|}. By spatial stationarity,

max|x1|≤L

∣∣
(x1,−L) − 
(0,−L)
∣∣ ∼ max|x1|≤L

∣∣
(x1,0)
∣∣

∼ max|x1|≤L

∣∣
(x1,+L) − 
(0,+L)
∣∣,

max|x2|≤L

∣∣
(−L,x2) − 
(−L,0)
∣∣ ∼ max|x2|≤L

∣∣
(0, x2)
∣∣

∼ max|x2|≤L

∣∣
(+L,x2) − 
(+L,0)
∣∣,

(79)

where ∼ stands for equality in distribution. Now, note that 
(x1,0) and 
(0, x2)

are Birkhoff sums:


(x1,0) =
x1−1∑
j=0

ue1(τje1ω), 
(0, x2) =
x2−1∑
j=0

ue2(τje2ω),

where ue1(ω) and ue2(ω) are zero mean and square integrable [recall the definition
of u, (62)]. Hence, by the ergodic theorem,

L−1 max
{

max|x1|≤L

∣∣
(x1,0)
∣∣, max|x2|≤L

∣∣
(0, x2)
∣∣} → 0,

(80)
a.s., as L → ∞.

Putting together (78), (79) and (80), we readily obtain, for any ε > 0,

lim
L→∞ P

(
max|x|∞≤L

∣∣
(x)
∣∣ ≥ εL

)
= 0.(81)

Finally, (76) follows by applying (81) to the right-hand side of (77). �

PROOF OF (76) IN ALL d ≥ 2. We start with the following uniform upper
bound on the (quenched) heat kernel of the walk Y(t).
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PROPOSITION 3. There exists a constant C = C(d, s∗) (depending only on
the dimension d and the upper bound s∗ on the jump rates) such that for π -almost
all ω ∈ � and all t > 0

sup
x∈Zd

Pω

(
Y(t) = x

) ≤ Ct−d/2, π -a.s.(82)

PROOF. This bound (82) follows from Theorem 2 of Morris and Peres [18]
through Lemma 5, below, which states essentially the same bound for discrete-
time lazy random walks on Z

d (recall that a random walk is called lazy if there is
a lower bound on the probability of the walker staying put at any given point).

LEMMA 5. Let V : Zd → [−1,1]E be a (deterministically given) field such
that for all k ∈ E and x ∈ Z

d :

Vk(x) + V−k(x + k) = 0,
∑
l∈E

Vl(x) = 0.(83)

Define the discrete-time nearest-neighbour, lazy random walk n �→ Yn on Z
d with

transition probabilities:

P(Yn+1 = y | Yn = x)
(84)

= px,y :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2
if y = x,

1

4d

(
1 + Vk(x)

)
if y = x + k, k ∈ E ,

0 if |y − x| > 1.

Then there exists a constant C = C(d) depending only on dimension such that for
any x, y ∈ Z

d ,

P(Yn = y | Y0 = x) ≤ Cn−d/2.(85)

PROOF. For A,B ⊂ Z
d , such that A ∩ B = ∅ let

Q(A,B) := ∑
x∈A,y∈B

px,y.

For notational reasons, we extend the definition of Vk(x), k ∈ E , x ∈ Z
d , as fol-

lows:

Vz(x) :=
{
Vk(x) if z = k ∈ E ,

0 if z /∈ E .

For S ⊂ Z
d , |S| < ∞ let ∂S := {(x, y) : x ∈ S, y ∈ Z

d \ S,‖x − y‖ = 1} and note
that by the isoperimetric inequality for Zd ,

|∂S| ≥ C|S|(d−1)/d ,(86)
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with some dimension-dependent constant C. (This discrete isoperimteric inequal-
ity is a simple corollary of the classic isoperimetric inequality in R

d . See also
Theorem V3.1 in [6] for a general discretisation result for isoperimteric inequali-
ties.)

We have

Q
(
S,Sc) = ∑

x∈S,y∈Sc

1

4d

(
1 + Vy−x(x)

)
= 1

4d
|∂S| + 1

4d

( ∑
x∈S,y∈Zd

Vy−x(x) − ∑
x∈S,y∈S

Vy−x(x)

)
(87)

= 1

4d
|∂S|,

where the last equality follows from∑
x∈S,y∈Zd

Vy−x(x) = ∑
x∈S

∑
l∈E

Vl(x) = 0,

∑
x∈S,y∈S

Vy−x(x) = 1

2

∑
x∈S,y∈S

(
Vy−x(x) + Vx−y(y)

) = 0,

both of which are consequences of (83). Yet another consequence of (83) is that the
uniform counting measure on Z

d is stationary to our walk. Hence, the isoperimetric
profile 	(r) (in the sense of Morris and Peres [18]) is given by

	(r) := inf
0<|S|≤r

Q(S,Sc)

|S| .

Theorem 2 of [18] (specified to our setup) states that for any 0 < ε ≤ 1, if

n > 1 + 4
∫ 4/ε

4

du

u	2(u)
(88)

then, for any x, y ∈ Zd

P(Xn = y | X0 = x) ≤ ε.

