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THE NUMBER OF OPEN PATHS IN ORIENTED PERCOLATION

BY OLIVIER GARET∗, JEAN-BAPTISTE GOUÉRÉ† AND RÉGINE MARCHAND∗

Université de Lorraine∗ and Université de Tours†

We study the number Nn of open paths of length n in supercritical ori-
ented percolation on Z

d × N, with d ≥ 1, and we prove the existence of the
connective constant for the supercritical oriented percolation cluster: on the

percolation event {infNn > 0}, N
1/n
n almost surely converges to a positive

deterministic constant.
The proof relies on the introduction of adapted sequences of regenerating

times, on subadditive arguments and on the properties of the coupled zone
in supercritical oriented percolation. This global convergence result can be
deepened to give directional limits and can be extended to more general ran-
dom linear recursion equations known as linear stochastic evolutions.

1. Introduction and main results. Consider supercritical oriented percola-
tion on Z

d × N. Let N(a, b) denote the number of open paths from a to b. By
concatenation of paths, we get N(a, c) ≥ N(a, b)N(b, c). In other words, the fol-
lowing superadditivity property holds:

logN(a, c) ≥ logN(a, b) + logN(b, c).

In the case of deterministic lattices, such a subadditive inequality immediately
gives the existence of the so-called connective constant: if Nn denotes the num-
ber of self-avoiding paths starting from the origin, the connective constant is the
limit of N

1/n
n . Coming back to percolation on a lattice, subadditive ergodic theo-

rems suggest that, on the percolation event “the cluster of the origin is infinite”,
the number Nn of self-avoiding open paths with length n starting from the origin
should grow exponentially fast in n. However, the possibility for edges to be closed
implies that logN(·, ·) may be infinite and, therefore, not integrable. This prevents
from using subadditive techniques, at least in their simplest form.

In terms of directed polymers in random environment, the limit, when it ex-
ists, of logNn/n corresponds to the quenched free energy of the model. There
has been recently much activity around these subjects: Fukushima and Yoshida
proved in [6] that lim logNn/n is almost surely strictly positive on the percolation
event, and Lacoin in [10] studied the discrepancy between the quenched free en-
ergy lim logNn/n and the annealed free energy lim logENn/n. See also the survey
by Comets, Shiga and Yoshida [3] on directed polymers in random environment.
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In spite of these studies, to our knowledge, there was no proof of the conver-
gence of N

1/n
n in full generality in the literature. Note, however, that such a conver-

gence has been obtained for a relaxed kind of percolation called ρ-percolation. Let
ρ ∈ (0,1) and let Nn(ρ) denotes the number of paths with length n using at least
ρn open edges. The existence of the limit Nn(ρ)1/n has been proved in Comets–
Popov–Vachkovskaia [2] and in Kesten–Sidoravicius [9] by different methods.

The present paper aims to prove that in supercritical oriented percolation, N
1/n
n

has an almost sure limit on the percolation event. The proof relies on essential hit-
ting times which have been introduced in Garet–Marchand [7] in order to establish
a shape theorem for the contact process in random environment. We then extend
this result to obtain a similar result for the number of paths with a prescribed
slope, and for a general model of random linear recursion equations introduced by
Yoshida [12] and called Linear Stochastic Evolutions (LSE). As a special case, we
obtain the existence of the free energy for the directed polymer in random envi-
ronment model with potentials taking their values in R∪ {−∞}.

The existence of a quenched connective constant is also believed to hold in the
nonoriented supercritical percolation cluster on Z

d , and Lacoin [11] proved the
noncoincidence of this quenched connective constant and the annealed connective
constants on the supercritical planar percolation cluster. But here again, there is to
our knowledge no proof for the existence of a limit for N

1/n
n . The result we present

here strongly relies on the oriented structure of the graph, and we do not know how
to adapt it to the nonoriented context.

Before stating precisely our results, let us first define the oriented percolation
setting we work with.

1.1. Oriented percolation in dimension d +1. Let d ≥ 1 be fixed, and let ‖ ·‖1
be the �1-norm on R

d . We consider the oriented graph whose set of sites is Zd ×N,
where N = {0,1,2, . . .}, and we put an oriented edge from (z1, n1) to (z2, n2) if
and only if

n2 = n1 + 1 and ‖z2 − z1‖1 ≤ 1;
the set of these edges is denoted by

−→
E

d+1
alt .

We say that γ = (γi, i)m≤i≤n ∈ (Zd ×N)n−m+1 is a path if and only if

∀i ∈ {m, . . . , n − 1} ‖γi+1 − γi‖1 ≤ 1.

Fix now a parameter p ∈ [0,1], and open independently each edge with proba-

bility p. More formally, consider the probability space � = {0,1}−→E d+1
alt , endowed

with its Borel σ -algebra and the probability

Pp = (
Ber(p)

)⊗−→
E

d+1
alt ,
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where Ber(p) stands for the Bernoulli law of parameter p. For a configuration

ω = (ωe)e∈−→
E

d+1
alt

∈ �, say that the edge e ∈ −→
E

d+1
alt is open if ωe = 1 and closed oth-

erwise. A path is said open in the configuration ω if all its edges are open in ω. For
two sites (v,m), (w,n) in Z

d ×N, we denote by {(v,m) → (w,n)} the existence
of an open path from (v,m) to (w,n). By extension, we denote by {(v,m) → +∞}
the event that there exists an infinite open path starting from (v,m). There exists a
critical probability −→

pc
alt(d + 1) ∈ (0,1) such that

Pp

(
(0,0) → +∞)

> 0 ⇐⇒ p >
−→
pc

alt(d + 1).

In the following, we assume p >
−→
pc

alt(d + 1), and we will mainly work under
the following conditional probability:

Pp(·) = Pp

(·|(0,0) → +∞)
.

1.2. Global convergence result and previous results. Denote by Nn the num-
ber of open paths of length n emanating from (0,0). Note first that Ep(Nn) =
((2d + 1)p)n. As noticed by Darling [4], the sequence (Nn((2d + 1)p)−n)n≥0 is
a nonnegative martingale, so there exists a nonnegative random variable W such
that

Pp-a.s.
Nn

(2d + 1)npn
−→ W and Ep[W ] ≤ 1.

Therefore, it is easy to see that

1

n
logNn → log

(
(2d + 1)p

)
on the event {W > 0}.

So when W > 0, Nn has the same growth rate as its expectation. In his paper [4],
Darling was seeking for conditions implying that W > 0. Actually, it is not always
the case that W > 0. Let us summarize some known results:

• Yoshida [12] showed that W = 0 a.s. if d = 1 or d = 2.
• There exist −→

pc,2
alt(d + 1) and −→

pc,3
alt(d + 1) in [−→pc

alt(d + 1),1], with−→
pc,2

alt(d + 1) <
−→
pc,3

alt(d + 1) such that (see Lacoin [10], Sections 2.2 and 2.3):
– Pp(W > 0) = 1 when p >

−→
pc,3

alt(d + 1) and Pp(W > 0) = 0 when
p <

−→
pc,3

alt(d + 1).
– lim 1

n
logNn = log(p(2d + 1)) Pp-a.s. when p >

−→
pc,2

alt(d + 1) and
lim 1

n
logNn < log(p(2d + 1)) Pp-a.s. when p <

−→
pc,2

alt(d + 1).
– −→

pc,3
alt(d + 1) < 1 if d ≥ 3.

• It is believed that −→
pc,2

alt(d + 1) >
−→
pc

alt(d + 1), and thus −→
pc,3

alt(d + 1) >−→
pc

alt(d + 1) when d ≥ 2. Lacoin [10] proved that the inequality is indeed strict
for L-spread-out percolation for d ≥ 5 and L large.

In any case, it is clear that we need a proof of the existence of a limit for 1
n

logNn

that would not require W > 0, and this is our main result.
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THEOREM 1.1. Let p >
−→
pc

alt(d + 1). There exists a strictly positive constant
α̃p(0) such that, Pp-almost surely and in L1(Pp),

lim
n→+∞

1

n
logNn = α̃p(0).

Our next result focuses on open paths with a prescribed slope.

1.3. Directional convergence results. We first need to give a few more nota-
tions and results. Oriented percolation is known as the analogue in discrete time
for the contact process. Usually, results are proved for one model, and it is com-
monly admitted that the proofs could easily be adapted to the other one. For the
results concerning supercritical oriented percolation we use in this work, we will
thus sometimes give the reference for the property concerning the contact process
without any further explanation.

We define

ξn = {
y ∈ Z

d : (0,0) → (y, n)
}

and Hn = ⋃
0≤k≤n

ξk.

