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We consider first passage percolation on Z
2 with i.i.d. weights, whose

distribution function satisfies F(0) = pc = 1/2. This is sometimes known
as the “critical case” because large clusters of zero-weight edges force pas-
sage times to grow at most logarithmically, giving zero time constant. Denote
T (0, ∂B(n)) as the passage time from the origin to the boundary of the box
[−n,n]× [−n,n]. We characterize the limit behavior of T (0, ∂B(n)) by con-
ditions on the distribution function F . We also give exact conditions under
which T (0, ∂B(n)) will have uniformly bounded mean or variance. These
results answer several questions of Kesten and Zhang from the 1990s and,
in particular, disprove a conjecture of Zhang from 1999. In the case when
both the mean and the variance go to infinity as n → ∞, we prove a CLT
under a minimal moment assumption. The main tool involves a new relation
between first passage percolation and invasion percolation: up to a constant
factor, the passage time in critical first passage percolation has the same first-
order behavior as the passage time of an optimal path constrained to lie in an
embedded invasion cluster.

1. Introduction.

1.1. The model. Consider the integer lattice Z
d and denote by Ed the set

of nearest-neighbor edges. Given a distribution function F with F(0−) = 0, let
(te : e ∈ Ed) be a family of i.i.d. random variables (edge-weights) with common
distribution function F . In first passage percolation, we study the random pseudo-
metric on Z

d induced by these edge-weights.
The model is defined as follows. For x, y ∈ Z

d , a (vertex self-avoiding) path
from x to y is a sequence (v0, e1, v1, . . . , en, vn), where the vi ’s, i = 1, . . . , n − 1,
are distinct vertices in Z

d which are different from x or y, and v0 = x, vn = y;
ei is an edge in Ed which connects vi−1 and vi . If x = y, the path is called a
(vertex self-avoiding) circuit. For a path γ , we define the passage time of γ to be
T (γ ) = ∑

e∈γ te. For any A, B ⊂ Z
d , we define the first passage time from A to B
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by

T (A,B) = inf
{
T (γ ) : γ is a path from a vertex in A to a vertex in B

}
.

For A = {x}, write T (x,B) for T ({x},B) and similarly for B . A geodesic is a path
γ from A to B such that T (γ ) = T (A,B).

From the sub-additive ergodic theorem, if ET (x, y) < ∞ for all x, y then there
exists a constant μ, called the time constant, such that

lim
n→∞

T (0, ne1)

n
= μ almost surely and in L1,

where e1 = (1,0, . . . ,0). It was shown by Kesten [14], Theorem 6.1, that

(1.1) μ = 0 if and only if F(0) ≥ pc,

where pc is the critical probability for Bernoulli bond percolation on Z
d . There-

fore, the time constant does not provide much information if F(0) ≥ pc.
In [23], equation (3), Y. Zhang introduced the following random variable:

ρ(F ) = lim
n→∞T

(
0, ∂B(n)

)
,

where B(n) = {x ∈ Z
2 : ‖x‖∞ ≤ n}, ∂B(n) = {x ∈ Z

2 : ‖x‖∞ = n}, and ‖ · ‖∞
is the sup-norm. By monotonicity, ρ(F ) exists almost surely. Note that ρ(F ) =
inf{T (γ ) : γ is an infinite path starting from 0}. So if F(0) > pc, then one im-
mediately has ρ(F ) < ∞ almost surely. Furthermore, it was shown in [23],
page 254, that if F(0) > pc and te has all moments, then for any m ∈ N, one
has Eρm(F ) < ∞. Also, it is easy to see that if F(0) < pc, then ρ(F ) = ∞ almost
surely. Then a natural question arises: how about F(0) = pc?

In [24], Zhang proved that for d = 2, it is possible to have ρ(F ) < ∞ or
ρ(F ) = ∞ almost surely when F(0) = pc [note that by the Kolmogorov zero-one
law, either ρ(F ) < ∞ almost surely or ρ(F ) = ∞ almost surely]. Specifically, he
introduced the following two distributions. For a > 0, set

Fa(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if xa > 1 − pc,

xa + pc, if 0 ≤ xa ≤ 1 − pc,

0, if x < 0,

and for b > 0, set

Gb(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if exp
(−1/xb)

> 1 − pc,

exp
(−1/xb) + pc, if 0 ≤ exp

(−1/xb) ≤ 1 − pc,

0, if x < 0.

Zhang showed in [24], Theorem 8.1.1, that if a is small then ρ(Fa) < ∞ almost
surely. He also made the following conjecture (see [24], page 146).

CONJECTURE 1.1 (Zhang). One has sup{a > 0 : ρ(Fa) < ∞} < ∞.
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Moreover, Zhang showed in [24], Theorem 8.1.3, that if b > 1, then ρ(Gb) = ∞
almost surely.

The critical case of first passage percolation is quite different from the standard
one and requires different techniques. For example, the model is expected to retain
rotational invariance in the limit [22], whereas the usual first passage model has
lattice dependent and distribution dependent asymptotics. For this reason, analysis
of the critical case relies on detailed estimates from critical and near-critical perco-
lation (for instance, see [11, 20, 21]). The main new insight of our work is that the
behavior of passage times is closely related to a “greedy” growth algorithm called
invasion percolation, and that optimal paths constrained to lie in the invasion clus-
ter have the correct first-order growth. This relation allows us to derive necessary
and sufficient conditions on the edge-weight distribution to have diverging mean
or variance for passage times (Theorems 1.2 and 1.5), and these results can be seen
as finer versions of Kesten’s condition (1.1) for μ = 0. Furthermore, we can de-
rive a type of universality: whenever the passage-time variance diverges, one has
Gaussian fluctuations (see Theorem 1.6).

Constants in this paper may depend on the distribution function F and other
fixed parameters such as η, r and λ. However, constants do not depend on k or n.
We use C1,C2, . . . to denote temporary constants whose meaning may vary, while
we use notation like K3.1 to denote the permanent constants. For example, K3.1
denotes the constant in Lemma 3.1.

1.2. Main results. In this paper, we will give an exact criterion for ρ(F ) <

∞ (see Corollary 1.3 below) and consequently provide a negative answer to
Conjecture 1.1. Furthermore, we will derive limit theorems for the sequence
(T (0, ∂B(n)))n≥1. From now on, suppose that d = 2 and that F(0) = pc. Fur-
thermore, define F−1(t) = inf{x : F(x) ≥ t} for t > 0 and

(1.2) η0 := sup
{
η ≥ 0 : E[

tη/4
e

]
< ∞}

.

The 1/4 in the exponent comes from the fact [5], Lemma 3.1, that ET (x, y)α < ∞
for all x, y and some α > 0 if and only if EYα < ∞, where Y is the minimum
of four i.i.d. variables with distribution function F . However, this last expectation
is finite if Et

β
e < ∞ for some β > α/4. Using this, one can show that η0 > η1 is

equivalent to ET (x, y)η2 < ∞ for all x, y and some η2 > η1.

1.2.1. Behavior of the mean. We begin with bounds on ET (0, ∂B(n)).

THEOREM 1.2. (i) Assuming η0 > 1, there is C1 = C1(F ) > 0 such that

ET
(
0, ∂B

(
2n)) ≤ C1

n∑
k=2

F−1(
pc + 2−k) for n ≥ 2.
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(ii) There exists C2 = C2(F ) > 0 such that

ET
(
0, ∂B

(
2n)) ≥ C2

n∑
k=2

F−1(
pc + 2−k) for n ≥ 2.

REMARK 1. The moment condition in Theorem 1.2 is nearly optimal since, if
EY = ∞ then, by bounding T (0, ∂B(2n)) below by the minimum of the 4 edge-
weights incident to 0, one has ET (0, ∂B(2n)) = ∞ for n ≥ 0.

REMARK 2. The above theorem concerns the passage time from the point 0
to the set ∂B(n). In Section 5.4, we derive asymptotics for point-to-point passage
times ET (0, x) for x ∈ Z

2.

As a corollary, we have an exact criterion for finiteness of ρ(F ).

COROLLARY 1.3. For any F , one has ρ(F ) < ∞ almost surely if and only if∑∞
n=2 F−1(pc + 2−n) < ∞.

As an example (and to clarify the condition), if the right derivative of F at 0
exists and is positive (or infinite), then ρ(F ) < ∞. This is not necessary, however,
as many distributions with ρ(F ) < ∞ have right derivative 0 at 0 (e.g., Fa with
a > 1). We will now apply the above results to Zhang’s distributions Fa and Gb.
The proof follows by a direct computation and the previous corollary.

COROLLARY 1.4. The following statements hold:

1. ρ(Fa) < ∞ almost surely for any a > 0, and so sup{a > 0 : ρ(Fa) < ∞} =
∞. In particular, Conjecture 1.1 is false.

2. ρ(Gb) = ∞ almost surely if and only if b ≥ 1.

REMARK 3. Zhang asked in [24], page 145, if, under the assumption Etme <

∞ for all m ∈ N, does ρ(F ) < ∞ almost surely imply that Eρ(F ) < ∞? The
answer is yes by combining Theorem 1.2 and Corollary 1.3.

1.2.2. Behavior of the variance and limit theorems. Now we consider
Var(T (0, ∂B(2n))).

THEOREM 1.5. Assume that η0 > 2:

(i) There exists C3 = C3(F ) > 0 such that

Var
(
T

(
0, ∂B

(
2n))) ≤ C3

n∑
k=2

[
F−1(

pc + 2−k)]2 for n ≥ 2.
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(ii) There exists C4 = C4(F ) > 0 such that

Var
(
T

(
0, ∂B

(
2n))) ≥ C4

n∑
k=2

[
F−1(

pc + 2−k)]2 for n ≥ 2.

