
The Annals of Probability
2017, Vol. 45, No. 6B, 4222–4272
https://doi.org/10.1214/16-AOP1163
© Institute of Mathematical Statistics, 2017

THE SHARP THRESHOLD FOR THE DUARTE MODEL
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The class of critical bootstrap percolation models in two dimensions was
recently introduced by Bollobás, Smith and Uzzell, and the critical threshold
for percolation was determined up to a constant factor for all such models
by the authors of this paper. Here, we develop and refine the techniques in-
troduced in that paper in order to determine a sharp threshold for the Duarte
model. This resolves a question of Mountford from 1995, and is the first result
of its type for a model with drift.
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1. Introduction. In this paper, we resolve a 20-year-old problem of Mount-
ford [20] by determining the sharp threshold for a particular monotone cellular
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automaton related to the classical 2-neighbour bootstrap percolation model. This
model was first studied by Duarte [11], and is the most fundamental model for
which a sharp threshold had not yet been determined. Indeed, our main theorem
is the first result of its type for a critical bootstrap model that exhibits “drift”, and
is an important step towards a complete understanding of sharp thresholds in two-
dimensional bootstrap percolation.

We will begin by stating our main result, and postpone a discussion of the back-
ground and history to Section 1.1. The Duarte model5 is defined as follows. Let

D := {{
(−1,0), (0,1)

}
,
{
(−1,0), (0,−1)

}
,
{
(0,1), (0,−1)

}}
,

denote the collection of 2-element subsets of {(−1,0), (0,1), (0,−1)}, and let Z2
n

denote the two-dimensional discrete torus. Given a set A ⊂ Z2
n of initially infected

sites, set A0 = A, and define for each t ≥ 0,

At+1 := At ∪ {
x ∈ Z2

n : x + X ⊂ At for some X ∈ D
}
.

Thus, a site x becomes infected at time t + 1 if the translate by x of one of the sets
of D is already entirely infected at time t , and infected sites remain infected for-
ever. The set of eventually infected sites is called the closure of A, and is denoted
by [A]D := ⋃

t≥0 At . We say that A percolates if [A]D = Z2
n.

Let us say that a set A ⊂ Z2
n is p-random if each of the sites of Z2

n is included
in A independently with probability p, and denote the corresponding probability
measure by Pp . The critical probability is defined to be

(1) pc

(
Z2

n,D
) := inf

{
p ∈ [0,1] : Pp

([A]D = Z2
n

) ≥ 1/2
};

that is, the value of p at which percolation becomes likely.
Schonmann [22] proved that the critical probability of the Duarte model on the

plane Z2 is 0, and Mountford [20] determined pc(Z
2
n,D) up to a constant factor.

Here, we determine the following sharp threshold.

THEOREM 1.1.

pc

(
Z2

n,D
) =

(
1

8
+ o(1)

)
(log logn)2

logn

as n → ∞.

The constant 1/8 in the theorem arises from the typical growth of a “droplet”
in the following way. A droplet of height (c/p) log(1/p) has width about p−1−c,
which implies that the “cost” of each vertical step of size 2 is roughly p1−c. Inte-
grating the logarithm of this function, we obtain

∫ 1
0

1−c
2 dc = 1/4. The final factor

of 2 is due to there being roughly n2 droplets in Z2
n. For more details, see Section 2.

5See Section 7.1 for a discussion of the closely-related modified Duarte model.
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Our proof of Theorem 1.1 relies heavily on the techniques introduced in [5],
where we proved a weaker result in much greater generality (see Theorem 1.5, be-
low). The key innovation of this paper is the use of nonpolygonal “droplets” (see
Section 3), which seem to be necessary for the proof, and significantly compli-
cate the analysis. In particular, we will have to work very hard in order to obtain
sufficiently strong bounds on the probabilities of suitable “crossing events” (see
Section 4). On the other hand, by encoding the growth using a single variable,
these droplets somewhat simplify some other aspects of the proof.

1.1. Background and motivation. The study of bootstrap processes on graphs
goes back over 35 years to the work of Chalupa, Leath and Reich [10], and numer-
ous specific models have been considered in the literature. Motivated by applica-
tions to statistical physics, for example, the Glauber dynamics of the Ising model
[14, 19] and kinetically constrained spin models [7], the underlying graph is often
taken to be d-dimensional and the initial set A is usually chosen randomly. The
most extensively-studied of these processes is the classical ‘r-neighbour model’ in
d dimensions, in which a vertex of Zd becomes infected as soon as it acquires at
least r already-infected nearest neighbours. The sharp threshold for this model in
full generality was obtained by Balogh, Bollobás, Duminil-Copin and Morris [3]
in 2012, building on a series of earlier partial results in [1, 4, 8, 9, 16, 23]. Their
result stated that

pc

(
Zd

n,N d
r

) =
(

λ(d, r) + o(1)

log(r−1) n

)d−r+1

as n → ∞, for some explicit constant λ(d, r), where the left-hand side is defined
as in (1), except replacing D by N d

r , the collection of the
(2d

r

)
r-element subsets

of the neighbourhood of 0 in Zd . The special case d = r = 2, a result analogous
to Theorem 1.1 for the 2-neighbour model in Z2, was obtained by Holroyd [16] in
2003, who showed that in fact λ(2,2) = π2/18.

More recently, a much more general family of bootstrap-type processes was
introduced and studied by Bollobás, Smith and Uzzell [6]. To define this family
in two dimensions, let U = {X1, . . . ,Xm} be a finite collection of finite subsets of
Z2 \ {0}, and replace D by U in each of the definitions above. The key discovery of
[6] was that the family of such monotone cellular automata can be partitioned into
three classes, each with completely different behaviour. Roughly speaking, one of
the following holds:

• U is “supercritical” and has polynomial critical probability.
• U is “critical” and has poly-logarithmic critical probability.
• U is “subcritical” and has critical probability bounded away from zero.

We remark that the first two statements were proved in [6], and the third by Bal-
ister, Bollobás, Przykucki and Smith [2]. Note that both the Duarte model and the
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2-neighbour model are critical, while the 1-neighbour model is supercritical and
the 3-neighbour model is subcritical.6

For critical models, much more precise bounds were obtained recently by the
authors of this paper [5]. Since this paper should be seen as a direct descendent of
that work, we will spend a little time developing the definitions necessary for the
statement of the main theorem of [5].

DEFINITION 1.2. For each u ∈ S1, let Hu := {x ∈ Z2 : 〈x,u〉 < 0} denote the
discrete half-plane whose boundary is perpendicular to u. Given U , define

S = S(U) = {
u ∈ S1 : [Hu]U = Hu

}
.

The model U is said to be critical if there exists a semicircle in S1 that has finite
intersection with S , and if every open semicircle in S1 has nonempty intersection
with S .

We call the elements of S stable directions. Note that for the Duarte model

S(D) = {
u ∈ S1 : θ(u) ∈ {0} ∪ [π/2,3π/2]},

where θ(u) is the (canonical) angle of u in radians. Thus, the open semicircle
(−π/2, π/2) contains exactly one stable direction, and every other open semicircle
contains an infinite number of stable directions. The next definition allows us to
distinguish between different types of stable direction.

DEFINITION 1.3. Given a rational direction u ∈ S1, the difficulty of u is

α(u) :=
{

min
{
α+(u),α−(u)

}
if α+(u) < ∞ and α−(u) < ∞,

∞ otherwise,

where α+(u) [resp., α−(u)] is defined to be the minimum (possibly infinite) car-
dinality of a set Z ⊂ Z2 such that [Hu ∪ Z]U contains infinitely many sites of the
line �u := {x ∈ Z2 : 〈x,u〉 = 0} to the right (resp., left) of the origin.

Writing u+ for the isolated element of S(D) [so θ(u+) = 0], we have α(u+) =
1 and α(u) = ∞ for every u ∈ S(D) \ {u+}. More precisely, writing u∗ for the
element of S1 with θ(u∗) = π/2, we have

α+(
u∗) = α−(−u∗) = 1 and α−(

u∗) = α+(−u∗) = ∞,

and α+(u) = α−(u) = ∞ for every u ∈ S(D) \ {u+, u∗,−u∗}. Writing C for the
collection of open semicircles of S1, we define the difficulty of U to be

(2) α = α(U) := min
C∈C max

u∈C
α(u),

so α(D) = 1. The final definition we need is as follows.

6There also exist many nontrivial examples of supercritical and subcritical models.
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DEFINITION 1.4. A critical update family U is balanced if there exists a
closed semicircle C such that α(u) ≤ α for all u ∈ C. It is said to be unbalanced
otherwise.

Note that D is unbalanced, since every closed semicircle in S1 contains a point
of infinite difficulty. The main theorem of [5] was as follows.

THEOREM 1.5. Let U be a critical two-dimensional bootstrap percolation
update family and let α = α(U).

(1) If U is balanced, then

pc

(
Z2

n,U
) = �

(
1

logn

)1/α

.

(2) If U is unbalanced, then

pc

(
Z2

n,U
) = �

(
(log logn)2

logn

)1/α

.

By the remarks above, it follows from Theorem 1.5 that

pc

(
Z2

n,D
) = �

(
(log logn)2

logn

)
,

as was first proved by Mountford [20]. Sharp thresholds [that is, upper and lower
bounds which differ by a factor of 1 + o(1)] are known in some special cases. For
example, Duminil-Copin and Holroyd [12] obtained such a result for symmetric,
balanced, threshold models (i.e., balanced models in which U consists of the r-
subsets of some centrally symmetric set), and Duminil-Copin and van Enter [13]
determined the sharp threshold for the unbalanced model with update rule A con-
sisting of the 3-subsets of {(−2,0), (−1,0), (0,1), (0,−1), (1,0), (2,0)}, proving
that

pc

(
Z2

n,A
) =

(
1

12
+ o(1)

)
(log logn)2

logn

as n → ∞. This was, until now, the only sharp threshold result known for an
unbalanced critical bootstrap process in two dimensions.

The key property which makes the process with update rule A easier to deal
with than the Duarte model is symmetry, in particular the fact that α+(u∗) =
α−(u∗) = 2. As a result of this symmetry, the droplets are rectangles, and there is
a natural way to partition vertical growth into steps of size one. The Duarte model
also exhibits symmetry, but of a weaker kind: there exists a set of four pairwise-
opposite stable directions. Theorem 1.1 is the first result of its kind for a model
(balanced or unbalanced) that only exhibits this weaker notion of symmetry.
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The proof of Theorem 1.1 follows in outline that of Theorem 1.5 in the case
of unbalanced “drift” models [i.e., models for which α(u∗) = α(−u∗) = ∞], with
a few important differences. In particular, we will use the “method of iterated hi-
erarchies” (see Section 3), but the droplets we use to control the growth will not
be polygons. Instead, they will grow upwards as they grow rightwards; crucially,
however, in a deterministic fashion. This means that their size will depend on only
one parameter (their height), rather than two, as in the case of a rectangle. As noted
above, this has the pleasantly surprising consequence of simplifying some of the
analysis, although (rather less surprisingly) its overall effect is to significantly in-
crease the number of technical difficulties that will need to be overcome, as we
shall see in Sections 3 and 4. This is the first time that nonpolygonal droplets have
been used in bootstrap percolation, and we consider this innovation to be the key
contribution of this paper.

The rest of this paper is organised as follows. We begin in the next section
by giving the (relatively easy) proof of the upper bound in Theorem 1.1. Then,
in Section 3, we prepare for the proof of the lower bound by defining precisely
the droplet described above, by stating a number of other key definitions, and by
recalling some fundamental definitions from [5] and [16]. The most technical part
of the paper is Section 4, in which we prove precise bounds on the probability that
a droplet grows to “span” a slightly larger droplet. In Section 5, we use the “method
of iterated hierarchies” to bound the probability that relatively small droplets are
internally spanned, and in Section 6 we deduce the corresponding bound for large
droplets, and hence complete the proof of Theorem 1.1. Finally, in Section 7, we
discuss possible extensions of our techniques to more general two-dimensional
processes, and the (much harder) problem of extending these methods to higher
dimensions.

2. The upper bound. The upper bound in Theorem 1.1 is relatively straight-
forward. We will prove the following proposition, which easily implies it (the de-
duction is given at the end of the section). Given a rectangle R with sides parallel
to the axes, let ∂(R) denote its right-hand side.

PROPOSITION 2.1. For every ε > 0, there exists p0(ε) > 0 such that the fol-
lowing holds. Let 0 < p ≤ p0(ε), set a = 1/p5 and b = 1/p3, and let R be a
rectangle of width a and height b. Then

Pp

(
∂(R) ⊂ [R ∩ A]) ≥ exp

(
−1 + ε

4p

(
log

1

p

)2)
.

The growth structure we use to prove Proposition 2.1 is illustrated in Figure 1.
We will define rectangles R0, . . . ,Rk , where k := 1/ε, and bound the probability
that R0 ⊂ [R0 ∩ A], and that R0 then grows to infect the other rectangles in turn.
(Note that if 1/ε is not an integer then we may replace ε by 1/�1/ε�.)
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FIG. 1. Our proof of the upper bound of Theorem 1.1 shows that one (asymptotically) optimal route
to percolation of Z2

n is, somewhere in the torus, for infection to spread in the manner depicted in the
figure. From R0 infection spreads rightwards through R1, then upwards from R1 to R′

1 (which is the
union of R1 and the dashed region above), then rightwards again into R2, and so on.

Let us denote the discrete rectangle with opposite corners (a, b) and (c, d) by

R
(
(a, b), (c, d)

) := {
(x, y) ∈ Z2 : a ≤ x ≤ c and b ≤ y ≤ d

}
.

Assume that ε > 0 and 0 < p < p0(ε) are both sufficiently small, and set

h := ε

p
log

1

p
and wi := p−1−iε

for each i ∈ [k]. We define

R0 := R′
0 := R

(
(0,0), (0, h)

)
and, for each i ∈ [k],

Ri := R

((
1 +

i−1∑
j=1

wj ,0

)
,

(
i∑

j=1

wj , ih

))

and

R′
i := R

((
1 +

i−1∑
j=1

wj ,0

)
,

(
i∑

j=1

wj , (i + 1)h

))
.

Thus, the Ri are rectangles whose heights grow linearly and widths exponentially
in i, and consecutive rectangles are adjacent. The rectangle R′

i contains Ri and has
height equal to that of Ri+1. The set-up is depicted in Figure 1.

We first prove the following easy lemma.

LEMMA 2.2. For each i ∈ [k],
Pp

(
∂
(
R′

i

) ⊂ [
∂
(
R′

i−1
) ∪ (

R′
i ∩ A

)]) ≥ e−2/p · p(1−iε+ε2)h/2.
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FIG. 2. Upwards growth through R′
i . With Ri and the four marked sites already infected, the whole

of ∂(R′
i ) becomes infected.