As for the contact process, the growth of the sets (Hn)n≥0 is governed by a shape
theorem when conditioned to survive: for every p >

−→
pc

alt(d + 1), there exists a
norm μp on R

d such that for every ε > 0, Pp almost surely,

(1) ∃N ∀n ≥ N Bμp

(
0, (1 − ε)n

) ⊂ Hn + [0,1]d ⊂ Bμp

(
0, (1 + ε)n

)
,

where Bμp(x, r) = {y ∈ R
d : μp(y − x) ≤ r}. See, for the supercritical contact

process, Durrett [5] or Garet–Marchand [7].
For every set A ⊂ Bμp(0,1), we denote by NnA,n the number of open paths

starting from (0,0), with length n and whose extremity lies in nA ∩Z
d .

THEOREM 1.2. Fix p >
−→
pc

alt(d + 1). There exists a concave function

α̃p : B̊μp(0,1) −→ (
0, log

(
p(2d + 1)

)]
,

with the same symmetries as the grid Z
d , such that, for every set A such that

Å = A ⊂ B̊μp(0,1), Pp-almost surely,

(2) lim
n→+∞

1

n
logNnA,n = sup

x∈A

α̃p(x).

It will appear in the proofs that the limit in Theorem 1.1 is the maximum of the
function α̃p . Since α̃p is even and concave, this constant is α̃p(0).

By considering, in Theorem 1.2, the set A = Bμp(x, ε) for x ∈ B̊μp(0,1) and for
a small ε, we see that α̃p(x) characterises the growth of the number of open paths
with length n and prescribed slope x. Using the very same technics of proof, one
could for instance prove the following directional convergence result. If x ∈ Z

d ,
denote by Nx,n the number of open paths from (0,0) to (x, n).
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REMARK 1.3. Fix p >
−→
pc

alt(d+1) and (y,h) ∈ Z
d ×N

∗ such that μp(y) < h.
Extract from the sequence (ny,nh) the (random) subsequence, denoted ψ :

N →N, of indices k such that (0,0) → k · (y,h). Then Pp almost surely,

lim
n→+∞

1

ψ(n)h
logNψ(n)·(y,h) = α̃p(y/h).

Take now as a random environment a realization of oriented percolation on
Z

d ×N with parameter p such that 0 percolates. Once this random setting is fixed,
choose a random open path with length n, uniformly among all open paths with
length n, and ask for the behavior of the extremity of this random path. More pre-

cisely, for every set A with Å = A ⊂ B̊μp(0,1), the probability that the extremity
of the random path stands in nA is NnA,n/Nn. Then Theorem 1.2 can be rephrased
as a quenched large deviations principle for the extremity of this random open path
(or directed polymer on a oriented-percolation cluster).

REMARK 1.4. Fix p >
−→
pc

alt(d + 1).

For every set A such that Å = A ⊂ B̊μp(0,1), Pp-almost surely,

lim
n→+∞

1

n
log

NnA,n

Nn

= − inf
x∈A

(
α̃p(0) − α̃p(x)

)
.

Remarks and open questions.

• Is the following statement true?

∀x ∈ B̊μp(0,1) \ {0Zd } α̃p(x) < α̃p(0).

If the statement held, then the extremity of a random open path with length n,
uniformly chosen among open paths with length n, would concentrate near 0Zd .

• Is α̃p strictly concave? This would imply the previous statement.
• Is α̃p continuous in p?
• The function α̃p probably does not vanish when x tends to the boundary of

B̊μp(0,1). Here is a very schematic version of an argument in dimension 1 + 1,
due to Ryoki Fukushima. Along the rightmost path γn to level n, we are looking
for “left-turns;” a left-turn is the succession of an edge oriented in the North-
East direction and of an edge oriented in the North–West direction. We can
find, uniformly in p ≤ 1 − ε, a number �(n) of left turns along the rightmost
path. The two edges of a left turn are the right half of a square: each time the
two edges of the left half of this square are open, we double the number of
open paths going to the extremity of γn. As we are considering the rightmost
path, anything on the left of it is independent, and hence these open left half of
squares occur independently with probability p2. This shows that the number of
open paths along the rightmost path already grows exponentially at a uniformly
positive rate. This argument also shows that the growth rate does not vanish as
p tends to the critical probability.
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1.4. Extension to linear stochastic evolutions. We extend here the study to (an
independent subcase of) the LSE introduced by Yoshida [12].

We define a set of oriented edges
−→
E

d of Zd in the following way: in (Zd,
−→
E

d),
there is an oriented edge between two points z1 and z2 in Z

d if and only if ‖z1 −
z2‖1 ≤ 1. The oriented edge in

−→
E

d+1
alt from (z1, n1) to (z2, n2) can be identified

with the couple ((z1, z2), n2) ∈ −→
E

d ×N
∗. Thus, we identify

−→
E

d+1
alt and

−→
E

d ×N
∗.

We consider the oriented graph (Zd × N,
−→
E

d × N
∗), and a collection

(Ae,n)(e,n)∈−→
E d×N∗ of independent and identically distributed nonnegative random

variables defined on a probability space (�,F,P). We are interested in the asymp-
totic behavior of the solution (Nx,n)(x,n)∈Zd×N of the following (random) recur-
rence relations:

(LSE)

⎧⎪⎨
⎪⎩

N0,0 = 1 and ∀x ∈ Z
d \ {0} Nx,0 = 0,

∀n ∈ N ∀x ∈ Z
d Nx,n+1 = ∑

y:‖y−x‖1≤1

A(y,x),n+1Ny,n,

and especially on the growth rate of the partition function Nn = ∑
x∈Zd Nx,n.

We say that an edge e is open if and only if Ae > 0: the states of the edges, open
or closed, induce an oriented percolation on Z

d ×N with parameter p = P(A > 0),
and P is, as before, the probability P conditionally to the event {(0,0) → +∞} for
this oriented percolation. Our last result is the following.

THEOREM 1.5. Assume that

p
def= P(A > 0) >

−→
pc

alt(d + 1),(3)

∃γ > 0 E
(
Aγ + A−γ |A > 0

)
< +∞.(4)

There exists a constant α̃(0) such that, P-almost surely and in L1(P),

lim
n→+∞

1

n
logNn = α̃(0).

Assumption (3) is optimal: if P(A > 0) ≤ −→
pc

alt(d +1), the cluster of open edges
starting from the origin is almost surely finite, and thus, almost surely, Nn = 0 for
every n large enough. On the contrary, Assumption (4) seems relatively soft and
simple to us, and we did not try to optimize it.

Taking for (Ae,n)(e,n)∈−→
E d×N∗ i.i.d. Bernoulli random variables with parameter

p, we recover the number of open paths with length n in oriented percolation with
parameter p as a particular case of LSE.

Directed polymer in a random environment also falls in the class of LSE. In
this model, instead of considering a path uniformly chosen among open paths
with length n, we first weight paths accordingly to the potential of their edges.
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We thus consider a family (Be,n)(e,n)∈−→
E d×N∗ of independent and identically dis-

tributed random variables, modelling the random environment. Then we associate
to a path γ = (γi, i)0≤i≤n ∈ (Zd ×N)n+1 starting from the origin a Hamiltonian:

Hn(γ ) = ∑
(e,n)∈γ

Be,n,

and we build a probability measure on paths with length n starting from the origin:

μn(γ ) = 1

Zn

exp
(
Hn(γ )

)
where Zn = ∑

γ :(0,0)→Zd×{n}
exp

(
Hn(γ )

)

is the partition function. Thus, paths using edges with high potential are favorized.
Setting

Zx,n = ∑
γ :(0,0)→(x,n)

exp
(
Hn(γ )

)
,

we see that the family (Zx,n)(x,n)∈Zd×N satisfies the random recursion relations
(LSE), with Ae,n = exp(Be,n). In our setting, as we allow Ae,n to be 0, we can
consider potential taking the value −∞ with positive probability. This amounts
to study the directed polymer on a supercritical oriented percolation cluster, or in
other words to forbid each edge of Zd ×N independently, with the same probability
1 − p = P(Be,n = −∞). Theorem 1.5 gives the existence of the (quenched) free
energy of the directed polymer in this setting. The analogues of Theorem 1.2 and of
Remarks 1.3 and 1.4 can also be established under the assumption of Theorem 1.5
with the very same technics.

Very recently, Comets, Fukushima, Nakajima and Yoshida studied in [1] the di-
rected polymer with unbounded jumps in random environment. In particular, they
also prove the existence of the free energy for inverse temperature β = −∞, that
is, when potentials are allowed to take the value −∞, without using any subaddi-
tivity, but rather by proving a continuity property. Note, however, that their model
is quite different from ours, since the existence of unbounded jumps rules out the
percolation transition.

Organization of the paper. First, in Section 2, we recall results for supercritical
oriented percolation, and we build the essential hitting times.