By Corollary 1.3, when
∑∞

k=2 F−1(pc + 2−k) = ∞ we have T (0, ∂B(n))
a.s.−→

∞ as n → ∞. The next theorem gives more information about the limit of
T (0, ∂B(n)) in this case.

THEOREM 1.6. Suppose
∑∞

k=2 F−1(pc + 2−k) = ∞ and η0 > 2.

(i) If
∑∞

k=2[F−1(pc + 2−k)]2 < ∞, then there is a random variable Z with
EZ = 0 and EZ2 < ∞ such that as n → ∞

T
(
0, ∂B(n)

) −ET
(
0, ∂B(n)

) → Z a.s. and in L2.

(ii) If
∑∞

k=2[F−1(pc + 2−k)]2 = ∞, then as n → ∞
T (0, ∂B(n)) −ET (0, ∂B(n))

[Var(T (0, ∂B(n)))]1/2
d=⇒ N(0,1).

REMARK 4. As in the case of Theorem 1.2, in Section 5.4, we derive versions
of the variance asymptotics and limit theorems for point-to-point passage times
T (0, x) for x ∈ Z

2. See Corollaries 5.9 and 5.10.

1.3. Relations to previous work. First passage percolation has been studied
since its introduction by Hammersley and Welsh [10] in the 1960s, but most work
has focused on the noncritical case, where F(0) < pc. There the passage time from
0 to a vertex x grows linearly in x, and many results have been proved, including
shape theorems, large deviations, concentration inequalities and moment bounds.
We refer the reader to the surveys [1, 9]. The supercritical case, where F(0) > pc

is easier to analyze, since there is almost surely an infinite cluster of edges with
passage time 0, and so distant vertices need only to travel to the infinite cluster to
reach one-another. This produces passage times T (0, x) that are of order one as
x → ∞.

The critical case, where F(0) = pc, is considerably more subtle. It is expected
(though only proved in two or high dimensions) that there is no infinite cluster
of pc-open edges (i.e., edges with passage time 0). However, clusters of pc-open
edges occur on all scales, giving, for example, infinite mean size for the pc-open
cluster of the origin. This means that two distant points can be connected by a path
which uses mostly zero-weight edges, and this path may be able to find lower and
lower edge weights as it moves further into the bulk of the system. Therefore, to
characterize passage times, one should understand the balance between the number
of edges on each scale with low weights and the number of paths that can access
them.
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Kesten proved in [14], Theorem 6.1, that the time constant μ is zero in
the critical case, implying that T (0, x) = o(‖x‖) as x → ∞. This result was
sharpened by L. Chayes [4], Theorem B, who showed that for any δ > 0,
limn→∞ T (0, ne1)/nδ = 0 almost surely. In [16], Remark 3, Kesten claimed that
Chayes’s argument can be extended to T (0, ne1) ≤ exp(C

√
logn) for large n al-

most surely. These results go some way to quantify asymptotics of the passage
time in the critical case for general dimension.

More progress has been made in the critical case in 2d , due to a more devel-
oped theory of Bernoulli percolation on planar lattices. It was shown by Chayes,
Chayes and Durrett in [2], Theorem 3.3, that if te is 0 or 1 with probability 1/2
then ET (0, ne1) � logn. In this Bernoulli case, the passage time between 0 and
x can be represented as the maximum number of disjoint pc-closed dual circuits
separating 0 and ne1, as every pc-closed edge on a geodesic contributes passage
time 1. Recently, Yao [22] showed a law of large numbers on the triangular lattice,
using the CLE of Camia and Newman.

Our work was motivated by that of Zhang in 1999, who showed that critical FPP
can display “double behavior.” That is, he showed that there exist distributions F

with F(0) = pc for which the passage time T (0, ∂B(n)) diverges as n → ∞, and
those for which the passage time remains bounded. Intuitively, bounded passage
times come from those distributions which have significant mass near zero, so
that long paths can find more and more low weights as they move away from
0, producing infinite paths with finite passage time. Zhang asked many questions
about this case, in particular which distributions have which of the two behaviors.
One main point of our work is Corollary 1.3, which gives an exact criterion that
this passage time remains bounded if and only if

∑
k F−1(pc + 2−k) < ∞. Our

proof involves a new relation to a model called invasion percolation, and it turns
out that optimal paths in the invasion cluster have passage time of the same order
as geodesics in FPP. (See the next section for more details.) This theorem allows
us to answer Zhang’s questions in the two-dimensional case.

Our other motivation is the work of Kesten and Zhang in ’97. They also con-
sidered the critical case in 2d and proved central limit theorems for T (0, ∂B(n))

for certain distributions. They showed that if Et δe < ∞ for some δ > 4, F(0) =
pc, and there exists a constant C0 > 0 such that F(C0) = pc, then the se-
quence T (0, ∂B(n)) satisfies a Gaussian central limit theorem: there exists a se-
quence γn such that C1(logn)1/2 ≤ γn ≤ C2(logn)1/2 and γ −1

n (T (0, ∂B(n)) −
ET (0, ∂B(n))) ⇒ N(0,1). It is important that the condition F(C0) = pc gives a
positive lower bound for the weight of nonzero edges. Kesten and Zhang do not
address any distributions with mass near zero, though they do remark about the
double behavior of such distributions.

The second part of our paper, on limit theorems and variance estimates, com-
pletes the picture started by Kesten and Zhang. Theorems 1.5 and 1.6(ii) require
only

∑
k(F

−1(pc + 2−k))2 = ∞ and a weak moment condition on te (lower than
that of Kesten and Zhang) to deduce that the variance of T (0, ∂B(n)) diverges and



CRITICAL FIRST PASSAGE PERCOLATION 2947

that a Gaussian CLT holds. This result on the CLT shows that in the critical case,
no other limiting behavior is possible, in contrast to the subcritical case, where the
variance is expected to be of order n2/3 with a non-Gaussian limiting distribution
(see [12]). Theorem 1.6(i) also addresses the intermediate case, where the mean of
T (0, ∂B(n)) diverges but the variance converges. Here, the centered sequence is
tight and converges to a nontrivial limit. The limit is unlikely to be explicit since
its variance depends heavily on weights of edges near the origin.

2. Setup for the proof. Zhang’s proof in [24], Theorem 8.1.1, that ρ(Fa) has
all moments used a comparison to a near-critical percolation model introduced in
[3] by Chayes, Chayes and Durrett. Their model is a version of an incipient infinite
cluster, a term used by physicists to describe large (system-spanning) percolation
clusters at criticality. We will, however, need finer asymptotics that are obtained
by comparison with a different near-critical model, invasion percolation. Though
it has no parameter, it tends on large scales to resemble Bernoulli percolation at
criticality. We describe the model of invasion percolation in Section 2.1. We also
recall some known facts about Bernoulli percolation in Section 2.2.

We couple the first passage percolation model on (Z2,E2) with invasion per-
colation and Bernoulli percolation. To describe the coupling, we consider the
probability space (
,F,P), where 
 = [0,1]E2

, F is the cylinder sigma-field
and P = ∏

e∈E2 μe, where each μe is an uniform distribution on [0,1]. Write
ω = (ωe)e∈E2 ∈ 
. Define the edge weights as te = F−1(ωe) for e ∈ E2.

2.1. Invasion percolation. If an edge e has endpoints ex and ey , we write
e = {ex, ey}. For an arbitrary subgraph G = (V ,E) of (Z2,E2), define the edge
boundary �G by �G = {e ∈ E2 : e /∈ E,ex ∈ V or ey ∈ V }. Define a sequence of
subgraphs (Gn)

∞
n=0 as follows. Let G0 = ({0},∅). If Gi = (Vi,Ei) is defined, we

let Ei+1 = Ei ∪ {ei+1}, where ei+1 is the edge with ωei+1 = min{ωe : e ∈ �Gi},
and let Gi+1 be the graph induced by Ei+1. The graph I := ⋃∞

i=0 Gi is called the
invasion percolation cluster (at time infinity).

Invasion percolation is coupled with the first passage percolation model since
we have defined te = F−1(ωe). They can also be coupled with Bernoulli perco-
lation as follows. For each e ∈ E2 and p ∈ [0,1], we say that e is p-open in ω if
ωe ≤ p, and otherwise we say that e is p-closed. If there is a p-open path from a
vertex set A to a vertex set B then we write that A ↔ B by a p-open path. The
collection of p-open edges has the same distribution as the set of open edges in
Bernoulli percolation with parameter p.

We also need the notion of the dual graph. Let (Z2)∗ = (1/2,1/2) + Z
2 and

(E2)∗ = (1/2,1/2) + E2. For x ∈ Z
2, we write x∗ = (1/2,1/2) + x. For e ∈ E2,

we denote its endpoints (left respectively right or bottom respectively top) by ex ,
ey ∈ Z

2. The edge e∗ = {ex + (1/2,1/2), ey − (1/2,1/2)} is the dual edge to e

and its endpoints (bottom respectively top or left respectively right) are written e∗
x
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and e∗
y . For A ⊂ Z

2, A∗ is defined as (1/2,1/2) + A. An edge e∗ is declared to be
p-open in ω when e is, and p-closed otherwise.

The following relations between invasion percolation and Bernoulli percolation
are well known. Since they are crucial, and their proofs are short, we add the proofs
for the convenience of the reader.

• Almost surely, if x ∈ I and y ↔ x by a pc-open path, then y ∈ I .

PROOF. If y is not in I then we can find e ∈ �I (on a pc-open path from x

to y) such that e is pc-open. But then e ∈ �Gn for all large n. By the definition
of the invasion algorithm, this means that for large n, each edge added to the
invasion is pc-open, and from this we can build an infinite pc-open path. This
contradicts the fact that there is almost surely no infinite pc-open cluster [13],
Theorem 1. �

• For n ≥ 0, let p̂n be defined as

(2.1) p̂n = sup
{
ωe : e ∈ I ∩ E

(
B

(
2n))c}

,

where E(V ) is the set of edges with both endpoints in V . Then

(2.2) p̂n > p ⇒ An,p occurs,

where An,p is the event that there is a p-closed dual circuit around the ori-
gin with diameter at least 2n. Here, the diameter of a set X is sup{‖x − y‖∞ :
x, y ∈ X}.