From (87) and the isoperimetric inequality (86), we have

C1r
−1/d ≤ 	(r) ≤ C2r

−1/d,(89)

with the constants 0 < C1 < C2 < ∞ depending only on the dimension. Finally,
from (88) and (89), we readily get (85). �

In order to obtain (82) from (85), note that Y(t) = Yν(t) where Yn is a discrete
time lazy random walk defined in (83) and (84), with Vk(x) = vk(τxω)/s∗ and
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t �→ ν(t) is a Poisson birth process with intensity s∗t independent of the discrete
time walk Yn. Thus,

Pω

(
Y(t) = x

) = e−s∗t/2
∞∑

n=0

(s∗t/2)n

n! Pω(Yn = x)

≤ e−s∗t/2

(
1 +

∞∑
n=1

(s∗t/2)n

n! Cn−d/2

)

≤ C
(
d, s∗)t−d/2

This completes the proof of Proposition 3. �

REMARKS. (1) The point in Proposition 3 is that it provides uniform upper
bound in any (deterministic) environment which satisfies conditions (83), and thus
allows decoupling of the expectation with respect to the walk and with respect to
the environment.

(2) In Lemma 5, the “amount of laziness” could be any δ ∈ (0,1), with appro-
priate minor changes in the formulation and proof.

(3) Alternative proofs of Proposition 3 are also valid, using either Nash–
Sobolev or Faber–Krahn inequalities; see, for example, Kumagai [16]. These alter-
native proofs—which we do not present here—are more analytic in flavour. Their
advantage is robustness: these proofs are also valid in continuous-space setting
(see Section 6 below).

We now return to the proof of (76). By Chebyshev’s inequality,

P
({∣∣R(t)

∣∣ > δ
√

t
}∩ {∣∣Y(t)

∣∣ ≤ K
√

t
})

(90)
≤ δ−2t−1E

(∣∣R(t)
∣∣21{

∣∣Y (t)
∣∣≤K

√
t}
)
.

Since the scalar field 
 has stationary increments [cf. (67)], and zero mean, we get
from the L 2 ergodic theorem that for k ∈ E

lim
n→∞n−2E

(∣∣
(nk)
∣∣2) = 0,

and, consequently,

lim|x|→∞|x|−2E
(∣∣
(x)

∣∣2) = 0.(91)

Applying in turn the heat kernel bound (82) of Proposition 3 and the limit (91) on
the right- hand side of (90), we obtain

t−1E
(∣∣R(t)

∣∣21{
∣∣Y (t)

∣∣≤K
√

t}
) ≤ Ct−d/2−1

∑
|x|≤K

√
t

E
(∣∣
(x)

∣∣2) → 0, as t → ∞.
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Here, the first expectation is both on the random walk Y(t) and on the field ω, while
the second is just on the field ω. The point is that with the help of the uniform heat
kernel bound of Proposition 3 we can decouple the two expectations.

This concludes the proof of (76) in arbitrary dimension. �

We conclude the proof of the Proposition 2 by noting that from (74), (75) and
(76) we readily get (73) which, together with (72) implies indeed that μ = 0.
So (59) holds with α = s∗. We showed that Ker(B∗ + s∗I ) = {0}, the proof that
Ker(B∗ − s∗I ) = {0} is done in the same way with Y defined using −V instead
of V . Thus, the operator B : B → H is indeed essentially skew-self-adjoint. �

PROOF OF THEOREM 1. Proposition 2 verifies that the operator B is es-
sentially skew-self-adjoint. The other conditions of Theorem RSC2 are verified
on pages 4324–4325. Thus, Theorem RSC2 may be applied and we get that for
any f ∈ Dom(|
|−1/2), the time average

∫ N
0 f (η(t)) may be approximated by

a Kipnis–Varadhan martingale. The third formulation of the H−1 condition (35)
gives that vk ∈ Dom(|
|−1/2) while it is always true that sk ∈ Dom(|
|−1/2), (18).
Applying Theorem RSC2 with f = vk + sk for each k ∈ {1, . . . , d} gives that the
compensator I from the decomposition X = M + I (25) can be approximated
with a Kipnis–Varadhan martingale, which we recall, is a stationary martingale M ′
which is adapted to the filtration of the environment process η. Hence, M + M ′ is
also a stationary martingale and has a CLT. Proposition 1 gives the bounds (29).

�

5. The stream tensor field. The content of this section is not a part of the
proof of our main result, but it is an important part of the story and sheds light on
the role and limitations of the H−1-condition in this context. We formulate this
section in the context of nearest neighbour jumps and part (ii) of Proposition 4
(below) as presented here relies on the equivalence of (35) and (36) which is valid
only in the nearest neighbour case. However, we remark that this statement, too,
can be easily reformulated for general finite jump rates, but in this case some mod-
ifications in the definition of the lattice stream tensor are due and the formulation
becomes less transparent. We omit these not particularly instructive details, noting
that it is doable with minimum effort.

The following proposition establishes the existence of the stream tensor field
and is essentially Helmholtz’s theorem. It is the Zd lattice counterpart of Propo-
sition 11.1 from [10]. Recall the definition of the field V : � × Z

d → [−s∗, s∗]E
from (6).

PROPOSITION 4. (i) There exists an antisymmetric tensor field H : �×Z
d →

R
E ×E such that for all x ∈ Z

d we have Hk,l(·, x) ∈ H and

Hl,k(ω, x) = H−k,l(ω, x + k) = Hk,−l(ω, x + l) = −Hk,l(ω, x),(92)
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with stationary increments

H(ω,y) − H(ω,x) = H(τxω,y − x) − H(τxω,0),

such that

Vk(ω, x) = ∑
l∈E

Hk,l(ω, x).(93)

The realization of the tensor field H is uniquely determined by the “pinning down”
condition (101) below.