Then, in Section 3, we fix a vector (y,h) ∈ Z
d × N

∗ and we build an associ-
ated sequence of regenerating times (Sn(y,h))n [see Definition (7)]. These random
times satisfy (0,0) → (ny,Sn(y,h)) → +∞ and have good invariance and inte-
grability properties with respect to Pp . We can thus apply Kingman’s subadditive
ergodic theorem to obtain, in Lemma 3.2, the existence of the following limit:

1

Sn(y,h)
log(Nny,Sn(y,h)) → αp(y,h).
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Section 4 is devoted to the proof of Theorem 1.1. The asymptotic behavior of
log(Nn)/n should come from the “direction” (y,h) in which open paths are more
abundant, that is, in the “direction” (y,h) that maximizes αp(y,h). The key step
to recover a full limit from the limit of a random subsequence is the continuity
Lemma 4.2: using the coupled zone, we prove in essence that two points close in
Z

d × N
∗ and reached from (0,0) by open paths should have similar number of

open paths arriving to them.
In Sections 5 and 6, the same ideas are respectively used to prove Theorem 1.2

and Theorem 1.5. The arguments are however more intricate. That is why we chose
to present an independent proof of Theorem 1.1 where to our opinion, each type
of argument—regenerating time, coupling—appears in a simpler form.

Notation. For n ≥ 1, x ∈ Z
d and any set A ⊂R

d , we denote by:

• Nn the number of open paths from (0,0) to Z
d × {n},

• Nn the number of open paths from (0,0) to Z
d × {n} that are the beginning of

an infinite open path,
• Nx,n the number of open paths from (0,0) to (x, n),
• NA,n the number of open paths from (0,0) to (A ∩Z

d) × {n}.
2. Preliminary results.

2.1. Exponential estimates for supercritical oriented percolation. We work
with the oriented percolation model in dimension d + 1, as defined in the Intro-
duction. We set, for n ∈ N and x ∈ Z

d ,

ξx
n = {

y ∈ Z
d : (x,0) → (y, n)

}
, Hx

n = ⋃
0≤k≤n

ξx
k ,

ξZ
d

n = ⋃
x∈Zd

ξx
n , K ′x

n = ⋂
k≥n

(
ξx
k �ξZ

d

k

)c
,

τ x = min
{
n ∈ N : ξx

n = ∅
}
.

To simplify, we often write ξn, τ , Hn, K ′
n instead of ξ0

n , τ 0, H 0
n , K ′0

n .
For instance, τ is the length of the longest open path starting from the origin,

and the percolation event is equal to {τ = +∞}. First, finite open paths cannot be
too long (see Durrett [5]):

(5) ∀p >
−→
pc

alt(d + 1) ∃A,B > 0 ∀n ∈N Pp(n ≤ τ < +∞) ≤ Ae−Bn.

The set K ′
n ∩ Hn is called the coupled zone, and will play a central role in our

proofs, by allowing to compare numbers of open paths with close extremities. We
will particularly use the situation in Figure 1.

As for the contact process, the growth of the sets (Hn)n≥0 and the coupled
zones (K ′

n ∩ Hn)n≥0 is governed by a shape theorem and related large deviations
inequalities.
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•
(0,0)

•(x,n)

•
(z,0)

FIG. 1. Coupled zone. If x is in the shaded coupled zone K ′
n, and is reached by an open path

starting from some (z,0) ∈ Z
d × {0}, then (0,0) → (x,n) (in blue).

PROPOSITION 2.1 (Large deviations inequalities, Garet–Marchand [8]). Fix
p >

−→
pc

alt(d + 1). For every ε > 0, there exist A,B > 0 such that

∀n ≥ 1 Pp

(
Bμp

(
0, (1 − ε)n

) ⊂ (
K ′

n ∩ Hn

)+ [0,1]d
⊂ Hn + [0,1]d ⊂ Bμp

(
0, (1 + ε)n

)
)

≥ 1 − Ae−Bn.

2.2. Essential hitting times and associated translations. We now introduce the
analogues, in the discrete setting of oriented percolation, of the essential hitting
times used by Garet–Marchand to study the supercritical contact process condi-
tioned to survive in [7] and [8]; we give their main properties in Proposition 2.2.

For a given x ∈ Z
d , the essential hitting time will be a random time σ(x) such

that:

• Pp almost surely, (0,0) → (x, σ (x)) → ∞,
• the associated random translation of vector (x, σ (x)) leaves Pp invariant.

Thus, σ(x) will be interpreted as a regenerating time of the oriented percolation
conditioned to percolate.

Remember that
−→
E

d has been defined in Section 1.4, and that we identify
−→
E

d+1
alt

and
−→
E

d ×N
∗. We also define, for (y,h) ∈ Z

d ×N, the translation θ(y,h) on � by

θ(y,h)

(
(ω(e,k))e∈−→

E d ,k≥1

) = (ω(e+y,k+h))e∈−→
E d ,k≥1

.

At some point, we will also need to look backwards in time. So, as set of sites, we
replace Zd ×N by Z

d ×Z, and we introduce the following reversed time translation
defined on {0,1}Zd×Z by

(6) θ
↓
(y,h)

(
(ω(e,k))e∈−→

E d ,k∈Z
) = (ω(e+y,h−k))e∈−→

E d ,k∈Z.

Fix p >
−→
pc

alt(d + 1).
We now recall the construction of the essential hitting times and the associated

translations introduced in [7] (see Figure 2). Fix x ∈ Z
d . The essential hitting time

σ(x) is defined through a family of stopping times as follows: we set u0 = v0 = 0
and we define recursively two increasing sequences of stopping times (un)n≥0 and
(vn)n≥0 with u0 = v0 < u1 < v1 < u2 · · · as follows:
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FIG. 2. The essential hitting time. The shaded point is skipped by the process, as it occurs during
the life time of (x,u2).

• Assume that vk is defined. We set uk+1 = inf{t > vk : x ∈ ξ0
t }.

If vk < +∞, then uk+1 is the first time after vk where x is once again infected;
otherwise, uk+1 = +∞.

• Assume that uk is defined, with k ≥ 1. We set vk = uk + τ ◦ θ(x,uk).
If uk < +∞, the time τ ◦ θ(x,uk) is the length of the oriented percolation

cluster starting from (x,uk); otherwise, vk = +∞.

We then set

K(x) = min{n ≥ 0 : vn = +∞ or un+1 = +∞}.
This quantity represents the number of steps before the success of this process:

either we stop because we have just found an infinite vn, which corresponds to
a time un when x is occupied and has infinite progeny, or we stop because we
have just found an infinite un+1, which says that after vn, site 0 is never infected
anymore. It is not difficult to see that

Pp

(
K(x) > n

) ≤ Pp(τ < +∞)n,
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and thus K(x) is Pp almost surely finite. We define the essential hitting time σ(x)

by setting

σ(x) = uK(x) ∈ N∪ {+∞}.
By construction (0,0) → (x, σ (x)) → +∞ on the event {τ = +∞}. Note however
that σ(x) is not necessarily the first positive time when x is occupied and has
infinite progeny: for instance, such an event can occur between u1 and v1, being
ignored by the recursive construction. It can be checked that conditionally to the
event {τ = ∞}, the process necessarily stops because of an infinite vn, and thus
σ(x) < +∞. At the same time, we define the operator θ̃ on �, which is a random
translation by

θ̃x(ω) =
{
θ(x,σ (x))ω if σ(x) < +∞,

ω otherwise.

If (x1, . . . , xm) is a sequence of points in Z
d , we also introduce the shortened

notation:

θ̃x1,...,xm = θ̃xm ◦ θ̃xm−1 ◦ · · · ◦ θ̃x1 .

For each integer n ≥ 1, we denote by Fn the σ -field generated by the maps
(ω �→ ω(e,k))e∈−→

E d ,1≤k≤n
. We denote by F the σ -field generated by the maps (ω �→

ω(e,k))e∈−→
E d ,k≥1

.

PROPOSITION 2.2. Fix p >
−→
pc

alt(d + 1) and x1, . . . , xm ∈ Z
d .

(a) Suppose A ∈ B(R), B ∈ F . Then for each x ∈ Z
d ,

Pp

(
σ(x) ∈ A, θ̃−1

x (B)
) = Pp

(
σ(x) ∈ A

)
Pp(B).

(b) The probability measure Pp is invariant under θ̃x1,...,xm .
(c) The random variables

σ(x1), σ (x2) ◦ θ̃x1, σ (x3) ◦ θ̃x1,x2, . . . , σ (xm) ◦ θ̃x1,...,xm−1

are independent under Pp .
(d) Suppose t ≤ m, A ∈ Ft , B ∈ F

Pp

(
A, θ̃−1

x1,...,xm
(B)

) = Pp(A)Pp(B).