PROOF. Note first that, since a single infected site in each column is sufficient
for horizontal growth, we have

Pp

(
Ri ⊂ [

∂
(
R′

i−1
) ∪ (Ri ∩ A)

]) ≥ (
1 − (1 − p)ih

)wi

≥ (
1 − piε)wi ≥ e−2/p,

since pε is sufficiently small. Now suppose that Ri is already completely infected,
and observe that a single element of A in the row two above Ri causes all el-
ements to its right in these two rows to become infected (see Figure 2). Note
that the probability of finding at least one site of A in a collection of wi/h sites
is

1 − (1 − p)wi/h ≥ 1 − exp
(
− p1−iε

ε log(1/p)

)
≥ p1−iε+ε2

,

since εpε2
log(1/p) < 1/2. It follows that

Pp

(
∂
(
R′

i

) ⊂ [
Ri ∪ (

R′
i ∩ A

)]) ≥ p(1−iε+ε2)h/2,

as required. �

Now set ŵ := w1 + · · · + wk and

R̂0 := R

(
(0,0),

(
ŵ,

1 + ε

p
log

1

p

))
.

The next lemma follows easily from Lemma 2.2.

LEMMA 2.3. We have

Pp

(
∂(R̂0) ⊂ [R̂0 ∩ A]) ≥ exp

(
−1 + 2ε

4p

(
log

1

p

)2)
.
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PROOF. Note that ∂(R̂0) = ∂(R′
k), and that

Pp

(
R0 ⊂ [R0 ∩ A]) ≥ p�h/2�+1,

since if every second element of R0 is in A then R0 ⊂ [R0 ∩ A]. Therefore,

Pp

(
∂(R̂0) ⊂ [R̂0 ∩ A]) ≥ p�h/2�+1 ·

k∏
i=1

Pp

(
∂
(
R′

i

) ⊂ [
∂
(
R′

i−1
) ∪ (

R′
i ∩ A

)])
.

By Lemma 2.2, the right-hand side is at least

p�h/2�+1e−2k/p
k∏

i=1

p(1−iε+ε2)h/2 ≥ e−2k/p(
p(k+1)h/2)1−εk/2+ε2

≥ p(1+3ε2)h(k+1)/4,

since p is sufficiently small and εk = 1. Recalling that h = ε
p

log 1
p

, and noting that

(1 + 3ε2)(1 + ε) < 1 + 2ε since ε is sufficiently small, the claimed bound follows.
�

We can now easily complete the proof of Proposition 2.1. Indeed, once we have
infected ∂(R̂0) it is relatively easy to grow p−2−ε steps to the right, then p−1−ε/2

steps upwards, then p−5 steps right, and finally p−3 steps up. For completeness,
we spell out the details below.

PROOF OF PROPOSITION 2.1. Recall that R = R[(0,0), (p−5,p−3)]. We
claim that

(3) Pp

(
∂(R) ⊂ [

∂(R̂0) ∪ (R ∩ A)
]) ≥ e−O(1/p).

In order to prove (3), we will need to define three more rectangles. First, set

R̂1 = R

(
(ŵ + 1,0),

(
ŵ + p−2−ε,

1 + ε

p
log

1

p

))
,

and observe that

Pp

(
R̂1 ⊂ [

∂(R̂0) ∪ (R̂1 ∩ A)
]) ≥ (

1 − (1 − p)h(R̂1)
)w(R̂1) ≥ e−O(1/p),

since exp(−p · h(R̂1)) = p−(1+ε) and p−(1+ε) · w(R̂1) = 1/p. Next, set

R̂′
1 = R

(
(ŵ + 1,0),

(
ŵ + p−2−ε,p−1−ε/2))

,

and observe that

Pp

(
∂R̂′

1 ⊂ [
R̂1 ∪ (

R̂′
1 ∩ A

)]) ≥ (
1 − (1 − p)w(R̂1)/h(R̂′

1)
)h(R̂′

1)/2
>

1

2
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since exp(−p · w(R̂1)/h(R̂′
1)) = exp(−p−ε/2) � p2 and h(R̂′

1) � p−2. Finally,
set

R̂2 = R
((

ŵ + p−2−ε + 1,0
)
,
(
p−5,p−1−ε/2))

,

and observe that

Pp

(
R̂2 ⊂ [

∂
(
R̂′

1
) ∪ (R̂2 ∩ A)

]) ≥ (
1 − (1 − p)h(R̂2)

)w(R̂2) >
1

2

since exp(−p · h(R̂2)) � p−5 and w(R̂2) ≤ 1/p5, and

Pp

(
∂(R) ⊂ [

R̂2 ∪ (R ∩ A)
]) ≥ (

1 − (1 − p)w(R̂2)/h(R))h(R)/2
>

1

2

since exp(−p · w(R̂2)/h(R)) � p3 and h(R) = p−3. This proves (3), and, to-
gether with Lemma 2.3, it follows that

Pp

(
∂R ⊂ [R ∩ A]) ≥ exp

(
−1 + 3ε

4p

(
log

1

p

)2)
.

Since ε was arbitrary, the proposition follows. �

Finally, let us deduce the upper bound of Theorem 1.1 from Proposition 2.1.

PROOF OF THE UPPER BOUND OF THEOREM 1.1. Fix λ > 1/8, and set

(4) p = λ(log logn)2

logn
.

We will show that, with high probability as n → ∞, a p-random subset A ⊂ Z2
n

percolates. Observe first that Z2
n contains 
(p8n2) disjoint translates of the rect-

angle R = R[(0,0), (p−5,p−3)]. Since

(5) exp
(
−1 + ε

4p

(
log

1

p

)2)
≥ exp

(
−1 + ε

4λ
· logn

)
≥ n−2+ε

if ε > 0 is sufficiently small, it follows from Proposition 2.1 that, with high prob-
ability, there exists such a translate with ∂(R) ⊂ [R ∩ A].

To complete the proof, simply observe that with probability at least

1 − 2n2(1 − p)1/p3 ≥ 1 − 1

n
,

there does not exist a (horizontal or vertical) line of 1/p3 consecutive sites of Z2
n

that contains no element of A. But if this holds then the set ∂(R) ∪ A clearly
percolates in Z2

n, and so we are done. �
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3. Droplets, spanning and iterated hierarchies.

3.1. Droplets and the growth of infected regions. We are now ready to start the
main part of the proof of Theorem 1.1: the proof of the lower bound on the critical
probability. We begin by formally introducing the curved droplets we shall use to
control the growth of an infection. This will then allow us to state the key result
(Proposition 3.8) we need in the lead up to Theorem 1.1. Later, in Section 3.2, we
establish certain deterministic facts about “internally spanned droplets” (see Defi-
nition 3.7 below), and in Section 3.3 we briefly recall the definitions and properties
we shall need for the “method of iterated hierarchies”.

We begin by defining a droplet. The definition is quite subtle, and is chosen
both to reflect the typical growth of the infected set, and to facilitate our proof of
Theorem 1.1. For simplicity, we will work in Z2 (and R2) throughout this section,
though all of the definitions and lemmas below can be easily extended to the setting
of Z2

n.

DEFINITION 3.1. Given ε > 0 and p > 0, a Duarte region D∗ ⊂ R2 is a set
of the form

(6) D∗ = (a, b) + {
(x, y) ∈ R2 : 0 ≤ x ≤ w, |y| ≤ f (x)

}
,

for some a, b,w ∈ R, where f : [0,∞) → [0,∞) is the function

f (x) := 1

2p
log

(
1 + ε3px

log 1/p

)
.

A Duarte droplet (or simply, as we shall usually say, a droplet) D ⊂ Z2 is the
intersection of a Duarte region with Z2. Thus, D is a Duarte droplet if and only if
there exists a Duarte region D∗ such that D = D∗ ∩Z2.

Let us make an easy but important observation.

OBSERVATION 3.2. Given a bounded set U ⊂ R2, there is a (unique) minimal
Duarte region D∗(U) containing U .

If K ⊂ Z2 is finite, we define the minimal droplet containing K to be D(K) :=
D∗(K)∩Z2. Notice that K ⊂ D(K) and that D is the identity function on droplets.

Observation 3.2 allows us to make the following definitions. Given a bounded
set U ⊂ R2 and a, b,w such that the right-hand side of (6) is D∗(U), we define
the height and width of U by h(U) := 2f (w) + 1 and w(U) := w, respectively.
We call the point (a, b) the source of U . Letting

c := sup
{
x ∈ R : (x, y) ∈ U for some y ∈ R

}
,

we write

∂(U) := {
(c, y) ∈ U : y ∈R

}
.
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Informally, we think of ∂(U) as being the right-hand side of U .7 We can now make
another easy but important observation, the proof of which is immediate from the
convexity of f .

OBSERVATION 3.3. If D∗
1 and D∗

2 are Duarte regions such that ∂(D∗
1) ⊂ D∗

2 ,
then D∗

1 ⊂ D∗
2 .

It is worth noting that the reason for defining Duarte regions as well as (Duarte)
droplets, and for defining heights and widths of droplets in terms of regions, is that
if one were to define everything discretely then certain key lemmas below would
be false. For example, it would be more natural to define D(K) to be the smallest
droplet containing K , but if one were to do that then Lemma 3.12 would be false.
(It would be true with “+2” in place of “+1”, but that would be too weak for the
application in Lemma 3.13.)

One disadvantage of defining droplets in this way is that it makes the following
lemma nontrivial.

LEMMA 3.4. There are at most wO(1) droplets D such that the source of D

belongs to (0,1] × (0,1] and the x-coordinate of the elements of ∂(D) is equal
to w.

The proof of the lemma is a simple consequence of the following extremal result
for set systems. Let us say8 that a set F ⊂ P[n] is a bi-chain if it has the following
property: for every distinct A,B ∈ F , there exists k ∈ [n] such that the following
two conditions hold: (a) A ∩ {1, . . . , k} is a subset of B ∩ {1, . . . , k}, or vice-versa,
and (b) A ∩ {k + 1, . . . , n} is a subset of B ∩ {k + 1, . . . , n}, or vice-versa.

LEMMA 3.5. Let F ⊂ P[n] be a bi-chain. Then |F | ≤ nO(1).

PROOF. If A,B ∈ F are distinct and have the same cardinality, then without
loss of generality we may assume that A ∩ {1, . . . , k} ⊂ B ∩ {1, . . . , k} and B ∩
{k +1, . . . , n} ⊂ A∩{k +1, . . . , n}. This implies that the sum of the elements of A

is strictly greater than the sum of the elements of B . So summing over the possible
sizes of |A|, we have |F | ≤ n3.

Alternatively, one may note that the bi-chain condition implies no set T ⊂ [n]
of size 3 is shattered9 by F . To see this, suppose T = {i, j, k} is such a set, with
i < j < k. Then there exist A,B ∈ F such that A ∩ T = {i, k} and B ∩ T = {j},

7This generalizes the definition of ∂(R) for a rectangle R, given in Section 2.
8We write P[n] for the power set of [n].
9A set T is said to be shattered by F if every subset of T can be obtained as an intersection A∩T ,

for some A ∈F .
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which contradicts the condition. Hence, by the Sauer–Shelah theorem [21, 24], we
must have |F | ≤ O(n2). (Note this is optimal up to the constant factor.)10 �

PROOF OF LEMMA 3.4. First, given a droplet D, let top(D) be the set con-
taining the topmost site of each column of D, and similarly define bottom(D). It is
easy to see that a droplet D is uniquely determined by the set top(D)∪bottom(D).

Let A be the set of droplets D whose source is contained in the unit square
(0,1] × (0,1] and such that the x-coordinate of the elements of ∂(D) is w. For
each D ∈ A, there are (at most) 2w possibilities for top(D), since there are only 2
choices for the element of top(D) at each x coordinate (this is because f ′(x) < 1
for all x ≥ 0). Thus, there is a natural bijection between the set Atop := {top(D) :
D ∈ A} and a subset F of P[n] (the power set of {1, . . . , n}). Moreover, F is
a bi-chain. This is because any two translations of the curve {(x, f (x)) : x ≥ 0}
intersect in at most one point. Hence, by Lemma 3.5, we have |Atop| = |F | ≤
wO(1). Defining Abottom similarly, it follows that |A| ≤ |Atop| · |Abottom| ≤ wO(1).

�

Let us briefly collect together a few simple facts about f , which we shall use
repeatedly throughout the paper.

OBSERVATION 3.6. The function f has the following properties for all ε > 0
and p > 0:

(a) f is strictly increasing on [0,∞).
(b) f ′ is strictly decreasing (and hence f is convex) on [0,∞).
(c) f ′(x) = ε3(2 log 1/p)−1e−2pf (x).
(d) If f (x) ≤ 1/4p, then

ε3

4 log 1/p
≤ f ′(x) ≤ ε3

2 log 1/p
.

Next, let us record a few conventions, also to be used throughout the paper:

• ε > 0 is an arbitrary and sufficiently small constant, and p > 0 is sufficiently
small depending on ε, with p → 0 as n → ∞.

• Constants implicit in O(·) notation (and its variants) are absolute: they do not
depend on p, n, ε, k, or any other parameter.

• A denotes a p-random subset of Z2
n.

• [K] := [K]D for K ⊂ Z2
n (or K ⊂ Z2).

The following key definition is based on an idea first introduced in [3, 4].11

10The first proof given here is due to Paul Balister and the second is due to Bhargav Narayanan.
The authors would like to thank both for bringing these proofs to our attention.

11We emphasize this definition does not correspond to the use of the term “internally spanned” in
much of the older literature, where it was used to mean that [D ∩ A]D = D.



THE SHARP THRESHOLD FOR THE DUARTE MODEL 4235

DEFINITION 3.7. A droplet D is said to be internally spanned if there exists
a set L ⊂ [D ∩ A] that is connected in the graph Z2, and such that D = D(L). We
write I×(D) for the event that D is internally spanned.

We can now state the key intermediate result in the proof of Theorem 1.1.

PROPOSITION 3.8. For every ε > 0, there exists p0(ε) > 0 such that the fol-
lowing holds. If 0 < p ≤ p0(ε), and D is a droplet with

h(D) ≤ 1 − ε

p
log

1

p
,

then

(7) Pp

(
I×(D)

) ≤ p(1−ε)h(D)/4.

In order to deduce the theorem from this result, we will show (see Lemma 3.14)
that if A percolates then there exists a pair (D1,D2) of disjointly internally
spanned droplets, satisfying

max
{
h(D1), h(D2)

} ≤ 1 − ε

p
log

1

p
and h(D1) + h(D2) ≥ 1 − ε

p
log

1

p
− 1,

with d(D1,D2) ≤ 2. The theorem then follows from Proposition 3.8 by using the
van den Berg–Kesten inequality and taking the union bound over all such pairs.