(ii) The H−1-condition (19) holds if and only if there exist hk,l ∈ H , k, l ∈ E ,
such that

hl,k = Tkh−k,l = Tlhk,−l = −hk,l(94)

and

vk(ω) = ∑
l∈E

hk,l(ω).(95)

In this case, the tensor field H can be realized as the stationary lifting of h:

Hk,l(ω, x) = hk,l(τxω).(96)

PROOF. (i) For k, l,m ∈ E define

gm;k,l := �m(�lvk − �kvl),

where �l = |
|−1/2∇l are the Riesz operators defined in (33), and note that for all
k, l,m,n ∈ E :

gm;l,k = Tkgm;−k,l = Tlgm;k,−l = −gm;k,l,(97)

gm;l,k + Tmgn;l,k = gn;l,k + Tngm;l,k,(98)

∑
l∈E

gm;k,l = ∇mvk.(99)

Equation (97) means that that keeping the subscript m ∈ E fixed, gm;k,l has ex-
actly the symmetries of a L 2-tensor variable indexed by k, l ∈ E . Equation (98)
means that, on the other hand, keeping k, l ∈ E fixed, gm;k,l is a L 2-gradient in
the subscript m ∈ E . Finally, (99) means that the L 2-divergence of tensor gm;·,· is
actually the L 2-gradient of the vector v·.

Let Gm;k,l : � × Z
d → R be the lifting Gm;k,l(ω, x) := gm;k,l(τxω). By (98),

for any k, l ∈ E fixed (Gm;k,l(ω, x))m∈E is a lattice gradient. The increments of
Hk,l are defined by

Hk,l(ω, x + m) − Hk,l(ω, x) = Gm;k,l(ω, x), m ∈ E .(100)

This is consistent, due to (98).
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Next, in order to uniquely determine the tensor field H , we “pin down” its values
at x = 0. For ei, ej ∈ E+ choose

Hei,ej
(ω,0) = 0, H−ei ,ej

(ω,0) = −g−ei;ei ,ej
(ω),

Hei,−ej
(ω,0) = g−ej ;ei ,ej

(ω),

H−ei ,−ej
(ω,0) = −g−ei;ei ,ej

(ω) + g−ej ;ei ,ej
(τ−ei

ω).

(101)

The tensor field H is fully determined by (100) and (101). Due to (97) and (99),
(92), respectively, (93) will hold, indeed.

(ii) We show equivalence with vk ∈ Dom(|
|−1/2) (35). First we prove the only
if part. Assume (35) and let

hk,l = �l|
|−1/2vk − �k|
|−1/2vl = |
|−1/2(�lvk − �kvl).

Hence, (94) and (95) are readily obtained. Next, we prove the if part. Assume that
there exist hk,l ∈ H with the symmetries (94) and vk is realized as in (95). Then
we have

vk = ∑
l∈E

hk,l = 1

2

∑
l∈E

(hk,l + hk,−l) = −1

2

∑
l∈E

∇lhk,−l = −1

2
|
|1/2

∑
l∈E

�lhk,−l ,

which shows indeed (35). �

H−1-condition (fourth formulation): The drift vector field V is realized as the
curl of a stationary and square integrable, zero mean tensor field H , as shown in
(93).

REMARK. If the H−1-condition (19) does not hold, it may still be possible
that there exists a nonsquare integrable tensor variable h : � → R

E ×E which has
the symmetries (94) and with v : � → R

E realized as in (95). Then let H : � ×
Z

d → R
E ×E be the stationary lifting (96) and we still get (93) with a stationary

but not square integrable tensor field. Note that this is not decidable in terms of
the covariance matrix (16) or its Fourier transform (17). The question of diffusive
(or super-diffusive) asymptotic behaviour of the walk t �→ X(t) in these cases is
fully open.

In the next proposition—which essentially follows an argument from Kozlov
[14]—we give a sufficient condition for the H−1-condition (19) to hold.

PROPOSITION 5. If p �→ Ĉ(p) is twice continuously differentiable function in
a neighbourhood of p = 0, then the H−1-condition (19) holds.

PROOF. For the duration of this proof, we introduce the notation

Bk,l(x) := E
(
Vk(0)Vl(x)

)
, B̂k,l(p) := ∑

x∈Zd

e
√−1x·pBk,l(x),
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with k, l ∈ E , x ∈ Z
d,p ∈ [−π,π ]d . Hence, for i, j ∈ {1, . . . , d},

Ĉij (p) = B̂ei ,ej
(p) − B̂−ei ,ej

(p) − B̂ei ,−ej
(p) + B̂−ei ,−ej

(p).

(The identity is meant in the sense of distributions.)
Note that, due to the first clause in (83),

B̂k,l(p) = −e
√−1p·kB̂−k,l(p) = −e−√−1p·lB̂k,−l(p)

(102)
= e

√−1p·(k−l)B̂−k,−l(p).

Using (102) in the above expression of C(p) in terms of B(p), direct computations
yield

Ĉij = (
1 + e−√−1p·ei

)(
1 + e

√−1p·ej
)
B̂ei ,ej

(p).

Thus, the regularity condition imposed on p �→ C(p) is equivalent to assuming the
same regularity about p �→ B̂(p).