(e) For every x ∈ Z
d , μp(x) = limn→+∞ Ep(σ (nx))

n
= infn≥1

Ep(σ (nx))

n
.

(f) There exists α,β > 0 such that

∀x ∈ Z
d

Ep

(
exp

(
ασ(x)

)) ≤ exp
(
β
(‖x‖1 ∨ 1

))
.

PROOF. To prove (a)–(d), it is sufficient to mimic the proofs of Lemma 8 and
Corollary 9 in [7]. The convergence has been proved for the contact process in [7],
Theorem 22. The existence of exponential moments for σ has been proved for the
contact process in [8], Theorem 2. �
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3. Directional limits along subsequences of regenerating times. The es-
sential hitting times have good regenerating properties, but by construction [see
Proposition 2.2(e)], the vector (x, σ (x)) lies close to the border of the percolation
cone {(y,μp(y)) : y ∈ R

d}. We now need to build new regenerating points such
that the set of directions of these points is dense inside the percolation cone.

We define, for (y,h) ∈ Z
d ×N

∗, a new regenerating time s(y,h) by setting

s(y,h) = σ(y) +
h∑

i=1

σ(0) ◦ θ̃ i−1(0) ◦ θ̃ (y),

and the associated translation:

θ̂(y,h)(ω) =
{
θ(y,s(y,h))ω if s(y,h) < +∞,

ω otherwise.

Note that on {τ = +∞}, (0,0) → (y, s(y,h)) → +∞ and θ̂(y,h) = θ̃y,0,...,0 (with
h zeros). We can easily deduce from Proposition 2.2 the following properties of
the time s(y,h) under Pp .

LEMMA 3.1. Fix p >
−→
pc

alt(d + 1), and (y,h) ∈ Z
d ×N

∗:

(a) The probability measure Pp is invariant under the translation θ̂(y,h).
(b) The random variables (s(y,h) ◦ (θ̂(y,h))

j )j≥0 are independent and identi-
cally distributed under Pp .

(c) The measure-preserving dynamical system (�,F,Pp, θ̂(y,h)) is mixing.
(d) There exists α,β > 0 such that

∀y ∈ Z
d ∀h ∈ N

∗
Ep

(
exp

(
αs(y,h)

)) ≤ exp
(
β
((‖y‖1 ∨ 1

)+ h
))

.

We fix (y,h) ∈ Z
d ×N

∗. We work under Pp , and we set, for every n ≥ 1,

(7) Sn = Sn(y,h) =
n−1∑
k=0

s(y,h) ◦ θ̂ k
(y,h).

The points (ny,Sn(y,h))n≥1 are the sequence of regenerating points associated to
(y,h) along which we are going to look for subadditivity properties. As, under
Pp , the random variables (s(y,h) ◦ θ̂

j
(y,h))j≥0 are independent and identically dis-

tributed with finite first moment (see Lemma 3.1), the strong law of large numbers
ensures that Pp-almost surely

(8) lim
n→+∞

Sn(y,h)

n
= Ep

(
s(y,h)

) = Ep

(
σ(y)

)+ hEp

(
σ(0)

)
.

For large n, the point (ny,Sn(y,h)) is not far from the line R(y,Ep(s(y,h))).
To obtain directional limits along subsequences, we first apply Kingman’s sub-

additive ergodic theorem to fn = − logN(ny,Sn(y,h)) for a fixed (y,h) in Z
d ×N

∗.
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LEMMA 3.2. Fix p >
−→
pc

alt(d + 1) and (y,h) ∈ Z
d × N

∗. There exists
αp(y,h) ∈ (0, log(2d + 1)] such that Pp-almost surely and in L1(Pp),

lim
n→+∞

1

Sn(y,h)
logN(ny,Sn(y,h)) = αp(y,h).

PROOF. Fix (y,h) ∈ Z
d ×N

∗. To avoid heavy notation, we omit all the depen-
dence in (y,h). For instance Sn = Sn(y,h) and θ̂ = θ̂(y,h). Note that by definition,
Pp-almost surely, for every n ≥ 1, (0,0) → (ny,Sn) → +∞ and consequently,
N(ny,Sn) ≥ 1. For n ≥ 1, we set

fn = − logN(ny,Sn).

Let n,m ≥ 1. Note that Sn + Sm ◦ θ̂ n
(y,h) = Sn+m. As N(my,Sm) ◦ θ̂ n counts the

number of open paths from (ny,Sn) to ((n+m)y,Sn + Sm ◦ θ̂ n), concatenation of
paths ensures that N(ny,Sn) × N(my,Sm) ◦ θ̂ n ≤ N((n+m)y,Sn+m) which implies that

∀n,m ≥ 1 fn+m ≤ fn + fm ◦ θ̂ n.

As 1 ≤ N(ny,Sn) ≤ (2d + 1)Sn ,

−Sn log(2d + 1) ≤ fn ≤ 0.

The integrability of s thus implies the integrability of every fn. So we can apply
Kingman’s subadditive ergodic theorem. By property (c) in Lemma 3.1, the dy-
namical system (�,F,P, θ̂ ) is mixing. Particularly, it is ergodic, so the limit is
deterministic: if we define

−α′
p(y,h) = inf

n≥1

Ep(fn)

n
,

we have Pp-almost surely and in L1(Pp): limn→+∞ fn

n
= −α′

p(y,h).
The limit of the lemma follows then directly from (8) by setting

αp(y,h) = α′
p(y,h)

Eps(y,h)
.

Finally, α′
p(y,h) ≥ Ep(−f1) = Ep(logN(y,S1)). Since N(y,S1) ≥ 1 Pp-a.s. and

N(y,S1) ≥ 2 with positive probability, it follows that α′
p(y,h) > 0, and conse-

quently αp(y,h) > 0.
As N(ny,Sn) ≤ (2d + 1)Sn , we see that αp(y,h) ≤ log(2d + 1) and that the con-

vergence also holds in L1(Pp). �

We can now introduce a natural candidate for the limit in Theorem 1.1:

(9) αp = sup
{
αp(y,h) : (y,h) ∈ Z

d ×N
∗} < +∞.
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Indeed, at the logarithmic scale we are working with, we can expect that the dom-
inant contribution to the number Nn of open paths to level n will be due to the
number Nnz,n of open paths to level n in the direction (z,1) that optimizes the
previous limit. Note, however, that in our construction, (y,h) has no real geomet-
rical signification, but it is just a useful encoding: as said before, the asymptotic
direction of the regenerating point (ny,Sn(y,h)) in Z

d ×N is(
y

Ep(s(y,h))
,1
)
.

To skip from the subsequences to the full limit, we approximate Bμp(0,1) with a
denumerable set of points: let

(10) Dp =
{

y

Ep(s(y,h))
: y ∈ Z

d, h ∈ N
∗
}
.

LEMMA 3.3. For every p >
−→
pc

alt(d + 1), Bμp(0,1) ⊂ Dp .

PROOF. Note that the set {z/l : (z, l) ∈ Z
d × N

∗ and μp(z) < l} is dense in
Bμp(0,1). Thus, fix (z, l) ∈ Z

d ×N
∗ such that μp(z) < l and consider

(yn, hn) =
(
nz,

⌈
n(l − μp(z))

Ep(σ (0))

⌉)
∈ Z

d ×N
∗.

Then
yn

Ep(s(yn,hn))
= nz

Ep(σ (yn)) + hnEp(σ (0))
→ z

l

as n goes to +∞. �

Finally, for (y,h) ∈ Z
d ×N

∗, we denote by

(11) ∀n ∈ N ϕ(n) = ϕ(y,h)(n) = inf
{
k ∈ N : Sk(y,h) ≥ n

}
.

Thus, for large n, (ϕ(n) · y,Sϕ(n)) is the first point among the sequence of regen-
erating points associated to (y,h) to be above level n. By the renewal theory, Pp

almost surely,

(12) lim
n→+∞

ϕ(y,h)(n)

n
= 1

Ep(s(y,h))
and lim

n→+∞
Sϕ(y,h)(n)(y, h)

n
= 1.

It is also not too far above level n.

LEMMA 3.4. For every (y,h) ∈ Z
d ×N

∗, there exist positive constants A, B

such that

∀n ∈N P(Sϕ(y,h)(n) − n ≥ n) ≤ A exp(−Bn).
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PROOF. As we work in discrete time, ϕ(n) ≤ n. So

Pp(Sϕ(n) − n ≥ n) ≤ Pp

(∃k ≤ n : s(y,h) ◦ θ̂ k
(y,h) ≥ n

) ≤ nPp

(
s(y,h) ≥ n

)
.