Our proof of Proposition 3.8 uses the framework of “hierarchies” (see Sec-
tion 3.3), which have become a standard tool in the study of bootstrap percolation
since their introduction by Holroyd [16] (see, e.g., [3, 13, 15]). However, in order
to limit the number of possible hierarchies (which is needed, since we will use
the union bound), the “seeds” of our hierarchies must have size roughly 1/p. This
is a problem, because (unlike in the 2-neighbour setting) there is no easy way to
prove a sufficiently strong bound on the probability that such a seed is internally
spanned.12 Moreover, we shall need a similar bound in order to control the prob-
ability of vertical growth, due to the (potential) existence of “saver” droplets (see
Definition 4.6).

We resolve this problem by using the “method of iterated hierarchies”. This
technique, which was introduced by the authors in [5], allows one to prove upper
bounds on the probability that a droplet is internally spanned by induction on its
height. It is specifically designed to overcome the issue of there being too many
droplets for the union bound to work. The inductive step itself is proved using
hierarchies.

Our induction hypothesis is as follows.

12This is, roughly speaking, because a droplet of this height is too long.
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DEFINITION 3.9. For each k ≥ 0, let IH(k) denote the following statement:

(8) Pp

(
I×(D)

) ≤ p(1−εk)h(D)/2

for every droplet D with h(D) ≤ p−(2/3)k (log 1/p)−1, where

(9) εk = ε2 · (3/4)k.

It is no accident that the factor of 1/4 in the exponent in (7) has become a factor
of 1/2 in (8): this has to do with the transition, as a droplet reaches height 1/p, to it
being likely that the droplet grows one more step to the right (see Proposition 6.1,
and also compare with Lemma 2.3).

The statement we need for the proof of Proposition 3.8 is IH(0); we will prove
that this holds in two steps. First, we will prove that IH(k) holds for all sufficiently
large k (see Lemma 5.1); then we will show that IH(k) ⇒ IH(k − 1) for every
k ≥ 1 (see Lemma 5.2). The first step will follow relatively easily from the fact
(see Lemma 3.13) that if D is internally spanned, then |D ∩ A| ≥ h(D)/2. To
prove the second step, we will apply the method of hierarchies, using the induction
hypothesis to bound the probability that smaller droplets are internally spanned.

3.2. Spanning and extremal properties of droplets. In this section, we will re-
call from [5] the “spanning algorithm”, and deduce some of its key consequences.
In particular, we will prove that critical droplets exist and, in the next section, we
will show that they have “good and satisfied” hierarchies. In order to get started,
we need a way of saying that two sets of sites are sufficiently close to interact in
the Duarte model.

DEFINITION 3.10. Define a graph Gstrong with vertex set Z2 and edge set E,
where {(a1, b1), (a2, b2)} ∈ E if and only if

|a1 − a2| ≤ 1 and |a1 − a2| + |b1 − b2| ≤ 2.

We say that a set of vertices K ⊂ Z2 is strongly connected if the subgraph of
Gstrong induced by K is connected.

We are ready to recall the spanning algorithm of [5], Section 6, modified in
accordance with Definitions 3.1 and 3.10.

THE SPANNING ALGORITHM. Let K = {x1, . . . , xk0} be a finite set of sites.
Set K0 := {K0

1 , . . . ,K0
k0

}, where K0
j := {xj } for each 1 ≤ j ≤ k0. Set t := 0, and

repeat the following steps until STOP:

1. If there are two sets Kt
i ,K

t
j ∈Kt such that the set

(10)
[
Kt

i ∪ Kt
j

]



THE SHARP THRESHOLD FOR THE DUARTE MODEL 4237

is strongly connected, then set

Kt+1 := (
Kt \ {

Kt
i ,K

t
j

}) ∪ {
Kt

i ∪ Kt
j

}
,

and set t := t + 1.
2. Otherwise set T := t and STOP.

The output of the algorithm is the span of K ,

〈K〉 := {
D

([
KT

1
])

, . . . ,D
([

KT
k

])}
,

where k = k0 − T . Finally, we say that a droplet D is spanned by a set K if there
exists K ′ ⊂ K such that D ∈ 〈K ′〉.

We will need a few more-or-less standard consequences of the algorithm above.
We begin with a basic but key lemma (cf. [5], Lemma 6.8).

LEMMA 3.11. A droplet D is internally spanned if and only if D ∈ 〈D ∩ A〉.

PROOF. For every finite set K , we have

〈K〉 = {
D(K1), . . . ,D(Kk)

}
,

where K1, . . . ,Kk are the strongly connected components of [K]. Applying this to
K = D ∩ A, we see that D ∈ 〈D ∩ A〉 if and only if D(L) = D for some strongly
connected component L of [D ∩ A]. But [D ∩ A] ⊂ D, and so this is equivalent to
the event that D is internally spanned, since a subset of Z2 is strongly connected
and closed if and only if it is connected in the graph Z2 and closed. �

The second lemma is an approximate subadditivity property for strongly con-
nected droplets. This lemma, and the extremal lemma which follows (Lem-
ma 3.13), are the main reasons for defining Duarte regions, and for defining the
width and height of a droplet in the “continuous” way via Duarte regions.

LEMMA 3.12. Let D1 and D2 be droplets such that D1 ∪ D2 is strongly con-
nected. Then

h
(
D(D1 ∪ D2)

) ≤ h(D1) + h(D2) + 1.

PROOF. It will be convenient to pass to the continuous setting, so let D∗
i :=

D∗(Di) for i = 1,2. We shall prove that

h
(
D∗) ≤ h

(
D∗

1
) + h

(
D∗

2
) + 1

for some Duarte region D∗ containing D∗
1 ∪ D∗

2 . Since h(D) is defined to be
h(D∗(D)) for any droplet D, and since D∗ ⊃ D∗(D∗

1 ∪ D∗
2) ⊃ D∗(D1 ∪ D2),

this would imply the result.
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We may suppose that ∂(D∗
1) lies to the right of or in line with ∂(D∗

2), that D∗
1

has source 0 and width w1, and that D∗
2 has source (a, b) and width w2. (Assuming

0 for the source of D∗
1 is permissible because we shall not assume anything about

the location of lattice points inside the Duarte regions.) Define the new Duarte
region D∗ as follows. Let D∗ have width w, where

(11) f (w) = f (w1) + f (w2) + 1,

and source (w1 − w,h0), where h0 := (ht − hb)/2, and

ht := max
{
b + f (w2) − f (w2 + a),0

}
and

hb := max
{−b + f (w2) − f (w2 + a),0

}
.

[By convention, we set f (x) = 0 if x < 0.] Thus, ht is the distance between the
top of ∂(D∗

2) and the top-most point of D∗
1 , provided the former point lies above

the latter point, and similarly for hb with “top” replaced by “bottom”. Moreover,
∂(D∗

1) and ∂(D∗) lie on the same vertical line in R2. An example is shown in
Figure 3.

Since the height condition h(D∗) ≤ h(D∗
1) + h(D∗

2) + 1 follows immediately
from (11) (in fact, with equality), to prove the lemma it is enough to show
that D∗

1 ∪ D∗
2 ⊂ D∗ and, therefore, by Observation 3.3, it suffices to show that

∂(D∗
1) ∪ ∂(D∗

2) ⊂ D∗. We may assume that max{ht , hb} > 0, since otherwise
∂(D∗

2) ⊂ D∗
1 , which implies D∗

2 ⊂ D∗
1 by Observation 3.3, and in this case the

lemma is a triviality.

FIG. 3. The Duarte regions from the proof of Lemma 3.12. The inner dashed region is D∗(D∗
1 ∪D∗

2)

and the outer dashed region is D∗. In this example, hb = 0. Note that D∗ is much larger than
D∗(D∗

1 ∪ D∗
2). Since D∗ is defined so that h(D∗) = h(D∗

1 ) + h(D∗
2 ) + 1 by (11), this discrepancy

occurs whenever there is a large overlap between the droplets.
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Beginning with D∗
1 , we shall show that in fact ∂(D∗

1) ⊂ ∂(D∗). Without loss
of generality, let h0 ≥ 0, and observe that the vertical coordinates of the bottom-
most points of ∂(D∗

1) and ∂(D∗) are −f (w1) and h0 − f (w), respectively. Since
the source of D∗ is defined so that ∂(D∗

1) and ∂(D∗) lie in the same vertical line,
it is enough to show that h0 − f (w) ≤ −f (w1). By (11), this is equivalent to
h0 ≤ f (w2) + 1. Now, since D1 ⊂ D∗

1 is strongly connected to D2 ⊂ D∗
2 , we have

b − ⌊
f (w2)

⌋ − ⌊
f (w2 + a)

⌋ ≤ 2,

by comparing the bottom-most point of ∂(D∗
2) with the boundary of D∗

1 . [Note that
if D∗

2 lies entirely to the left of D∗
1 then we actually have the stronger inequality

b − �f (w2)� ≤ 1.] Therefore,

ht = b + f (w2) − f (w2 + a) ≤ 2f (w2) + 2.

Thus, if hb = 0 then h0 = ht/2 ≤ f (w2) + 1 as required. If hb > 0, then

h0 = b < f (w2) − f (w2 + a) < f (w2) + 1,

so we are again done.
Now we move on to D∗

2 . Once again, by Observation 3.3 it is enough to prove
that ∂(D∗

2) ⊂ D∗, and so by symmetry (we are no longer assuming h0 ≥ 0) we
only have to show that

b + f (w2) ≤ h0 + f (w2 + a − w1 + w);
that is, we have to show that the vertical coordinate of the top-most point of ∂(D∗

2)

is at most that of the upper boundary point of D∗ in the same vertical line. If
ht > 0 and hb > 0, then h0 = b and we are done by the monotonicity of f . Here,
we are using the fact that w + a ≥ w1, which is obtained by observing that a ≥
−w2 − 1, since D1 and D2 are strongly connected, and then by observing that
w ≥ w1 + w2 + 1 follows from f (w) = f (w1) + f (w2) + 1 by the convexity
of f . If hb = 0, then h0 = b + f (w2) − f (w2 + a), so are we again easily done
by the monotonicity of f . Finally, if ht = 0 then b ≤ 0 and we are done as before.

�

We can now deduce the following extremal result for internally spanned
droplets.

LEMMA 3.13. Let K ⊂ Z2 be a finite set such that [K] is strongly connected.
Then

h
(
D

([K])) ≤ 2|K| − 1.

In particular, if D is an internally spanned droplet, then

|D ∩ A| ≥ h(D) + 1

2
.
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PROOF. The first assertion follows by induction on |K| from Lemma 3.12 and
the spanning algorithm. Indeed, if |K| = 1 then h(D([K])) = 1, as required, so
assume that |K| ≥ 2 and assume that the result holds for all proper subsets of K .

Run the spanning algorithm with initial set K , and observe that, since [K] is
strongly connected, we have 〈K〉 = {D([K]}. Let KT −1 = {K1,K2}, and observe
that [K1], [K2] and [K1 ∪ K2] are strongly connected and |K1| + |K2| = |K|.
Therefore, by the induction hypothesis and Lemma 3.12, we have

h
(
D

([K])) = h
(
D

([K1 ∪ K2])) ≤ h
(
D

([K1])) + h
(
D

([K2])) + 1

≤ (
2|K1| − 1

) + (
2|K1| − 1

) + 1 = 2|K| − 1,

as required.
The second assertion of the lemma follows from the first after noting that if D

is internally spanned then there exists a set K ⊂ D ∩ A such that [K] is strongly
connected and D([K]) = D, by Lemma 3.11. �

We will use Lemma 3.13 in Section 5 to deduce a nontrivial bound on the prob-
ability that a very small droplet is internally spanned, and hence prove the base
case in our application of the method of iterated hierarchies.

Our next lemma implies that critical droplets exist, and is based on a funda-
mental observation of Aizenman and Lebowitz [1], which has become a standard
tool in the study of bootstrap percolation. In order to obtain a sharp threshold for
the Duarte model, we will need the following, slightly stronger variant of their
result.

LEMMA 3.14. If [A] = Z2
n, then there exists a pair (D1,D2) of disjointly

internally spanned droplets such that

max
{
h(D1), h(D2)

} ≤ 1 − ε

p
log

1

p
and

h(D1) + h(D2) ≥ 1 − ε

p
log

1

p
− 1,

and d(D1,D2) ≤ 2.

PROOF. Run the spanning algorithm, starting with S = A, until the first time t

at which there exists a set K ∈ Kt that spans a droplet D(K) of height larger than
(1 − ε)p−1 log 1/p. Since K was created in step t , it follows that K = K1 ∪ K2,
where K1,K2 ∈ Kt−1 are disjoint subsets of A such that [K1] and [K2] are both
strongly connected. Setting D1 = D([K1]) and D2 = D([K2]), we have

max
{
h(D1), h(D2)

} ≤ 1 − ε

p
log

1

p
and h

(
D(K)

)
>

1 − ε

p
log

1

p
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by our choice of t , and D1 and D2 are disjointly internally spanned by K1 and K2,
respectively. By Lemma 3.12, it follows that

h(D1) + h(D2) ≥ 1 − ε

p
log

1

p
− 1,

as required. �

We will also need the following variant of Lemma 3.14, which is closer to the
original lemma of Aizenman and Lebowitz. Since the proof is so similar to that of
Lemma 3.14, it is omitted.

LEMMA 3.15. Let D be an internally spanned droplet. Then for any 1 ≤ k ≤
h(D), there exists an internally spanned droplet D′ ⊂ D such that k ≤ h(D′) ≤ 2k.

3.3. Hierarchies. In this section, we will recall the definition and some basic
properties of hierarchies, which were introduced in [16] and subsequently used
and developed by many authors, for example, in [3–5, 12, 13, 15]. We will be
quite brief, and refer the reader to [5] for more details.

DEFINITION 3.16. Let D be a droplet. A hierarchy H for D is an ordered
pair H = (GH,DH), where GH is a directed rooted tree such that all of its edges
are directed away from the root vroot, and DH : V (GH) → P(Z2) is a function
that assigns to each vertex of GH a droplet, such that the following conditions are
satisfied:

(1) the root vertex corresponds to D, so DH(vroot) = D;
(2) each vertex has out-degree at most 2;
(3) if v ∈ N→

GH(u) then DH(v) ⊂ DH(u);
(4) if N→

GH(u) = {v,w} then DH(u) ∈ 〈DH(v) ∪ DH(w)〉.

Condition (4) is equivalent to the statement that DH(v) ∪ DH(w) is strongly
connected and that DH(u) is the smallest droplet containing their union. We usu-
ally abbreviate DH(u) to Du.