Next, due to the second clause of (83),∑
k∈E

B̂k,l(p) = ∑
l∈E

B̂k,l(p) = 0,(103)

and, from (102) and (103) again by direct computations we obtain∑
k,l∈E

(
1 − e−√−1p·k)(1 − e

√−1p·l)B̂k,l(p) ≡ 0.(104)

At p = 0, we apply ∂2/∂pi∂pj to (104) and get

Ĉij (0) = ∑
k,l∈E

kilj B̂k,l(0) = 0, i, j = 1, . . . , d.(105)

Since Ĉj,i(p) = Ĉij (−p) = Ĉij (p) and p �→ Ĉ(p) is assumed to be twice contin-
uously differentiable at p = 0, from (105) it follows that

Ĉ(p) = O
(|p|2), as |p| → 0,

which implies (19). �

In particular, it follows that sufficiently fast decay of correlations of the
divergence-free drift field V (x) implies the H−1-condition (19). Note that the
divergence-free condition (7) is crucial in this argument.

6. Historical remarks. There exist a fair number of important earlier results
to which we should compare Theorem 1.

(1) In Kozlov [14], Theorem II.3.3 claims the same result under the supplemen-
tary restrictive condition that the random field of jump probabilities x �→ P(x) in
(2) be finitely dependent. However, as pointed out by Komorowski and Olla [11],
the proof is incomplete there. Also, the condition of finite dependence of the field
of jump probabilities is a very serious restriction.
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(2) In Komorowski and Olla [12], Theorem 2.2, essentially the same result is
announced as above. However, as noted in Section 3.6 of [10] this proof is yet
again incomplete.

(3) To our knowledge, the best fully proved result is Theorem 3.6 of [10] where
the same result is proved under the condition that the stream tensor field x �→ H(x)

of Proposition 4 be stationary and in L max{2+δ,d}, δ > 0, rather than L 2. Note that
the conditions of our theorem only request that the tensor field x �→ H be square
integrable. The proof of Theorem 3.6 in [10] is very technical; see Sections 3.4
and 3.5 of the monograph.

(4) The special case when the tensor field H is actually in L ∞ is fundamen-
tally simpler. In this case, the so-called strong sector condition of Varadhan [29]
applies directly. This was noticed in [12]. See also Section 3.3 of [10] and Section 7
below.

(5) Examine the following diffusion problem is as follows. Let t �→ X(t) ∈ R
d

be the strong solution of the SDE

dX(t) = dB(t) + 	
(
X(t)

)
dt,(106)

where B(t) is standard d-dimensional Brownian motion and 	 : Rd → R
d is a

stationary and ergodic (under space-shifts) vector field on R
d which has zero mean

E
(
	(x)

) = 0,

and is almost surely divergence-free:

div	 ≡ 0, a.s.(107)

It is analogous to the discrete-space problem studied in this paper in the case that
sk is constant for all k ∈ E . In this case, the H−1-condition is

d∑
i=1

∫
Rd

|p|−2Ĉii(p) dp < ∞,(108)

where

Ĉij (p) :=
∫
Rd

E
(
	i(0)	j (x)

)
e
√−1p·x dx, p ∈ R

d .

It is a fact that, similar to the Zd lattice case, under minimally restrictive regularity
conditions, a stationary and square integrable divergence-free drift field x �→ 	(x)

on R
d can be written as the curl of an antisymmetric stream tensor field with

stationary increments H : Rd →R
d×d :

	i(x) =
d∑

j=1

∂Hji

∂xj

(x).

This is essentially Helmholtz’s theorem. See Proposition 11.1 of [10], which is
the continuous-space analogue of Proposition 4 of Section 5 above. As shown in
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[10], the H−1-condition (108) is equivalent with the fact that the stream tensor H

is stationary (not just of stationary increments) and square integrable. The case
of bounded H was first considered in Papanicolaou and Varadhan [22]. This pa-
per is historically the first instant where the problem of diffusion in stationary
divergence-free drift field was considered with mathematical rigour. Homogeniza-
tion and central limit theorem for the diffusion (106), (107) in bounded stream
field, H ∈ L ∞, was first proven in Osada [21]. Today the strongest result in the
continuous space-time setup is due to Oelschläger [19] where homogenization and
CLT for the displacement is proved for square-integrable stationary stream tensor
field, H ∈ L 2. Oelschläger’s proof consists in truncating the stream tensor and
bounding the error. If the stream tensor field is stationary Gaussian then—as noted
by Komorowski and Olla [13]—the graded sector condition of [25] can be applied.
See also Chapters 10 and 11 of [10] for all existing results on the diffusion model
(106), (107).

(6) Attempts to apply Oelschläger’s method in the discrete (Zd rather than R
d )

setting run into enormous technical difficulties (see Chapter 3 of [10]) and seem-
ingly this approach cannot be fully accomplished beyond the overly restrictive
condition H ∈ L max{2+δ,d}. The main result of this paper, Theorem 1 fills this gap
between the restrictive condition H ∈ L max{2+δ,d} of Theorem 3.6 in [10] and the
minimal restriction H ∈ L 2. The content of our Theorem 1 is the discrete Z

d -
counterpart of Theorem 1 in Oelschläger [19]. We also stress that our proof is con-
ceptually and technically much simpler that of Theorem 3.6 in [10] or Theorem 1
in [19]. The continuous space-time diffusion model—under the same regularity
conditions as those of Oelschläger [19] can be treated in a very similar way repro-
ducing this way Theorem 1 of [19] in a conceptually and technically simpler way.
In order to keep this paper relatively short and transparent, those details will be
presented elsewhere.