As s(y,h) admits exponential moments thanks to Lemma 3.1, we can conclude
with the Markov inequality. �

4. Proof of Theorem 1.1. Fix p >
−→
pc

alt(d + 1). The proof of the almost
sure convergence in Theorem 1.1 is a direct consequence of the forthcoming
Lemmas 4.1, 4.2 and 4.3. The L1 convergence follows from the remark that
1
n

logNn ≤ log(2d + 1). Remember that αp is defined in (9).

LEMMA 4.1. Pp-almost surely, limn→+∞ 1
n

logNn ≥ αp .

PROOF. Take (y,h) ∈ Z
d ×N

∗. Note that (Nn)n≥1 is nondecreasing, and con-
sidering the increasing sequence Sk = Sk(y,h), we see that, Pp almost surely, for
every integer n such that Sk ≤ n ≤ Sk+1,

1

n
logNn ≥ 1

Sk+1
logNSk

≥ Sk

Sk+1

logN(ky,Sk)

Sk

.

With (8) and Lemma 3.2, we deduce that Pp almost surely,

lim
n→+∞

1

n
logNn ≥ αp(y,h),

which completes the proof. �

LEMMA 4.2. Pp-almost surely, limn→+∞ 1
n

logNn ≤ αp .

PROOF. Fix ε > 0 and η ∈ (0,1). We first approximate Bμp(0,1) with a finite
number of points: with Lemma 3.3, we can find a finite set F ⊂ Z

d ×N
∗ such that

Bμp(0,1 + ε) ⊂ ⋃
(y,h)∈F

Bμp

(
(1 + ε)y

Ep(s(y,h))
, (1 − η)ε/2

)
.

Then, for n large, we will control the number Nn using directional convergence
along these directions. We define Mn(y,h) as the first point in the sequence
(ky, S(y,h)(k))k≥1 of regenerating points associated to (y,h) to be above level
n(1 + ε). Using the notation introduced in (11), we set

∀(y,h) ∈ F kn = kn(y,h) = ϕ(y,h)

(
n(1 + ε)

)
,

Zn = Zn(y,h) = kn · y ∈ Z
d,

Vn = Vn(y,h) = Skn(y,h) ∈ N,

Mn = Mn(y,h) = (Zn,Vn).
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For a given (y,h) ∈ F , the law of large numbers (12) says that

kn(y,h) ∼ n(1 + ε)

Ep(s(y,h))
and Vn(y,h) ∼ n(1 + ε).(13)

So Pp almost surely, for all n large enough,

∀(y,h) ∈ F Bμp

(
(1 + ε)ny

Ep(s(y,h))
, (1 − η)εn/2

)
⊂ Bμp

(
Zn(y,h), (1 − η)εn

)
.

It follows then from the shape theorem (1) that, Pp almost surely, for all n large
enough,

(14) ξn ⊂ Bμp

(
0, (1 + ε)n

) ⊂ ⋃
(y,h)∈F

Bμp

(
Zn(y,h), (1 − η)εn

)
.

The strategy is to prove that for n large enough, for each x ∈ Bμp(0, n(1 + ε)),
the n first steps of an open path that goes from (0,0) to (x, n) and then to infinity
are also the n first steps of an open path which contributes to NMn(y,h) for any
(y,h) ∈ F such that x ∈ Bμp(Zn(y,h), (1 − η)εn). Concretely, we will prove that
on a good event Gn with large probability,

(15) Nn ≤ ∑
(y,h)∈F

NMn(y,h).

To do so, we will use the coupled zones, backwards in time, issued from the
Mn(y,h)’s for (y,h) ∈ F . Define the good events

Gn = ⋂
M∈{−2n,...,2n}d×{0,...,2n}

{
τ < n(1 + ε)

or K ′
nε ⊃ Bμp

(
0, (1 − η)εn

)∩Z
d

}
◦ θ

↓
M.

We recall that θ
↓
M was introduced in (6) and corresponds to looking at the process

backwards in time. Since θ
↓
M preserves Pp , we easily deduce from (5), Proposi-

tion 2.1 and a Borel–Cantelli argument that Pp almost surely, Gn holds for every
n large enough.

Now take n large enough such that (14) holds, Gn holds, together with
Vn(y,h) ≤ 2n for each (y,h) ∈ F , which is possible thanks to (13). Thus, ξn is
contained in the union of the “reversed” coupled zones issued from the Mn(y,h)’s.
See Figure 3.

Fix now x ∈ ξn such that (x, n) → ∞. As (14) holds, choose (y,h) ∈ F such
that x ∈ Bμp(Zn(y,h), (1 − η)εn). Let us prove that there exists an open path
from (x, n) to Mn(y,h). See Figure 4. Since (0,0) → Mn and Vn ≥ n(1 + ε),
we know that τ ◦ θ

↓
Mn

≥ n(1 + ε). Since Mn ∈ {−2n, . . . ,2n}d × {0, . . . ,2n},
μp(x − Zn) ≤ (1 − η)εn and Gn holds, we have x − Zn ∈ K ′

nε ◦ θ
↓
Mn

. Note that
Vn(y,h) ≥ n(1 + ε), so Vn(y,h) − n ≥ εn. Note also that (x, n) → ∞ im-
plies that x − Zn ∈ ξZ

d

Vn(y,h)−n ◦ θ
↓
Mn

. By definition of the coupled zone, we have
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n

n(1 + ε)
• • •••

•
(0,0)

FIG. 3. The 5 inner lines give the directions (y,h) in the finite set F ; their final points are the
associated Mn(y,h). The set ξn is contained in the union of the “reversed” coupled zones issued
from the Mn(y,h)’s.

x − Zn ∈ ξ0
Vn(y,h)−n ◦ θ

↓
Mn

. Going back to the initial orientation, it means that
(x, n) → Mn. So, if γ is a path from (0,0) to (x, n), it is clear that γ is the restric-
tion of a path that goes from (0,0) to Mn, and then to infinity. This proves (15).

Finally, we use the directional limits given by Lemma 3.2: Pp almost surely,

∀(y,h) ∈ F lim
n→+∞

1

Vn(y,h)
logNMn(y,h) = αp(y,h).

As Vn(y,h) ∼ n(1 + ε), it is a consequence of the shape theorem (1) that Pp-a.s.,
for all n large enough,

∀(y,h) ∈ F
1

n(1 + ε)
logNMn(y,h) ≤ αp(y,h) + ε ≤ αp + ε.

Consequently, for n large enough, we have Pp almost surely,

Nn ≤ ∑
(y,h)∈F

NMn(y,h) ≤ |F | exp
(
(αp + ε)n(1 + ε)

)
,

n

n(1 + ε)

•Mn(y,h)

↓ (0,0)

↑ ∞

•
x

z•

↓ (0,0)

↑ ∞

FIG. 4. At the right, (x,n) → +∞; but (x,n) is in the “reversed” coupled zone (shaded) issued
from Mn(y,h): thus (x,n) → Mn(y,h) (in the middle).
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and so

lim
n→+∞

1

n
log(Nn) ≤ (1 + ε)(αp + ε).

We complete the proof by letting ε go to 0. �

Finally, we prove that working with open paths or with open paths that are the
beginning of an infinite open path is essentially the same.

LEMMA 4.3. Pp-almost surely,

lim
n→+∞

logNn

n
= lim

n→+∞
logNn

n
and lim

n→+∞
logNn

n
= lim

n→+∞
logNn

n
.

PROOF. Fix 0 < ε < 1 and define, for n ≥ 1, the following event:

En = ⋂
‖z‖1≤n

{τ < εn or τ = +∞} ◦ θ(z,�n(1−ε)�).

Assume that En occurs.
Consider a path γ = (γi, i)0≤i≤n from (0,0) to Z

d × {n} and set z = γ�n(1−ε)�:
as τ ◦ θ(z,�n(1−ε)�) ≥ εn, the event En implies that τ ◦ θ(z,�n(1−ε)�) = +∞. So
(γi, i)0≤i≤�n(1−ε)� contributes to N�n(1−ε)� and thus, on En,

Nn ≤ (2d + 1)εn+1N�n(1−ε)�,

so

1

n
logNn ≤

(
ε + 1

n

)
log(2d + 1) + 1

n
logN�n(1−ε)�

≤
(
ε + 1

n

)
log(2d + 1) + 1

�n(1 − ε)� logN�n(1−ε)�.

The exponential estimate (5) ensures that

∀n ≥ 1 Pp

(
Ec

n

) ≤ CdAnd exp(−Bεn) ≤ A′ exp
(−B ′n

)
.

With the Borel–Cantelli lemma, this leads to

lim
n→+∞

1

n
logNn ≤ ε log(2d + 1) + lim

n→+∞
1

n
logNn.

By taking ε to 0, we obtain

lim
n→+∞

logNn

n
≤ lim

n→+∞
logNn

n
.