DEFINITION 3.17. Let t > 0. A hierarchy H for a droplet D is t-good if it
satisfies the following conditions for each u ∈ V (GH):

(5) u is a leaf if and only if t ≤ h(Du) ≤ 2t ;
(6) if N→

GH(u) = {v} and |N→
GH(v)| = 1 then

t ≤ h(Du) − h(Dv) ≤ 2t;
(7) if N→

GH(u) = {v} and |N→
GH(v)| �= 1 then h(Du) − h(Dv) ≤ 2t ;

(8) if N→
GH(u) = {v,w} then h(Du) − h(Dv) ≥ t .
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The final two conditions, which we define next, ensure that a good hierarchy for
an internally spanned droplet D accurately represents the growth of the initial sites
D ∩ A. Given nested droplets D ⊂ D′, we define

�
(
D,D′) := {

D′ ∈ 〈
D ∪ (

D′ ∩ A
)〉}

.

DEFINITION 3.18. A hierarchy H for D is satisfied by A if the following
events all occur disjointly:

(9) if v is a leaf then Dv is internally spanned by A;
(10) if N→

GH(u) = {v} then �(Dv,Du) occurs.

Let us also make an easy observation about the event �(D,D′), which will be
useful in the next section.

OBSERVATION 3.19. Let D ⊂ D1 ⊂ D′ be droplets. Then �(D,D′) implies
�(D1,D

′).

Next, we recall some standard properties of hierarchies. Our first lemma moti-
vates the definitions above by showing that every internally spanned droplet has at
least one good and satisfied hierarchy. The proof is almost identical to Lemma 8.8
of [5] (see also Propositions 31 and 33 of [16]), and so we omit it.

LEMMA 3.20. Let t > 0, and let D be a droplet with h(D) ≥ t that is inter-
nally spanned by A. Then there exists a t-good and satisfied hierarchy for D.

The next lemma allows us to bound Pp(I×(D)) in terms of the good and satis-
fied hierarchies of D. Let us write HD(t) for the set of all t-good hierarchies for
D, and L(H) for the set of leaves of GH. We write

∏
u→v for the product over all

pairs {u, v} ⊂ V (GH) such that N→
GH(u) = {v}.

LEMMA 3.21. Let t > 0, and let D be a droplet. Then

Pp

(
I×(D)

) ≤ ∑
H∈HD(t)

( ∏
u∈L(H)

Pp

(
I×(Du)

))( ∏
u→v

Pp

(
�(Dv,Du)

))
.

PROOF. Since the events I×(Du) for u ∈ L(H) and �(Dv,Du) for u → v are
increasing and occur disjointly, this is an immediate consequence of Lemma 3.20
and the van den Berg–Kesten inequality. �

The following is little more than an observation, but we record it here for com-
pleteness.
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LEMMA 3.22. Let H ∈ HD(t). Then

(12)
∑

u∈L(H)

h(Du) + ∑
u→v

(
h(Du) − h(Dv)

) ≥ h(D) − v(H).

PROOF. Each vertex of out-degree 2 in GH contributes an additive “error” of
1 to the difference between h(D) and the left-hand side of (12), because of the
application of Lemma 3.13. Vertices of out-degree 1 in GH do not contribute any
error. Thus, (12) holds [and one could in fact replace v(H) on the right-hand side
of (12) with the number of vertices in GH of out-degree 2]. �

If H ∈ HD(t) is a hierarchy and v ∈ L(H), then we say that Dv is a seed of H.
We finish the section with the following easy lemma; cf. [5], Lemma 8.11.

LEMMA 3.23. Let D be a droplet with h(D) ≤ p−1 log 1/p. Then there are
at most

(13) exp
(
O

(
� · h(D)

t
log

1

p

))

t-good hierarchies for D that have exactly � seeds. Moreover, if H is a t-good
hierarchy for D with � seeds, then

(14)
∣∣V (H)

∣∣ = O

(
� · h(D)

t

)
.

PROOF. The height of a t-good hierarchy for D is at most 2h(D)/t , so the
bound (14) is straightforward. To count the number of choices of the droplet Du

associated with the vertex u, we use Lemma 3.4. Thus, given integers a and b

such that the source of Du lies in the square (a, a + 1] × (b, b + 1], and given
�w(Du)� = w, we have at most wO(1) choices for Du, by Lemma 3.4. Summing
over a, b and w gives at most p−O(1) choices in total for Du, since there are at
most p−O(1) choices for each of a, b and w by the condition on h(D). The bound
(13) now follows. �

4. Crossings. Our aim in this section is to derive bounds on the probabilities
of crossing events, a phrase that we use informally to mean events of the form
�(D,D′), for droplets D ⊂ D′. The bounds we obtain will be used both to prove
the inductive step IH(k) ⇒ IH(k − 1), for each k ≥ 1, in Section 5, and the deduc-
tion of Proposition 3.8 from IH(0), in Section 6. The culmination of this section
is the following lemma. Recall that εk = ε2 · (3/4)k , where ε > 0 is sufficiently
small.

LEMMA 4.1. Let k ≥ 0 and let D ⊂ D′ be droplets such that, h(D) ≥ ε−5
k ,

ε−6
k ≤ h

(
D′) − h(D) ≤ p−(2/3)k

2 log 1/p
,
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and

h
(
D′) ≤

{
p−(2/3)(k−1)

(log 1/p)−1 if k ≥ 1,

(1 − ε)p−1 log 1/p if k = 0.

Suppose also that IH(k) holds. Then

(15) Pp

(
�

(
D,D′)) ≤ exp

(
−

(
1 − 1.1εk

2

)(
log

1

p
− ph

(
D′))(

h
(
D′) − h(D)

))
.

Observe that, while k ≥ 1 and h(D′) � p−1 log 1/p, which will be the case
throughout Section 5, the bound (15) says (roughly) that

Pp

(
�

(
D,D′)) � p(1−1.1εk)(h(D′)−h(D))/2.

The contribution from −ph(D′) in the exponent in (15) only starts to matter when
k = 0 and the droplet approaches the critical size. However, it then plays a very
important role: it is the reason why the exponents in (7) and (8) differ by a factor
of 2 (see the discussion after Definition 3.9).

Lemma 4.1 is a relatively straightforward consequence of the following lemma
about “vertical crossings”. Recall that

f (x) := 1

2p
log

(
1 + ε3px

log 1/p

)

and that ∂(D) denotes the right-hand side of a droplet. We will write D1 � D2 to
denote that ∂(D∗(D1)) ⊂ ∂(D∗(D2)) holds.13

LEMMA 4.2. Let k ≥ 0 and let D � D′ be droplets such that h(D) ≥ ε−5
k and

ε−5
k ≤ y := h

(
D′) − h(D) ≤ p−(2/3)k

2 log 1/p
.

Suppose also that IH(k) holds. Then

(16) Pp

(
�

(
D,D′)) ≤ w

(
D′)O(ε3

ky) ·
(

p

f ′(w(D′))

)(1−1.01εk)y/2
.

We reiterate at this point that the constant implied by the O(·) notation in the
statement of the lemma is absolute: that is, it does not depend on any other pa-
rameter (in particular, it does not depend on ε or k). (In fact, one could take the
constant to be 10, but we choose not to keep track of this.)

In order to prove Lemma 4.2 we shall examine how growth from D to D′ could
occur. To do this, we shall show inductively that there exists a sequence of nested

13Note that ∂(D1) ⊂ ∂(D2) does not imply ∂(D∗(D1)) ⊂ ∂(D∗(D2)), but that ∂(D1) ⊂ ∂(D2) and
D1 ⊂ D2 does.
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droplets D = D0 � · · · � Dm = D′ such that, for each 1 ≤ i ≤ m − 1, either (Di \
Di−1) ∩ A contains a large constant number of relatively “densely spaced” sites
(an event which we think of, informally, as corresponding to the droplet growing
row-by-row), or it spans a “saver” droplet of at least a large constant size. These
alternatives are defined precisely in Definition 4.6.

In order to state that definition, we will need a weaker notion of connectivity
than the strong connectivity used in conjunction with spanning, which will enable
us to say what we meant by “relatively densely spaced” in the previous paragraph.
Very roughly speaking, we say that a small set of sites is “weakly connected and D-
rooted”, for some droplet D, if the sites (might) help D to grow vertically “faster
than it should”.

Henceforth in this section, let us fix k ≥ 0 and let p > 0 [and hence f ′(0)] be
sufficiently small.

DEFINITION 4.3. (a) Define a relation ≺ on Z2, called the weak relation, as
follows. Given sites x = (a1, b1) and y = (a2, b2), we say that x ≺ y if

a2 − a1 ≥ −ε−6
k and |b2 − b1| ≤ 2.

(b) We say that a finite set Y ⊂ Z2 is weakly connected if the graph on Y with
edge set {xy ∈ Y (2) : x ≺ y or y ≺ x} is connected.

(c) Now let D be a droplet, with width w and source (a0, b0), and let ZD :=
{(a, b) ∈ Z2 \ D : a ≤ a0 + w}. A weakly connected set Y ⊂ ZD is D-rooted if for
every y ∈ Y there exist y1, . . . , yj ∈ Y (for some j ≥ 0) and x ∈ D such that

x ≺ y1 ≺ y2 ≺ · · · ≺ yj ≺ y.

The site x is called a root for y with respect to D.

The following lemma elucidates the key property of the definition above. The
somewhat verbose statement (in terms of the numbers h1 and h2) is needed because
in the applications we do not want the final bound in (17) to depend on |Y |, which
may be much larger than h1 + h2.

LEMMA 4.4. Let h1, h2 ≥ 0 and let p > 0 be sufficiently small. Now let D

be a droplet with width w and source (a0, b0), let Y ⊂ Z2 \ D be a finite set,
and partition Y into Y (1) ∪ Y (2), where Y (1) := {(a, b) ∈ Y : b ≥ b0} and Y (2) :=
Y \Y (1). Suppose that for each y ∈ Y there exists a weakly connected and D-rooted
set Y ′ ⊂ Y containing y, such that |Y ′ ∩ Y (i)| ≤ hi for i = 1,2. Then

(17) h
(
D(D ∪ Y)

) ≤ h(D) + 2h1 + 2h2 + 2.

PROOF. Let us in fact set 0 to be the source of D. As in Lemma 3.12, this is
permissible because we shall not need to assume that the lattice points inside D
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FIG. 4. Claim 4.5 asserts that the shaded region is contained in D∗
1 . The essence of the proof is

that the vertical distance between the boundaries of D∗ and D∗
1 is always at least 2h1 + 1, and p

[and hence f ′(0)] can be taken sufficiently small to beat the O(1) distance the region extends to the
left of x.

have integer coordinates, neither shall we need to assume this about the elements
of Y . Let D∗ := D∗(D), and let D∗

1 be the Duarte region with width w1, where
f (w1) = f (w) + h1 + h2 + 1, and source (w − w1, h0), where h0 := h1 − h2. We
claim that

(18) D∗ ∪ Y ⊂ D∗
1 .

Once we have this the lemma will follow, since

h
(
D∗

1
) = 2f (w1) + 1 = 2f (w) + 2h1 + 2h2 + 3 = h

(
D∗) + 2h1 + 2h2 + 2.

To show that D∗ ⊂ D∗
1 , it is enough to have ∂(D∗) ⊂ D∗

1 , by Observation 3.3.
This containment would hold if f (w1) − f (w) ≥ |h0|, since ∂(D∗) is contained
in the same vertical line in R2 as ∂(D∗

1). But this inequality is immediate from the
definitions of w1 and h0, so D∗ ⊂ D∗

1 holds. The more substantive task is to show
that Y ⊂ D∗

1 , and for this the key observation is as follows.

CLAIM 4.5. If x = (a1, b1) ∈ D∗ and y = (a, b) ∈ R2 \ D∗ are such that

a1 − O(1) ≤ a ≤ w and − 2h2 ≤ b − b1 ≤ 2h1,

then y ∈ D∗
1 .

PROOF OF CLAIM 4.5. This follows essentially from the convexity of f and
the fact that p [and hence f ′(0)] is sufficiently small. The key is that the top of D∗

1
always passes at least distance 2h1 + 1 above x (see Figure 4).

To spell out the details, first let us assume by symmetry that b ≥ 0, and observe
that for each t ∈ [0,w] we have

h0 + f (t − w + w1) − f (t) ≥ h0 + f (w1) − f (w) = 2h1 + 1,

where we used the convexity of f for the inequality. But the left-hand side is the
difference between the vertical coordinates of the top-most points in D∗

1 and D∗,
intersected with the column with horizontal coordinate t . Thus, we are done if
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a = a1. If a > a1, then we are also done, since f is increasing. Finally, if a1 −
O(1) ≤ a < a1 then we are again done, this time since p is sufficiently small, and
hence f ′(t) is sufficiently small for all t > 0. �

To complete the proof of the lemma, recall that we wish to show Y ⊂ D∗
1 . Let

y = (a, b) ∈ Y and without loss of generality let us assume y ∈ Y (1). We know by
the condition of the lemma that there exists a weakly connected and D-rooted set
Y ′ ⊂ Y containing y, such that |Y ′ ∩ Y (i)| ≤ hi for i = 1,2. Now take a path of
sites

x ≺ y1 ≺ · · · ≺ yj ≺ y,

with j ≥ 0, such that {y1, . . . , yj , y} ⊂ Y ′ ∩ Y (1), and such that either x ∈ D or
b1 ∈ [−2,0), where x = (a1, b1). To construct such a path, first allow the yi to
belong to Y ′, then, starting at y, truncate the path if necessary at the first element
having negative vertical coordinate. It follows that j + 1 ≤ |Y ′ ∩ Y (1)| ≤ h1.

If x ∈ D then, by the definition of ≺, we have b ≤ b1 +2(j +1) ≤ b1 +2h1 and
a ≥ a1 − O(j) = a1 − O(1). Hence, x and y satisfy the conditions of Claim 4.5.
On the other hand, if b1 ∈ [−2,0) then b ≤ 2(j +1) ≤ 2h1 and a ≥ −O(1). Hence,
in this case 0 and y satisfy the conditions of the claim. In either case, it follows
that y ∈ D∗

1 , and the proof is complete. �

We are now ready to make the key definition of the section, that of a satisfied
partition of a pair of droplets D � D′. The definition is illustrated in Figure 5. Let
us fix γ := �ε−3

k /2�.

DEFINITION 4.6. Let D � D′ be droplets. A satisfied partition P of (D,D′)
is a sequence of droplets P = (Di)

m
i=0, for some m ≥ 1, such that

D = D0 � D1 � · · · � Dm = D′,
h(Dm)−h(Dm−1) ≤ 5γ , and for each 1 ≤ i ≤ m−1, we have h(Di)−h(Di−1) ≥
2γ and (at least) one of the following events occurs:

(1) h(Di) − h(Di−1) ≤ 2γ + 2 and (Di \ Di−1) ∩ A contains a weakly con-
nected Di−1-rooted set of size at least γ .