(7) There exist results on super-diffusive behaviour of the random walk in dou-
bly stochastic random environment (3), (1) or diffusion in divergence-free random
drift field (106), (107), when the H−1-condition (19) fails to hold. In Komorowski
and Olla [11] and Tóth and Valkó [28], the diffusion model (106), (107) is consid-
ered when the drift field 	 is Gaussian and the stream tensor field H is genuinely
delocalized: of stationary increment but not stationary. Super-diffusive bounds are
proved.

7. Examples. Before formulating concrete examples let us spend a few words
about the physical motivation and phenomenology of the problem considered. The
continuous case discussed in the previous section, diffusion in divergence-free drift
field [cf. (106)–(107)] may model the drifting of a suspended particle in station-
ary turbulent incompressible flow. Very similarly, the lattice counterpart (3) with
jump rates satisfying (1) describe a random walk whose local drift is driven by
a stationary source- and sink-free flow. The interest in the asymptotic description
of this kind of displacement dates back to the discovery of turbulence. However,
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divergence-free environments appear in many other natural contexts, too; see, for
example, [10], Chapter 11, or a surprising recent application to group theory by
Bartholdi and Erschler [2].

A phenomenological picture of these walks can be formulated in terms of
randomly oriented cycles. Imagine that a translation invariant random “soup of
cycles”—that is, a Poisson point process of oriented cycles—is placed on the lat-
tice, and the walker is drifted along by these whirls. Now, local small cycles con-
tribute to the diffusive behaviour. But occasionally very large cycles may cause
on the long time scale faster-than-diffusive transport. Actually, this happens: in
Komorowski and Olla [11] and Tóth and Valkó [28] anomalous superdiffusive be-
haviour is proved in particular cases when the H−1-bound (108) does not hold.
Our result establishes that on the other hand, the H−1-bound (19) ensures not only
boundedness of the diffusivity but also normal behaviour under diffusive scaling.

And now, to some examples:

(1) Stationary and bounded stream field: When there exists a bounded tensor
valued variable h : � → R

E ×E with the symmetries (94) and such that (95) holds
we define the multiplication operators Mk,l , k, l ∈ E , acting on f ∈ H :

Mk,lf (ω) := hk,l(ω)f (ω).(109)

These are bounded self-adjoint operators and they inherit the symmetries of h

[recall the shift operators Tk , k ∈ E from (30)]:

Ml,k = TkM−k,lT−k = TlMk,−lT−l = −Mk,l,∑
l∈E

Mk,l = Mk.
(110)

As an alternative to (43), using (110), the skew-self-adjoint part of the infinitesimal
generator is expressed as

A = ∑
k,l∈E

∇−kMk,l∇l .(111)

In [12] and [10], this form of the operator A is used. The operators Mk,l are
bounded and so is the operator

B := |
|−1/2A|
|−1/2 = ∑
k,l∈E

�−kMk,l�l(112)

which plays a key role in our proof. Due to boundedness of B , the strong sector
condition is valid in these cases and the central limit theorem for the displacement
readily follows. See [12] and Section 3.3 of [10].

Finitely dependent constructions of this type appear in Kozlov [14]. The so-
called cyclic walks analysed in [12] and in Section 3.3 of [10] are also of this
nature.
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When the tensor variables h : � → R
E ×E in (94) are in L 2 \ L ∞, the multi-

plication operators Mk,l defined in (109) are unbounded, the representation (111)
of the skew-self-adjoint part of the infinitesimal generator and the operator B de-
fined in (112) become just formal. Nevertheless, Theorem 1 in Oelschläger [19]
and Theorem 3.6 in [10] are proved by controlling approximations of hk,l and the
unbounded operators Mk,l by truncations at high levels.

(2) Stationary, square integrable but unbounded stream field: We let, in arbi-
trary dimension d , 
 : Zd + (1/2, . . . ,1/2) → Z be a stationary, scalar, Lipschitz
field with Lipschitz constant 1. As shown in Peled [23], such fields exist in suffi-
ciently high dimension. Define H : Zd →R

E2×E2 by

Hei,ej
(x) := 1

d


(
x + (ei + ej )/2

)
, x ∈ Z

d,1 ≤ i < j ≤ d,

and extend to (Hk,l(x))k,l∈E by the symmetries (92). The tensor field H : Zd →
R

E2×E2 defined this way will be stationary and L 2, but not necessary in L ∞—
the uniform graph homomorphism of Peled [23], for example, is not bounded.
Nevertheless, V is bounded by 1, as it should, since |Hk,l(x) + H−k,l(x)| =
|Hk,l(x) − Hk,l(x − k)| ≤ 1

d
and V is a sum of d such terms.

(3) Randomly oriented Manhattan lattice: Let ui : Zd−1 → {−1,+1}, i =
1, . . . , d , be translation invariant and ergodic, zero mean random fields, which are
independent between them. Denote their covariances

ci(y) := E
(
ui(0), ui(y)

)
, y ∈ Z

d−1,

ĉi(p) := ∑
y∈Zd−1

e
√−1p·yci(y), p ∈ [−π,π)d−1.

Define now the lattice vector field

V±ei
(x) := ±ui(x1, . . . , xi−1,��xi, xi+1, . . . , xd).

