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A sequence of Markov chains is said to exhibit (total variation) cutoff if
the convergence to stationarity in total variation distance is abrupt. We con-
sider reversible lazy chains. We prove a necessary and sufficient condition for
the occurrence of the cutoff phenomena in terms of concentration of hitting
time of “worst” (in some sense) sets of stationary measure at least α, for some
α ∈ (0,1).

We also give general bounds on the total variation distance of a reversible
chain at time t in terms of the probability that some “worst” set of stationary
measure at least α was not hit by time t . As an application of our techniques,
we show that a sequence of lazy Markov chains on finite trees exhibits a cutoff
iff the product of their spectral gaps and their (lazy) mixing-times tends to∞.

1. Introduction. We obtain a tight bound on the mixing-time tmix(ε) (up to
an absolute constant independent of ε) for lazy reversible Markov chains in terms
of hitting times of large sets [Proposition 1.8, (1.6)]. This refines previous results
in the same spirit ([24] and [21], see related work), which gave a less precise
characterization of the mixing-time in terms of hitting-times (and were restricted
to hitting times of sets whose stationary measure is at most 1/2).

Loosely speaking, the (total variation) cutoff phenomenon occurs when over
a negligible period of time, known as the cutoff window, the (worst-case) total
variation distance (of a certain finite Markov chain from its stationary distribution)
drops abruptly from a value close to 1 to near 0. In other words, one should run the
nth chain until the cutoff point for it to even slightly mix in total variation, whereas
running it any further is essentially redundant.

Though many families of chains are believed to exhibit cutoff, proving the oc-
currence of this phenomenon is often an extremely challenging task. Although
drawing much attention, the progress made in the investigation of the cutoff phe-
nomenon was done mostly through understanding examples and the field suffers
from a lack of general theory. The cutoff phenomenon was given its name by Al-
dous and Diaconis in their seminal paper [1] from 1986 in which they suggested
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the following open problem (reiterated in [9]), which they refer to as “the most
interesting problem”: “Find abstract conditions which ensure that the cutoff phe-
nomenon occurs.” Our bound on the mixing-time is sufficiently sharp to imply a
characterization of cutoff for reversible Markov chains in terms of concentration
of hitting times.

We use our general characterization of cutoff to give a sharp spectral condition
for cutoff in lazy weighted nearest-neighbor random walks on trees (Theorem 1).

Generically, we shall denote the state space of a Markov chain by � and its
stationary distribution by π (or �n and πn, respectively, for the nth chain in a
sequence of chains). Let (Xt)

∞
t=0 be an irreducible Markov chain on a finite state

space � with transition matrix P and stationary distribution π . We denote such a
chain by (�,P,π). We say that the chain is finite, whenever � is finite. We say
the chain is reversible if π(x)P (x, y)= π(y)P (y, x), for any x, y ∈�.

We call a chain lazy if P(x, x) ≥ 1/2, for all x. In this paper, all discrete-time
chains would be assumed to be lazy, unless otherwise is specified. To avoid period-
icity and near-periodicity issues, one often considers the lazy version of the chain,
defined by replacing P with PL := (P + I )/2. Another way to avoid periodic-
ity issues is to consider the continuous-time version of the chain, (Xct

t )t≥0, which
is a continuous-time Markov chain whose heat kernel is defined by Ht(x, y) :=∑∞

k=o
e−t tk

k! P k(x, y).
We denote by Pt

μ (Pμ) the distribution of Xt [resp., (Xt)t≥0], given that the ini-
tial distribution is μ. We denote by Ht

μ (Hμ) the distribution of Xct
t [resp. (Xct

t )t≥0],
given that the initial distribution is μ. When μ = δx , the Dirac measure on some
x ∈� (i.e., the chain starts at x with probability 1), we simply write Pt

x (Px) and
Ht

x (Hx). For any x, y ∈� and t ∈N we write Pt
x(y) := Px(Xt = y)= P t(x, y).

We denote the set of probability distributions on a (finite) set B by P(B). For
any μ,ν ∈P(B), their total-variation distance is defined to be ‖μ − ν‖TV :=
1
2

∑
x |μ(x)− ν(x)| =∑

x∈B:μ(x)>ν(x) μ(x)− ν(x). The worst-case total variation
distance at time t is defined as

d(t) :=max
x∈� dx(t) where for any x ∈�,dx(t) :=

∥∥Px(Xt ∈ ·)− π
∥∥

TV.

The ε-mixing-time is defined as

tmix(ε) := inf
{
t : d(t)≤ ε

}
.

Similarly, let dct(t) :=maxx∈� ‖Ht
x − π‖TV and let tct

mix(ε) := inf{t : dct(t)≤ ε}.
When ε = 1/4 we omit it from the above notation. Next, consider a sequence

of such chains, ((�n,Pn,πn) : n ∈N), each with its corresponding worst-distance
from stationarity d(n)(t), its mixing-time t

(n)
mix, etc. We say that the sequence ex-

hibits a cutoff if the following sharp transition in its convergence to stationarity
occurs:

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1 for any 0 < ε < 1.
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We say that the sequence has a cutoff window wn, if wn = o(t
(n)
mix) and for any

ε ∈ (0,1) there exists cε > 0 such that for all n

(1.1) t
(n)
mix(ε)− t

(n)
mix(1− ε)≤ cεwn.

Recall that if (�,P,π) is a finite reversible irreducible lazy chain, then P is self-
adjoint w.r.t. the inner product induced by π (see Definition 2.1), and hence has |�|
real eigenvalues. Throughout we shall denote them by 1= λ1 > λ2 ≥ · · · ≥ λ|�| ≥
0 (where λ2 < 1 since the chain is irreducible and λ|�| ≥ 0 by laziness). Define the
relaxation-time of P as trel := (1−λ2)

−1. The following general relation holds for
lazy chains (see [18] Theorems 12.3 and 12.4)

(1.2) (trel − 1) log
(

1

2ε

)
≤ tmix(ε)≤ trel log

(
1

ε minx π(x)

)
.

We say that a family of chains satisfies the product condition if (1−λ
(n)
2 )t

(n)
mix→∞

as n→∞ [or equivalently, t
(n)
rel = o(t

(n)
mix)]. The following well-known fact follows

easily from the first inequality in (1.2) (cf. [18], Proposition 18.4).

FACT 1.1. For a sequence of irreducible aperiodic reversible Markov chains
with relaxation times {t (n)

rel } and mixing-times {t (n)
mix}, if the sequence exhibits a

cutoff, then t
(n)
rel = o(t

(n)
mix).

In 2004, the third author [22] conjectured that, in many natural classes of chains,
the product condition is also sufficient for cutoff. In general, the product condition
does not always imply cutoff. Aldous and Pak (private communication via P. Di-
aconis) have constructed relevant examples (see [18], Chapter 18). This left open
the question of characterizing the classes of chains for which the product condition
is indeed sufficient.

We now state our main theorem, which generalizes previous results concern-
ing birth and death chains [11]. The relevant setup is weighted nearest neighbor
random walks on finite trees. See Section 5 for a formal definition.

THEOREM 1. Let (V ,P,π) be a lazy reversible Markov chain on a tree T =
(V ,E) with |V | ≥ 3. Then

(1.3) tmix(ε)− tmix(1− ε)≤ 35
√

ε−1treltmix for any 0 < ε ≤ 1/4.

In particular, if the product condition holds for a sequence of lazy reversible
Markov chains (Vn,Pn,πn) on finite trees Tn = (Vn,En), then the sequence ex-

hibits a cutoff with a cutoff window wn =
√

t
(n)
rel t

(n)
mix.

In [10], Diaconis and Saloff-Coste showed that a sequence of birth and death
(BD) chains exhibits separation cutoff if and only if t

(n)
rel = o(t

(n)
mix). In [11], Ding
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et al. extended this also to the notion of total-variation cutoff and showed that the
cutoff window is always at most

√
t
(n)
rel t

(n)
mix and that in some cases this is tight (see

Theorem 1 and Section 2.3 ibid). Since BD chains are a particular case of chains
on trees, the bound on wn in Theorem 1 is also tight.

We note that the bound we get on the rate of convergence [(1.3)] is better
than the estimate in [11] (even for BD chains), which is tmix(ε) − tmix(1 − ε) ≤
cε−1√treltmix (Theorem 2.2). In fact, in Section 5.1 we show that under the product
condition, d(t) decays in a sub-Gaussian manner within the cutoff window. More

precisely, we show that t
(n)
mix(ε)− t

(n)
mix(1−ε)≤ c

√
t
(n)
rel t

(n)
mix| log ε|. This is somewhat

similar to Theorem 6.1 in [10], which determines the “shape” of the cutoff and de-
scribes a necessary and sufficient spectral condition for the shape to be the density
function of the standard normal distribution.