(2) There exists a droplet Si spanned14 by (Di \ Di−1) ∩ A, with

(19) w(Si) ≥ ε−6
k − 1 and h(Si) ≥ h(Di) − h(Di−1) − ε−3

k ,

and such that either h(Si) ≥ ε−5
k or the rightmost ε−6

k −1 columns of Si all contain
an element of (Di \ Di−1) ∩ A. (We call Si a saver droplet.)

The next lemma, which states that the crossing event for droplets D � D′ im-
plies the existence of a satisfied partition for (D,D′), is the heart of the proof of
Lemma 4.1, and is the key deterministic tool in the proof of Theorem 1.1.

14Recall that Si is spanned by a set K if there exists K ′ ⊂ K such that Si ∈ 〈K ′〉. Note that here it
need not necessarily be the case that Si ⊂ Di \ Di−1.
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FIG. 5. An example of a satisfied partition P = (Di)
4
i=0 of (D,D′). The small droplet is a saver

droplet and the clusters of five crosses are weakly connected sets, each Di -rooted for some i. Thus,
with γ = 5, condition (1) of Definition 4.6 is satisfied when i = 1 and 3, and condition (2) is satisfied
when i = 2.

LEMMA 4.7. Let D � D′ be droplets with h(D) ≥ ε−5
k . If �(D,D′) holds

then there exists a satisfied partition of (D,D′).

From here until the end of the proof of Lemma 4.7, let us fix droplets D � D′.
Let Y1, . . . , Ys be the collection of maximal weakly connected and D-rooted sets
in (D′ \D)∩A. (These sets are disjoint, since if Yi ∩Yj �= ∅ then Yi ∪Yj is weakly
connected and D-rooted.15) Finally, let

(20) Y := Y1 ∪ · · · ∪ Ys and Z := [D ∪ Y ] \ D.

The first preliminary we need in the build-up to the proof of Lemma 4.7 is the
following easy observation about elements of Z.

OBSERVATION 4.8. Let z = (c, d) ∈ [D ∪ Yi] \ D for some 1 ≤ i ≤ s. Then
one of the following holds, in each case with a ≤ c [and a′ ≤ c in case (b)]:

(a) there exists a site y := (a, d) ∈ Yi ;
(b) there exist sites y := (a, d − 1) ∈ Yi and y′ := (a′, d + 1) ∈ Yi ;
(c) (c, d − 1) ∈ D and there exists a site y := (a, d + 1) ∈ Yi ;
(d) (c, d + 1) ∈ D and there exists a site y := (a, d − 1) ∈ Yi .

Next, we need the following lemma, which says that we may obtain D ∪Z from
D by taking the closures with each of the Yi independently. This will enable us to

15This is because the elements of a D-rooted set do not all have to have the same root.
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control the size of Z. The lemma also says that there is a good separation between
D ∪ Z and the elements of A outside of D ∪ Z.

LEMMA 4.9. We have

(21) Z = ([D ∪ Y1] ∪ · · · ∪ [D ∪ Ys]) \ D.

Moreover, if x ∈ A \ (D ∪ Z) then there does not exist z ∈ D ∪ Z such that z ≺ x.

PROOF. To prove (21), we shall show that no site z1 ∈ [D ∪Y1] \D is strongly
connected to a site in z2 ∈ [D ∪Y2] \D, unless z1 and z2 lie either side (vertically)
of an element of D. This will establish the claim, since it would imply that the set
[D ∪ Y1] ∪ [D ∪ Y2] is closed, and since the ordering of the Yi was arbitrary.

First, we make the following observation, which follows immediately from the
definition of ≺:

(∗) If y1 = (a1, b1) ∈ Y1 and y2 = (a2, b2) ∈ Y2, then, since neither y1 ≺ y2 nor
y2 ≺ y1 holds, we must have |b1 − b2| ≥ 3.

Since Y1 and Y2 are each weakly connected, it follows (without loss of gener-
ality) that max{b : (a, b) ∈ Y1} ≤ min{b : (a, b) ∈ Y2} − 3. Let z1 = (c1, d1) and
z2 = (c2, d2), and suppose first that d1 ≤ max{b : (a, b) ∈ Y1}. Then, since z1 and
z2 are strongly connected, it follows that d2 < min{b : (a, b) ∈ Y2}. Now, by Obser-
vation 4.8, it follows that (c2, d2 − 1) ∈ D and d2 = min{b : (a, b) ∈ Y2} − 1. But
since z1 and z2 are strongly connected, this implies that c1 = c2 and d1 = d2 − 2,
and hence z1 and z2 lie either side (vertically) of an element of D, as claimed. The
proof in the case d1 > max{b : (a, b) ∈ Y1} is identical.

To see the second part of the lemma, let x ∈ A\ (D ∪Z), and suppose that z ≺ x

for some z ∈ D ∪ Z. Observe that z cannot be in D, because then x would belong
to one of the Yi . So in fact we have z ∈ Z and we may assume further that x is
not weakly connected to any element of D. By the first part of the lemma, we may
also assume that z ∈ [D ∪Y1] \D. We shall show that there exists y ∈ Y1 such that
y ≺ x, which would imply that x belongs to Y1, a contradiction.

Let x = (c0, d0) and let z = (c, d), and let y (and possibly also y′) be the sites
obtained from Observation 4.8 applied to z. If option (a) holds, then we imme-
diately have y ≺ x. If option (b) holds, then we take y = (a, d + 1) if d0 ≥ d , to
obtain y ≺ x, and we take y ′ = (a, d −1) if d0 < d , to obtain y′ ≺ x. Finally, if op-
tion (c) holds (say), then since (c, d − 1) ∈ D and z ≺ x, we must have d0 ≥ d − 1
and, therefore, we have y ≺ x. (Here, we have used the assumption that x is not
weakly connected to any element of D: if z is near to the left-hand end of D, then
there do exist sites in Z2 \ D within horizontal distance ε−6

k to the left of z, and
having vertical coordinate 2 less than that of z. However, any such site is weakly
connected to D.) This completes the proof of the second part of the lemma. �

We are now ready to prove Lemma 4.7. The basic idea is as follows: if none of
the sets Yi has size at least γ , then since [by (21)] we can obtain D ∪ Z from D
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by taking the closure of D with each of the Yi independently, we can control the
size of each (strongly) connected component of Z. Since Definition 4.3 ensures
that there is a large region disjoint from A around any maximal weakly connected
component, the event �(D,D′) allows us to deduce the existence of a saver droplet
sufficiently large to penetrate through this region; see Claim 4.11 below.

PROOF OF LEMMA 4.7. The proof is by induction on �h�, where h := h(D′)−
h(D). When h ≤ 5γ , there is nothing to prove: we may take m = 1, D0 = D and
D1 = D′, so that P = (D0,D1) trivially satisfies Definition 4.6. Thus, we shall
assume that h > 5γ and that the result holds for smaller nonnegative values of �h�.

Suppose first that |Yi | ≥ γ for some i. In this case, we will show that there
exists a droplet D � D1 � D′ with 1 ≤ h(D1) − h(D) ≤ 2γ + 2 and such that
(D1 \ D) ∩ Yi contains a weakly connected D-rooted set of size at least γ , as
in Definition 4.6 (1). In order to define D1, we will first show that there exists a
subset W ⊂ Yi with |W | = γ that satisfies the conditions of Lemma 4.4. Indeed,
this follows by greedily adding points of Yi to W one by one (starting from the
empty set), maintaining the property that W is D-rooted. (So a point y ∈ Yi may
be added to W if there exists u ∈ D ∪ W such that u ≺ y.) It is easy to see that
for each u ∈ W there exists a set W ′ ⊂ W with u ∈ W ′ such that W ′ is weakly
connected and D-rooted (simply take the oriented path leading to u). Moreover,
since W ′ ⊂ W and |W | = γ , the conditions of Lemma 4.4 are satisfied for some
h1, h2 ≥ 0 with h1 + h2 = γ , and thus

h
(
D(D ∪ W)

) − h(D) ≤ 2γ + 2.

If h(D(D ∪ W)) − h(D) ≥ 2γ , then set D1 = D(D ∪ W); if not, then choose
instead for D1 any droplet such that 2γ ≤ h(D1) − h(D) ≤ 2γ + 1 and D(D ∪
W) � D1 � D′. In either case, the droplet D1 satisfies the conditions of Defini-
tion 4.6 with i = 1 and D0 = D. We may therefore apply induction to the pair
(D1,D

′), noting that the event �(D1,D
′) occurs by Observation 3.19, and, for

the purpose of the induction on �h�, that we have ensured that h(D′) − h(D1) ≤
h(D′) − h(D) − 1.

Henceforth, we shall assume that |Yi | ≤ γ − 1 for each 1 ≤ i ≤ s. Our task is to
show, using Lemma 4.9, that there exists a saver droplet satisfying condition (2) of
Definition 4.6. In order to find the saver droplet, we begin by showing that either
[(D′ \ D) ∩ (A \ Y)] is strongly connected to D ∪ Z, or we can take the whole of
D′ to be the saver droplet.

CLAIM 4.10. Either there exist sites z ∈ D ∪ Z and x ∈ [(D′ \ D) ∩ (A \ Y)]
such that z and x are strongly connected, or we have

(22) D′ ∈ 〈(
D′ \ D

) ∩ (A \ Y)
〉
.
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PROOF OF CLAIM 4.10. Suppose (22) does not hold. First, note that[
D ∪ (

D′ ∩ A
)] = [

D ∪ Y ∪ (
D′ ∩ (A \ Y)

)]
= [

(D ∪ Z) ∪ [(
D′ \ D

) ∩ (A \ Y)
]]

,
(23)

since Y ⊂ D′ ∩ A and D ∪ Z = [D ∪ Y ]. Second, the event �(D,D′) implies that
[D∪(D′ ∩A)] contains a strongly connected set L such that D′ = D(L). However,
we cannot have L ⊂ D ∪ Z, because if we apply Lemma 4.4 to the droplet D and
the set Y , with h1 = h2 = γ , then we obtain

h
(
D(D ∪ Z)

) = h
(
D(D ∪ Y)

) ≤ h(D) + 4γ + 2 < h
(
D′),

where we have used the fact that h(D′) − h(D) > 5γ . We also cannot have L ⊂
[(D′ \ D) ∩ (A \ Y)], because (22) does not hold. Now, if the union of D ∪ Z and
[(D′ \D)∩ (A\Y)] is not closed, then we are done: this would immediately imply
the existence of sites x and z as in the statement of the claim. If the union of the
two sets is closed, then by (23) we would have

L ⊂ [
D ∪ (

D′ ∩ A
)] = (D ∪ Z) ∪ [(

D′ \ D
) ∩ (A \ Y)

]
.

Hence, since the strongly connected set L is contained in neither D ∪Z nor [(D′ \
D) ∩ (A \ Y)], it must intersect both and, therefore, these sets must themselves be
strongly connected, as required. �

We now have everything we need to find the saver droplet.

CLAIM 4.11. There exists a droplet S spanned by (D′ \ D) ∩ A such that

(24) w(S) ≥ ε−6
k − 1 and h(S) ≥ h

(
D(D ∪ S)

) − h(D) − ε−3
k .

Moreover, either h(S) ≥ ε−5
k , or the rightmost ε−6

k − 1 columns of S all contain an
element of (D′ \ D) ∩ A.

We will complete the proof of Lemma 4.7 after the proof of Claim 4.11.

PROOF OF CLAIM 4.11. To begin, note that if (22) holds then we may take
S = D′, since then h(S) = h(D′) ≥ ε−5

k by the assumption of Lemma 4.7. So let
us assume (22) does not hold, and that therefore, by Claim 4.10, there exist sites
z ∈ D ∪ Z and x ∈ [(D′ \ D) ∩ (A \ Y)] such that z and x are strongly connected.
Without loss of generality, let us assume that in fact z ∈ [D ∪ Y1], by (21). Let S ∈
〈(D′ \ D) ∩ (A \ Y)〉 be the droplet spanned by the strongly connected component
of [(D′ \ D) ∩ (A \ Y)] containing x; see Figure 6. We will show that S is the
desired droplet, that is, that it has all of the claimed properties.

First, we must show that the dimensions of S satisfy the conditions of (24). We
begin with the height condition. If z ∈ D, then S and D are strongly connected, in
which case

h
(
D(D ∪ S)

) ≤ h(D) + h(S) + 1,
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FIG. 6. The setup in Claim 4.11. The region below the solid line at the bottom of the figure is D;
that above and to the left of the solid line at the top of the figure is S. Solid boxes are elements of A.
The dashed lines bound the elements of the closure Z = [D ∪ Y ]. The dotted line bounds the set of
sites weakly connected to Yi . The sites x, x′ and z are as in the claim. (Note that x is not in A, so it
is indicated by a dashed box. In this example, we have z ∈ A, but that need not be the case; similarly,
x is shown as the bottom-right-hand element of S, which it need not be.)

by Lemma 3.12. So assume that z ∈ [D ∪ Y1] \ D, and let Dz = D(Cz), where Cz

is the minimal column of (consecutive) sites containing z and strongly connected
to D. By the definition of the weak relation and the bound |Y1| ≤ γ − 1, and since
p [and therefore f ′(0)] is sufficiently small, it follows that |Cz| ≤ 2(γ − 1) and,
therefore, h(D(Cz)) ≤ 2(γ − 1). Hence, by Lemma 3.12 we have

h
(
D

(
D ∪ {z})) ≤ h(D) + h

(
D(Cz)

) + 1 ≤ h(D) + 2γ − 1.

Now, since z and x are strongly connected, it follows again from Lemma 3.12, this
time applied to droplets D(D ∪ {z}) and S, that

h
(
D(D ∪ S)

) ≤ h
(
D

(
D ∪ {z})) + h(S) + 1 ≤ h(D) + h(S) + 2γ.

Since 2γ ≤ ε−3
k , it follows that the height condition in (24) holds.

For the width condition in (24), notice that since x ∈ [S ∩ A] (but x /∈ A), at
least one of the following must hold:

• S ∩ A has nonempty intersection with the row containing x;
• S ∩A has nonempty intersection with the row immediately above x and the row

immediately below x.

In either case, since x and z are strongly connected, there exists x′ ∈ S∩A differing
from z in its vertical coordinate by at most 2. Note moreover that we can choose
x′ to be in the same strongly connected component of [S ∩ A] as x. Now since
x′ ∈ A \ (D ∪ Z), we cannot have z ≺ x′, by Lemma 4.9. Hence, writing x′ =
(a1, b1) and z = (a3, b3), it follows that w(S) ≥ a3 − a1 − 1 > ε−6

k , which implies
the claimed bound on w(S).