Then the random vector field V will satisfy all conditions in (83) and t �→ X(t)

will actually be a random walk on the lattice Z
d whose line-paths parallel to the

coordinate axes are randomly oriented in a shift-invariant and ergodic way. This
oriented graph is called the randomly oriented Manhattan lattice. The covariances
C and Ĉ defined in (16), respectively, (17) will be

Cij (x) = δi,j ci(x1, . . . , xi−1,��xi, xi+1, . . . , xd),

Ĉij (p) = δi,j δ(pi)ĉi(p1, . . . , pi−1,��pi,pi+1, . . . , pd).

The H−1-condition (19) is in this case

d∑
i=1

∫
[−π,π ]d−1

D̂(q)−1ĉi (q) dq < ∞.(113)
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In the particular case when the random variables ui(y), i ∈ {1, . . . , d}, y ∈ Z
d−1,

are independent fair coin-tosses, ĉi (q) ≡ 1. In this case, for d = 2,3 the H−1-
condition (113) fails to hold, the tensor field H is genuinely of stationary incre-
ments. In these cases, super-diffusivity of the walk t �→ X(t) can be proved with
the method of Tarrès, Tóth and Valkó [26] (in the 2d case), respectively, of Tóth
and Valkó [28] (in the 3d case). In dimensions d ≥ 4, the H−1-condition (113)
[and thus (19)] holds and the central limit theorem for the displacement follows
from our Theorem 1.

APPENDIX: PROOF OF THEOREM RSC1 AND THEOREM RSC2

PROOF OF THEOREM RSC1. Since the operators Cλ, λ > 0, defined in (52)
are a priori and the operator C is by assumption skew-self-adjoint, we can define
the following bounded operators (actually contractions):

Kλ := (I − Cλ)
−1, ‖Kλ‖ ≤ 1, λ > 0,

K := (I − C)−1, ‖K‖ ≤ 1.
(114)

Hence, we can write the resolvent Rλ = (λI − L)−1 (50) as

Rλ = (λ + S)−1/2Kλ(λ + S)−1/2.(115)

LEMMA 6. Assume that the sequence of bounded operators Kλ converges to
K in the strong operator topology:

Kλ
st.op.top.−→ K as λ → 0.(116)

Then for any f ∈ Dom(S−1/2) = Ran(S1/2), the limits in (51) hold.

PROOF. From the spectral theorem applied to the positive operator S, it is
obvious that, as λ → 0+,∥∥λ1/2(λ + S)−1/2∥∥ ≤ 1, λ1/2(λ + S)−1/2 st.op.top.−→ 0,
(117) ∥∥S1/2(λ + S)−1/2∥∥ ≤ 1, S1/2(λ + S)−1/2 st.op.top.−→ I.

We can write f = S1/2g with g ∈ H . Now, using (115), we get

λ1/2uλ = λ1/2(λ + S)−1/2Kλ(λ + S)−1/2S1/2g,

S1/2uλ = S1/2(λ + S)−1/2Kλ(λ + S)−1/2S1/2g.
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We get

S1/2uλ = S1/2(λ + S)1/2Kλ(λ + S)−1/2S1/2g

(117)= S1/2(λ + S)−1/2Kλ

(
g + o(1)

)
,

By (116,114) = S1/2(λ + S)−1/2(Kg + o(1)
)

(117)= Kg + o(1),

where the notation o(1) is for convergence in norm as λ → 0. Verifying the other
condition of (51) is similar. �

In the next lemma, we formulate a sufficient condition for (116) to hold.

LEMMA 7. Let Cn, n ∈ N, and C = C∞ be densely defined closed (possibly
unbounded) operators over the Hilbert space H . Let also Cn and C be a cores of
definition of the operators Cn and C, respectively. Assume that some (fixed) μ ∈ C

is in the intersection of the resolvent set of all operators Cn, n ≤ ∞, and

sup
1≤n≤∞

∥∥(μI − Cn)
−1∥∥ < ∞,(118)

and for any h ∈ C there exists a sequence hn ∈ Cn such that the following limits
hold:

lim
n→∞‖hn − h‖ = 0 and lim

n→∞‖Cnhn − Ch‖ = 0.(119)

Then (i) and (ii) below hold:

(i)

(μI − Cn)
−1 st.op.top.−→ (μI − C)−1.(120)

(ii) The sequence of operators Cn converges in the strong graph limit sense
to C.

PROOF. (i) Since C is a core for the densely defined closed operator C and μ

is in the resolvent set of C, the subspace Ĉ := {ĥ = (μI − C)h : h ∈ C } is dense
in H . For ĥ ∈ Ĉ , let h := (μI − C)−1ĥ ∈ C and choose a sequence hn ∈ Cn for
which (119) holds. Then

(μI − Cn)
−1ĥ − (μI − C)−1ĥ

= (
μ(μI − Cn)

−1 − I
)
(h − hn) + (μI − Cn)

−1(Cnhn − Ch),

and hence∥∥(μI − Cn)
−1ĥ − (μI − C)−1ĥ

∥∥
≤ (|μ|∥∥(μI − Cn)

−1∥∥+ 1
)‖h − hn‖ + ∥∥μI − Cn)

−1∥∥‖Cnhn − Ch‖ → 0
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due to (118) and (119). Since this is valid on the dense subspace Ĉ ⊂ H , using
again (118), we conclude (120).