Concentration of hitting times was a key ingredient both in [10] and [11] (as it
shall be here). Their proofs relied on several properties which are specific to BD
chains. Our proof of Theorem 1 can be adapted to the following setup. Denote
[n] := {1,2, . . . , n}.

DEFINITION 1.2. For n ∈ N and δ, r > 0, we call a finite lazy reversible
Markov chain, ([n],P ,π), a (δ, r)-semi birth and death (SBD) chain if

(i) For all i, j ∈ [n] such that |i − j |> r , we have P(i, j)= 0.
(ii) For all i, j ∈ [n] such that |i − j | = 1, we have that P(i, j)≥ δ.

This is a natural generalization of the class of birth and death chains. Conditions
(i)–(ii) tie the geometry of the chain to that of the path [n]. We have the following
theorem.

THEOREM 2. Let ([nk],Pk,πk) be a sequence of (δ, r)-semi birth and death
chains, for some δ, r > 0, satisfying the product condition. Then it exhibits a cutoff

with a cutoff window wk :=
√

t
(k)
mixt

(k)
rel .

We now introduce a new notion of mixing, which shall play a key role in this
work.

DEFINITION 1.3. Let (�,P,π) be an irreducible chain. For any x ∈ �,
α, ε ∈ (0,1) and t ≥ 0, define px(α, t) := maxA⊂�:π(A)≥α Px[TA > t], where
TA := inf{t :Xt ∈A} is the hitting time of the set A. Set p(α, t) :=maxx px(α, t).
We define

hitα,x(ε) :=min
{
t : px(α, t)≤ ε

}
and hitα(ε) :=min

{
t : p(α, t)≤ ε

}
.

Similarly, we define pct
x (α, t) :=maxA⊂�:π(A)≥α Hx[T ct

A > t] (where T ct
A := inf{t :

Xct
t ∈A}) and set hitct

α (ε) :=min{t : pct
x (α, t)≤ ε for all x ∈�}.
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DEFINITION 1.4. Let (�n,Pn,πn) be a sequence of irreducible chains and let
α ∈ (0,1). We say that the sequence exhibits a hitα-cutoff, if for any ε ∈ (0,1/4)

hit(n)
α (ε)− hit(n)

α (1− ε)= o
(
hit(n)

α (1/4)
)
.

We are now ready to state our main abstract theorem.

THEOREM 3. Let (�n,Pn,πn) be a sequence of lazy reversible irreducible
finite chains. The following are equivalent:

(1) The sequence exhibits a cutoff.
(2) The sequence exhibits a hitα-cutoff for some α ∈ (0,1/2].
(3) The sequence exhibits a hitα-cutoff for some α ∈ (1/2,1) and t

(n)
rel = o(t

(n)
mix).

REMARK 1.5. In Example 7.2, we show that there exists a sequence of lazy
reversible irreducible finite Markov chains, (�n,Pn,πn), such that the product
condition fails, yet for all 1/2 < α < 1 there is hitα-cutoff. Thus, the assertion of
Theorem 3 is sharp.

REMARK 1.6. The proof of Theorem 3 can be extended to the continuous-
time case (the necessary adaptations are sketched in Section 4). In particular, it
follows that a sequence of finite lazy reversible chains exhibits cutoff iff the se-
quence of the continuous-time versions of these chains exhibits cutoff. This was
previously proven in [7] without the assumption of reversibility.

REMARK 1.7. Using somewhat similar techniques as in this work, it was
shown in [16] that under reversibility the sequence of associated continuous-time
chains exhibits a cutoff around time tn iff the same holds for the sequence of as-
sociated averaged (“averaged at two consecutive time steps”) chains, defined by
replacing P k by Ak := (P k + P k+1)/2. This result and its connections with the
results and techniques of this paper are discussed in more details in the related
work section.

At first glance hitα(ε) may seem like a rather weak notion of mixing compared
to tmix(ε), especially when α is close to 1 (say, α = 1− ε). The following propo-
sition gives a quantitative version of Theorem 3 [for simplicity we fix α = 1/2 in
(1.4) and (1.5)].

PROPOSITION 1.8. For any reversible irreducible finite lazy chain and any
ε ∈ (0, 1

4 ],
(1.4) hit1/2(3ε/2)− ⌈

2trel| log ε|⌉≤ tmix(ε)≤ hit1/2(ε/2)+ ⌈
trel

∣∣log(ε/4)
∣∣⌉
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and

hit1/2(1− ε/2)− ⌈
2trel| log ε|⌉≤ tmix(1− ε)

≤ hit1/2(1− 2ε)+ 1ε>1/18

⌈
1

2
trel log 8

⌉
.

(1.5)

Moreover,

max
{
hit1−ε/4(5ε/4), (trel − 1)

∣∣log(2ε)
∣∣}

≤ tmix(ε)

≤ hit1−ε/4(3ε/4)+
⌈

3trel

2

∣∣log(ε/4)
∣∣⌉.

(1.6)

Finally, if everywhere in (1.4)–(1.6) tmix and hit are replaced by tct
mix and hitct,

respectively, then (1.4)–(1.6) still hold (and all ceiling signs can be omitted).

REMARK 1.9. Define tabsolute
rel := max{(1− λ2)

−1, (1− |λ|�||)−1}. Our only
use of the laziness assumption is to argue that trel = tabsolute

rel . In particular, Proposi-
tion 1.8 holds also without the laziness assumption if one replaces trel by tabsolute

rel .
Similarly, without the laziness assumption the assertion of Theorem 3 should
be transformed as follows. A sequence of finite irreducible aperiodic reversible
Markov chains exhibits cutoff iff (tabsolute

rel )(n) = o(t
(n)
mix) and there exists some

0 < α < 1 such that the sequence exhibits hitα-cutoff.
Note that for any finite irreducible reversible chain, (�,P,π), it suffices to con-

sider a δ-lazy version of the chain, Pδ := (1− δ)P + δI , for some δ ≥ 1−max{λ2,0}
2 ,

to ensure that trel = tabsolute
rel (which by the previous paragraph, guarantees that all

near-periodicity issues are completely avoided).

Loosely speaking, we show that the mixing of a lazy reversible Markov chain
can be partitioned into two stages as follows. The first is the time it takes the chain
to escape from some small set with sufficiently large probability. In the second
stage, the chain mixes at a rate which is governed by its relaxation-time. This esti-
mate is sharp is some cases (i.e., there are examples in which the above description
is accurate and the rate of convergence in the “second stage” is also lower bounded
by the relaxation time).

It follows from Proposition 3.3 that the ratio of the LHS and the RHS of (1.6) is
bounded by an absolute constant independent of ε. Moreover, (1.6) bounds tmix(ε)

in terms of hitting distribution of sets of π measure tending to 1 as ε tends to 0. In
(3.2) we give a version of (1.6) for sets of arbitrary π measure.

Either of the two terms appearing in the sum in RHS of (1.6) may dominate
the other. For lazy simple random walk on two n-cliques connected by a single
edge, the terms in (1.6) involving hit1−ε/4 are negligible. For a sequence of chains
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satisfying the product condition, all terms in Proposition 1.8 involving trel are neg-
ligible. Hence, the assertion of Theorem 3, for α = 1/2, follows easily from (1.4)
and (1.5), together with the fact that hit(n)

1/2(1/4)=	(t
(n)
mix). In Proposition 3.6, un-

der the assumption that the product condition holds, we prove this fact and show
that in fact, if the sequence exhibits hitα-cutoff for some α ∈ (0,1), then it exhibits
hitβ -cutoff for all β ∈ (0,1).

1.1. Related work. The idea that expected hitting times of sets which are
“worst in expectation” [in the sense of (1.7) below] could be related to the mixing
time is quite old and goes back to Aldous’ 1982 paper [3]. A similar result was
obtained later by Lovász and Winkler ([19], Proposition 4.8).