PROOF. Take e ∈ I ∩ E(B(2n))c with ωe > p. At the moment k that e is
added to the invasion cluster, the graph Gk has edge boundary which is ωe-
closed, and so is p-closed. From the edge boundary, we can extract a dual circuit
around 0 that contains e∗, by [8], Proposition 11.2. This circuit then has diameter
at least 2n. �

2.2. Correlation length. A central tool used to study invasion percolation is
correlation length [15], equation (1.21). For m,n ∈ N and p ∈ (pc,1], let

σ(n,m,p) = P
(
there is a p-open left-right crossing of [0, n] × [0,m]),

where a p-open left-right crossing of [0, n] × [0,m] means a path γ in [0, n] ×
[0,m] with all edges p-open from {0} × [0,m] to {n} × [0,m]. For ε > 0 and
p > pc, we define

L(p, ε) = min
{
n ≥ 1 : σ(n,n,p) ≥ 1 − ε

}
.

L(p, ε) is called the correlation length. It is known (see [15], equation (1.24)) that
there is ε1 > 0 such that for all 0 < ε, ε′ ≤ ε1, L(p, ε)/L(p, ε′) is bounded away
from 0 and ∞ as p ↓ pc. We write L(p) = L(p, ε1). For n ≥ 1, define

(2.3) pn = min
{
p : L(p) ≤ n

}
.

We now note the following facts:



CRITICAL FIRST PASSAGE PERCOLATION 2949

• By [11], equation (2.10), there exists K2.4 ∈ (0,1) such that for all n ≥ 1,

(2.4) K2.4n ≤ L(pn) ≤ n.

• There exist C1,C2 > 0 such that for all m,n ≥ 1, C1| log m
n
| ≤ | log pm−pc

pn−pc
| ≤

C2| log m
n
|. This is a consequence of [19], Proposition 34, and a priori estimates

on the four-arm exponent. In particular, putting m = 1, there exist δ0 > ε0 > 0
such that for n ≥ 2

(2.5)
1

nδ0
< pn − pc <

1

nε0
.

We may and will always assume δ0 > 1.
• From [15], equation (2.25), and (2.2), there exist K2.6.1,K2.6.2 > 0 such that for

all p > pc and n ≥ 1,

(2.6) P(p̂n > p) ≤ P(An,p) ≤ K2.6.1 exp
(
−K2.6.22n

L(p)

)
.

• By the RSW theorem (see [8], Section 11.7), there exists K2.7 > 0 such that for
all k ∈ N,

P
(
there is a p2k -closed dual circuit around 0 in B

(
2k)∗ \ B

(
2k−1)∗)

(2.7)
≥ K2.7.

2.3. Sketch of proofs. The main tool in our proofs is Lemma 3.1, a moment
bound on annulus passage times. We first describe its proof. Consider all paths
between 0 and ∂B(2n+1) which lie in the invasion cluster I and B(2n+1). Let γn

be such a path with minimal passage time. Lemma 3.1 gives an upper bound on the
r th moment of the sum of edge weights in γn which lie in B(2k+1) \ B(2k) [i.e.,
ET r

k (γn), where Tk(γn) is defined in (3.1)].
One has T (γn) ≤ T (0, ∂B(2n)), and γn is a nicer path than the geodesic for the

weights (te). Once the invasion has reached ∂B(2k), all of its further edges are
likely to be nearly p2k -open [i.e., p̂k from (2.1) is of order p2k ], and so the edges
e in γn outside of B(2k) will have te ≤ F−1(p2k ). Bounding p2k with (2.5), each
edge e has te ≤ ak [defined in (3.2)]. We only know this behavior of p̂k with high
probability, so we need to decompose the probability space over different values
of p̂k using an idea of A. Járai [11].

This gives Tk(γn) � ak#{e ∈ γn ∩ (B(2k+1) \ B(2k)) : e is pc-closed}. The
reason is that the only edges contributing to T (γn) are the pc-closed ones. In
Lemma 3.2, we show that each such edge has “4-arms.” That is, they have the prop-
erties (a) their weight is between pc and p2k , (b) they have two disjoint p2k -open
arms to distance 2k−1 and (c) they have two disjoint pc-closed arms to distance
2k−1. All moments of the number of such edges in an annulus were bounded in [7]
(see Lemma 3.3 below), so we can conclude.
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2.3.1. Idea of the proof of Theorem 1.2. The proof of (ii) follows that of Zhang
[24], Theorem 8.1.2. The proof of (i) follows immediately from Lemma 3.1. In-
deed, to find the upper bound for ET (0, ∂B(2n)), we simply use the inequality
T (0, ∂B(2n)) ≤ T (γn) = ∑n

k=−1 Tk(γn), where, as above, each Tk(γn) is the time
that γn spent in the annulus B(2k+1) \ B(2k). Applying the moment bounds from
Lemma 3.1 gives (i).

2.3.2. Idea of the proof of Theorem 1.5 and 1.6. We follow Kesten–Zhang
[17]. Instead of dealing with Var(T (0, ∂B(2n))) directly, we consider
Var(T (0,Cn)), where Cn is the innermost pc-open circuit in B(2m+1) \ B(2m)

for m ≥ n surrounding 0. It can be shown that these two variances are close to
each other. The variance bounds for T (0,Cn) are stated in Theorem 5.1 and the
CLT is stated in Theorem 5.2.

Writing T (0,Cn) − ET (0,Cn) as a sum of martingale differences �k =
E[T (0,Cn) | Fk] − E[T (0,Cn)|Fk−1], one has Var(T (0,Cn)) = ∑n

k=0 E�2
k . The

idea of Kesten–Zhang was to take Fk generated by the edge-weights on and in
the interior of Ck , and they proved an alternate representation for such �k’s [see
Lemma 5.3(ii)]. With this choice, we can use the bounds in Lemma 3.1 to prove
moment bounds on the �k’s in Lemma 5.5. We note that by the representation in
Lemma 5.3(ii), �k does not depend on n.

Given the above moment bounds, and growth of both the variance and mean of
T (0, ∂B(n)), the proof of the CLT for T (0, ∂B(n)) [item (ii) in Theorem 1.6] is
similar to the original one of Kesten–Zhang. It consists of verifying the conditions
of McLeish’s CLT [18]. Because this is standard, we omit the details, and refer
the reader to the arXiv version of this paper [6]. For (i), if the variance does not
diverge, then by the martingale convergence theorem, T (0,Cn) − ET (0,Cn) will
converge to some random variable Z. Using a stronger comparison to T (0, ∂B(n))

given in Lemma 5.7 allows us to complete the proof.

3. Moment bounds for annulus times. In this section, we prove the main
lemma of the paper, Lemma 3.1, bounding certain annulus passage times Tk(γn)

through the invasion cluster I . Define E−1 := E(B(1)) and En := E(B(2n+1)) \
E(B(2n)) for n ≥ 0. Note that |E−1| = 12 and |En| = 24 · 4n + 4 · 2n for n ≥ 0. For
any path γ , define for k ≥ −1

(3.1) Tk(γ ) := ∑
e∈γ∩Ek

te.

For n ≥ −1, let γn be a path from 0 to ∂B(2n+1) such that

T (γn) = inf
{
T (γ ) : γ is a path from 0 to ∂B

(
2n+1)

and γ ⊂ B
(
2n+1) ∩ I

}
.

As with any path from 0 to ∂B(2n+1), γn satisfies T (γn) = ∑n
k=−1 Tk(γn). Recall

ε0 from (2.5). For simplicity of notation, define

(3.2) ak := F−1(
pc + 2−ε0k/2)

for k ∈ N.
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Note that ak is only defined when the argument of F−1 is strictly less than 1, and
this will be guaranteed by the condition k ≥ k0 in the lemma below.

The main goal now is to prove the following lemma. The proof is delayed until
the end of the section, so we can build up other results needed for it.

LEMMA 3.1. Recall the definition of η0 from (1.2) and suppose η0 > 1.

(i) For all r ∈ [1, η0) and integers k ≥ −1, we have supn≥k E[T r
k (γn)] < ∞.

(ii) Given r ∈ [1,∞) and λ ∈ (0,∞), there are k0 = k0(r, λ,F ) > 0 and K3.1 =
K3.1(r, λ,F ) > 0, such that for all n, k satisfying n − 1 ≥ k ≥ k0,

E
[
T r

k (γn)
] ≤ K3.1

(
ar
k + e−λk).

REMARK 5. To prove Theorem 1.2, it is sufficient to use the above lemma
with r = 1. Here, we prove it in the general form for future use in Section 5.

For m1,m2 ≥ 1, p ∈ (pc,1], and e ∈ E2, let Ae(m1,p) be the event that

(a) e is connected to ∂B(ex,m1) by two vertex disjoint p-open paths,
(b) e∗ is connected to ∂B(ex,m1)

∗ by two vertex disjoint pc-closed dual paths
and

(c) ωe ∈ (pc,p].
Here, ∂B(ex,m1) = ex + ∂B(m1). Let N(m1,m2,p) be the number of edges e in
E(B(2m2)) \ E(B(m2)) such that Ae(m1,p) occurs; that is,

N(m1,m2,p) = ∑
e∈E(B(2m2))\E(B(m2))

1Ae(m1,p).

LEMMA 3.2. Let p̂k be as in (2.1). For all p > pc and 1 ≤ k ≤ n − 1,

Tk(γn)1{p̂k ≤ p} ≤ N
(
2k−1,2k,p

) · F−1(p).