Finally, we must show that the rightmost ε−6
k − 1 columns of S all contain an

element of (D′ \D)∩A. But this follows from the fact that x and x′ lie in the same
strongly connected component of [S ∩ A], using the bound a3 − a1 > ε−6

k . �
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We now complete the proof of Lemma 4.7. Let S be the (saver) droplet whose
existence is guaranteed by Claim 4.11. Set D1 to be equal to D(D ∪ S), unless
h(D(D∪S))−h(D) < 2γ , in which case instead set D1 to be any droplet such that
D(D ∪S) � D1 � D′ and 2γ ≤ h(D1)−h(D) ≤ 2γ +1 (cf. the second paragraph
of the proof of the lemma). Then we have w(S) ≥ ε−6

k − 1 by Claim 4.11, and
h(S) ≥ h(D1) − h(D) − ε−3

k if D1 = D(D ∪ S), also by Claim 4.11. On the other
hand, if D1 is larger than D(D ∪ S) then

h(D1) − h(D) − ε−3
k ≤ 2γ + 1 − ε−3

k ≤ 1,

and h(S) ≥ 1 by the definition of the height of a droplet. Thus, in either case S

satisfies the conditions of Definition 4.6(2).
Finally, we note (once again) that �(D1,D

′) occurs, by Observation 3.19 [using
the fact that S being spanned by (D′ \ D) ∩ A implies S is also spanned by (D1 \
D) ∩ A, since S ⊂ D1 ⊂ D′], and, for the induction on �h�, that h(D′) − h(D1) ≤
h(D′) − h(D) − 1. Thus, we are done by induction. �

From here, the proof of Lemma 4.2 is no more than a calculation. First, we
establish a bound for the probability of the existence of saver droplets.

LEMMA 4.12. Let P = (Di)
m
i=0 be a satisfied partition for (D,D′), where D

and D′ satisfy the conditions of Lemma 4.2. Let w := w(D′), and suppose that
IH(k) holds. Then, for each 1 ≤ i ≤ m − 1, the probability that (Di \ Di−1) ∩ A

spans a saver droplet [i.e., a droplet satisfying the conditions of Definition 4.6(2)]
is at most

wO(1) · p(1−εk)(1−ε2
k )yi/2,

where yi := h(Di) − h(Di−1).

PROOF. First, we apply Lemma 3.4 to count the number of choices for the
saver Si . Indeed, if the integer parts of the coordinates of the source of Si are
fixed, and if �w(Si)� = a, then the lemma implies that there are at most aO(1)

distinct choices for Si . Now, Si is spanned by (Di \ Di−1) ∩ A and, therefore, we
have the inclusions Si ⊂ Di ⊂ D′, since Di and D′ are droplets. So the number
of choices for the integer part of the source of Si is at most w2. Hence, the total
number of choices for Si is at most wO(1), independently of h(Si) and yi . It only
remains to show that the probability a given droplet Si satisfies the conditions of a
saver droplet in Definition 4.6(2) is at most

(25) p(1−εk)(1−ε2
k )yi/2.

Let Si be a droplet spanned by (Di \ Di−1) ∩ A, such that the width and height
of Si satisfy the conditions in (19), which we recall again here:

(26) w(Si) ≥ ε−6
k − 1 and h(Si) ≥ h(Di) − h(Di−1) − ε−3

k .
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Note that it is possible that h(Si) is large: indeed it is possible that it is much larger
than yi = h(Di) − h(Di−1). If that is the case, then we may pass to a subdroplet
S′

i ⊂ Si as follows: if h(Si) ≤ p−(2/3)k /(log 1/p) then we set S′
i := Si ; otherwise,

by Lemma 3.15, we may choose a droplet S′
i ⊂ Si spanned by (Di \ Di−1) ∩ A

such that

(27)
p−(2/3)k

2 log 1/p
≤ h

(
S′

i

) ≤ p−(2/3)k

log 1/p
.

In either case, we have

(28) h
(
S′

i

) ≥ h(Di) − h(Di−1) − ε−3
k ,

because if S′
i = Si then this is just the second part of (26), and if S′

i � Si then

h
(
S′

i

) ≥ p−(2/3)k

2 log 1/p
≥ h

(
D′) − h(D) > h(Di) − h(Di−1) − ε−3

k .

The probability S′
i is spanned by (Di \ Di−1) ∩ A is at most the probability it

is internally spanned, since if S′
i is spanned by (Di \ Di−1) ∩ A, then it is also

spanned by (Di \ Di−1) ∩ A ∩ S′
i . Therefore, applying IH(k) [using the upper

bound on h(S′
i ) from (27)], we obtain

Pp

(
I×(

S′
i

)) ≤ p(1−εk)h(S′
i )/2.

For droplets S′
i with h(S′

i ) ≥ ε−5
k , this bound will be sufficient. Indeed, in such

cases we have ε2
k · h(S′

i ) ≥ ε−3
k , and hence, by (28),

yi ≤ h
(
S′

i

) + ε−3
k ≤ (

1 + ε2
k

) · h(
S′

i

) ≤ h(S′
i )

1 − ε2
k

,

so (25) holds. For smaller saver droplets, we need a better bound, because in these
cases the error of ε−3

k in the height bound in (26) is significant relative to h(Si).16

We obtain this by using the final condition of a saver droplet in Definition 4.6(2):
that if h(Si) < ε−5

k then the rightmost ε−6
k −1 columns of Si all contain an element

of (Di \ Di−1) ∩ A. The probability that this occurs is at most
(
ph(Si)

)ε−6
k −1 ≤ p2ε−5

k ,

if p is sufficiently small, since we are assuming h(Si) ≤ ε−5
k , and we have used the

(easy) fact that |∂(Si)| ≤ h(Si). The bound in (25) now follows, since h(Si) < ε−5
k

implies yi ≤ 2ε−5
k . �

We can now complete the proof of Lemma 4.2.

16We have returned to using the original saver droplet because if h(Si) is small then we do not need
to pass to a subdroplet S′

i .
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PROOF OF LEMMA 4.2. We shall show that the probability that (D,D′) ad-
mits a satisfied partition is at most the bound claimed in (16); the lemma will then
follow from Lemma 4.7.

Thus, suppose P = (Di)
m
i=0 is a satisfied partition for (D,D′), and let w :=

w(D′). To start, we claim that for each 1 ≤ i ≤ m − 1, the probability that (Di \
Di−1) ∩ A contains a weakly connected Di−1-rooted set Yi of size γ = �ε−3

k /2�,
given that yi := h(Di) − h(Di−1) ≤ 2γ + 2, is at most

(29) 2w ·
(

ck

f ′(w)

)ε−3
k /2−1

· pε−3
k /2,

where ck depends only on εk . To see this, first note that each y ∈ Yi lies within
vertical distance 2γ +1 of Di−1, because |Yi | = γ and Yi is Di−1-rooted. Then for
each y ∈ Yi , there are at most O(γ )/f ′(w) sites y′ such that y ≺ y′ (here we have
used that f ′ is decreasing). Hence, when searching for elements of Yi greedily,
there are only ck/f

′(w) choices for each new site. Now if p is sufficiently small
then (29) is at most

(30) w ·
(

p

f ′(w)

)(1−εk)yi/2
,

since 2γ ≤ yi ≤ 2γ + 2 ≤ ε−3
k + 2 (and εk being sufficiently small) implies

ε−3
k /2 − 1 ≥ (1 − εk)yi/2, and since 2p · c

ε−3
k /2

k ≤ 1, because p is sufficiently
small.

On the other hand, for each 1 ≤ i ≤ m − 1, the probability that (Di \ Di−1) ∩ A

spans a saver droplet Si [i.e., Si satisfies the conditions of Definition 4.6(2)] is at
most

(31) wO(1) · p(1−εk)(1−ε2
k )yi/2,

by Lemma 4.12, where as usual yi := h(Di) − h(Di−1).
Next, we combine the bound for weakly connected sets from (30) with the

bound for saver droplets from (31). If one defines for each 1 ≤ i ≤ m − 1, the
event Ei to be that (Di \ Di−1) ∩ A either contains a weakly connected set of size
γ or spans a saver droplet, then the events Ei are independent as i varies, even
though the saver droplet spanned by (Di \ Di−1) ∩ A may not be fully contained
in Di \ Di−1. This is because Ei only depends on the intersection of Di \ Di−1
with A, and the sets Di \ Di−1 are disjoint for different values of i. Moreover, by
(30) and (31),

(32) Pp(Ei ) ≤ wO(1) ·
(

p

f ′(w)

)(1−εk)(1−ε2
k )yi/2

for each 1 ≤ i ≤ m − 1. Observe also that

(33)
m−1∑
i=1

yi = h(Dm−1) − h(D) = y − (
h
(
D′) − h(Dm−1)

) ≥ y − 3ε−3
k ,
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by Definition 4.6. Noting that we always have

(34) m = O
(
ε3
ky

)
,

since h(Di) − h(Di−1) ≥ 2γ ≥ 2ε−3
k /3 for each 1 ≤ i ≤ m − 1, it follows from

(32) and (33) that

(35)
m−1∏
i=1

Pp(Ei ) ≤ wO(ε3
ky) ·

(
p

f ′(w)

)(1−εk)(1−ε2
k )(y−3ε−3

k )/2
.

In order to bound the probability that there is a satisfied partition for (D,D′), we
take the union bound over the choices of m and D1, . . . ,Dm−1. By Lemma 3.4, the
number of choices for each Di is wO(1) (cf. the proof of Lemma 4.12), so the total
number of choices for m and D1, . . . ,Dm−1 is at most wO(ε3

ky), by (34). Hence,
by (35), the probability there is a satisfied partition for (D,D′) is at most

wO(ε3
ky) ·

(
p

f ′(w)

)(1−εk)(1−ε2
k )(y−3ε−3

k )/2
.

We are given that y ≥ ε−5
k and, therefore, y − 3ε−3

k ≥ y(1 − 3ε2
k). Hence, the

preceding probability is at most

wO(ε3
ky) ·

(
p

f ′(w)

)(1−1.01εk)y/2
,

and so as noted earlier, we are done by Lemma 4.7. �

The deduction of Lemma 4.1 from Lemma 4.2 proceeds as follows. Given D ⊂
D′, let Dv be the minimal droplet such that D ⊂ Dv � D′, and let Dh be the
maximal droplet such that D � Dh ⊂ D′. Observe that

(36) �
(
D,D′) ⇒ �

(
Dv,D

′) ∧ �
(
Dh,D

′).
Now, either h(D′) − h(Dv) is large, in which case we bound the probability of the
event �(Dv,D

′) using Lemma 4.2, or w(D′) − w(Dh) is large, in which case we
bound the probability of the event �(Dh,D

′) directly by noting that every column
of D′ \ Dh must intersect A (see Figure 7). We now give the details.

PROOF OF LEMMA 4.1. Suppose that �(D,D′) occurs, and let Dv and Dh

be as above. By (36), we have

(37) Pp

(
�

(
D,D′)) ≤ min

{
Pp

(
�

(
Dv,D

′)),Pp

(
�

(
Dh,D

′))}.
To prove the lemma, we shall show that at least one term inside the minimum is at
most the right-hand side of (15).

Let

xv := w(Dv) − w(D), xh := w(Dh) − w(D), and x := w
(
D′) − w(D),
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FIG. 7. The two cases of the proof of Lemma 4.1. Both figures show the inner droplet D and the
outer droplet D′. On the left (Case 1), w(D′) − w(Dh) is large, the intermediate droplet shown is
Dh, and in the proof we bound Pp(�(D,D′)) directly by noting that every column of D′ \ Dh must
intersect A. On the right (Case 2), h(D′) − h(Dv) is large, the intermediate droplet shown is Dv ,
and in the proof we bound Pp(�(D,D′)) using Lemma 4.2.

and note that xv + xh = x, because w(Dv) − w(D) = w(D′) − w(Dh). Note also
that xv ∈ Z, since D and Dv have the same source. Let y := h(D′)−h(D), so that
we have

(38)
y

x
= h(D′) − h(D)

w(D′) − w(D)
= 2 · f (w(D′)) − f (w(D))

w(D′) − w(D)
.

Thus, using Observation 3.6(d) and the mean value theorem, we have that if k ≥ 1
[and hence f (w(D′)) < h(D′) ≤ 1/4p], then

(39)
log 1/p

ε3 · y ≤ x ≤ 2 log 1/p

ε3 · y.

Case 1. First, suppose that xv ≥ εkx/50. In this case, we shall show that the
probability Pp(�(Dh,D

′)) of “crossing horizontally” is small: in fact, we shall
show that it is at most py , which is more than sufficient for the lemma.

The event �(Dh,D
′) implies that every column of D′ \ Dh is nonempty. If

k ≥ 1 then, since xv is an integer, it follows that

Pp

(
�

(
Dh,D

′)) ≤ (
p · h(

D′))εkx/50 ≤ e−x,

where for the first inequality we have used the fact that |∂(D′)| ≤ h(D′), and for
the second inequality we have used the fact that p · h(D′) = o(1) (which is true
since k ≥ 1). Combining this with (37) and (39), we have

(40) Pp

(
�

(
D,D′)) ≤ exp

(
− log 1/p

ε3 · y
)

≤ py.

On the other hand, if k = 0 then the probability that every column of D′ \ Dh is
nonempty is at most

(
1 − (1 − p)h(D′))ε0x/50 ≤ exp

(
−(1 − p)h(D′) · ε2

50
· x

)
,
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where we have again used |∂(D′)| ≤ h(D′), and we have also substituted ε0 = ε2.
Thus, using the inequality 1 − p ≥ e−p−p2

(since p is sufficiently small), we have

(41) Pp

(
�

(
Dh,D

′)) ≤ exp
(
−e−ph(D′) · ε2

100
· x

)
,

since e−p2h(D′) = 1 − o(1). Now observe that
y

x
≤ 2 · f ′(w(D)

)
,

by (38), the mean value theorem, and the fact that f ′ is decreasing [Observa-
tion 3.6(b)]. Hence,

x ≥ log 1/p

ε3 · e2pf (w(D)) · y ≥ log 1/p

2ε3 · eph(D) · y,

by Observation 3.6(c), the definition of h(D), and the fact that e−p ≥ 1/2. Insert-
ing this into (41) and using the bound from (37) gives

Pp

(
�

(
D,D′)) ≤ exp

(
−e−p(h(D′)−h(D)) · log 1/p

200ε
· y

)
≤ exp

(
− log 1/p

300ε
· y

)
,

since p(h(D′) − h(D)) = o(1). Thus, it follows that

(42) Pp

(
�

(
D,D′)) ≤ py,

since ε is sufficiently small. This together with (40) establishes the lemma in the
case xv ≥ εkx/50.