The proof for the inequality with lim instead of lim is identical. Since Nn ≤ Nn,
the reversed inequalities are obvious. �
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5. Proof of Theorem 1.2.

5.1. Construction and continuity of α̃p . Recall that Dp was defined in (10).
Our strategy is to prove that the identity

α̃p

(
y

Ep(s(y,h))

)
= αp(y,h),

defines a map on Dp that is uniformly continuous on every compact subset of
Dp ∩ B̊μ(0,1). We first refine the argument of Lemma 4.2 using the coupled zone.

LEMMA 5.1. Let β ∈ (0,1). There exists α > 0 such that the following holds.
For every ε > 0, for every x̂1, x̂2 ∈ Bμp(0,1 − β), if

μp(x̂1 − x̂2) ≤ αε,

then for any sequences of points (M1
n = (Z1

n,V
1
n ))n and (M2

n = (Z2
n,V

2
n ))n in Z

d ×
N

∗, for any C > 0 such that, Pp almost surely,

Z1
n

V 1
n

→ x̂1 and
V 1

n

n
→ C(1 + ε),

Z2
n

V 2
n

→ x̂2 and
V 2

n

n
→ C,

we have the following property: Pp almost surely, for every n large enough, if
(0,0) → (Z1

n,V
1
n ) and (0,0) → (Z2

n,V
2
n ) → ∞, then N(Z2

n,V 2
n ) ≤ N(Z1

n,V 1
n ).

PROOF. Fix small α,η > 0 and a large integer K ≥ 3 such that

α + (1 − β) <
K − 2

K
(1 − η).

Fix ε > 0. Set ε′ = ε/K .

μp

(
Z2

n

Cn
− Z1

n

Cn

)
≤ μp

(
Z2

n

V 2
n

)∣∣∣∣V
2
n

Cn
− 1

∣∣∣∣+ μp

(
Z2

n

V 2
n

− x̂2

)
+ μp(x̂2 − x̂1)

+ μp

(
x̂1 − Z1

n

V 1
n

)
+ μp

(
Z1

n

V 1
n

)∣∣∣∣V
1
n

Cn
− 1

∣∣∣∣.
So P almost surely,

lim
n→+∞μp

(
Z2

n

Cn
− Z1

n

Cn

)
≤ (α + 1 − β)ε <

K − 2

K
(1 − η)ε,

so P almost surely, for every n large enough,

(16) μp

(
Z2

n

Cn
− Z1

n

Cn

)
≤ K − 2

K
(1 − η)ε = (K − 2)(1 − η)ε′.
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By the convergences for the V i
n/n, we know that Pp almost surely, for every n

large enough,

(17)
∣∣V 1

n − Cn(1 + ε)
∣∣ ≤ Cnε′ and

∣∣V 2
n − Cn

∣∣ ≤ Cnε′.

Define

Gn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀x ∈ [−Cn(1 + 2ε),Cn(1 + 2ε)
]d

∀k ∈ [
Cn

(
1 + ε − ε′),Cn

(
1 + ε + ε′)](

τ ◦ θ
↓
(x,k) ≥ ε′Cn

)
⇒ ∀m ≥ ε′CnBμp

(
0, x, (1 − η)m

) ⊂ K̃ ′
m ◦ θ

↓
(x,k)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

With the large deviations for the coupled zone given in Proposition 2.1, there exist
A,B > 0 such that

∀n large enough Pp

(
Gc

n

) ≤ A exp(−Bn).

Thus, the Borel–Cantelli lemma ensures that Pp(limGn) = 1.
Assume then that τ = +∞. Pp almost surely, for every n large enough, we

know that (16), (17) and Gn occur. Assume that, for one of these large enough n,
(0,0) → (Z1

n,V
1
n ) and (0,0) → (Z2

n,V
2
n ) → ∞. Note that

V 1
n − V 2

n ≥ Cn
(
1 + ε − ε′)− Cn

(
1 + ε′) ≥ Cn(K − 2)ε′.

So, on the event Gn, as (0,0) → (Z1
n,V

1
n ), we see that τ ◦ θ

↓
M1

n
≥ ε′Cn, so

KV 1
n −V 2

n
◦ θ

↓
M1

n
⊃ Bμp

(
Z1

n, (1 − η)C(K − 2)nε′).
So, with (16), we see that Z2

n ∈ KV 1
n −V 2

n
◦ θ

↓
M1

n
. As (Z2

n,V
2
n ) → ∞, then

(Z2
n,V

2
n ) → (Z1

n,V
1
n ), which gives an injection from the set of open paths from

(0,0) to (Z2
n,V

2
n ) into the set of open paths from (0,0) to (Z1

n,V
1
n ). �

For (y,h) ∈ Z
d × N

∗, we define Mn(y,h) as the first point in the sequence
(ky, S(y,h)(k)) of regenerating points associated to (y,h) to be above level n [see
Definition (11)]:

kn = kn(y,h) = ϕ(y,h)(n),

Zn = Zn(y,h) = kn · y ∈ Z
d and Vn = Vn(y,h) = Skn(y,h) ∈ N,

Mn = Mn(y,h) = (Zn,Vn).

The law of large numbers (12) says that Pp almost surely,

Zn(y,h)

n
= kn(y,h) · y

n
∼ y

Ep(s(y,h))
and

Vn

n
∼ 1.

The next lemma is a first step toward continuity.
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LEMMA 5.2. Let β ∈ (0,1). There exists α > 0 such that, for every ε > 0, for
every (y1, h1), (y2, h2) ∈ Z

d ×N
∗ such that

μp

(
y1

Ep(s(y1, h1))

)
≤ 1 − β and μp

(
y2

Ep(s(y2, h2))

)
≤ 1 − β,

if μp(
y1

Ep(s(y1,h1))
− y2

Ep(s(y2,h2))
) ≤ αε, then |αp(y1, h1) − αp(y2, h2)| ≤ ε.

PROOF. For n ≥ 1, take (Z1
n,V

1
n ) = Mn(1+ε)(y1, h1) and (Z2

n,V
2
n ) = Mn(y2,

h2). With the previous lemma, we obtain

NMn(y2,h2) ≤ NMn(1+ε)(y1,h1),

1

Vn(y2, h2)
logNMn(y2,h2) ≤ Hn(1+ε)(y1, h1)

Vn(y2, h2)

logNMn(1+ε)(y1,h1)

Hn(1+ε)(y1, h1)
,

αp(y2, h2) ≤ (1 + ε)αp(y1, h1).

By symmetry, we obtain |αp(y2, h2) − αp(y1, h1)| ≤ ε log(2d + 1). �

Definition of α̃p . We define the following equivalence relation of the points in
Z

d ×N
∗:

(y1, h1) ∼ (y2, h2) ⇔ y1

Ep(s(y1, h1))
= y2

Ep(s(y2, h2))
.

Lemma 5.2 ensures that if (y1, h1) ∼ (y2, h2), then αp(y1, h1) = αp(y2, h2). We
can thus define on the quotient set of directions Dp , defined in (10), the following
directional limit:

α̃p

(
y

Ep(s(y,h))

)
= αp(y,h).

Lemma 5.2 ensures that the application α̃p is uniformly continuous on each Dp ∩
Bμp(0, (1 − β)). Note that the α given by Lemma 5.2 gives an upper bound for
its modulus of continuity. By Lemma 3.3, Dp ∩ Bμp(0, (1 − β)) is dense in the
compact set Bμp(0, (1 − β)), so we can extend α̃p to any Bμp(0, (1 − β)), and

then to B̊μp(0,1).

5.2. Inequalities for the directional convergence. We now prove refined ver-
sions of Lemmas 4.1 and 4.2.

LEMMA 5.3. For every subset A of B̊μp(0,1) such that Å �= ∅, Pp-almost
surely,

lim
n→+∞

1

n
logNnA,n ≥ sup

x∈Å

α̃p(x).
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PROOF. Let L ∈ R with L < sup
x∈Å

α̃p(x) and take x ∈ Å with α̃p(x) > L.
Fix ε ∈ (0,1) such that B(x,8ε) ⊂ A. By the continuity of α̃p , if we take ε small
enough, we can also ensure that α̃p > L on B(x,8ε). With Lemma 3.3, we can
find (y,h) ∈ Z

d × N such that ŷ = y

Ep(s(y,h))
∈ B(x,4ε). We define Mn(y,h) as

the first point in the sequence (ky, S(y,h)(k))k≥1 of regenerating points associated
to (y,h) to be above level n(1 − ε). Using the notation introduced in (11), we set

∀(y,h) ∈ F kn = kn(y,h) = ϕ(y,h)

(
n(1 − ε)

)
,

Zn = Zn(y,h) = kn · y ∈ Z
d,

Vn = Vn(y,h) = Skn(y,h) ∈ N,

Mn = Mn(y,h) = (Zn,Vn).