PROOF. Suppose p̂k ≤ p for some p > pc. Define, for n ≥ 1 and 1 ≤ k ≤
n−1, T ′

k,n = #{e ∈ γn ∩Ek : ωe > pc}. Since p̂k ≤ p and γn ⊂ I , we have Tk(γn) ≤
T ′

k,nF
−1(p). Then it is sufficient to show

(3.3) T ′
k,n ≤ N

(
2k−1,2k,p

)
.

Let e ∈ γn ∩ Ek be pc-closed. As γn ⊂ I and p̂k ≤ p, e is p-open. Note that
there exist disjoint paths γn,1, γn,2 ⊂ γn such that γn,1 is a p-open path joining ex

to ∂B(ex,2k−1) and γn,2 is a p-open path joining ey to ∂B(ex,2k−1). [This holds
because ex is invaded but 0 /∈ B(ex,2k−1).]

For an illustration of the following argument, see Figure 1. If γn,1 ↔ γn,2 by
a pc-open path γ ′ in B(ex,2k−1), and if we let u ∈ γn,1 and v ∈ γn,2 be such
that u ↔ v via γ ′, then every vertex in γ ′ is in I (see the first bulleted fact in
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FIG. 1. Depiction of the proof of Lemma 3.2. The box is B(ex,2k−1). The path γ ′ is pc-open and
connects vertices u and v on γn, but bypasses e.

Section 2.1), so γ ′ ⊂ I . Now let γ ′
n be the path connecting 0 and u via γn, u to v

via γ ′ and v to ∂B(2n+1) via γn. Then γ ′
n is in I and has at least one pc-closed

edge less (namely e) than γn. Also each pc-closed edge of γ ′
n is a pc-closed edge

of γn, and this implies T (γ ′
n) < T (γn), contradicting the minimality of γn. Hence,

γn,1 � γn,2 by a pc-open path in B(ex,2k−1). Note that by duality, exactly one of
the following will happen:

1. e∗
x and e∗

y are connected to ∂B(ex,2k−1)∗ by two disjoint pc-closed dual
paths, which are also disjoint from γn,1 ∪ γn,2 ∪ {e};

2. there is a pc-open path connecting γn,1 and γn,2 in B(ex,2k−1).

So the first event, and thus Ae(2k−1,p), occurs. �

Next we bound the moments of N(2k−1,2k,p) using [7], Lemma 5.1.

LEMMA 3.3. There exists K3.3 > 0 such that for all p > pc, L(p) < m1 ≤ m2
and integers t ≥ 1

E
[
Nt(m1,m2,p)

] ≤ E
[
Nt (L(p),m2,p

)] ≤ t !
(

K3.3m2

L(p)

)2t

.

PROOF. The first inequality immediately follows from the definition of
N(m1,m2,p). In [7], Lemma 5.1, it was shown that there exists C1 > 0 such
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that if p > pc, m′ ≤ L(p) and m′ ≤ m2, then for all integers t ≥ 0,

E
[
Nt (m′,m2,p

)] ≤ t !
(
C1

m2

m′
)2t

.

Taking m′ = L(p), completes the proof. �

The next lemma controls moments of Tk(γn) when p̂k is large. Define

(3.4) t̂k := F−1(p̂k).

LEMMA 3.4. Suppose E[tηe ] < ∞ for some η > 0. Define c−1 = 4 and ck :=
2k+1 + 4 for k ≥ 0. For all integers k ≥ −1 and r ∈ (0, ckη), one has E[t̂ rk ] < ∞.
In particular, for any fixed r > 0, there exists K3.4 = K3.4(r, η,F ) such that for all
integers k > log(r/η)/ log 2, we have E[t̂ rk ] ≤ K3.4.

PROOF. Note that t ≥ F−1(F (t)) for all t ≥ 0. Then we have

(3.5) P(t̂k > t) ≤ P
(
t̂k > F−1(

F(t)
)) ≤ P

(
p̂k ≥ F(t)

)
.

To bound the tail probability of t̂k , we need to bound P(p̂k > p) when p is near
one. By (2.2), for any k ≥ −1, p̂k > p implies that there exists a p-closed dual
circuit around the origin with diameter at least �2k + 1�. Such a dual circuit has
length at least 2�2k + 1� + 2 = ck , for k ≥ −1. For any even m ≥ 4, observe
that since dual circuits around the origin with length m must intersect the line
{(x,0) : x ∈ (−1,m/2−1)}, the total number of such circuits is bounded by m

2 ·3m.
Each of these dual circuits is p-closed with probability (1 −p)m. Therefore, when
p ∈ [5/6,1) we have

(3.6) P(p̂k ≥ p) ≤
∞∑

m=ck

m3m

2
· (1 − p)m ≤

∞∑
m=ck

m

2(1−α)m

(
3(1 − p)

)αm
,

where the second inequality uses 3(1−p) ≤ 1/2 and the value of α ∈ (0,1) will be
specified later. Define C1 = C1(α) := maxm≥4{m2−(1−α)m}/(1 − 2−α) and C2 :=
(3Et

η
e )1/η. Combining (3.5) and (3.6), when t ≥ C3 := F−1(5/6)/C2 we have

F(C2t) ≥ 5/6 and

P(t̂k > C2t) ≤ P
(
p̂k ≥ F(C2t)

) ≤ C1
(
3P(te > C2t)

)ckα ≤ C1

(
3E[tηe ]
(C2t)η

)ckα

= C1

tckαη
.

The second inequality above follows from (3.6) [with p = F(C2t)], and also uses
the definition of C1 and the fact that 1−F(C2t) = P(te > F(C2t)). Since r < ckη,
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taking α = αk := ckη+r
2ckη

we have

E

[(
t̂k

C2

)r]
=

∫ ∞
0

rtr−1
P(t̂k ≥ C2t) dt

≤
∫ 1∨C3

0
rtr−1 dt +

∫ ∞
1∨C3

rtr−1 · C1(αk)

tckαkη
dt(3.7)

≤ (1 ∨ C3)
r + C1(αk)r

ckαkη − r
.

In the last inequality, we have used that (1 ∨ C3)
r−ckαkη ≤ 1. Therefore, using the

relation ckαkη − r = (ckη − r)/2, we have

E
[
t̂ rk

] ≤ (
C2 ∨ F−1(5/6)

)r + 2rC1(αk)C
r
2

ckη − r
< ∞.

Next, when r > 0 and k > log(r/η)/ log 2, taking α := 1/2 in the above proof,
we have ckαη − r ≥ 2kη − r ≥ 2k1η − r > 0 where k1 := �log(r/η)/ log 2� + 1.
Then, using (3.7) again (which also holds in the current situation since we still
have ckαkη − r > 0),

E
[
t̂ rk

] ≤ Cr
2 + (

F−1(5/6)
)r + 2rC1(1/2)Cr

2

2k1η − r
,

which gives the expression of K3.4. �

PROOF OF LEMMA 3.1. First we prove part (i). Recall t̂k from (3.4). Since
Tk(γn) ≤ |Ek|t̂k and |Ek| ≤ 48 · 4k for k ≥ −1, we have

(3.8) E
[
T r

k (γn)
] ≤ E

[(|Ek|t̂k)r ] ≤ (
48 · 4k)r

E
[
t̂ rk

]
.

For any r < η0 and η ∈ (r, η0), one has E[tη/4
e ] < ∞. Recall ck in Lemma 3.4. For

k ≥ −1, ckη ≥ η > r , so by Lemma 3.4, E[t̂ rk ] < ∞ and (i) is proved.
Next we prove (ii). The constants ε0, δ0 are from (2.5). We will perform a

decomposition for p̂k introduced by Járai ([11], page 319) using iterated loga-
rithms. Its main purpose is to allow to obtain the term ar

k in the statement of the
lemma without any logarithmic prefactors, which may arise if the decomposition
were only made using two intervals for the value of p̂k . Define log(0) k = k and
log(j) k = log(log(j−1) k) for j ≥ 1 such that it is well defined. For k > 10, let

log∗ k = min
{
j > 0 : log(j) k is well defined and log(j) k ≤ 10

}
.

Let r ∈ [1,∞) and λ ∈ (0,∞) be given. Denote for j = 0,1,2, . . . , log∗ k,

qk(j) := p�2k/(C1 log(j) k)�,
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where C1 is so large that

C1 > 2/ log 10,(3.9)

2r log 2 − K2.6.2C1/2 < −λ,(3.10)

�2r� − K2.6.2C1/2 < −1.(3.11)

Given C1, let k0 > 10 be the smallest integer such that for all k ≥ k0,

(3.12) 2k/2−1 > C1k, pc + 2−ε0k/2 < 1, and k >
log r

log 2
+ 3.

The reason for the above choices will be clear as the proof proceeds. We assume
k ≥ k0 for the rest of the proof. By Lemma 3.4, the third condition in (3.12) gives
E[t̂2r

k ] ≤ K3.4(2r,1/4,F ), and with (3.8) we have for all k ≥ k0,

(3.13) E
[
T 2r

k (γn)
] ≤ (

48 · 4k)2r
K3.4.

Note qk(log∗ k) < · · · < qk(1) are well defined if 2k > C1k. We write

E
[
T r

k (γn)
] = E

[
T r

k (γn)1
{
p̂k > qk(0)

}]

+
log∗ k−1∑

j=0

E
[
T r

k (γn)1
{
qk(j + 1) < p̂k ≤ qk(j)

}]
(3.14)

+E
[
T r

k (γn)1
{
p̂k ≤ qk

(
log∗ k

)}]
.

By (2.4) and the fact that C1 > 2/ log 10, for j = 0,1, . . . , log∗ k and k ≥ k0,

L
(
qk(j)

) ≤
⌊

2k

C1 log(j) k

⌋
≤ 2k

C1 log(log∗ k) k
≤ 2k

C1 log 10
< 2k−1.