This aforementioned connection was substantially refined recently by Peres and
Sousi ([24], Theorem 1.1) and independently by Oliveira ([21], Theorem 2). In
[24], Peres and Sousi considered the mixing times of the associated lazy and
“averaged” chains [recall from Remark 1.7 that the distribution at time t of the
latter is obtained by replacing P t by At := (P t + P t+1)/2] denoted, respec-
tively, by tL := inf{t : maxx ‖P t

L(x, ·) − π(·)‖TV ≤ 1/4} and tave := tave(1/4),
where tave(ε) := inf{t + 1 : dave(t)≤ ε}, and dave(t) :=maxx ‖At(x, ·)− π(·)‖TV.
They proved that under reversibility tL and tave are equivalent to each other
(i.e., that for some universal constants, 0 < c < C, c ≤ tL/tave ≤ C for all re-
versible chains) and also to various other mixing parameters, including tstop :=
maxx∈�,T stopping time:XT∼π Ex[T ]. Their approach relied on the theory of random
times to stationarity combined with a certain complicated “de-randomization” ar-
gument which shows that (under reversibility) tave ≤ Ctstop. As a (somewhat in-
direct) consequence, they deduced that for any 0 < α < 1/2 (this was extended
to α = 1/2 in [14]), there exist some constants cα, c′α > 0 such that for any lazy
reversible irreducible finite chain

c′αtH(α) ≤ tmix ≤ cαtH(α) where
(1.7)

tH(α) :=max
x∈� tH,x(α) and tH,x(α) := max

A⊂�:π(A)≥α
Ex[TA].

This work was greatly motivated by the aforementioned results. It is natural to
ask whether (1.7) could be further refined so that the cutoff phenomenon could be
characterized in terms of concentration of the hitting times of a sequence of sets
An ⊂ �n which attain the maximum in the definition of t

(n)
H (1/2) (starting from

the worst initial states). Corollary 1.5 in [15] asserts that this is indeed the case in
the transitive setup. More generally, Theorem 2 in [15] asserts that this is indeed
the case for any fixed sequence of initial states xn ∈ �n if one replaces t

(n)
H (1/2)

and d(n)(t) by t
(n)
H,xn

(1/2) and d
(n)
xn (t) (i.e., when the hitting times and the mixing

times are defined only w.r.t. these starting states). Alas, Proposition 1.6 in [15]
asserts that in general cutoff could not be characterized in this manner.
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In [17], Lancia et al. established a sufficient condition for cutoff which does not
rely on reversibility. However, their condition includes the strong assumption that
for some An ⊂�n with πn(An) ≥ c > 0, starting from any x ∈ An, the nth chain
mixes in o(t

(n)
mix) steps.

Very recently, Chen and Saloff-Coste [8] obtained a detailed criterion for cutoff
(both in total variation and separation distance) for the class of birth and death
chains using concentration of hitting times. They also obtained formulae for the
cutoff time as well as the cutoff window in terms of the moments of certain hitting
times.

The most important tool we shall utilize is Starr’s L2 maximal inequality (The-
orem 2.3), which as we demonstrate in Section 2, can become extremely powerful
when combined with simple spectral techniques (e.g., the L2-contraction Lemma).
Its central role in our approach is explained in the following section. Relating it to
the study of mixing-times of reversible Markov chains is one of the main contri-
butions of this work. It is the belief of the authors that this technique can be ap-
plied to other theoretical problems concerning Markov chains. Maximal inequal-
ities were the main tool used in two other recent works [16, 20] which resolved
long lasting open problems related to mixing times of reversible chains. In [20]
Starr’s Lp maximal inequality was used to prove (under reversibility) the inequal-
ity

∑
y∈� supt P

t (x, y) ≤ 2e(1 ∨ | logπ(x)|). We note that for their application
they had to take p ≈ 1+ π(x).

In [16], the second and third authors substantially refined the aforementioned
equivalence of tL and tave, established by Peres and Sousi, by showing that

dave(t + �Mt�)≤maxx ‖Ht
x − π‖TV +C

√
(1∨ logM)/M and maxx ‖Ht+M

√
t

x −
π‖TV ≤ dave(t)+ e−cM2

, for all t,M > 0 (for some absolute constants C,c > 0).
The main tool used in [16] is a certain L2 maximal inequality involving the discrete
derivative of the transition matrix. These quantitative relations resolve a conjecture
of Aldous and Fill [2], Open Problem 4.17. Moreover, it is shown in [16] that these
inequalities not only imply the equivalence of cutoffs for the sequences of associ-
ated (resp.) continuous-time and averaged chains, but also allows one to express
the (optimal) cutoff window of one in terms of that of the other.

1.2. An overview of our techniques.

DEFINITION 1.10. Let (�,P,π) be a finite reversible irreducible lazy chain.
Let A ⊂ �, s ≥ 0 and m > 0. Denote ρ(A) := √Varπ 1A = √π(A)(1− π(A)).
Set σs := e−s/trelρ(A). We define

(1.8) Gs(A,m) := {
y : ∣∣Pk

y(A)− π(A)
∣∣ < mσs for all k ≥ s

}
.

We call the set Gs(A,m) the good set for A from time s within m standard devia-
tions.
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As a simple corollary of Starr’s L2 maximal inequality and the L2-contraction
lemma we show in Corollary 2.4 that for any nonempty A⊂� and any m,s ≥ 0
that π(Gs(A,m))≥ 1− 8/m2. To demonstrate the main idea of our approach, we
now prove the following inequalities:

tmix(2ε)≤ hit1−ε(ε)+
⌈
trel

2
log

(
2

ε3

)⌉
,(1.9)

hit1−ε(1− 2ε)≥ tmix(1− ε)−
⌈
trel

2
log

(
8

ε2

)⌉
.(1.10)

We first prove (1.9). Let A ⊂ � be nonempty. Let x ∈ �. Let s, t,m ≥ 0 to be
defined shortly. Denote G :=Gs(A,m). We want this set to be of size at least 1−ε.
By Corollary 2.4, we know that π(G)≥ 1− 8/m2. Thus, we pick m=√8/ε. The
precision in (1.8) is mσs ≤√8/ε(

√
Varπ 1Ae−s/trel) ≤√2/εe−s/trel . As we want

to have ε precision, we pick s := � trel
2 log( 2

ε3 )�.
We seek to bound |Pt+s

x (A)− π(A)|. If |Pt+s
x (A)− π(A)| ≤ 2ε, then the chain

is “2ε-mixed w.r.t. A”. This is where we use the set G. We now demonstrate that
for any t ≥ 0, hitting G by time t serves as a “certificate” that the chain is ε-mixed
w.r.t. A at time t + s. Indeed, from the Markov property and the definition of G,

∣∣Px[Xt+s ∈A | TG ≤ t] − π(A)
∣∣≤max

g∈G sup
s′≥s

∣∣Ps′
g (A)− π(A)

∣∣≤ ε.

In particular,
∣∣Pt+s

x (A)− π(A)
∣∣≤ Px[TG > t] + ∣∣Px[Xt+s ∈A | TG ≤ t] − π(A)

∣∣
≤ Px[TG > t] + ε.

(1.11)

We seek to have the bound Px[TG > t] ≤ ε. Recall that by our choice of m we have
that π(G)≥ 1− ε. Thus if we pick t := hit1−ε(ε), we guarantee that, regardless of
the identity of A and x, we indeed have that Px[TG > t] ≤ ε. Since x and A were
arbitrary, plugging this into (1.11) yields (1.9). We now prove (1.10).

We now set r := tmix(1 − ε) − 1. Then there exist some x ∈ � and A ⊂ �

such that π(A) − Pr
x(A) > 1 − ε. In particular, π(A) > 1 − ε. Consider again

G2 :=Gs2(A,m). Since again we seek the size of G2 to be at least 1− ε, we again
choose m =√8/ε. The precision in (1.8) is mσs2 ≤

√
8/ε(
√

Varπ 1Ae−s2/trel) ≤√
8/ε(
√

1− π(A)e−s2/trel) ≤ √8e−s2/trel . We again seek ε precision. Hence, we
pick s2 := � trel

2 log( 8
ε2 )�. As in (1.11) (with r − s2 in the role of t and s2 in the role

of s) we have that

Px[TG2 > r − s2] ≥ π(A)− Pr
x(A)− ε > 1− 2ε.

Hence, it must be the case that hit1−ε(1 − 2ε) > r − s2 = tmix(1 − ε) − 1 −
� trel

2 log( 8
ε2 )�.
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2. Maximal inequality and applications. In this section, we present the ma-
chinery that will be utilized in the proof of the main results. Here and in Sec-
tion 3, we only treat the discrete-time chain. The necessary adaptations for the
continuous-time case are explained in Section 4. We start with a few basic defini-
tions and facts.

DEFINITION 2.1. Let (�,P,π) be a finite reversible chain. For any f ∈R�,
let Eπ [f ] :=∑

x∈� π(x)f (x) and Varπ f := Eπ [(f −Eπf )2]. The inner-product
〈·, ·〉π and Lp norm are

〈f,g〉π := Eπ [fg] and ‖f ‖p := (
Eπ

[|f |p])1/p
, 1≤ p <∞.