Case 2. So suppose instead that xv ≤ εkx/50. First, we would like to show that
y′ := h(D′) − h(Dv) is not much smaller than y. To that end, note that

h(Dv) − h(D) = 2f
(
w(Dv)

) − 2f
(
w(D)

)
≤ 2f ′(w(D)

) · xv

≤ 2f ′(w(D)
) · εkx/50,

by the mean value theorem and since f ′ is decreasing. By a similar justification,
and using (38), we have

x ≤ 1

2f ′(w(D′))
· y.

Hence,

h(Dv) − h(D) ≤ f ′(w(D))

f ′(w(D′))
· εk

50
· y = ep(h(D′)−h(D)) · εk

50
· y ≤ εk

40
· y,

by Observation 3.6(c), the definition of the height of a droplet, and since p(h(D′)−
h(D)) = o(1). Thus,

(43) y′ = h
(
D′) − h(Dv) ≥ (1 − εk/40)y.
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Note that the conditions of Lemma 4.2 hold when applied to droplets Dv and D′.
Indeed, Dv � D′ by construction; h(Dv) ≥ h(D) ≥ ε−5

k by assumption;

h
(
D′) − h(Dv) ≥ (1 − εk/40)

(
h
(
D′) − h(D)

) ≥ (1 − εk/40) · ε−6
k ≥ ε−5

k

by (43) and assumption; and h(D′) − h(Dv) ≤ p−(2/3)k (2 log 1/p)−1 again by
assumption. Thus, applying Lemma 4.2 gives

Pp

(
�

(
Dv,D

′)) ≤ w
(
D′)O(ε3

ky′) ·
(

p

f ′(w(D′))

)(1−1.01εk)y
′/2

.

We always have h(D′) ≤ p−1 log 1/p (regardless of k), which implies that

w
(
D′) = log 1/p

ε3p

(
ep(h(D′)−1) − 1

) ≤ p−O(1),

by inverting the function f and using the fact that h(D′) = 2f (w(D′))+1. Hence,
also inserting the expression for f ′ from Observation 3.6(c),

Pp

(
�

(
Dv,D

′)) ≤ p−O(ε3
ky′) ·

(
p · 2 log 1/p

ε3 · eph(D′)
)(1−1.01εk)y

′/2
.

Hence, using the (crude) bound(
2 log 1/p

ε3

)(1−1.01εk)/2
≤ p−O(ε3

k ),

we deduce that Pp(�(Dv,D
′)) is at most

(44) exp
(
−(1 − 1.01εk)

(
log

1

p
− ph

(
D′))y′

2
+ O

(
ε3
k log

1

p

)
y′

)
.

To deal with the final error term in (44), we use the fact that log 1/p−ph(D′) ≥
ε log 1/p. Together with (43), this gives us finally that

Pp

(
�

(
Dv,D

′)) ≤ exp
(
−(1 − 1.1εk)

(
log

1

p
− ph

(
D′))y

2

)
.

We are now done by (37). �

5. Small droplets. In this section, we will bound the probability that a droplet
of height at most (p log 1/p)−1 is internally spanned. Recall from Definition 3.9
that, for each k ≥ 0, we denote the following statement by IH(k):

Let D be a droplet of height at most p−(2/3)k (log 1/p)−1. Then

Pp

(
I×(D)

) ≤ p(1−εk)h(D)/2,

where εk = ε2 · (3/4)k .
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Our aim is to prove that IH(0) holds. This is an immediate consequence of the
following two lemmas.

LEMMA 5.1. IH(k) holds for all sufficiently large k.

LEMMA 5.2. Let k ≥ 1. Then IH(k) ⇒ IH(k − 1).

The proof of Lemma 5.1 is easy, so the main task of this section will be to prove
Lemma 5.2. We begin, however, with the more straightforward task.

PROOF OF LEMMA 5.1. Let k ∈ N be sufficiently large, and let D be a droplet
with h(D) ≤ p−(2/3)k (log 1/p)−1. By Lemma 3.13, if D is internally spanned then

|D ∩ A| ≥ h(D) + 1

2
.

Noting that Observation 3.6 implies that the volume of D (rather crudely) satisfies

|D| ≤ (log 1/p)2 · h(D)2,

it follows that

Pp

(
I×(D)

) ≤
( |D|(

h(D) + 1
)
/2

)
p(h(D)+1)/2 = O

(
h(D) · p(log 1/p)2)(h(D)+1)/2

.

But if k is sufficiently large so that εk = ε2 · (3/4)k > (2/3)k , then h(D) ·
(log 1/p)2 ≤ p−(2/3)k log 1/p � p−εk , and hence this is at most p(1−εk)h(D)/2, as
required. �

In order to prove Lemma 5.2, we will use the method of hierarchies. In particu-
lar, we will use Lemmas 3.21, 3.23 and 4.1.

In this section and the next, for the clearer display of expressions involving
exponentials, we shall use the notation expp(x) := px .

PROOF OF LEMMA 5.2. Let k ≥ 1 and suppose that IH(k) holds. Let D be a
droplet with17

p−(2/3)k (log 1/p)−1 ≤ h(D) ≤ p−(2/3)k−1
(log 1/p)−1,

and apply Lemma 3.21 to D with t = p−(2/3)k /(4 log 1/p). We obtain

(45) Pp

(
I×(D)

) ≤ ∑
H∈HD(t)

( ∏
u∈L(H)

Pp

(
I×(Du)

))( ∏
u→v

Pp

(
�(Dv,Du)

))
.

17If h(D) is smaller than this, then the desired bound follows immediately from IH(k).
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To deduce the desired bound from (45), we shall use IH(k) and Lemmas 3.23
and 4.1.

Let H ∈ HD(t), and note first that t ≤ h(Du) ≤ 2t = p−(2/3)k /(2 log 1/p) for
every u ∈ L(H), so by IH(k) we have

(46) Pp

(
I×(Du)

) ≤ p(1−εk)h(Du)/2 ≤ pt/3.

Next, note that if u → v then h(Du) − h(Dv) ≤ 2t = p−(2/3)k /(2 log 1/p). If we
also have h(Du) − h(Dv) ≥ ε−6

k , then by Lemma 4.1 we have

(47) Pp

(
�(Dv,Du)

) ≤ expp

(
(1 − 1.1εk)(1 − ε2

k)

2

(
h(Du) − h(Dv)

))
,

since ph(Du) ≤ (log 1/p)−1 ≤ ε2
k · log 1/p. Therefore, we have∏

u→v

Pp

(
�(Dv,Du)

)

≤ expp

(
1 − ε′

k

2

( ∑
u→v

(
h(Du) − h(Dv)

) − v(H) · ε−6
k

))
,

(48)

where 1 − ε′
k := (1 − 1.1εk)(1 − ε2

k), and the second term in the exponential takes
account of the fact that (47) requires h(Du) − h(Dv) ≥ ε−6

k .
With foresight, let us split the sum in (45) into two parts, depending on the

number of seeds in H. To that end, set �0 := t · (log 1/p)−1, and let

H(1) = {
H ∈ HD(t) : �(H) ≤ �0

}
and H(2) = HD(t) \H(1).

Bounding the sum over H ∈ H(2) is easy: by Lemma 3.23 and (46) we have∑
H∈H(2)

∏
u∈L(H)

Pp

(
I×(Du)

) ≤ ∑
�≥�0

expp

(
� · t/3 − O

(
� · h(D)/t

))
< ph(D),

where the last inequality holds since h(D)/t � t and �0 · t � h(D).
Thus, combining (45) with (46) and (48), and noting that ε′

k > εk , it will suffice
to bound

(49)
∑

H∈H(1)

expp

(
1 − ε′

k

2

( ∑
u∈L(H)

h(Du)+
∑
u→v

(
h(Du)−h(Dv)

)−v(H) ·ε−6
k

))
.

To do so, let H ∈H(1), and recall that

(50)
∑

u∈L(H)

h(Du) + ∑
u→v

(
h(Du) − h(Dv)

) ≥ h(D) − v(H),

by Lemma 3.22, and that

v(H) = O

(
� · h(D)

t

)
= o

(
h(D)

)
,
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by Lemma 3.23, and since � ≤ �0 = o(t). Thus, using Lemma 3.23 to bound |H(1)|,
it follows that

Pp

(
I×(Du)

) ≤ expp

((
1 − ε′

k

2

)
h(D) − o

(
h(D)

)) + ph(D),

where the o(h(D)) in the exponent counts the size of H(1) and also the error of
O(v(H)). Since εk−1 = (4/3) · εk , this is at most p(1−εk−1)h(D)/2, as required. �

6. Large droplets, and the proof of Theorem 1.1. In this section, we shall
prove Proposition 3.8, and deduce Theorem 1.1. The spirit of this section is sim-
ilar to that of the previous section, in that we are proving an upper bound on the
probability that a droplet is internally spanned assuming that we already have a
corresponding bound for smaller droplets. This time, however, the larger droplets
will be critical droplets and the smaller droplets will be those which we can bound
using IH(0). Another important difference is that, as we reach the critical size, we
gain an additional factor of 1/2 in the exponent in the bound for Pp(I×(D)). In-
deed, as one can see below in Proposition 6.1, the factor of 1/2 decreases to 1/4
linearly in the height of the droplet as the droplet reaches the critical size.

Given a droplet D, let

(51) h∗(D) := p

log 1/p
· h(D)

denote the renormalized height of D. Proposition 3.8 is an immediate consequence
of the following bound.

PROPOSITION 6.1. For every ε > 0, there exists p0(ε) > 0 such that the fol-
lowing holds. If 0 < p ≤ p0(ε) and D is a droplet with h∗(D) ≤ 1 − ε, then

(52) Pp

(
I×(D)

) ≤ expp

((
2 − h∗(D)

4
− ε

)
h(D)

)
.

We will prove Proposition 6.1 by taking a union bound over good and satisfied
hierarchies for D. In order to do so, we will need one additional lemma, which
bounds the product of the probabilities of the “sideways steps” of such a hierarchy.
Define the pod height18 of a hierarchy H for a droplet D to be

(53) h(H) := min
{
h(D),

∑
u∈L(H)

h(Du)

}
,

and let h∗(H) := p(log 1/p)−1 ·h(H) be the renormalized pod height. Let us write
�(H) for |L(H)|, and set

t := 1

4p log 1/p
.

18This terminology is a reference to the “pod” droplets first introduced in [16]. In our setting, it will
be more convenient to work with the pod height function directly.
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Finally, we will need a function μ, defined by

(54) μ(H) := 2 − h∗(D) − h∗(H)

4
.

Note that if h∗(H) ≤ h∗(D) ≤ 1 − ε, which will always be the case in this section,
then μ(H) ≥ ε/2. The following bound is a variant of [16], Lemma 38. We remark
that such “pod lemmas” have since become a standard tool in the area; see, for
example, [3, 12, 16, 18]. The proof follows (as usual) by adapting the argument of
[16], but since in our setting there are some slightly subtle complications to deal
with, we will give the details in full.

LEMMA 6.2. Let D be a droplet with h∗(D) ≤ 1 − ε, and let H be a t-good
and satisfied hierarchy for D. Then∏

u→v

Pp

(
�(Dv,Du)

)

≤ expp

((
μ(H) − 2ε2)(

h(D) − h(H)
) − ε−6(

3�(H) − 2
))

.

(55)

We will use the following easy algebraic facts in the proof of Lemma 6.2.

OBSERVATION 6.3. Let a, a′, s, s′, δ ∈ R. If s′ ≤ s ≤ 1 − 2δ, a ≥ a′, and
2δ(1 + a) ≥ a − a′, then(

2 − a′ − s′

4
− δ

)(
a′ − s′) + (1 − δ)

(
1 − a

2

)(
a − a′)

≥
(

2 − a − s

4
− δ

)
(a − s).

PROOF. The condition s′ ≤ s ≤ 1 − 2δ implies that the left-hand side is de-
creasing in s′, so we may assume that s = s′. Then the claimed inequality is just a
rearrangement of 2δ(1 + a)(a − a′) ≥ (a − a′)2. �

OBSERVATION 6.4. Let δ, a, a1, a2, s, s1, s2 ∈R. If a, s ≤ 1−2δ, a ≤ a1 +a2,
s ≥ s1 + s2, and a1a2 ≥ s1s2, then(

2 − a1 − s1

4
− δ

)
(a1 − s1) +

(
2 − a2 − s2

4
− δ

)
(a2 − s2)

≥
(

2 − a − s

4
− δ

)
(a − s).

PROOF. The right-hand side is increasing in a and decreasing in s, since a, s ≤
1 − 2δ, so we may assume that a = a1 + a2 and s = s1 + s2, in which case the
inequality is equivalent to a1a2 ≥ s1s2. �
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PROOF OF LEMMA 6.2. The proof is by induction on m := |V (GH)|. Note
that the inequality holds trivially if h(H) = h(D), since the right-hand side is at
least 1, and that h(H) = h(D) if m = 1. So let m ≥ 2, and suppose that h(H) <

h(D) [so that in fact h(H) = ∑
u∈L(H) h(Du)], and that the lemma holds for all

hierarchies with at most m − 1 vertices. We shall divide the induction step into
two cases according to whether or not the first step of the hierarchy is a reasonably
large sideways step.

Case 1: N→
GH(vroot) = {w} and h(D) − h(Dw) ≥ ε−6.

In this case, the desired bound follows from Lemma 4.1, IH(0) and the induction
hypothesis on m, using Observation 6.3. To see this, set D′ = Dw and write H′ for
the hierarchy obtained from H by removing the vertex (and droplet) corresponding
to vroot, and adding a new root at w. Then, trivially,

(56)
∏

u→v
u,v∈H

Pp

(
�(Dv,Du)

) = Pp

(
�

(
D′,D

)) ∏
u→v

u,v∈H′

Pp

(
�(Dv,Du)

)
.

Now, observe that H′ is a t-good and satisfied hierarchy for D′. Thus, by the
induction hypothesis on m, we have∏

u→v
u,v∈H′

Pp

(
�(Dv,Du)

)

≤ expp

((
μ

(
H′) − 2ε2)(

h
(
D′) − h

(
H′)) − ε−6(

3�(H) − 2
))

,

(57)

where we have replaced �(H′) by �(H) since L(H′) = L(H). Now, since IH(0)

holds (by Lemmas 5.1 and 5.2), and we have the bounds ε−6 ≤ h(D)−h(D′) ≤ 2t

and h∗(D) ≤ 1 − ε, we may apply Lemma 4.1 to give

(58) Pp

(
�

(
D′,D

)) ≤ expp

((
1 − 2ε2)(1 − h∗(D)

2

)(
h(D) − h

(
D′))).

Combining (57) and (58) with (56), it follows that it is sufficient to show

(
μ

(
H′) − 2ε2)(

h
(
D′) − h

(
H′)) + (

1 − 2ε2)(1 − h∗(D)

2

)(
h(D) − h

(
D′))

≥ (
μ(H) − 2ε2)(

h(D) − h(H)
)
.