The law of large numbers (12) says that

(18) Zn(y,h) ∼ n(1 − ε)ŷ and Vn(y,h) ∼ n(1 − ε).

Note

Gn = ⋂
M∈Bμp (n(1−ε)ŷ,εn)×[n(1−ε)···n(1−ε/2)],

k≥εn/2

{
ξ0
k ⊂ Bμp

(
0, (1 + ε)k

)} ◦ θM.

Since θM preserves Pp , we easily deduce from (5), Proposition 2.1 and a Borel–
Cantelli argument that Pp almost surely, Gn holds for n large enough.

Now take n large enough such that Gn holds and, with (18),

Zn ∈ Bμp

(
n(1 − ε)ŷ, εn

)
and (1 − ε)n ≤ Vn ≤ (1 − ε/2)n,

so that εn/2 ≤ n − Vn ≤ εn. Then Gn ensures that (ε < 1)

ξ
Zn

n−Vn
⊂ Bμp

(
Zn, (1 + ε)εn

) ⊂ Bμp

(
n(1 − ε)ŷ,3εn

) ⊂ Bμp(nŷ,4εn) ⊂ nÅ.

So NMn ≤ NnA,n, and then

1

n
logNnA,n ≥ Vn

n

1

Vn

logNMn.

With (18) and Lemma 3.2, we deduce that Pp almost surely,

lim
n→+∞

1

n
logNnA,n ≥ 1

1 − ε
αp(ŷ) ≥ 1

1 − ε
L.

Letting ε going to 0 completes the proof. �

LEMMA 5.4. For every nonempty set A such that A ⊂ B̊μp(0,1), Pp-almost
surely,

lim
n→+∞

1

n
logNnA,n ≤ sup

x∈A

α̃p(x).



THE NUMBER OF OPEN PATHS IN ORIENTED PERCOLATION 4093

PROOF. The proof is a refinement of that of Lemma 4.2. Let δ > 0. Since A

is a compact subset of B̊μ(0,1) and z �→ α̃p(z) is continuous on B̊μ(0,1), one can
find ε ∈ (0,1) such that

sup
A+Bμp (0,2ε)

α̃p ≤ δ + sup
A

α̃p.

Now take η > 0 and F as defined in the proof of Lemma 4.2 and note

FB =
{
(y,h) ∈ F : y

Ep(s(y,h))
∈ B

}
.

Now consider x ∈ nA. Since nA ⊂ Bμp(0, n(1 + ε)), for n large enough, we can

find (y,h) ∈ F such that x/n ∈ Bμp(
(1+ε)y

Ep(s(y,h))
, (1 − η)ε/2). We have

μp

(
y

Ep(s(y,h))
− x

n

)
≤ μp

(
(1 + ε)

y

Ep(s(y,h))
− (1 + ε)

x

n

)

≤ μp

(
(1 + ε)y

Ep(s(y,h))
− x

n

)
+ εμp(x/n)

≤ (1 − η)ε/2 + εμp(x/n) ≤ 2ε.

Since x/n ∈ A, we get (y,h) ∈ FA+Bμp (0,2ε). Now, following the proof of
Lemma 4.2, for n large enough, for each x ∈ nA, the n first steps of an open
path that goes from (0,0) to (x, n) and then to infinity are also the n first steps of
an open path which contributes to NMn(y,h) for any (y,h) ∈ FA+Bμp (0,2ε), which
gives

(19) NnA,n ≤ ∑
(y,h)∈FA+Bμp (0,2ε)

NMn(y,h).

As previously, we get

lim
n→+∞

1

n
log(NnA,n) ≤ sup

FA+Bμp (0,2ε)

αp ≤ sup
A+Bμp (0,2ε)

α̃p ≤ δ + sup
A

α̃p.

We complete the proof by letting δ go to 0. �

5.3. Proof of equation (2) in Theorem 1.2. It remains to skip from NnA,n to
NnA,n. Fix 0 < ε < 1 and define, for n ≥ 1, the following event:

Gn = ⋂
‖z‖1≤n

{τ < εn or τ = +∞} ◦ θ(z,�n(1−ε)�)

∩ ⋂
‖z‖1≤n

{
K ′

εn ⊂ Bμp(0,2εn)
} ◦ θ

↓
(z,n).



4094 O. GARET, J.-B. GOUÉRÉ AND R. MARCHAND

As before, a Borel–Cantelli argument ensures that Pp-almost surely, Gn occurs for
every large enough n.

Assume that Gn occurs. Consider a path γ = (γi, i)0≤i≤n from (0,0) to nA ×
{n} and set z = γ�n(1−ε)�: as τ ◦ θ(z,�n(1−ε)�) ≥ εn, the event Gn implies that τ ◦
θ(z,�n(1−ε)�) = +∞. Looking backwards in time, we see that all these z are in
nA + Bμp(0,2εn). So (γi, i)0≤i≤�n(1−ε)� contributes to NnA+Bμp (0,2εn),�(1−ε)n�,
and thus, on Gn,

NnA,n ≤ (2d + 1)εn+1NnA+Bμp (0,2εn),�(1−ε)n�,

so

1

n
logNnA,n ≤

(
ε + 1

n

)
log(2d + 1) + 1

n
logNnA+Bμp (0,2εn),�(1−ε)n�.

Now, we first use Lemma 5.4 and take the lim, and then we use the continuity of
α̃p and let ε go to 0:

lim
n→+∞

logNnA,n

n
≤ ε log(2d + 1) + sup

x∈A+Bμp (0,2ε)

α̃p(x),

so

lim
n→+∞

logNnA,n

n
≤ sup

x∈A

α̃p(x).

As NnA,n ≤ NnA,n, with Lemma 5.3 we obtain

lim
n→+∞

logNnA,n

n
= sup

x∈A

α̃p(x).

This completes the proof.

5.4. Proof of the concavity of α̃p . As α̃p is continuous, it is sufficient to prove

(20) ∀x, y ∈ B̊μp(0,1) α̃p

(
x + y

2

)
≥ α̃p(x) + α̃p(y)

2
.

Write z = (x + y)/2. Let 0 < ε < 1/2. Write Bx = Bμp(x, ε), By = Bμp(y, ε)

and Bz = Bμp(z, ε). Assume that ε is small enough to ensure that Bx , By and Bz

are included in B̊μp(0,1). By equation (2), we have the following Pp almost sure
behavior:

lim
n→+∞

1

n
logNnBx,n = sup

u∈Bx

α̃p(u) > 0.

Therefore, for n large enough, we have

Pp

(
NnBx,n ≥ exp

(
n(1 − ε) sup

u∈Bx

α̃p(u)
))

≥ 1

2
ρ,
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where ρ = Pp((0,0) → ∞) > 0. Let Xn be some point of Zd ∩ nBx which max-
imizes {Nw,n : w ∈ Z

d ∩ nBx}—to ensure measurability, the tie is broken by a
deterministic rule. As the cardinality of Z

d ∩ nBx is of order nd , we get, for n

large enough,

Pp

(
Ax

n

) ≥ 1

2
ρ where Ax

n =
{
NXn,n ≥ exp

(
n(1 − 2ε) sup

u∈Bx

α̃p(u)
)}

.

Note that Xn and Ax
n are measurable with respect to Fn. We also have, for n large

enough,

Pp

(
Ay

n

) ≥ 1

2
ρ where Ay

n =
{
NnBy,n ◦ θXn,n ≥ exp

(
n(1 − ε) sup

u∈By

α̃p(u)
)}

.

By independence, we thus get, for n large enough,

(21) Pp

(
Ax

n ∩ Ay
n

) ≥ 1

4
ρ2.

But on Ax
n ∩ A

y
n we have

(22) N2nBz,2n ≥ exp
(
n(1 − 2ε)

(
sup
u∈Bx

α̃p(u) + sup
u∈By

α̃p(u)
))

.

On the other hand, by equation (2), we have the following almost sure behavior:

lim
n→+∞

1

2n
logN2nBz,2n = sup

u∈Bz

α̃p(u).

Therefore, for n large enough, we have

(23) Pp

(
N2nBz,2n ≤ exp

(
2n(1 + ε) sup

u∈Bz

α̃p(u)
))

≥
(

1 − 1

8
ρ2

)
.

Combining (21), (22) and (23), we get

1 − 2ε

2

(
sup
u∈Bx

α̃p(u) + sup
u∈By

α̃p(u)
)

≤ (1 + ε) sup
u∈Bz

α̃p(u).

We now let ε tend to 0 and we get (20), which completes the proof of Theorem 1.2.