We identify the matrix P t with the operator P t : Lp(R�,π)→ Lp(R�,π) defined
by P tf (x) :=∑

y∈� P t(x, y)f (y) = Ex[f (Xt)]. By reversibility, P t : L2→ L2

is a self-adjoint operator.

The spectral decomposition in discrete time takes the following form. If
f1, . . . , f|�| is an orthonormal basis of L2(R�,π) such that Pfi := λifi for all i,

then P tg = EπP tg +∑|�|
i=2〈g,fi〉πλt

ifi , for all g ∈ R� and t ≥ 0. The following
lemma is standard. It is proved using the spectral decomposition in a straightfor-
ward manner.

LEMMA 2.2 (L2-contraction lemma). Let (�,P,π) be a finite lazy reversible
irreducible Markov chain. Let f ∈R�. Then

(2.1) Varπ P tf ≤ e−2t/trel Varπ f for any t ≥ 0.

We now state a particular case of Starr’s maximal inequality ([25], Theorem 1).
It is similar to Stein’s maximal inequality ([26]), but gives the best possible con-
stant. For the sake of completeness we also prove Theorem 2.3 at the end of this
section.

THEOREM 2.3 Maximal inequality. Let (�,P,π) be a reversible irreducible
Markov chain. Let 1 < p <∞ and p∗ := p/(p − 1) be its conjugate exponent.
Then for any f ∈ Lp(R�,π),

(2.2)
∥∥f ∗∥∥p ≤ p∗‖f ‖p,

where f ∗ ∈R� is the corresponding maximal function at even times, defined as

f ∗(x) := sup
0≤k<∞

∣∣P 2k(f )(x)
∣∣= sup

0≤k<∞
∣∣Ex

[
f (X2k)

]∣∣.

The following corollary follows by combining Lemma 2.2 with Theorem 2.3.
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COROLLARY 2.4. Let (�,P,π) be a finite reversible irreducible lazy chain.
As in Definition 1.10, define ρ(A) := √π(A)(1− π(A)), σt := ρ(A)e−t/trel and

Gt(A,m) := {
y : ∣∣Pk

y(A)− π(A)
∣∣ < mσt for all k ≥ t

}
.

Then

(2.3) π
(
Gt(A,m)

)≥ 1− 8m−2 for all A⊂�, t ≥ 0 and m > 0.

PROOF. For any t ≥ 0, let ft (x) := P t(1A−π(A))(x)= Pt
x(A)−π(A). Then

in the notation of Theorem 2.3,

f ∗t (x) := sup
k≥0

∣∣P 2kft (x)
∣∣= sup

k≥0

∣∣P2k+t
x (A)− π(A)

∣∣,
and similarly

(Pft )
∗(x)= sup

k≥0

∣∣P2k+1+t
x (A)− π(A)

∣∣.
Hence, Gt ⊇ {x ∈� : f ∗t (x), (Pft )

∗(x) < mσt }. Whence

1− π(Gt)≤ π
{
x : f ∗t (x)≥mσt

}+ π
{
x : (Pft )

∗(x)≥mσt

}
.(2.4)

Note that since πP t = π we have that Eπ(ft ) = Eπ(f0) = Eπ(1A − π(A)) = 0.
Now (2.1) implies that

(2.5) ‖Pft‖2
2 ≤ ‖ft‖2

2 =Varπ P tf0 ≤ e−2t/trel Varπ f0 = e−2t/trelρ2(A)= σ 2
t .

Hence, by Markov inequality and (2.2) we have

(2.6) π
{
x : f ∗t (x)≥mσt

}= π
{
x : (f ∗t (x)

)2 ≥m2σ 2
t

}≤ 4m−2,

and similarly, π{x : (Pft )
∗(x)≥mσt } ≤ 4m−2.

The corollary now follows by substituting the last two bounds in (2.4). �

2.1. Proof of Theorem 2.3. As promised, we end this section with the proof of
Theorem 2.3.

PROOF OF THEOREM 2.3. Let p ∈ (1,∞) and f ∈ Lp(R�,π). Let q := p
p−1

be the conjugate exponent of p. We argue that it suffices to prove the theorem
only for f ≥ 0, since for general f , if we denote h := |f |, then |f ∗| ≤ h∗. Conse-
quently, ‖f ∗‖p ≤ ‖h∗‖p ≤ q‖h‖p = q‖f ‖p .

Let (Xn)n≥0 have the distribution of the chain (�,P,π) with X0 ∼ π . Let
n ≥ 0. Let 0 ≤ f ∈ Lp(�,π). By the tower property of conditional expectation
(e.g., [12], Theorem 5.1.6.),

(2.7) P 2nf (X0) := E
[
f (X2n) |X0

]= E
[
E

[
f (X2n) |Xn

] |X0
]= E[Rn |X0],
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where Rn := E[f (X2n) |Xn]. Since X0 ∼ π , by reversibility, (Xn,Xn+1, . . . ,X2n)

and (Xn,Xn−1, . . . ,X0) have the same law. Hence,

(2.8) Rn = E
[
f (X2n) |Xn

]= E
[
f (X0) |Xn

]= E
[
f (X0) |Xn,Xn+1, . . .

]
,

where the third equality in (2.8) follows by the Markov property. Fix N ≥ 0.
By (2.8) (Rn)

N
n=0 is a reverse martingale, that is, (RN−n)

N
n=0 is a martingale. By

Doob’s Lp maximal inequality (e.g., [12], Theorem 5.4.3.)

(2.9)
∥∥∥ max

0≤n≤N
Rn

∥∥∥
p
≤ q‖R0‖p = q

∥∥f (X0)
∥∥
p.

Denote hN :=max0≤n≤N P 2nf . By (2.7),

(2.10) hN(X0)= max
0≤n≤N

E[Rn |X0] ≤ E
[

max
0≤n≤N

Rn |X0

]
.

By conditional Jensen inequality ‖E[Y | X0]‖p ≤ ‖Y‖p (e.g., [12], Theorem
5.1.4.). So by taking Lp norms in (2.10), together with (2.9) we get that

‖hN‖p ≤
∥∥∥ max

0≤n≤N
Rn

∥∥∥
p
≤ q

∥∥f (X0)
∥∥
p.(2.11)

The proof is complete using the monotone convergence theorem. �

3. Inequalities relating tmix(ε) and hitα(δ). Our aim in this section is to
obtain inequalities relating tmix(ε) and hitα(δ) for suitable values of α, ε and δ

using Corollary 2.4.
The following corollary uses the same reasoning as in the proof of (1.9)–(1.10)

with a slightly more careful analysis.

COROLLARY 3.1. Let (�,P,π) be a lazy reversible irreducible finite chain.
Let x ∈�, δ,α ∈ (0,1), s ≥ 0 and A⊂�. Denote t := hit1−α,x(δ). Then

(3.1) Pt+s
x (A)≥ (1− δ)

[
π(A)− e−s/trel

[
8α−1π(A)

(
1− π(A)

)]1/2]
.

Consequently, for any 0 < ε < 1 we have that

hit1−α

(
(α + ε)∧ 1

)≤ tmix(ε) and

tmix
(
(ε+ δ)∧ 1

)≤ hit1−α(ε)+
⌈
trel

2
log+

(
2(1− ε)2

αεδ

)⌉
,

(3.2)

where a ∧ b :=min{a, b} and log+ x :=max{logx,0}. In particular, for any 0 <

ε ≤ 1/2,

hit1−ε/4(5ε/4)≤ tmix(ε)≤ hit1−ε/4(3ε/4)+
⌈

3trel

2
log(4/ε)

⌉
,(3.3)

tmix(ε)≤ hit1/2(ε/2)+ ⌈
trel log(4/ε)

⌉
and

(3.4)

tmix(1− ε/2)≤ hit1/2(1− ε)+ 1ε>1/9

⌈
1

2
trel log 8

⌉
.
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PROOF. We first prove (3.1). Fix some x ∈�. Consider the set

G=Gs(A)

:= {
y : ∣∣Pk

y(A)− π(A)
∣∣ < e−s/trel

(
8α−1π(A)

(
1− π(A)

))1/2 for all k ≥ s
}
.

Then by Corollary 2.4, we have that

π(G)≥ 1− α.

By the Markov property and conditioning on TG and on XTG
, we get that

Px[Xt+s ∈A | TG ≤ t] ≥ π(A)− e−s/trel
[
8α−1π(A)

(
1− π(A)

)]1/2
.