(ii) The proof of the “if” part of Theorem VIII. 26 in [24] can be transposed
without any essential alteration. �

To complete the proof of Theorem RSC1, first apply Lemma 7(i) to Cλ,
λ → 0+, defined in (52), C assumed (essentially) skew-self-adjoint, and μ = 1.
Note that μ = 1 is indeed in the resolvent set of all these operators and, indeed
supλ>0 ‖(I − Cλ)

−1‖ < ∞ and ‖(I − C)−1‖ < ∞, as required in (118), since the
operators Cλ are bounded and skew- self-adjoint and the operator C is assumed to
be essentially skew-self-adjoint. From Lemma 7(i), it follows that that (116) holds.
Finally, quoting Lemma 6 we complete the proof of Theorem RSC1. �

PROOF OF THEOREM RSC2. From 0 ≤ T ≤ cD (54), it follows that

0 ≤ D ≤ S ≤ (1 + c)D(121)

Let

Vλ := (λI + D)1/2(λI + S)−1/2, V = V0 := D1/2S−1/2.

The operator V is a priori defined on Dom(S−1/2) = Ran(S1/2), but as we see next,
it extends by continuity to a bounded and invertible linear operator defined on the
whole space H . Due to (121) the following bounds hold uniformly for λ ≥ 0:

‖Vλ‖ = ∥∥V ∗
λ

∥∥ ≤ 1,
∥∥V −1

λ

∥∥ = ∥∥(V −1
λ

)∗∥∥ ≤ √
1 + c.

Let us show that bound on ‖Vλ‖, the bound on ‖V −1
λ ‖ is similar. We write

‖Vλϕ‖2 = 〈
(λI + D)1/2(λI + S)−1/2ϕ, (λI + D)1/2(λI + S)−1/2ϕ

〉
= 〈

(λI + S)−1/2ϕ, (λI + D)(λI + S)−1/2ϕ
〉

≤ 〈
(λI + S)−1/2ϕ, (λI + S)(λI + S)−1/2ϕ

〉 = ‖ϕ‖2.

From here, first of all, it follows that

Dom
(
S−1/2) = Dom

(
D−1/2),

and thus the H−1-conditions f ∈ Dom(S−1/2), respectively, f ∈ Dom(D−1/2) in
Theorem RSC1, respectively, Theorem RSC2, are actually the same. It is also easy
to see that for any ϕ ∈ H

lim
λ→0

Vλϕ = V ϕ and lim
λ→0

V −1
λ ϕ = V −1ϕ.

That is, Vλ
st.op.top.−→ V and V −1

λ

st.op.top.−→ V −1, as λ → 0, where
st.op.top.−→ stands for

convergence in the strong operator topology.
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Next, write the operators Cλ and C from Theorem RSC1, as

Cλ = V ∗
λ BλVλ, C = V ∗BV.

Now, from the fact that Vλ and V −1
λ are all bounded, uniformly in λ ≥ 0, it readily

follows that: (a) one can use C = V −1B as a core for the operator C; (b) C is
essentially skew-self-adjoint on C if so was B on B; and (c) the limit (53) follows
from (56) by straightforward manipulations. Indeed, for ψ ∈ C define ϕ := V ψ ∈
B and let ϕλ ∈ H be such that the limits in (56) hold. Define ψλ := V −1

λ ϕλ. Then
the limits in (53) clearly hold:

‖ψλ − ψ‖ = ∥∥V −1
λ ϕλ − V −1ϕ

∥∥
≤ ∥∥V −1

λ

∥∥‖ϕλ − ϕ‖ + ∥∥V −1
λ ϕ − V −1ϕ

∥∥ → 0,

‖Cλψλ − Cψ‖ = ∥∥V ∗
λ Bλϕλ − V ∗Bϕ

∥∥
≤ ∥∥V ∗

λ

∥∥‖Bλϕλ − Bϕ‖ + ∥∥V ∗
λ Bϕ − V ∗Bϕ

∥∥ → 0. �
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[8] HORVÁTH, I., TÓTH, B. and VETŐ, B. (2012). Relaxed sector condition. Bull. Inst. Math.
Acad. Sin. (N.S.) 7 463–476. MR3077467

[9] KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of
reversible Markov processes and applications to simple exclusions. Comm. Math. Phys.
104 1–19. MR0834478

http://www.ams.org/mathscinet-getitem?mr=0512360
http://arxiv.org/abs/arXiv:1107.5499
http://www.ams.org/mathscinet-getitem?mr=2278453
http://www.ams.org/mathscinet-getitem?mr=0668684
http://www.ams.org/mathscinet-getitem?mr=3077467
http://www.ams.org/mathscinet-getitem?mr=0834478


4346 G. KOZMA AND B. TÓTH

[10] KOMOROWSKI, T., LANDIM, C. and OLLA, S. (2012). Fluctuations in Markov Processes—
Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences] 345. Springer, Heidel-
berg. MR2952852

[11] KOMOROWSKI, T. and OLLA, S. (2002). On the superdiffusive behavior of passive tracer with
a Gaussian drift. J. Stat. Phys. 108 647–668. MR1914190

[12] KOMOROWSKI, T. and OLLA, S. (2003). A note on the central limit theorem for two-fold
stochastic random walks in a random environment. Bull. Pol. Acad. Sci. Math. 51 217–
232. MR1990811

[13] KOMOROWSKI, T. and OLLA, S. (2003). On the sector condition and homogenization of dif-
fusions with a Gaussian drift. J. Funct. Anal. 197 179–211.

[14] KOZLOV, S. M. (1985). The averaging method and walks in inhomogeneous environments.
Uspekhi Mat. Nauk 40 61–120, 238. English version: Russian Math. Surveys 40 73–145
(1985). MR0786087

[15] KOZMA, G. and TÓTH, B. Central limit theorem for random walks in divergence-free random
drift field: H−1 suffices. First arXiv version. Available at arXiv:1411.4171v1.