Then applying Lemma 3.2 and Lemma 3.3, for all α ≥ 1, k0 ≤ k ≤ n − 1 and
j = 0,1, . . . , log∗ k,

E
[
T α

k (γn)1
{
p̂k ≤ qk(j)

}] ≤ [
F−1(

qk(j)
)]α

E
[
Nα(

2k−1,2k, qk(j)
)]

(3.15)

≤ [
F−1(

qk(j)
)]α · �α�!

(
K3.32k

L(qk(j))

)2�α�
.

By (3.12), we have for k ≥ k0 and j = 0, . . . , log∗ k,

(3.16)
⌊

2k

C1 log(j) k

⌋
≥ 2k−1

C1 log(j) k
≥ 2k−1

C1k
> 2k/2.

Then by (2.5), we have

(3.17) qk(j) ≤ pc +
⌊

2k

C1 log(j) k

⌋−ε0 ≤ pc + 2−kε0/2 < 1.
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Applying (2.4) and (3.17) in (3.15) and recalling the definition of ak in (3.2), we
have for k0 ≤ k ≤ n − 1 and j = 0, . . . , log∗ k with α ≥ 1,

(3.18) E
[
T α

k (γn)1
{
p̂k ≤ qk(j)

}] ≤ �α�!(C2 log(j) k
)2�α�

aα
k ,

where C2 := 2K3.3C1/K2.4. We bound the sum in (3.14), starting with the last
term. Applying (3.18) with α = r and j = log∗ k, one has for k0 ≤ k ≤ n − 1 and
r ≥ 1,

(3.19) E
[
T r

k (γn)1
{
p̂k ≤ qk

(
log∗ k

)}] ≤ �r�!(10C2)
2�r�ar

k.

For the first term in (3.14), applying the Cauchy–Schwarz inequality, (3.13) and
(2.6), for k0 ≤ k ≤ n − 1,

E
[
T r

k (γn)1
{
p̂k > qk(0)

}] ≤ E
[
T 2r

k (γn)
]1/2[

P
(
p̂k > qk(0)

)]1/2

≤ ((
48 · 4k)2r

K3.4
)1/2 · K1/2

2.6.1 exp(−K2.6.2C1k/2)(3.20)

= 48r (K3.4K2.6.1)
1/2 exp(2rk log 2 − K2.6.2C1k/2).

For the second term in (3.14), applying the Cauchy–Schwarz inequality, (3.18)
with α = 2r , and (2.6), we have for j = 0,1, . . . , log∗ k − 1 and k0 ≤ k ≤ n − 1,

E
[
T r

k (γn)1
{
qk(j + 1) < p̂k ≤ qk(j)

}]
≤ E

[
T 2r

k (γn)1
{
p̂k ≤ qk(j)

}]1/2[
P

(
p̂k > qk(j + 1)

)]1/2

(3.21)
≤ [�2r�!(C2 log(j) k

)2�2r�
a2r
k

]1/2 · K1/2
2.6.1 exp

(−K2.6.2C1 log(j+1) k/2
)

= (�2r�!)1/2
C

�2r�
2 K

1/2
2.6.1a

r
k

(
log(j) k

)�2r�−K2.6.2C1/2
.

Then combining (3.20), (3.21), (3.19) and using the definition of C1 in (3.10) and
(3.11), there are C3,C4,C5 > 0 such that for k0 ≤ k ≤ n − 1,

E
[
T r

k (γn)
] ≤ C3e

−λk + C4a
r
k

log∗ k−1∑
j=0

(
log(j) k

)−1 + C5a
r
k.

Note that C1 was chosen initially to depend on r so that exponent of log(j) k

in this inequality can be taken to be −1. (A similar choice appears in [7], The-
orem 1.3.) This forces the other constants to depend on r , but the important
point is that none of them depend on n or k. Using [21], equation (2.16), which

says
∑log∗ k

j=0 (log(j) k)−1 is uniformly bounded in k, we complete the proof of
Lemma 3.1. �

4. Study of the mean. In this section, we give the proof of Theorem 1.2. We
prove Corollary 1.3 in Section 4.2.
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4.1. Proof of Theorem 1.2. First we prove an elementary lemma.

LEMMA 4.1. Let f (t), t ∈ [0,∞), be a positive nonincreasing function. Fix
δ > ε > 0 and integers k1, k2 ≥ 1. Then there exist constants C1,C2 ∈ (0,∞) such
that for all n ≥ max{k1, k2},

C1

n∑
k=k2

f (εk) ≤
n∑

k=k1

f (δk) ≤ C2

n∑
k=k2

f (εk).

PROOF. It suffices to take k1 = k2 = 1. If δk ≤ εk′ < δ(k + 1), then f (εk′) ≤
f (δk), and for each k there are at most �δ/ε� such integers k′. Therefore,∑n

k=1 f (εk) ≤ �δ/ε�(f (ε) + ∑n
k=1 f (δk)). As ε < δ, we obtain

1 ≤
∑n

k=1 f (εk)∑n
k=1 f (δk)

≤ �δ/ε�(f (ε) + ∑n
k=1 f (δk))∑n

k=1 f (δk)
. �

PROOF OF THEOREM 1.2. For the upper bound, note that for n ≥ −1,
ET (0, ∂B(2n)) ≤ ∑n−1

k=−1 ETk(γn). Take k0 as in Lemma 3.1 and apply this lemma
with r = 1. We obtain ET (0, ∂B(2n)) < ∞ for all n ≥ −1 and in particular for
n ≥ k0 + 1, ET (0, ∂B(2n)) is bounded by

k0−1∑
k=−1

ETk(γn) + K3.1

n−1∑
k=k0

[
ak + e−k] ≤ C1

n∑
k=2

F−1(
pc + 2−k).

The last inequality uses Lemma 4.1 and F−1(pc + 1/4) > 0. This proves (i).
The proof of the lower bound is similar to that of [24], Theorem 8.1.2. By (2.5),

crossing a p2k -closed dual circuit costs time at least F−1(pc + 2−kδ0). If Ak is the
event that there is a p2k -closed dual circuit around 0 in B(2k)∗ \B(2k−1)∗, then by
(2.7), ET (0, ∂B(2n)) is bounded below by

n∑
k=1

P(Ak) · F−1(
pc + 2−kδ0

) ≥
n∑

k=1

K2.7F
−1(

pc + 2−kδ0
)
.

Applying Lemma 4.1 completes the proof of (ii). �

4.2. Proof of Corollary 1.3. To prove Corollary 1.3, we need the following
definition from [24], page 146. Given two distribution functions G and H , we say
that G � H if there exists ξ > 0 such that G(x) ≤ H(x) for all 0 ≤ x ≤ ξ . By [24],
Theorem 8.1.4, if ρ(G) < ∞ almost surely and if G � H , then ρ(H) < ∞ almost
surely. (This is, in fact, provable in general dimensions, though Zhang only gave a
proof for d = 2.)

PROOF OF COROLLARY 1.3. Suppose that
∑∞

n=2 F−1(pc + 2−n) < ∞. Let
ξ > 0, and let F̃ be a distribution function such that F̃ = F on [0, ξ ] and F̃ (x0) = 1
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for some x0. Note that we still have
∑∞

n=2 F̃−1(pc + 2−n) < ∞ and F̃ has all
moments. By Theorem 1.2(i), ρ(F̃ ) < ∞ almost surely. Since F̃ � F , we have
ρ(F ) < ∞ almost surely.

Now suppose
∑∞

n=2 F−1(pc + 2−n) = ∞, so that
∑

k F−1(pc + 2−δ0k) = ∞
for δ0 from (2.5). For k ≥ 1, write Ak for the event that there is a p2k -closed dual
circuit around 0 in B(2k)∗ \ B(2k−1)∗ and bk := F−1(pc + 2−kδ0). For n ≥ 1, de-
fine Sn = ∑n

k=1 bk1Ak
and compute by Cauchy–Schwarz, (2.7) and independence

of the Ak’s:

ES2
n ≤

n∑
j,k=1

bjbk =
(

n∑
k=1

bk

)2

≤ 1

K2
2.7

(ESn)
2.

By the Paley–Zygmund inequality (second moment method), we can find D > 0
such that for all n ≥ 1, P(Sn ≥ DESn) > D. Since ρ(F ) ≥ S(n) for all n ≥ 1 and
ESn → ∞ as n → ∞, we get P(ρ(F ) = ∞) > 0. Finally, since P(ρ(F ) = ∞) ∈
{0,1}, this completes the proof. �

5. Study of the variance. Here we prove Theorems 1.5 and 1.6 using a mar-
tingale introduced in [17]. We start with some definitions.

Define Ann(n) = B(2n+1) \ B(2n), for n ≥ 0 and Ann(−1) = B(1). For a ver-
tex self-avoiding circuit C in Z

2, write C̄ for the graph induced by all the vertices
in Z

2 that are either on or in the interior of C. Define for n ≥ −1

(5.1) m(n) := inf
{
k ≥ n : there is a pc-open circuit in Ann(k) around 0

}
.

Note that m(n) ≥ n. We write m(n) = m(n,ω) to emphasize the underlying
weights ω ∈ 
. Put

(5.2) Cn := the innermost pc-open circuit C ⊂ Ann
(
m(n)

)
around 0

and

(5.3) Fn := sigma-field generated by Cn and {ωe : e ∈ C̄n}.
By definition, we have Cn(ω) = Cm(n,ω)(ω). For n < n′, we have m(n) ≤ m(n′),
thus {Fn}n∈N forms a filtration. Denote F−1 = {∅,
} and C−1 = {0}. Instead
of T (0, ∂B(2n)), we first try to study T (0,Cn). Write T (0,Cn) − ET (0,Cn) =∑n

k=0(E[T (0,Cn) | Fk]−E[T (0,Cn) | Fk−1]) =: ∑n
k=0 �k . Then {�k}0≤k≤n is an

Fk-martingale increment sequence. Thus,

(5.4) Var
(
T (0,Cn)

) =
n∑

k=0

E
[
�2

k

]
.