Since π(G)≥ 1− α we have that Px[TG ≤ t] ≥ 1− δ for t := hit1−α,x(δ). Thus

Pt+s
x (A)≥ Px[TG ≤ t]Px[Xt+s ∈A | TG ≤ t]

≥ (1− δ)
[
π(A)− e−s/trel

[
8α−1π(A)

(
1− π(A)

)]1/2]
,

which completes the proof of (3.1). We now prove (3.2). The first inequality in
(3.2) follows directly from the definition of the total variation distance. To see this,
let A⊂� be an arbitrary set with π(A) ≥ 1− α. Let t1 := tmix(ε). Then for any
x ∈�,

Px[TA ≤ t1] ≥ Px[Xt1 ∈A] ≥ π(A)− ∥∥Pt1
x − π

∥∥
TV ≥ 1− α − ε.

In particular, we get directly from Definition 1.3 that hit1−α(α+ ε)≤ t1 = tmix(ε).
We now prove the second inequality in (3.2).

Set t := hit1−α(ε) and s := �1
2 trel log+(2(1−ε)2

αεδ
)�. Let x ∈� be such that d(t +

s)= dx(t + s) and set A := {y ∈� : π(y) > Pt+s
x (y)}. Observe that by the choice

of t, s, x and A together with (3.1) we have that

d(t + s)= π(A)− Pt+s
x (A)

≤ επ(A)+ (1− ε)e−s/trel
[
8α−1π(A)

(
1− π(A)

)]1/2

≤ ε
[
π(A)+ 2

√
δ/ε

√
π(A)

(
1− π(A)

)]

≤ ε
[
1+ (2

√
δ/ε)2/4

]= ε+ δ,

(3.5)

where in the last inequality we have used the easy fact that for any c > 0 and any
x ∈ [0,1] we have that x + c

√
x(1− x) ≤ 1 + c2/4. Indeed, since x ∈ [0,1] it

suffices to show that x + c
√

(1− x)≤ 1+ c2/4. Write
√

1− x = y and c/2= a.
By subtracting x from both sides, the previous inequality is equivalent to 2ay ≤
y2 + a2. This completes the proof of (3.2).

For the second inequality of (3.3), apply (3.2) with (α, ε, δ) being (ε/4,3ε/4,

ε/4). Similarly, to get (3.4) apply (3.2) with (α, ε, δ) being (1/2, ε/2, ε/2) or
(1/2,1− ε, ε/2), respectively. �
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REMARK 3.2. Corollary 3.1 holds also in continuous-time case (where every-
where in (3.1)–(3.4) tmix and hit are replaced by tct

mix and hitct, respectively, and all
ceiling signs are omitted). The necessary adaptations are explained in Section 4.

Let α ∈ (0,1). Observe that for any A ⊂ � with π(A) ≥ α, any x ∈ � and
any t, s ≥ 0, by the Markov property we have that Px[TA > t + s] ≤ Px[TA >

t](maxz Pz[TA > s]) ≤ p(α, t)p(α, s). Maximizing over x and A yields that
p(α, t + s)≤ p(α, t)p(α, s), from which the following proposition follows.

PROPOSITION 3.3. For any α, ε, δ ∈ (0,1), we have that

(3.6) hitα(εδ)≤ hitα(ε)+ hitα(δ).

In the next corollary, we establish inequalities between hitα(δ) and hitβ(δ′) for
appropriate values of α,β, δ and δ′.

COROLLARY 3.4. For any reversible irreducible finite chain and 0 < ε <

δ < 1,

hitβ(δ)≤ hitα(δ)

≤ hitβ(δ − ε)

+
⌈
α−1trel log

(
1− α

(1− β)ε

)⌉
for any 0 < α ≤ β < 1.

(3.7)

The general idea behind Corollary 3.4 is as follows. Loosely speaking, we show
that any set A ⊂ � has a “blow-up” set H(A) (of large π -measure), such that
starting from any x ∈ H(A), the set A is hit “quickly” [in time proportional to
trel/π(A)] with large probability.

In order to establish the existence of such a blow-up, it turns out that it suffices
to consider the hitting time of A starting from the initial distribution π , which is
well understood.

LEMMA 3.5. Let (�,P,π) be a finite irreducible reversible Markov chain.
Let A � � be non-empty. Let α > 0 and w ≥ 0. Let B(A,w,α) := {y : Py[TA >

� trelw
π(A)
�] ≥ α}. Then

Pπ [TA > t] ≤ π
(
Ac)(1− π(A)

trel

)t

≤ π
(
Ac) exp

(
− tπ(A)

trel

)
for any t ≥ 0.

(3.8)

In particular,

(3.9) π
(
B(A,w,α)

)≤ π
(
Ac)e−wα−1 and π(A)Eπ [TA] ≤ trelπ

(
Ac).
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The proof of Lemma 3.5 is deferred to the end of this section.

PROOF OF COROLLARY 3.4. Denote s = sα,β,ε := �α−1trel log( 1−α
(1−β)ε

)�. Let
A⊂� be an arbitrary set such that π(A)≥ α. Consider the set

H1 =H1(A,α,β, ε) := {
y ∈� : Py[TA ≤ s] ≥ 1− ε

}
.

Then by (3.9)

π(H1)≥ 1− (
1− (1− ε)

)−1(
1− π(A)

)
exp

[
−sπ(A)

trel

]

≥ 1− ε−1(1− α) exp
[
− log

(
1− α

(1− β)ε

)]
= β.

By the definition of H1 together with the Markov property and the fact that
π(H1)≥ β , for any t ≥ 0 and x ∈�,

Px[TA ≤ t + s] ≥ Px[TH1 ≤ t, TA ≤ t + s] ≥ (1− ε)Px[TH1 ≤ t]
≥ (1− ε)

(
1− px(β, t)

)≥ 1− ε−max
y∈� py(β, t).

(3.10)

Taking t := hitβ(δ − ε) and minimizing the LHS of (3.10) over A and x gives the
second inequality in (3.7). The first inequality in (3.7) is trivial because α ≤ β . �

3.1. Proofs of Proposition 1.8 and Theorem 3. Now we are ready to prove our
main abstract results.

PROOF OF PROPOSITION 1.8. First note that (1.6) follows from (3.3) and
the first inequality in (1.2). Moreover, in light of (3.4) we only need to prove the
first inequalities in (1.4) and (1.5). Fix some 0 < ε ≤ 1/4 and t ≥ 0. Take any
set A with π(A) ≥ 1

2 and x ∈�. Denote sε := �2trel| log ε|�. Consider a coupling
(P, (Yk,Zk)k≥0) of the chain (Yk)k≥0 with initial distribution Y0 ∼ Pt

x with the
stationary chain (Zk)k≥0 so that P[(Yk)k≥0 �= (Zk)k≥0] = dx(t) (cf. the proofs of
Proposition 4.7 and of Theorem 5.2 in [18] for the existence of such a coupling).
By the Markov property,

Px[TA > t + sε] ≤ Px[Xk /∈A for all t ≤ k ≤ t + sε]
= P[Yk /∈A for all k ≤ sε]
≤ P

[
(Yk)k≥0 �= (Zk)k≥0

]+ P[Zk /∈A for all k ≤ sε]
= dx(t)+ Pπ [TA > sε].

Hence, by (3.8)

Px[TA > t + sε] ≤ dx(t)+ 1

2
e−sε/2trel ≤ d(t)+ ε

2
.



CHARACTERIZATION OF CUTOFF FOR REVERSIBLE MARKOV CHAINS 1463

Putting t = tmix(ε) and t = tmix(1 − ε) successively in the above equation and
maximizing over x ∈� and A such that π(A)≥ 1

2 gives

hit1/2(3ε/2)≤ tmix(ε)+ sε and hit1/2(1− ε/2)≤ tmix(1− ε)+ sε,

which completes the proof. �

Before completing the proof of Theorem 3, we prove that under the product con-
dition if a sequence of reversible chains exhibits hitα-cutoff for some α ∈ (0,1),
then it exhibits hitα-cutoff for all α ∈ (0,1).

PROPOSITION 3.6. Let (�n,Pn,πn) be a sequence of lazy finite irreducible
reversible chains for which the product condition holds. Then (1) and (2) below
are equivalent:

(1) There exists α ∈ (0,1) for which the sequence exhibits a hitα-cutoff.
(2) The sequence exhibits a hitα-cutoff for any α ∈ (0,1).

Moreover,

(3.11) hit(n)
α (1/4)=	

(
t
(n)
mix

)
for any α ∈ (0,1).

Furthermore, if (2) holds then

(3.12) lim
n→∞hit(n)

α (1/4)/hit(n)
1/2(1/4)= 1 for any α ∈ (0,1).