[16] KUMAGAI, T. (2014). Random Walks on Disordered Media and Their Scaling Limits. Lecture
Notes in Math. 2101. Springer, New York. MR3156983

[17] LÖWNER, K. (1934). Über monotone Matrixfunktionen. Math. Z. 38 177–216. MR1545446
[18] MORRIS, B. and PERES, Y. (2005). Evolving sets, mixing and heat kernel bounds. Probab.

Theory Related Fields 133 245–266.
[19] OELSCHLÄGER, K. (1988). Homogenization of a diffusion process in a divergence-free ran-

dom field. Ann. Probab. 16 1084–1126. MR0942757
[20] OLLA, S. (2001). Central limit theorems for tagged particles and for diffusions in random

environment. In Milieux Aléatoires (F. Comets and É. Pardoux, eds.). Panor. Synthèses 12
75–100. Soc. Math. France, Paris. MR2226846

[21] OSADA, H. (1983). Homogenization of diffusion processes with random stationary coeffi-
cients. In Probability Theory and Mathematical Statistics (Tbilisi, 1982). Lecture Notes
in Math. 1021 507–517. Springer, Berlin. MR0736016

[22] PAPANICOLAOU, G. C. and VARADHAN, S. R. S. (1981). Boundary value problems with
rapidly oscillating random coefficients. In Random Fields, Vol. I, II (Esztergom, 1979)
(J. Fritz, D. Szász and J. L. Lebowitz, eds.). Colloquia Mathematica Societatis János
Bolyai 27 835–873. North-Holland, Amsterdam. MR0712714

[23] PELED, R. (2017). High-dimensional Lipschitz functions are typically flat. Ann. Probab. 45
1351–1447. MR3650405

[24] REED, M. and SIMON, B. (1975). Methods of Modern Mathematical Physics. Vols. 1, 2. Aca-
demic Press, New York.

[25] SETHURAMAN, S., VARADHAN, S. R. S. and YAU, H.-T. (2000). Diffusive limit of a tagged
particle in asymmetric simple exclusion processes. Comm. Pure Appl. Math. 53 972–
1006. MR1755948

[26] TARRÈS, P., TÓTH, B. and VALKÓ, B. (2012). Diffusivity bounds for 1d Brownian polymers.
Ann. Probab. 40 695–713.

[27] TÓTH, B. (1986). Persistent random walks in random environment. Probab. Theory Related
Fields 71 615–625. MR0833271

[28] TÓTH, B. and VALKÓ, B. (2012). Superdiffusive bounds on self-repellent Brownian polymers
and diffusion in the curl of the Gaussian free field in d = 2. J. Stat. Phys. 147 113–131.

[29] VARADHAN, S. R. S. (1995). Self-diffusion of a tagged particle in equilibrium for asymmetric
mean zero random walk with simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat.
31 273–285. MR1340041

http://www.ams.org/mathscinet-getitem?mr=2952852
http://www.ams.org/mathscinet-getitem?mr=1914190
http://www.ams.org/mathscinet-getitem?mr=1990811
http://www.ams.org/mathscinet-getitem?mr=0786087
http://arxiv.org/abs/arXiv:1411.4171v1
http://www.ams.org/mathscinet-getitem?mr=3156983
http://www.ams.org/mathscinet-getitem?mr=1545446
http://www.ams.org/mathscinet-getitem?mr=0942757
http://www.ams.org/mathscinet-getitem?mr=2226846
http://www.ams.org/mathscinet-getitem?mr=0736016
http://www.ams.org/mathscinet-getitem?mr=0712714
http://www.ams.org/mathscinet-getitem?mr=3650405
http://www.ams.org/mathscinet-getitem?mr=1755948
http://www.ams.org/mathscinet-getitem?mr=0833271
http://www.ams.org/mathscinet-getitem?mr=1340041


RANDOM WALK IN DOUBLY STOCHASTIC RANDOM ENVIRONMENT 4347

[30] ZEITOUNI, O. (2004). Lecture notes on random walks in random environment. In Lectures
on Probability Theory and Statistics—Saint-Flour 2001 (J. Picard, ed.). Lecture Notes in
Math. 1837. Springer, Berlin.

DEPARTMENT OF MATHEMATICS

THE WEIZMANN INSTITUTE OF SCIENCE

POB 26, REHOVOT, 76100
ISRAEL

E-MAIL: gady.kozma@weizmann.ac.il

SCHOOL OF MATHEMATICS

UNIVERSITY OF BRISTOL

BRISTOL, BS8 1TW
UNITED KINGDOM

AND

RÉNYI INSTITUTE

BUDAPEST

HUNGARY

E-MAIL: balint.toth@bristol.ac.uk

mailto:gady.kozma@weizmann.ac.il
mailto:balint.toth@bristol.ac.uk

	Introduction: Setup and main result
	The random walk and the H -1-condition
	Central limit theorem for the random walk

	In the Hilbert space 
	Spaces and operators
	Proof of Proposition 1

	Relaxed sector condition
	Kipnis-Varadhan theory
	Relaxed sector condition

	The operator B and proof of Theorem 1
	The stream tensor ﬁeld
	Historical remarks
	Examples
	Appendix: Proof of Theorem RSC1 and Theorem RSC2
	Acknowledgements
	References
	Author's Addresses