(59)

We would like to apply Observation 6.3 with a = h∗(D), a′ = h∗(D′), s = h∗(H),
s′ = h∗(H′), and δ = 2ε2. If the conditions of the observation are satisfied, then
we will be done, since on multiplying through by p−1 log 1/p, the conclusion of
the observation (with these parameters) is equivalent to (59). For the conditions,
we have: h∗(D) ≥ h∗(D′) by assumption; h∗(H) ≥ h∗(H′) from the previous in-
equality and since L(H) = L(H′); h∗(H) ≤ 1 − 4ε2 since h∗(H) ≤ h∗(D) and
h∗(D) ≤ 1 − ε; and finally,

4ε2(
1 + h∗(D)

) ≥ h∗(D) − h∗(
D′)
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since h∗(D) − h∗(D′) ≤ (log 1/p)−2 � 1, by our choice of t . This completes the
proof of the lemma in Case 1.

Case 2: N→
GH(vroot) = {w} and h(D) − h(Dw) < ε−6.

By the definition of a t-good hierarchy, there are two ways that we could have
h(D) − h(D′) < ε−6. One is that w is a split vertex (which is why we have not
considered separately the case in which vroot is a split vertex; see below), and the
other is that w is a leaf. If w is a leaf then (55) trivially holds, since then vroot and
w are the only vertices in H, and the expression inside the exponent in (55) is at
most (

h(D) − h(Dw)
)
/2 − ε−6 < 0,

so the right-hand side of (55) is greater than 1.
Thus, we may assume that w is a split vertex. [As mentioned above, we have not

considered the case in which vroot is a split vertex. However, this case is covered by
the calculation below, as long as we allow h(D) − h(Dw) to be zero.19] We shall
show that the desired bound follows from the induction hypothesis on m directly,
using Observation 6.4.

Indeed, set D′ = Dw and write H′ for the hierarchy obtained from H by remov-
ing the vertex (and droplet) corresponding to vroot, and adding a new root at w.
Moreover, let N→

GH(w) = {v1, v2}, and, for each i ∈ {1,2}, set Di = Dvi
and let

Hi be the part of H′ below and including vi . Note that

(60)
∏

u→v
u,v∈H′

Pp

(
�(Dv,Du)

) = ∏
u→v

u,v∈H1

Pp

(
�(Dv,Du)

) ∏
u→v

u,v∈H2

Pp

(
�(Dv,Du)

)
.

Now, observe that H1 and H2 are t-good and satisfied hierarchies for D1 and
D2. Therefore, by the induction hypothesis, we have∏

u→v
u,v∈Hi

Pp

(
�(Dv,Du)

)

≤ expp

((
μ(Hi ) − 2ε2)(

h(Di) − h(Hi )
) − ε−6(

3�(Hi ) − 2
))

,

(61)

for each i ∈ {1,2}. Moreover, we have

(62) h(H) = ∑
u∈L(H)

h(Du) ≥ h(H1) + h(H2)

since we assumed h(H) < h(D), and we also have

(63) h(D) ≤ h
(
D′) + ε−6 ≤ h(D1) + h(D2) + 1 + ε−6

by Lemma 3.12.

19In this case, set w = vroot and H′ =H in the definitions in the next paragraph.
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Next, we shall apply Observation 6.4 with a = h∗(D)− (1+ε−6)p(log 1/p)−1,
s = h∗(H), ai = h∗(Di) and si = h∗(Hi ) for i ∈ {1,2}, and δ = 2ε2. This is per-
missible since we have a ≤ a1 + a2 by (63), s ≥ s1 + s2 by (62), a1a2 ≥ s1s2 since
ai ≥ si for i ∈ {1,2} by the definition of h(Hi ), and finally a, s ≤ 1 − 2δ since
s ≤ a + ε2 (say) and a ≤ 1 − ε by the assumption of the lemma. Applying Obser-
vation 6.4 and multiplying through by p−1 log 1/p gives(

μ(H1) − 2ε2)(
h(D1) − h(H1)

) + (
μ(H2) − 2ε2)(

h(D2) − h(H2)
)

≥ (
μ(H) − 2ε2 − (

1 + ε−6)
p(log 1/p)−1)(

h(D) − h(H) − (
1 + ε−6))

.

After rearranging, the right-hand side is at least(
μ(H) − 2ε2)(

h(D) − h(H)
) − (

1 + ε−6)(
μ(H) + h∗(D)

)
,

so all together we have(
μ(H1) − 2ε2)(

h(D1) − h(H1)
) + (

μ(H2) − 2ε2)(
h(D2) − h(H2)

)
≥ (

μ(H) − 2ε2)(
h(D) − h(H)

) − 2ε−6,
(64)

since μ(H) ≤ 1/2 and h∗(D) ≤ 1.
Returning to the probability we wish to bound, after combining (60) and (61)

with (64) we have that the left-hand side of (60) is at most

expp

((
μ(H) − 2ε2)(

h(D) − h(H)
) − 2ε−6 − ε−6(

3�(H1) + 3�(H2) − 4
))

.

The proof of the lemma is now complete, since �(H) = �(H1) + �(H2), and we
can bound Pp(�(D′,D)) trivially by 1, which gives∏
u→v

u,v∈H
Pp

(
�(Dv,Du)

) ≤ expp

((
μ(H) − 2ε2)(

h(D) − h(H)
) − ε−6(

3�(H) − 2
))

,

as desired. �

We now have all the tools we need in order to prove Proposition 6.1.

PROOF OF PROPOSITION 6.1. Let D be a droplet such that h∗(D) ≤ 1 − ε,
set t = (4p log 1/p)−1, and note that we may assume that h(D) ≥ t , since other-
wise the lemma follows immediately from IH(0). Applying Lemma 3.21 to D, we
obtain

(65) Pp

(
I×(D)

) ≤ ∑
H∈HD(t)

( ∏
u∈L(H)

Pp

(
I×(Du)

))( ∏
u→v

Pp

(
�(Dv,Du)

))
.

In order to deduce Proposition 6.1 from (65), we shall use IH(0) and Lemmas 3.23
and 6.2.
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Let H ∈ HD(t), and note that h(Du) ≤ 2t = (2p log 1/p)−1 for every u ∈
L(H). Thus, by IH(0) (which follows from Lemmas 5.1 and 5.2), we have

(66)
∏

u∈L(H)

Pp

(
I×(Du)

) ≤ ∏
u∈L(H)

p(1−ε2)h(Du)/2 ≤ p(1−ε2)h(H)/2.

Also, by Lemma 6.2, we have∏
u→v

Pp

(
�(Dv,Du)

)

≤ expp

((
μ(H) − 2ε2)(

h(D) − h(H)
) − ε−6(

3�(H) − 2
))

.

(67)

As in the proof of Lemma 5.2, we split the sum in (65) into two parts, depending
on the number of seeds in H. Thus, let us set

H(1) = {
H ∈ HD(t) : �(H) ≤ p−1/2}

and H(2) = HD(t) \H(1).

As before, bounding the sum over H ∈ H(2) is easy: by Lemma 3.23 and (66) we
have ∑

H∈H(2)

∏
u∈L(H)

Pp

(
I×(Du)

)

≤ ∑
�≥p−1/2

expp

(
� · t/3 − O

(
� · h(D)/t

))
< e−p−5/4

,
(68)

where the last inequality holds since h(D)/t = O((log 1/p)2) and t > p−3/4.
For the sum over H ∈ H(1), we insert the bounds from (66) and (67) into (65)

to obtain ∑
H∈H(1)

( ∏
u∈L(H)

Pp

(
I×(Du)

))( ∏
u→v

Pp

(
�(Dv,Du)

))

≤ ∑
H∈H(1)

expp

((
μ(H) − 2ε2)(

h(D) − h(H)
)

+
(

1 − ε2

2

)
h(H) − ε−6(

3�(H) − 2
))

.

(69)

Observe that by rearranging the terms and noting that h(D)h∗(H) = h(H)h∗(D),
we have (

2 − h∗(D) − h∗(H)

4
− 2ε2

)(
h(D) − h(H)

) +
(

1 − ε2

2

)
h(H)

≥
(

2 − h∗(D)

4
− 2ε2

)
h(D),



4268 BOLLOBÁS, DUMINIL-COPIN, MORRIS AND SMITH

and, therefore, (69) is at most

(70)
∑

H∈H(1)

expp

((
2 − h∗(D)

4
− 2ε2

)
h(D) − ε−6(

3�(H) − 2
))

.

By Lemma 3.23 and the bounds �(H) ≤ p−1/2 and h(D)/t ≤ (log 1/p)2, we
have

(71)
∣∣H(1)

∣∣ ≤ p−1/2 · exp
(
O

(
h(D) log 1/p

t
√

p

))
< et .

Finally, combining (70) with (71) and the bounds h(D) ≥ t � p−1/2 ≥ �(H),
which hold for every H ∈ H(1), and adding (68), it follows that

Pp

(
I×(D)

) ≤ expp

((
2 − h∗(D)

4
− ε

)
h(D)

)
,

as required. �

We are finally ready to complete the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. The upper bound was proved in Section 2, so fix
λ < 1/8, and set

p = λ(log logn)2

logn
.

We will prove that with high probability a p-random subset A ⊂ Z2
n does not per-

colate.
Indeed, if A percolates then, by Lemma 3.14, there exists a pair (D1,D2) of

disjointly internally spanned droplets such that

max
{
h(D1), h(D2)

} ≤ 1 − ε

p
log

1

p
and

h(D1) + h(D2) ≥ 1 − ε

p
log

1

p
− 1,

and d(D1,D2) ≤ 2. By Lemma 3.4, there are at most n2 · p−O(1) choices for D1
and D2 satisfying these conditions. Applying Proposition 6.1 to D1 and D2 [which
we may do since h∗(Di) ≤ 1 − ε for i ∈ {1,2}], and using the BK inequality, it
follows that

(72) Pp

([A] = Z2
n

) ≤ n2 · p−O(1) · exp
(
−(1 − 8ε)

4p

(
log

1

p

)2)
≤ n−ε

if ε > 0 is sufficiently small. This completes the proof of the theorem. �
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7. Further discussion and open problems.

7.1. The modified Duarte model. The modified Duarte model is the monotone
cellular automaton whose update family is

D(m) := {{
(−1,0), (0,−1)

}
,
{
(1,0), (0,−1)

}}
.

Thus, the modified Duarte model comprises two of the three rules of the (original)
Duarte model, has the same stable set, and is also critical and unbalanced with
difficulty 1. An interesting feature of the modified Duarte model is its size: it is
formed of only two update rules, which is the minimum of any critical update
family. The following theorem is the first sharp threshold result for a critical two-
dimensional family that is minimal in this sense.

THEOREM 7.1.

pc

(
Z2

n,D(m)) =
(

1

4
+ o(1)

)
(log logn)2

logn

as n → ∞.

The proof of Theorem 7.1 follows that of Theorem 1.1 almost exactly. The only
differences are that the absence of the rule {(0,−1), (0,1)} from D(m) means that,
in order for a droplet to grow vertically, there must be an element of A in every row,
rather than just every alternate row. This leads to some small simplifications in Sec-
tion 4 and a gain of a factor of 2 in the exponent in the bound (15) in Lemma 4.1,
and some similarly minor simplifications in the upper bound.

7.2. Related two-dimensional models. In two dimensions, sharp thresholds
are now known for the 2-neighbour model [16], more generally for so-called sym-
metric balanced threshold models20

 [12], for a single unbalanced nondrift model
[13], and for the Duarte model, but remain open in all other cases.21 It might
be possible that, using a combination of the techniques from [12, 16] for balanced
models, those from [13] for unbalanced models without drift, and those introduced
in [5] and the present paper for unbalanced models with drift, one could determine
the sharp threshold for any critical family U whose update rules are contained in
the axes [i.e., such that for all X ∈ U and for all (a, b) ∈ X, we have ab = 0].
Nevertheless, we expect the following problem to be hard.

20That is, models formed by the r-element subsets of a centrally symmetric star subset of Z2 \ {0},
in the cases where such models are critical and balanced. (Here, “star” means that if x is in the set
then the whole of (0, x] ∩Z2 is in the set.)

21Strictly speaking, sharp thresholds are also known for some minor variants of these models; in
particular, for the modified Duarte model (see above), the modified and “k-cross” analogues of the
2-neighbour model [16, 17], and a single class of unbalanced nondrift models [13]. However, the
proof of the sharp threshold for each of these models follows via simple modifications of the proof
above, and of the proofs in [13, 16], respectively.
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PROBLEM 7.2. Determine the sharp threshold for any critical family whose
update rules are contained in the axes.

7.3. Higher dimensions. The study of monotone cellular automata in higher
dimensions is notoriously difficult. In Zd for d ≥ 3, the only models for which
sharp thresholds are known are the r-neighbour bootstrap percolation models [3,
4], for each 2 ≤ r ≤ d . These r-neighbour models aside, even coarse thresholds
(i.e., thresholds up to a constant factor) are only known for a certain family of
symmetric three-dimensional threshold models, whose rules are contained in the
axes [25].

The analogue of Problem 7.2 in dimensions d ≥ 3 is likely to be out of reach at
present, but it may be possible to make progress if “sharp threshold” is replaced by
“coarse threshold”. To state the problem formally, we need to say what we mean
by “critical” in higher dimensions. The following definition was recently proposed
by the authors in [5].

Fix an integer d ≥ 2 and let U be a d-dimensional update family (i.e., let U be
a finite collection of finite subsets of Zd \ {0}). Define the stable set S = S(U)

analogously to how it is defined in two dimensions:

S := {
u ∈ Sd−1 : [

Hd
u

] = Hd
u

}
,

where

Hd
u := {

x ∈ Zd : 〈x,u〉 < 0
}

is the discrete half-space in Zd with normal u ∈ Sd−1. Let σd−1 denote the spher-
ical measure on Sd−1.

DEFINITION 7.3. A d-dimensional update family is:

(1) subcritical if σd−1(S ∩ C) > 0 for every hemisphere C ⊂ Sd−1;
(2) critical if there exists a hemisphere C ⊂ Sd−1 such that σd−1(S ∩ C) = 0

and if S ∩ C �= ∅ for every open hemisphere C ⊂ Sd−1;
(3) supercritical if S ∩ C = ∅ for some open hemisphere C ⊂ Sd−1.

PROBLEM 7.4. For each d ≥ 3, determine the coarse threshold for any d-
dimensional critical family whose update rules are contained in the axes.

This question is already likely to be very difficult, so as a first step one might re-
strict to the case d = 3 or to update rules contained in the set of nearest neighbours
of the origin.
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