PROOF. We start by proving (3.11). Assume that the product condition holds.
Fix some α ∈ (0,1). Note that we have

hit(n)
α (1/4)≤ 4α−1 hit(n)

α

(
1− 3α

4

)
≤ 4α−1t

(n)
mix

(
α

4

)

≤ 4α−1(
2+ ⌈

log2(1/α)
⌉)

t
(n)
mix.

The first inequality above follows from (3.6) and the fact that (1− 3α/4)4α−1−1 ≤
4e−3 ≤ 1/4. The second one follows from (3.2) (first inequality). The final inequal-
ity above is a consequence of the sub-multiplicativity property: for any k, t ≥ 0,
d(kt)≤ (2d(t))k (e.g., [18], (4.24) and Lemma 4.12).

Conversely, by (3.6) (second inequality) and the second inequality in (3.2) with
(α, ε, δ) here being (1− α,1/8,1/8) (first inequality)

t
(n)
mix

2
−

⌈
t
(n)
rel

4
log

(
100

1− α

)⌉
≤ hit(n)

α (1/8)

2
≤ hit(n)

α (1/4).

This completes the proof of (3.11). We now prove the equivalence between (1) and
(2) under the product condition. It suffices to show that (1)=⇒ (2), as the reversed
implication is trivial. Fix 0 < α < β < 1. It suffices to show that hitα-cutoff occurs
iff hitβ -cutoff occurs.
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Fix ε ∈ (0,1/8). Denote sn = sn(α,β, ε) := �t (n)
rel α−1 log( 1−α

(1−β)ε
)�. By the sec-

ond inequality in Corollary 3.4,

hit(n)
α (1− ε)≤ hit(n)

β (1− 2ε)+ sn and hit(n)
α (2ε)≤ hit(n)

β (ε)+ sn.(3.13)

By the first inequality in Corollary 3.4,

hit(n)
β (2ε)≤ hit(n)

α (2ε)≤ hit(n)
α (ε) and

hit(n)
β (1− ε)≤ hit(n)

β (1− 2ε)≤ hit(n)
α (1− 2ε).

(3.14)

Hence

hit(n)
β (2ε)− hit(n)

β (1− 2ε)≤ hit(n)
α (ε)− hit(n)

α (1− ε)+ sn,

hit(n)
α (2ε)− hit(n)

α (1− 2ε)≤ hit(n)
β (ε)− hit(n)

β (1− ε)+ sn.
(3.15)

Note that by the assumption that the product condition holds, we have that sn =
o(t

(n)
mix). Assume that the sequence exhibits hitα-cutoff. Then by (3.11) the RHS

of the first line of (3.15) is o(t
(n)
mix). Again by (3.11), this implies that the RHS of

the first line of (3.15) is o(hit(n)
β (1/4)) and so the sequence exhibits hitβ -cutoff.

Applying the same reasoning, using the second line of (3.15), shows that if the
sequence exhibits hitβ -cutoff, then it also exhibits hitα-cutoff.

We now prove (3.12). Let a ∈ (0,1). Denote α := min{a,1/2} and β :=
max{a,1/2}. Let sn = sn(α,β, ε) be as before. By the second inequality in Corol-
lary 3.4,

(3.16) hit(n)
α (1/4+ ε)− sn ≤ hit(n)

β (1/4)≤ hit(n)
α (1/4).

By assumption (2) together with the product condition and (3.11), the LHS of
(3.16) is at least (1− o(1))hit(n)

α (1/4), which by (3.16), implies (3.12). �

The following proposition shows that for all α ≤ 1/2 the occurrence of hitα-
cutoff implies that the product condition holds. In particular, this implies the equiv-
alence of (2) and (3) in Theorem 3.

PROPOSITION 3.7. Let (�n,Pn,πn) be a sequence of lazy finite irreducible
reversible chains. Assume that the product condition fails. Then for any α ≤ 1/2
the sequence does not exhibit hitα-cutoff.

Before providing the proof of Proposition 3.7, we complete the proof of Theo-
rem 3.

PROOF OF THEOREM 3. By Fact 1.1 and Proposition 3.7, it suffices to con-
sider the case in which the product condition holds. By Propositions 3.6, it suffices
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to consider the case α = 1/2 (i.e., it suffices to show that under the product condi-
tion the sequence exhibits cutoff iff it exhibits hit1/2-cutoff). This follows at once
from (1.4), (1.5) and (3.12). �

PROOF OF PROPOSITION 3.7. Fix some 0 < α ≤ 1/2. We first argue that for
all n, k ≥ 1

(3.17) hit(n)
α

([1− α/2]k)≤ k
⌈∣∣log2(α/2)

∣∣⌉t (n)
mix.

By the sub-multiplicativity property (3.6), it suffices to verify (3.17) only for
k = 1. As in the proof of Proposition 3.6, by the sub-multiplicativity property
d(mt)≤ (2d(t))m, together with (3.2), we have that hit(n)

α (1−α/2)≤ t
(n)
mix(α/2)≤

�| log2(α/2)|�)t(n)
mix.

Conversely, by the laziness assumption, we have that for all n,

(3.18) hit(n)
α (ε/2)≥ | log2 ε| for all 0 < ε < 1.

To see this, consider the case that X
(n)
0 = yn, for some yn ∈�n such that πn(yn)≤

1/2 ≤ 1 − α, and that the first �| log2 ε|� steps of the chain are lazy (i.e., yn =
X

(n)
1 = · · · =X�| log2 ε|�).
By (3.17) in conjunction with (3.18), we may assume that limn→∞ t

(n)
mix =∞,

as otherwise there cannot be hitα-cutoff. By passing to a subsequence, we may
assume further that there exists some C > 0 such that t

(n)
mix < Ct

(n)
rel . In particular,

limn→∞ t
(n)
rel =∞ and we may assume without loss of generality that (λ

(n)
2 )t

(n)
mix ≥

e−C for all n, where λ
(n)
2 is the second largest eigenvalue of Pn.

For notational convenience, we now suppress the dependence on n from our
notation. Let f2 ∈ R� be a nonzero vector satisfying that Pf2 = λ2f2. By con-
sidering −f2 if necessary, we may assume that A := {x ∈ � : f2 ≤ 0} satisfies
π(A)≥ 1/2. Let x ∈� be such that f2(x)=maxy∈� f2(y)=: L. Note that L > 0
since Eπ [f2] = 0.

Consider Nk := λ−k
2 f2(Xk) and Mk := Nk∧TA

, where X0 = x. Observe that
(Nk)k≥0 is a martingale, and hence so is (Mk)k≥0 (w.r.t. the natural filtration in-
duced by the chain). As Mk ≤ 0 on {TA ≤ k} and Mk ≤ λ−k

2 L on {TA > k}, we get
that for all k > 0, Mk ≤ λ−k

2 L1TA>k , and so

(3.19) L= Ex[M0] = Ex[Mk] ≤ Ex

[
λ−k

2 L1TA>k

]= λ−k
2 LPx[TA > k].

Thus, Px[TA > k] ≥ λk
2, for all k. Consequently, for all a > 0,

(3.20) Px[TA > atmix] ≥ λ
atmix
2 ≥ e−aC.

Thus

hitα(ε/2)≥ hit1/2(ε/2)≥ C−1tmix| log ε| for any 0 < ε < 1.

This, in conjunction with (3.17), implies that hitα(ε)
hitα(1−ε)

≥ | log ε|
C�log2(α/2)� , for all 0 <

ε ≤ α/2. Consequently, there is no hitα-cutoff. �
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3.2. Proof of Lemma 3.5. Now we prove Lemma 3.5. As mentioned before,
the hitting time of a set A starting from stationary initial distribution is well-
understood (see [13]; for the continuous-time analog, see [2], Chapter 3, Sections 5
and 6.5 or [4]). Assuming that the chain is lazy, it follows from the theory of
complete monotonicity together with some linear-algebra that this distribution is
dominated by a distribution which gives mass π(A) to 0, and conditionally on be-
ing positive, is distributed as the Geometric distribution with parameter π(A)/trel.
Since the existing literature lacks simple treatment of this fact (especially for the
discrete-time case), we now prove it for the sake of completeness. We shall prove
this fact without assuming laziness. Although without assuming laziness, the dis-
tribution of TA under Pπ need not be completely monotone, the proof is essentially
identical as in the lazy case.

For any nonempty A ⊂ �, we write πA for the distribution of π conditioned
on A. That is, πA(·) := π(·)1·∈A

π(A)
. For any matrix P and f ∈R� we denote EP (f ) :=

〈(I − P)f,f 〉π .