6. Extension to linear stochastic evolutions. This section is devoted to the
proof of Theorem 1.5. As it is similar to the proof of Theorem 1.1, we do not pro-
vide a complete proof but rather emphasize on points that are different. Instead of
comparing number of paths, we now compare weights of family of paths. The inte-
grability assumption (4) is a simple and quite soft assumption allowing to control
such weights. The following lemma follows easily from this assumption, from the
polynomial growth of the number of paths with length n, and from the exponential
Markov inequality:
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LEMMA 6.1. There exist A,B,C > 0 such that for every n ∈ N, for every
t > 0,

P

(
sup

γ :(0,0)→Zd×{n}

∑
e∈γ

log(Ae ∧ 1) ≥ Cn + t

)
≤ A exp(−Bt),

P

(
inf

open γ :(0,0)→Zd×{n}
∑
e∈γ

log(Ae ∨ 1) ≤ −Cn − t

)
≤ A exp(−Bt).

LEMMA 6.2. Fix (y,h) ∈ Z
d × N

∗. There exists α(y,h) such that P-almost
surely and in L1(P),

lim
n→+∞

1

Sn(y,h)
logN(ny,Sn(y,h)) = αp(y,h).

PROOF. Fix (y,h) ∈ Z
d × N

∗. Note that by definition, P-almost surely, for
every n ≥ 1, (0,0) → (ny,Sn) → +∞. For n ≥ 1, we set

fn = − logN(ny,Sn).

Let us first prove that fn is integrable. In the following equations, we consider
optimums on the set of open paths γ from (0,0) to Z

d × {Sn}:
inf
γ

∏
e∈γ

(Ae ∨ 1) ≤ N(ny,Sn) ≤ (2d + 1)Sn

(
sup
γ

∏
e∈γ

(Ae ∧ 1)

)
,

inf
γ

∑
e∈γ

log(Ae ∨ 1) ≤ logN(ny,Sn) ≤ Sn log(2d + 1) + sup
γ

∑
e∈γ

log(Ae ∧ 1).

With the previous lemma, there exist C,C′ > 0 such that

E

(
sup

γ :(0,0)→Zd×{Sn}

∑
e∈γ

log max(Ae,1)
∣∣∣Sn

)
≤ CSn + C′,

E

(
inf

open γ :(0,0)→Zd×{Sn}
∑
e∈γ

log
(
min(Ae,1)

)∣∣∣Sn

)
≥ −CSn − C′.

With the integrability of Sn, we see that fn is integrable (and in particular almost
surely finite).

As before, fn+p ≤ fn + fp ◦ θ̂ n and we can apply Kingman’s subadditive er-
godic theorem:

−α′(y,h) = inf
n≥1

E(fn)

n
∈ R, and P-a.s. lim

n→+∞
fn

n
= −α′(y,h).

The lemma follows then from (8) by setting α(y,h) = α′(y,h)

Es(y,h)
. �

We can now introduce a natural candidate for the limit in Theorem 1.5:

(24) α = sup
{
α(y,h) : (y,h) ∈ Z

d ×N
∗} < +∞.
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LEMMA 6.3. P-almost surely, limn→+∞ 1
n

logNn ≥ α.

PROOF. Take (y,h) ∈ Z
d ×N

∗, and consider the increasing sequence of inte-
gers: (Sk = Sk(y,h))k .

By construction, P-almost surely, (0,0) → (ky, Sk) → ((k +1)y, Sk+1): denote
by γk the rightmost open path from (ky, Sk) to ((k + 1)y, Sk+1). We see that, P
almost surely, for every integer n such that Sk ≤ n ≤ Sk+1,

1

n
logNn ≥ 1

Sk+1
log

(
N(ky,Sk)

∏
e∈γk

(Ae ∧ 1)

)

≥ Sk

Sk+1

1

Sk

logN(ky,Sk) + 1

Sk+1

∑
e∈γk

log(Ae ∧ 1).

(25)

With (8) and Lemma 6.2, we see that Pp almost surely,

(26) lim
k→+∞

Sk

Sk+1

1

Sk

logN(ky,Sk) ≥ αp(y,h).

Now take ε > 0. Let F̃ be the σ -algebra generated by the field {1Ae : e ∈ −→
E

d+1
alt }.

Note that γk is F̃ -measurable, with length Sk+1 − Sk , that Sk ≥ k, and that σ 2 =
Var(log(A∧1)) and m = E(log(A∧1)) are well defined thanks to assumption (4).
With Chebyshev’s inequality, we obtain

P

(
1

Sk+1

∑
e∈γk

log(Ae ∧ 1) ≤ −ε
∣∣∣F̃)

≤ E((
∑

e∈γk
log(Ae ∧ 1))2|F̃)

ε2S2
k+1

≤ (Sk+1 − Sk)σ
2 + (Sk+1 − Sk)

2m2

ε2k2 ,

P

(
1

Sk+1

∑
e∈γk

log(Ae ∧ 1) ≤ −ε

)
≤ E(s(y,h))σ 2 +E(s(y,h)2)m2

ε2k2 .

With the Borel–Cantelli lemma, we obtain

(27) lim
k→+∞

1

Sk+1

∑
e∈γk

log(Ae ∨ 1) ≥ −ε.

Putting together (25), (26) and (27), we complete the proof. �

LEMMA 6.4. Pp-almost surely, limn→+∞ 1
n

logNn ≤ αp .

PROOF. Fix ε > 0 and η ∈ (0,1). Proceeding as in Lemma 4.2, we approxi-
mate Bμ(0,1) with a finite set F ⊂ Z

d × N
∗ and obtain (13) and (14). The event
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Gn is now:

Gn = ⋂
M∈{−2n,...,2n}d×{0,...,2n}

{
τ < n(1 + ε)

or K ′
nε ⊃ Bμp

(
0, (1 − η)εn

)∩Z
d

}
◦ θ

↓
M

∩ ⋂
M∈{−2n,...,2n}d×{0,...,2n}

{
inf

open γ :
(0,0)→Z

d×{2εn}

∑
e∈γ

log(Ae ∧ 1) ≥ −3Cεn

}
◦ θ

↓
M.

As before, and using moreover Lemma 6.1, the Borel–Cantelli lemma, P almost
surely, Gn holds for every n large enough.

Now take n large enough such that (14) holds, Gn holds, together with
Vn(y,h) ≤ n(1 + 2ε) for each (y,h) ∈ F , which is possible thanks to (13).

Fix x ∈ Z
d such that (0,0) → (x, n) → ∞. As before, choose (y,h) ∈ F such

that x ∈ Bμp(Zn(y,h), (1 − η)εn) and conclude that (x, n) → Mn(y,h). Thus,
with Gn and as Vn(y,h) ≤ n(1 + 2ε)

NMn(y,h) ≥ ∑
x∈Bμp (Zn(y,h),(1−η)εn)

(
Nx,n sup

γ :(x,n)→Mn(y,h)

∏
e∈γ

Ae

)

≥ ∑
x∈Bμp (Zn(y,h),(1−η)εn)

Nx,n

(
inf

γ open, from Mn(y,h)

to Z
d×{Vn(y,h)−2εn}

∏
e∈γ

(Ae ∧ 1)

)

≥ exp(−3Cεn)
∑

x∈Bμp (Zn(y,h),(1−η)εn)

Nx,n.

Thus,

Nn ≤ exp(3Cεn)
∑

(y,h)∈F

NMn(y,h).

The end of the proof is as before. �

LEMMA 6.5. Pp-almost surely,

lim
n→+∞

logNn

n
= lim

n→+∞
logNn

n
and

lim
n→+∞

logNn

n
= lim

n→+∞
logNn

n
.

PROOF. Fix 0 < ε < 1 and define, for n ≥ 1, the following event:

En = ⋂
‖z‖1≤n

{τ < εn or τ = +∞} ◦ θ(z,�n(1−ε)�)

∩ ⋂
‖z‖1≤n

{
sup

γ :(0,0)→Zd×{2εn}

∑
e∈γ

log(Ae ∨ 1) ≤ 3Cεn

}
◦ θ(z,�n(1−ε)�).
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Assume that En occurs.
Consider a path γ = (γi, i)0≤i≤n from (0,0) to Z

d × {n} and set z = γ�n(1−ε)�:
as τ ◦ θ(z,�n(1−ε)�) ≥ εn, the event En implies that τ ◦ θ(z,�n(1−ε)�) = +∞. So
(γi, i)0≤i≤�n(1−ε)� contributes to N�n(1−ε)�, and thus, on En,

Nn ≤ (2d + 1)εn+1N�n(1−ε)� sup
‖z‖1≤n

sup
γ :(0,0)→Zd×{2εn}

∑
e∈γ

log(Ae ∨ 1)

≤ (2d + 1)εn+1 exp(3Cεn)N �n(1−ε)�.

The end of the proof is as before. �
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