The following are the results for T (0,Cn) corresponding to those in Theo-
rems 1.5 and 1.6.

THEOREM 5.1. Let η0 be as defined in (1.2):
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(i) If η0 > 2, then there exists C1 > 0 such that for n ≥ 2,

Var
(
T (0,Cn)

) ≤ C1

n∑
k=2

[
F−1(

pc + 2−k)]2
.

(ii) There exists C2 > 0 such that for n ≥ 2,

Var
(
T (0,Cn)

) ≥ C2

n∑
k=2

[
F−1(

pc + 2−k)]2
.

THEOREM 5.2. Assume that η0 > 2. Further assume
∑∞

k=1[F−1(pc +
2−k)]2 = ∞. Then as n → ∞,

T (0,Cn) −ET (0,Cn)

(Var(T (0,Cn)))1/2 =
∑n

k=0 �k

(
∑n

k=0 E[�2
k])1/2

d=⇒ N(0,1).

We prove Theorem 5.1 in Section 5.1. In Section 5.2, we prove the CLT in
Theorem 5.2. In Section 5.3, we control the difference between T (0,Cq) and
T (0, ∂B(n)) for 2q−1 ≤ n ≤ 2q − 1 and prove Theorems 1.5 and 1.6.

5.1. Proof of Theorem 5.1. Due to (5.4), we study bounds on the moments
of �k . An important ingredient is a formula for �k from [17], Lemma 2, and we
state it as part (ii) in the following lemma. Denote (
′,F ′,P′) as another copy of
the probability space (
,F,P). Let E′ denote the expectation with respect to P

′,
and ω′ denote a sample point in 
′. Denote m(n,ω), Ck(ω) and T (·, ·)(ω) for the
quantities defined as in the previous sections, but with explicit dependence on ω.
Define �(n,ω,ω′) := m(m(n,ω) + 1,ω′). We need the following results, which
are [17], Lemma 3 and [17], Lemma 2. The first result is older than [17] and is
standard.

LEMMA 5.3 (Kesten and Zhang [17]). (i) There exists K5.3 > 0 such that for
all integers k, t ≥ 1,

P
(
m(k) ≥ k + t

) ≤ exp(−K5.3t).

(ii) For all k ≥ 0, �k does not depend on n. Precisely,

�k(ω) = T
(
Ck−1(ω),Ck(ω)

) +E
′[T (

Ck(ω),C�(k,ω,ω′)
(
ω′))(ω′)]

−E
′[T (

Ck−1(ω),C�(k,ω,ω′)
(
ω′))(ω′)].

We will write T (·, ·) instead of T (·, ·)(ω) or T (·, ·)(ω′) when the meaning is
clear from the context. The following lemma is a consequence of Lemma 3.1.
Recall the definition of ak in (3.2).

LEMMA 5.4. Assume η0 > 1.
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(i) For any r ∈ [1,∞) and λ ∈ (0,∞), there exist k0 = k0(r, λ,F ) > 0 and
K5.4 = K5.4(r) = K5.4(r, λ,F ) > 0 such that for all k ≥ k0 and � ≥ 1,

E
[
T r(∂B

(
2k), ∂B

(
2k+�))] ≤ K5.4�

r(ar
k + e−λk).

(ii) For any r ∈ [1, η0), there exists a constant K5.4 = K5.4(r) = K5.4(r,F ) > 0
such that for all k ≥ −1 and � ≥ 1,

E
[
T r(∂B

(
2k), ∂B

(
2k+�))] ≤ K5.4�

r .

PROOF. Take n := k + � + 1. Since γn ∩ (B(2k+�) \ B(2k)) provides a
specific path connecting the inner and outer boundaries of the annulus, we
have T (∂B(2k), ∂B(2k+�)) ≤ ∑k+�−1

i=k Ti(γn). Applying Jensen’s inequality and
Lemma 3.1 for k ≥ k0, E[T r(∂B(2k), ∂B(2k+�))] is bounded by

�r−1

(
k+�−1∑

i=k

E
[
T r

i (γn)
]) ≤ �r−1 · K3.1

k+�−1∑
i=k

(
ar
i + e−λi) ≤ K3.1�

r(ar
k + e−λk).

This proves (i). To prove (ii), if r ∈ [1, η0), by Lemma 3.1 [parts (i) and (ii)
combined], for all n ≥ k ≥ −1 we have E[T r

k (γn)] < C1 for some constant
C1 = C1(r,F ) > 0. Using this fact in the above bound proves (ii). �

The above lemma implies bounds on moments of the �k’s.

LEMMA 5.5. Assume η0 > 1:

(i) For any r ∈ [1,∞) and λ ∈ (0,∞), there exist K5.5 = K5.5(r) =
K5.5(r, λ,F ) > 0 and k0 = k0(r, λ,F ) > 0 such that for all k ≥ k0 + 1,

E
[|�k|r ] ≤ K5.5 · (

ar
k−1 + e−λk).

(ii) For any r ∈ [1, η0) and k ≥ 0, we have E[|�k|r ] < ∞.

PROOF. Using T (Ck(ω),C�(k,ω,ω′)(ω′)) ≤ T (Ck−1(ω),C�(k,ω,ω′)(ω′)) and
Lemma 5.3(ii), we have |�k(ω)| ≤ T (Ck−1(ω),Ck(ω)) + E

′[T (Ck−1(ω),

C�(k,ω,ω′)(ω′))]. By Jensen’s inequality,

1

2r−1E
∣∣�k(ω)

∣∣r ≤ E
[
T r(Ck−1(ω),Ck(ω)

)]
(5.5)

+E
[(
E

′[T (
Ck−1(ω),C�(k,ω,ω′)

(
ω′))])r ].

First we give an upper bound for the second term. Recall k0(r, λ,F ) from
Lemma 5.5. Fix ω ∈ 
, and estimate for k ≥ k0(2, λ,F ) + 1,

E
′[T (

Ck−1(ω),C�(k,ω,ω′)
(
ω′))]

=
∞∑
t=0

E
′[T (

Ck−1(ω),C�(k,ω,ω′)
(
ω′))1{�(k,ω,ω′)−m(k,ω)−1=t}

]
(5.6)
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≤
∞∑
t=0

E
′[T (

∂B
(
2k−1)

, ∂B
(
2m(k,ω)+2+t ))1{�(k,ω,ω′)−m(k,ω)−1=t}

]

≤
∞∑
t=0

E
′[T 2(

∂B
(
2k−1)

, ∂B
(
2m(k,ω)+2+t ))]1/2

× P
′(�(

k,ω,ω′) − m(k,ω) − 1 = t
)1/2

≤
∞∑
t=0

(
K5.4(2)

)1/2(
a2
k−1 + e−λ(k−1))1/2(

m(k,ω) − k + t + 3
)
e−K5.3t/2

≤ C1
(
m(k,ω) − k + 1

)(
ak−1 + e−λ(k−1)/2)

,

where the fourth line uses the Cauchy–Schwarz inequality, the sixth line uses
Lemma 5.4 with r = 2 and Lemma 5.3(i), and in the fifth line C1 :=
K5.4(2)1/2 ∑∞

t=0(t + 2)e−K5.3t/2. Therefore,

E
[(
E

′[T (
Ck−1(ω),C�(k,ω,ω′)

(
ω′))])r]

≤ Cr
1
(
ak−1 + e−λ(k−1)/2)r

E
[(

m(k,ω) − k + 1
)r ](5.7)

≤ Cr
1E

[(
m(k,ω) − k + 1

)r ] · 2r−1(
ar
k−1 + e−λr(k−1)/2)

.

By Lemma 5.3(i) E[(m(k,ω) − k + 1)r ] < ∞ uniformly in k, so this bounds the
second term in (5.5). To bound the first term in (5.5), similar to (5.6), applying the
Cauchy–Schwarz inequality, we have for k ≥ k0(2r, λ,F ) + 1,

E
[
T r(Ck−1(ω),Ck(ω)

)]
≤

∞∑
t=0

E
[
T 2r(∂B

(
2k−1)

, ∂B
(
2k+t+1))]1/2

P
(
m(k) − k = t

)1/2

(5.8)

≤
∞∑
t=0

[
K5.4(2r)

]1/2(
a2r
k−1 + e−λ(k−1))1/2

(t + 2)r · e−K5.3t/2

≤ (
ar
k−1 + e−λ(k−1)/2)([

K5.4(2r)
]1/2

∞∑
t=0

(t + 2)re−K5.3t/2

)
.

Combining (5.5), (5.7) and (5.8) completes the proof of Lemma 5.5(i). The proof
of part (ii) can be done in the same way, using Lemma 5.4(ii). �

The next lemma gives a lower bound for E[�2
k].

LEMMA 5.6. There is K5.6 > 0 such that for all integers k ≥ 2,

E
[
�2

k

] ≥ K5.6
[
F−1(

pc + 2−δ0k
)]2

,

where δ0 is from (2.5).
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FIG. 2. The events (1)–(4) in the proof of Lemma 5.6. The pc-open crossing on the right connects
the two pc-open circuits around the origin, but the pc-closed path on the left (shown as a dotted
curve) blocks the existence of a pc-open circuit around 0 in B(2k+1) \ B(2k).