LEMMA 3.8. Let (�,P,π) be a reversible irreducible finite chain. Let A �

� be nonempty. Denote its complement by B and write k = |B|. Consider the
sub-stochastic matrix PB , which is the restriction of P to B . That is PB(x, y) :=
P(x, y) for x, y ∈ B . Assume that PB is irreducible, that is, for any x, y ∈ B , exists
some t ≥ 0 such that P t

B(x, y) > 0. Then:

(i) PB has k real eigenvalues 1− π(A)/trel ≥ γ1 > γ2 ≥ · · · ≥ γk ≥−γ1.
(ii) There exist some nonnegative a1, . . . , ak satisfying

∑k
i=1 ai = 1 such that

for any t ≥ 0,

(3.21) PπB
[TA > t] =

k∑
i=1

aiγ
t
i .

(iii)

(3.22) PπB
[TA > t] ≤

(
1− π(A)

trel

)t

≤ exp
(
− tπ(A)

trel

)
for all t ≥ 0.

PROOF. We first note that (3.22) follows immediately from (3.21) and (i). In-
deed, by (i), |γi | ≤ γ1 ≤ 1 − π(A)

trel
for all i, and so (3.21) implies that PπB

[TA >

t] ≤ γ t
1 ≤ (1− π(A)

trel
)t for all t ≥ 0.

We now prove (i). Consider the following inner-product on RB , 〈f,g〉πB
:=∑

x∈B πB(x)f (x)g(x). Since P is reversible, PB is self-adjoint w.r.t. this inner-
product. Hence, indeed PB has k real eigenvalues γ1 > γ2 ≥ · · · ≥ γk and there is
a basis of RB , g1, . . . , gk of orthonormal vectors w.r.t. the aforementioned inner-
product, such that PBgi = γigi (i ∈ [k]). By the Perron–Frobenius theorem γ1 > 0
and γ1 ≥−γk .
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By the Courant–Fischer variational characterization of eigenvalues, we have

(3.23) 1− γ1 = inf
{ EP (g)

〈g,g〉π : g ≥ 0, g = 0 on A,g nonconstant
}
.

Also observe that for all g ≥ 0 such that g = 0 on A we have by the
Cauchy–Schwarz inequality that EπB

g2 ≥ (EπB
g)2 [where for f ∈R� we denote

EπB
f :=∑

b πB(b)f (b)] which rearranges to

Varπ g = 〈g −Eπg, g−Eπg〉π ≥ π(A)〈g,g〉π .

Thus, by (3.23) 1 − γ1 ≥ π(A) inf{EP (g)/Varπ g : g ≥ 0, g = 0 on A,g

nonconstant}, which in comparison with the variational characterization of trel
(e.g., [18], Remark 13.13)

1/trel = inf
{
EP (g)/Varπ g : g nonconstant

}
,

yields that 1− γ1 ≥ π(A)/trel. This completes the proof of part (i). We now prove
part (ii).

By summing over all paths of length t which are contained in B we get that

(3.24) PπB
[TA > t] = ∑

x,y∈B
πB(x)P t

B(x, y).

By the spectral representation (cf. [18], Lemma 12.2, and Section 4 of Chapter 3 in
[2]) for any x, y ∈ B and t ∈N we have that P t

B(x, y)=∑k
i=1 πB(y)gi(x)gi(y)γ t

i .
So by (3.24)

PπB
[TA > t] = ∑

x,y∈B
πB(x)

k∑
i=1

πB(y)gi(x)gi(y)γ t
i =

k∑
i=1

aiγ
t
i ,

where ai := (
∑

x∈B πB(x)gi(x))2. Plugging t = 0 shows that indeed
∑k

i=1 ai = 1,
as desired. �

Using the same argument for the continuous-time setup, it follows that

HπB

[
T ct

A > t
]= ∑

x,y∈B
πB(x)

k∑
i=1

πB(y)gi(x)gi(y)e−(1−γi)t

=
k∑

i=1

aie
−(1−γi)t ≤ e−tπ(A)/trel .

We now present an alternative argument, which does not require reversibility
(which allows one to extend Corollary 3.4 and Lemma 3.5 to the nonreversible
continuous-time setup).
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REMARK 3.9. When P is nonreversible, one can consider its additive
symmetrization S = (P + P ∗)/2 (which is reversible), where P ∗(x, y) :=
π(y)P (y, x)/π(x) is the time-reversal of P (and the dual operator). Define
trel := 1/(1 − λ2(S)), where λ2(S) is the second largest eigenvalue of S. Let
A � � be an irreducible set. Denote its complement by B . We argue that with
this notation, it is still the case that HπB

[T ct
A > t] ≤ e−tπ(A)/trel .

As above, consider the sub-stochastic matrices PB,P ∗B,H t
B and SB , which are

the restrictions of P , P ∗, Ht and S (resp.) to B . For any f,g ∈ RB we denote
EπB
[f ] :=∑

x∈B πB(x)f (x), 〈f,g〉πB
:= EπB

[fg] and ‖f ‖pB,p := EπB
[|f |p]. Let

ht (x) :=Ht
B1B(x)=Hx[T ct

A > t]. Then

HπB

[
T ct

A > t
]= EπB

[ht ] = ‖ht‖B,1 ≤ ‖ht‖B,2.

Let f ∈ RB . For any linear operator Q : RB → RB denote EQ(f ) := 〈(I −
Q)f,f 〉πB

. Since EPB
(f )= EP ∗B (f ) it is also the case that EPB

(f )= ESB
(f ). An

elementary calculation shows that

− d

dt

∥∥Ht
Bf

∥∥2
B,2 = 2EPB

(
Ht

Bf
)= 2ESB

(
Ht

Bf
)
.

Moreover, if f is nonnegative and nonzero, then as in (3.23) we have that

ESB

(
Ht

Bf
)≥ π(A)

∥∥Ht
Bf

∥∥2
B,2/trel.

Hence,

d

dt

∥∥Ht
Bf

∥∥2
B,2 ≤−2π(A)

∥∥Ht
Bf

∥∥2
B,2/trel.

Substituting f = 1B yields that HπB
[T ct

A > t] ≤ ‖ht‖B,2 ≤ exp[−tπ(A)/trel], as
desired.

PROOF OF LEMMA 3.5. We first note that (3.9) follows easily from (3.8).
For the first inequality in (3.9) set t = t (A,w) := �trelw/π(A)� and B :=
B(A,w,α)= {y : Py[TA > t] ≥ α}. Then by (3.8)

απ(B)≤ π(B)PπB
[TA > t] ≤ Pπ [TA > t]

≤ π
(
Ac) exp

(−tπ(A)/trel
)≤ π

(
Ac)e−w.

For the first inequality in (3.9), recall that Eπ [TA] =∑
t>0 Pπ [TA > t] and apply

(3.8).
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We now prove (3.8). Denote the connected components of Ac := � \ A by
{C1, . . . ,Ck}. Denote the complement of Ci by Cc

i . By (3.22), we have that

Pπ [TA > t] =
k∑

i=1

π(Ci)PπCi
[TA > t] =

k∑
i=1

π(Ci)PπCi
[TCc

i
> t]

≤
k∑

i=1

π(Ci)

(
1− π(Cc

i )

trel

)t

≤
k∑

i=1

π(Ci)

(
1− π(A)

trel

)t

= π
(
Ac) exp

(
− tπ(A)

trel

)
. �

4. Continuous-time. In this section, we explain the necessary adaptations in
the proof of Proposition 1.8 for the continuous-time case. We also explain the
necessary adaptations in the proof of the continuous time analogue of Theorem 3.
More details can be found at [15]. We fix some finite, irreducible, reversible chain
(�,P,π). For notational convenience, exclusively for this section, we shall denote
the transition-matrix of (XNL

k )k≥0, the nonlazy version of the discrete-time chain,
by P , and that of the lazy version of the chain by PL := (P + I )/2.

We denote the eigenvalues of P by 1 = λct
1 > λct

2 ≥ · · · ≥ λct|�| ≥ −1 and

that of PL by 1 = λL
1 > λL

2 ≥ · · · ≥ λL|�| ≥ −1 (where 1 + λct
i = 2λL

i ). We de-

note tct
rel := (1 − λct

2 )−1 and tLrel := (1 − λL
2 )−1. We identify Ht with the opera-

tor Ht : L2(R�,π)→ L2(R�,π), defined by Htf (x) = Ex[f (Xct
t )]. The spec-

tral decomposition in continuous-time takes the following form. If f1, . . . , f|�|
is an orthonormal basis such that Pfi := λct

i fi for all i, then Htg = EπHtg +∑|�|
i=2〈g,fi〉πe−(1−λct

i )t fi , for all g ∈ R� and t ≥ 0. Thus, the L2-contraction
lemma takes the following form in continuous-time (see, e.g., [18], Lemma 20.5):

(4.1) Varπ Htf ≤ e−2t/tct
rel Varπ f for any f ∈R�, for any t ≥ 0.