PROOF. Recall the expression of �k in Lemma 5.3(ii) and the filtration Fk

in (5.3). The goal of the proof is to construct an event E ∈ Fk with P(E) > 0
uniformly in n, k such that for ω ∈ E,

T
(
Ck−1(ω),Ck(ω)

)
(ω) = 0,(5.9)

E
′[T (

Ck−1(ω),C�(k,ω,ω′)
(
ω′))] −E

′[T (
Ck(ω),C�(k,ω,ω′)

(
ω′))]

(5.10)
> C2F

−1(
pc + 2−δ0k

)
,

where C2 > 0 is a constant. Let Ẽ be the intersection of the following events (see
Figure 2):

(1) there exists a pc-open circuit around 0 in B(2k) \ B(2k−1),
(2) there exists a pc-open circuit around 0 in B(2k+2) \ B(2k+1),
(3) there exists a pc-open left-right crossing of [0,2k+2] × [−2k−1,2k−1], and
(4) there exists a dual pc-closed left-right crossing of [−2k+1,−2k]∗ ×

[−2k,2k]∗.

By the RSW theorem ([8], Section 11.7), each of the above events has proba-
bility bounded from below for all k ≥ 1. The events (1), (2) and (3) are all nonin-
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creasing, and they are jointly independent from (4). Therefore, applying indepen-
dence and the FKG inequality, there exists a constant C3 > 0 such that P(Ẽ) ≥ C3
for all k ≥ 1. Now consider a new event (3′): There exists a pc-open left-right
crossing of C̄k ∩ ([0,2k+2] × [−2k−1,2k−1]). Define the event E to be the inter-
section of the events (1), (2), (4) and (3′). Then E ∈ Fk , Ẽ ⊂ E and, therefore,
P(E) ≥ P(Ẽ) ≥ C3 > 0. By definition, we have T (Ck−1(ω),Ck(ω))(ω) = 0 for
ω ∈ E, so (5.9) holds. To see (5.10), recall the definition of pn in (2.3). Let E′ ⊂ 
′
be the event

E′ = {
There is a p2k -closed dual circuit around 0 in B

(
2k+1)∗ \ B

(
2k)∗}

.

From (2.7), let C2 > 0 be such that P′(E′) > C2 for all k. When ω ∈ E and ω′ ∈ E′,
since every path between Ck−1(ω) and C�(k,ω,ω′)(ω′) must cross the p2k -closed
dual circuit defined in E′ and then cross Ck(ω), we have for k ≥ 2

T
(
Ck−1(ω),C�(k,ω,ω′)

(
ω′))(ω′) − T

(
Ck(ω),C�(k,ω,ω′)

(
ω′))(ω′) ≥ F−1(p2k ),

which by (2.5) is bounded below by F−1(pc + 2−δ0k). This proves (5.10) and
therefore we have P(�k < −C2F

−1(pc + 2−δ0k)) ≥ P(E) ≥ C3, completing the
proof of Lemma 5.6. �

PROOF OF THEOREM 5.1. First we prove (i). Lemma 5.5(i) with r = 2 and
λ = 1 implies that there exists k0 ≥ 1 such that for all k ≥ k0 +1, we have E[�2

k] ≤
K5.5(a

2
k−1 + e−k). For k ≤ k0, we will use the general fact that E[�2

k] < C1 for
some C1 > 0. Therefore, for k ≥ k0 + 1,

Var
(
T (0,Cn)

) =
k0∑

k=0

E
[
�2

k

] +
n∑

k=k0+1

E
[
�2

k

] ≤ (k0 + 1)C1 + K5.5

n−1∑
k=k0

(
a2
k + e−k)

≤ C2 + K5.5

n−1∑
k=k0

a2
k ,

where C2 > 0. Using Lemma 4.1 with f (t) := (F−1(pc + 2−t ) ∧ ak0)
2, t ≥ 0,

completes the proof of (i).
By Lemma 5.6, Var(T (0,Cn)) = ∑n

k=0 E[�2
k] ≥ K5.6

∑n
k=2[F−1(pc + 2−δ0k)]2

for n ≥ 2. Applying Lemma 4.1 again completes the proof of (ii). �

5.2. Proof of Theorem 5.2.

PROOF OF THEOREM 5.2. By Lemma 5.5, there exist k1,C3,C4 > 0 such that

E
[
�2

k

] ≤ C3 for all k ≥ 0,(5.11)

E
[|�k|r ] ≤ C4

(
ar
k−1 + e−k) for all k ≥ k1, r ∈ {2,3,6}.(5.12)
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Here, the choice of r ∈ {2,3,6} is sufficient for proving the CLT. Though the con-
stants C4 and k1 may depend on r , this will not be an issue since we only consider
finitely many different values of r .

By Theorem 1.5(ii) and the assumption
∑∞

k=2(F
−1(pc + 2−k))2 = ∞, we have

Var(T (0,Cn)) → ∞ as n → ∞. By (5.11), we have
∑k1−1

k=0 E[�2
k] ≤ C3k1, thus we

can throw away the first k1 terms and it is sufficient to prove∑n
k=k1

�k

(
∑n

k=k1
E[�2

k])1/2
d=⇒ N(0,1).

This can be proved in a similar way as in [17]. The key tool is a martingale CLT
from McLeish [18], Theorem 2.3. The moment bounds in (5.11) and (5.12) for
r ∈ {2,3,6} are sufficient to verify its hypotheses. For a full proof, see the arXiv
version of this paper [6]. �

5.3. Proofs of Theorems 1.5 and 1.6. For any n ≥ 1, let q ∈ Z satisfy 2q−1 ≤
n < 2q . The next lemma bounds |T (0, ∂B(n)) − T (0,Cq)|.

LEMMA 5.7. Recall η0 from (1.2). Assume η0 > 1:

(i) For any r ∈ [1, η0), there is C0 > 0 such that for all n ≥ 1 and q ≥ 1 such
that 2q−1 ≤ n < 2q

E
[∣∣T (

0, ∂B(n)
) − T (0,Cq)

∣∣r ] < C0.

(ii) Assume that
∑

k a
η1
k < ∞ for some η1 ∈ [1, η0). Then

∞∑
q=0

sup
2q−1≤n<2q

E
[∣∣T (

0, ∂B(n)
) − T (0,Cq)

∣∣η1
]
< ∞.

PROOF. We first prove (i). Observe that for 1 ≤ � ≤ q , on the event {m(q −
�) ≥ q − 1 > m(q − � − 1)}, ∂B(n) is sandwiched between Cq−�−1 and Cq . Fur-
thermore, for integers 1 ≤ � ≤ q and t ≥ 0, restricted to the event {m(q − �) ≥
q − 1 > m(q − � − 1)} ∩ {m(q) = q + t}, we have

(5.13)
∣∣T (

0, ∂B(n)
) − T (0,Cq)

∣∣ ≤ T
(
∂B

(
2q−�−1)

, ∂B
(
2q+t+1))

.

Then define the events A� := {m(q − �) ≥ q − 1 > m(q − � − 1)}, for 1 ≤
� ≤ q , and Bt := {m(q) = q + t}, for t ≥ 0. Using (5.13) and the fact that⋃

1≤�≤q

⋃
t≥0(A� ∩ Bt) cover the whole probability space 
, we have

E
[∣∣T (

0, ∂B(n)
) − T (0,Cq)

∣∣r]
≤

q∑
�=1

∞∑
t=0

E
[
T r(∂B

(
2q−�−1)

, ∂B
(
2q+t+1))

1A�
1Bt

]
(5.14)

≤
q∑

�=1

∞∑
t=0

E
[
T η(

∂B
(
2q−�−1)

, ∂B
(
2q+t+1))] r

ηP(A�)
η−r
2η P(Bt )

η−r
2η ,
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where the last line uses Hölder’s inequality with η ∈ (r, η0). Recall k0 from
Lemma 3.1. Define bk := ak + e−k for k ≥ k0 and bk := bk0 for −1 ≤ k < k0.
By Lemma 5.4, there is C1 > 0 such that for all integers k ≥ −1 and r ≥ 0

(5.15) E
[
T η(

∂B
(
2k), ∂B

(
2k+r))] ≤ (C1rbk)

η.

By Lemma 5.3(i), there exists C2 > 0 such that for 1 ≤ � ≤ q and t ≥ 0

(5.16) P(A�)
η−1
2η P(Bt )

η−1
2η ≤ e−C2(�−1)e−C2t .

Combining (5.14), (5.15) and (5.16), E[|T (0, ∂B(n)) − T (0,Cq)|r ] is bounded by

q∑
�=1

∞∑
t=0

Cr
1(t + � + 2)rbr

q−�−1e
−C2(�−1)e−C2t =

q∑
�=1

br
q−�−1c�,

where c� := e−C2(�−1) ∑∞
t=0 Cr

1(t + � + 2)e−C2t for � ≥ 1. Write bk := 0 for k ≤
−2 and c� := 0 for � ≤ −1. Define b̃ := (br

k : k ∈ Z) and c̃ := (ck : k ∈ Z). Then the
above bound can be written as (b̃ ∗ c̃)q−1, where b̃ ∗ c̃ is the convolution of b̃ and
c̃. Note that ‖b̃‖∞ < ∞ and ‖c̃‖1 < ∞. Then (i) follows from Young’s inequality,
which says ‖b̃ ∗ c̃‖∞ ≤ ‖b̃‖∞‖c̃‖1.

Next we prove (ii). Replacing r with η1 in the above argument, we have
E[|T (0, ∂B(n)) − T (0,Cq)|η1] ≤ (b̃ ∗ c̃)q−1. Therefore, by Young’s inequality,

∞∑
q=0

sup
n:2q−1≤n<2q

E
[∣∣T (

0, ∂B(n)
) − T (0,Cq)

∣∣η1
] ≤ ‖b̃ ∗ c̃‖1 ≤ ‖b̃‖1‖c̃‖1.

The assumption
∑∞

k=k0
a

η1
k < ∞ implies ‖b̃‖1 < ∞. Thus, the proof of (ii) is com-

pleted. �

We now give the main results about T (0, ∂B(n)), beginning with the variance
bound.

PROOF OF THEOREM 1.5. For simplicity, denote sq := ∑q
k=2[F−1(pc +

2−k)]2. For n ≥ 2, let q ≥ 2 be the integer such that 2q−1 ≤ n < 2q − 1. De-
note Xn := T (0, ∂B(n)) − ET (0, ∂B(n)) and Yn := T (0,Cq) − ET (0,Cq). Since
η0 > 2, we may apply Lemma 5.7(i) with r = 2, there exists a constant C0 > 0
such that for all n ≥ 2

(5.17) ‖Xn − Yn‖2 = E
[|Xn − Yn|2]1/2 ≤ C0.

By Theorem 5.1, there exist C1,C2 > 0 such that for all n ≥ 2, C1
√

sq ≤ ‖Yn‖2 ≤
C2

√
sq . Combining the above two bounds and the triangle inequality, we have

((C1
√

sq − C0) ∨ 0)2 ≤ E[X2
n] ≤ (C2

√
sq + C0)

2. This suffices to prove the upper
bound.
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For the lower bound, C1
√

sq − C0 may be negative for small n, so one needs
VarT (0, ∂B(n)) > 0 uniformly in n ≥ 1. Because this is standard (see [16], equa-
tion (4.7)), we omit the proof. �

PROOF OF THEOREM 1.6. First we prove (i). Suppose
∑∞

k=2[F−1(pc +
2−k)]2 < ∞. Then

∑∞
k=k0

a2
k < ∞, where k0 is defined in Lemma 3.1. Also note

that T (0,Cq) − ET (0,Cq) = ∑q
k=0 �k and �k , for k ≥ 0, does not depend on n

or q . By Theorem 5.1(ii), we have
∑∞

k=1 E�2
k < ∞. Then by the martingale con-

vergence theorem, there exists a random variable Z with EZ = 0 and EZ2 < ∞
such that as q → ∞
(5.18) T (0,Cq) −ET (0,Cq) → Z a.s. and in L2.

Applying Lemma 5.7(ii) with η1 = 2 and taking nq = 2q−1 or 2q − 1, for q ≥ 0,
we have

∑∞
q=0 E[|T (0, ∂B(nq)) − T (0,Cq)|2] < ∞. Therefore, by Borel–Cantelli

and (5.18), as q → ∞,

(5.19) T
(
0, ∂B(nq)

) −ET
(
0, ∂B(nq)

) → Z a.s. and in L2.

Note that for all n,q with 2q−1 ≤ n < 2q , |T (0, ∂B(n)) − T (0,Cq)| is bounded
by max{|T (0, ∂B(2q−1))−T (0,Cq)|, |T (0, ∂B(2q −1))−T (0,Cq)|}. Combining
the above observation and (5.19) completes the proof of Theorem 1.6(i).

Next we prove (ii). Suppose
∑∞

k=2[F−1(pc + 2−k)]2 = ∞. Define σn :=
Var(T (0,Cq))

1/2 where q ∈ N is such that 2q−1 ≤ n < 2q . Define γn :=√
Var(T (0, ∂B(n))). By Theorem 5.1(ii), we have limn→∞ σn = ∞. By

Lemma 5.7(i) with r = 2, there is C0 > 0 such that for all n ≥ 2

(5.20) |σn − γn| ≤ C0.

Furthermore, there is C1 > 0 such that for all n ≥ 2

(5.21) E
[∣∣T (

0, ∂B(n)
) − T (0,Cq)

∣∣] ≤ C1.

Theorem 1.6(ii) follows from Theorem 5.2, (5.21), (5.20) and the fact that
limn→∞ σn = ∞. �

5.4. Limit theorems for point-to-point times. In this section, we extend results
from the last section to point-to-point passage times.

COROLLARY 5.8. (i) Assuming η0 > 1, there exists C1 = C1(F ) > 0 such
that

ET (0, x) ≤ C1

q∑
k=2

F−1(
pc + 2−k) for x ∈ B

(
2q+1) \ B

(
2q)

and q ≥ 2.

(ii) There exists C2 = C2(F ) > 0 such that

ET (0, x) ≥ C2

q∑
k=2

F−1(
pc + 2−k) for x ∈ B

(
2q+1) \ B

(
2q)

and q ≥ 2.
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COROLLARY 5.9. Assume that η0 > 2.

(i) There exists C3 = C3(F ) > 0 such that

Var
(
T (0, x)

) ≤ C3

q∑
k=2

[
F−1(

pc + 2−k)]2 for x ∈ B
(
2q+1) \ B

(
2q)

and q ≥ 2.

(ii) There exists C4 = C4(F ) > 0 such that

Var
(
T (0, x)

) ≥ C4

q∑
k=2

[
F−1(

pc + 2−k)]2 for x ∈ B
(
2q+1) \ B

(
2q)

and q ≥ 2.

COROLLARY 5.10. Assume that η0 > 2 and
∑∞

k=2 F−1(pc + 2−k) = ∞.

(i) If
∑∞

k=2[F−1(pc +2−k)]2 < ∞, then there exists a random variable Z̃ with
EZ̃ = 0 and EZ̃2 < ∞ such that

T (0, x) −ET (0, x)
d=⇒ Z̃ as ‖x‖∞ → ∞.

Z̃ has the same distribution as the sum of two independent copies of Z, defined in
Theorem 1.6.

(ii) If
∑∞

k=2[F−1(pc + 2−k)]2 = ∞, then

T (0, x) −ET (0, x)

Var(T (0, x))1/2
d=⇒ N(0,1) as ‖x‖∞ → ∞.

In particular, letting q = q(x) be the integer such that 2q < ‖x‖∞ ≤ 2q+1, we have

Var(T (0, x))

Var(T (0, ∂B(2q(x))))
→ 2 as ‖x‖∞ → ∞.

REMARK 6. In contrast to Theorem 1.6(ii), one only expects convergence
in distribution in Corollary 5.10(i), since T (0, x) heavily depends on the edge-
weights near the point x, which tends to infinity. As x changes, the edge weights
near it only share the same distribution.

Now we describe the construction used in the proof of the above three corol-
laries. This construction was introduced in [17]. Suppose x ∈ B(2q+1) \ B(2q).
Then the two boxes B(0,2q−1) and B(x,2q−1) are disjoint and, therefore,
T (0, ∂B(0,2q−1)) and T (x, ∂B(x,2q−1)) are i.i.d. Define Y(x) := T (0, ∂B(0,

2q−1)) + T (x, ∂B(x,2q−1)) for x ∈ B(2q+1) \ B(2q) and q ≥ 2. Then T (0, x) ≥
Y(x). The statements in the above three corollaries, with T (0, x) replaced by Y(x),
are immediate consequences of Theorems 1.2, 1.5 and 1.6. We only need to con-
trol the error between T (0, x) and Y(x). To bound T (0, x) from above, recall the
definition of Cq+2 from (5.2). One can construct a path between 0 and x by con-
catenating a geodesic from 0 to Cq+2, a pc-open path along Cq+2, and a geodesic
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from Cq+2 to x. Thus, T (0, x) can be bounded above by T (0,Cq+2)+T (x,Cq+2).
This implies∣∣T (0, x) − Y(x)

∣∣ ≤ ∣∣T (0,Cq+2) − T
(
0, ∂B

(
0,2q−1))∣∣

(5.22)
+ ∣∣T (x,Cq+2) − T

(
x, ∂B

(
x,2q−1))∣∣.

The first term in the above bound can be controlled by Lemma 5.7 and the sec-
ond term can be controlled by the following lemma, which is also analogous to
Lemma 5.7.

LEMMA 5.11. Recall η0 from (1.2). Assume η0 > 1:

(i) For any r ∈ [1, η0), there is C0 > 0 such that for all q ≥ 0 and x ∈
B(2q+1) \ B(2q)

E
[∣∣T (x,Cq+2) − T

(
x, ∂B

(
x,2q−1))∣∣r] < C0.

(ii) Assume that
∑

k a
η1
k < ∞ for some η1 ∈ [1, η0). Then

∞∑
q=0

sup
x∈B(2q+1)\B(2q )

E
[∣∣T (x,Cq+2) − T

(
x, ∂B

(
x,2q−1))∣∣η1

]
< ∞.

The proof of the above lemma is similar to the one of Lemma 5.7 and, therefore,
is omitted.

PROOF OF COROLLARY 5.8. Lemma 5.11(i), Lemma 5.7(i) and (5.22) give
C0 > 0 with E|T (0, x) − Y(x)| ≤ C0 for all x, proving (i). Combining the lower
bound T (0, x) ≥ Y(x) and Theorem 1.2(ii) proves (ii). �

PROOF OF COROLLARY 5.9. When η0 > 2, by Lemma 5.11(i), Lemma 5.7(i)
and (5.22), there is C0 > 0 such that E|T (0, x) − Y(x)|2 ≤ C0 for all x. Then the
rest of the proof is similar to the proof of Theorem 1.5. �

PROOF OF COROLLARY 5.10. To show (i), since
∑

k a2
k < ∞ and η0 > 2, by

Lemma 5.11(ii) we have E|T (x,Cq+2) − T (x, ∂B(x,2q−1))|2 → 0 as ‖x‖∞ →
∞. Then by (5.22), we have T (0, x) − Y(x) → 0 in L2 as ‖x‖∞ → ∞. By The-
orem 1.6(i) and that T (0, ∂B(2q−1)) and T (x, ∂B(x,2q−1)) are independent,

Y(x)
d=⇒ Z + Z′, as ‖x‖∞ → ∞, where Z′ is another independent copy of Z

as in Theorem 1.6(i). Combining these proves (i). The proof of (ii) is similar to
that of Theorem 1.6(ii). �
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