Starr’s inequality holds also in continuous-time ([25], Proposition 3) and takes
the following form. Let f ∈ R�. Define the continuous-time maximal function as
f ∗ct(x) := supt≥0 |Htf (x)|. Then

(4.2)
∥∥f ∗ct

∥∥
2 ≤ 2‖f ‖2.

We note that our proof of Theorem 2.3 can easily be adapted to the continuous-time
setup.

For any A ⊂ � and s ∈ R+, set ρ(A) := √π(A)(1− π(A)) and σ ct
s :=

ρ(A)e−s/tct
rel . Define

Gct
s (A,m) := {

y : ∣∣Ht(1A)(y)− π(A)
∣∣ < mσ ct

s for all t ≥ s
}
.

Then similarly to Corollary 2.4, combining (4.1) and (4.2) (in continuous-time
there is no need to treat odd and even times separately) yields

(4.3) π
(
Gct

s (A,m)
)≥ 1− 4/m2 for all A⊂�,s ≥ 0 and m > 0.
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The proof of Corollary 3.1 carries over to the continuous-time case [where every-
where in (3.1)–(3.4), tmix and hit are replaced by tct

mix and hitct, respectively, and
all ceiling signs are omitted], using (4.3) rather than (2.3) as in the discrete-time
case.

Finally, the proof of Proposition 1.8 in the continuous-time case is concluded
by noting that the coupling argument from the discrete-time case carries over to
the continuous-time case, with (3.8) replaced by the inequality Hπ [T ct

A > t] ≤
π(Ac) exp(−tπ(A)/tct

rel) (see Remark 3.9).
We now explain the required adaptations for proving the continuous-time ana-

log of Theorem 3. By the last inequality, as in Lemma 3.5, Bct(A,w,α) := {y :
Hy[T ct

A ≥wtct
rel/π(A)] ≥ α} satisfies

(4.4) π
(
Bct(A,w,α)

)≤ π
(
Ac)e−wα−1 for all w ≥ 0 and 0 < α ≤ 1.

Using (4.4) rather than (3.9), Corollary 3.4 can be extended to the continuous-time
case. Namely, for any reversible irreducible finite chain and any 0 < ε < δ < 1,

hitct
β (δ)≤ hitct

α (δ)≤ hitct
β (δ − ε)+ α−1tct

rel log
(

1− α

(1− β)ε

)

(4.5)
for any 0 < α ≤ β < 1.

Using (4.5) and the continuous-time analog of Proposition 1.8 and of (3.6), one
can obtain a continuous-time analog of Proposition 3.6 by imitating the discrete
time proof.

Finally, in order to obtain a the continuous-time analog of Proposition 3.7 re-
place the discrete time martingale λ−k

2 f2(Xk) by the continuous-time martingale
e(1−λ2)tf2(Xt).

5. Trees. We start with a few definitions. Let T := (V ,E) be a finite tree.
Throughout the section, we fix some lazy Markov chain, (V ,P,π), on a finite tree
T := (V ,E). That is, a chain with stationary distribution π and state space V such
that P(x, y) > 0 iff {x, y} ∈ E or y = x [in which case, P(x, x) ≥ 1/2]. Then P

is reversible by Kolmogorov’s cycle condition.
Following [24], we call a vertex v ∈ V a central-vertex if each connected com-

ponent of T \{v} has stationary probability at most 1/2. A central-vertex always ex-
ists (and there may be at most two central-vertices). Throughout, we fix a central-
vertex o and call it the root of the tree. We denote a (weighted) tree with root o by
(T , o).

Loosely speaking, the analysis below shows that a chain on a tree satisfies the
product condition iff it has a “global bias” toward o. A nonintuitive result is that
one can construct such unweighed trees [23].

The root induces a partial order ≺ on V , as follows. For every u ∈ V , we denote
the shortest path between u and o by �(u) = (u0 = u,u1, . . . , uk = o). We call
fu := u1 the parent of u and denote μu := P(u,fu). We say that u′ ≺ u if u′ ∈
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�(u). Denote Wu := {v : u ∈ �(v)}. Recall that for any ∅ �= A ⊂ V , we write πA

for the distribution of π conditioned on A, πA(·) := π(·)1·∈A
π(A)

.
A key observation is that starting from the central vertex o, the chain mixes

rapidly (this follows implicitly from the following analysis). Let To denote the
hitting time of the central vertex. We define the mixing parameter τ(ε) for ε ∈
(0,1) by

τo(ε) :=min
{
t : Px[To > t] ≤ ε ∀x ∈�

}
.

We show that up to terms of the order of the relaxation-time (which are negligible
under the product condition) τo(·) approximates hit1/2(·) and then using Proposi-
tion 3, the question of cutoff is reduced to showing concentration for the hitting
time of the central vertex. Below we make this precise.

LEMMA 5.1. Denote sδ := �4trel| log(4δ/9)|�. Then

(5.1) τo(ε)≤ hit1/2(ε)≤ τo(ε− δ)+ sδ for every 0 < δ < ε < 1.

PROOF. First observe that by the definition of central vertex, for any x ∈ V ,
x �= o there exists a set A with π(A) ≥ 1

2 such that the chain starting at x cannot
hit A without first hitting o. Indeed, we can take A to be the union of {o} and
all components of T \ {o} not containing x. The first inequality in (5.1) follows
trivially from this.

To establish the other inequality, fix A ⊆ V with π(A) ≥ 1
2 , x ∈ V and some

0 < δ < ε < 1. It follows using Markov property and the definition of τo(ε − δ)

that

Px

[
TA > τo(ε− δ)+ sδ

]≤ Px

[
To > τo(ε− δ)

]+ Po[TA > sδ]
≤ ε− δ+ Po[TA > sδ].

Hence, it suffices to show that Po[TA > sδ] ≤ δ. If o ∈ A then Po[TA > sδ] = 0,
so without loss of generality assume o /∈ A. It is easy to see that we can partition
T \ {o} = T1∪T2 such that both T1 and T2 are unions of components of T \ {o} and
π(T1),π(T2) ≤ 2/3. For i = 1,2, let Ai := A ∩ Ti and without loss of generality
let us assume π(A1)≥ 1

4 . Let B = T2 ∪ {o}. Clearly, the chain started at any x ∈ B

must hit o before hitting A1. Hence,

Po[TA > sδ] ≤ Po[TA1 > sδ]
≤ PπB

[TA1 > sδ]
≤ π(B)−1Pπ [TA1 > sδ].

(5.2)

Using π(A1) ≥ 1
4 , π(B) ≥ 1

3 it follows from (3.8) that π(B)−1Pπ [TA1 >

sδ] ≤ δ. �
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In light of Lemma 5.1 and Proposition 1.8, in order to show that in the setup
of Theorem 1 (under the product condition) cutoff occurs it suffices to show that
τ

(n)
on (ε)− τ

(n)
on (1− ε)= o(t

(n)
mix), for any ε ∈ (0,1/4]. We actually show more than

that. Instead of identifying the “worst” starting position x and proving that To is
concentrated under Px , we shall show that for any x, y ∈ Vn such that y ≺ x and
Ex[Ty] =	(t

(n)
mix), Ty is concentrated under Px , around Ex[Ty], with deviations of

order
√

t
(n)
rel t

(n)
mix. This shall follow from Chebyshev inequality, once we establish

that Varx[Ty] ≤ 4trelEx[Ty].
Let (v0 = x, v1, . . . , vk = y) be the path from x to y (y ≺ x). Define τi :=

Tvi
− Tvi−1 . Then by the tree structure, under Px we have that Ty =∑k

i=1 τi and
that τ1, . . . , τk are independent. This reduces the task of bounding Varx[Ty] from
above, to the task of estimating Varvi

[Tvi+1] =Varvi
[Tfvi
] from above for each i.

LEMMA 5.2. For any vertex u �= o, we have that

tu := Eu[Tfu] =
π(Wu)

π(u)μu

and

ru := Eu

[
T 2

fu

]= 2tuEπWu
[Tfu] − tu ≤ 4tutrel.

(5.3)

The assertion of Lemma 5.2 follows as a particular case of Proposition 5.6 at
the end of this section.

COROLLARY 5.3. Let x, y ∈ V be such that y � x and c ≥ 0. Denote σx,y :=√
4Ex[Ty]trel. Then

Varx[Ty] ≤ σ 2
x,y,(5.4)

Px

[
Ty ≥ Ex[Ty] + cσx,y

]≤ 1

1+ c2 and

(5.5)

Px

[
Ty ≤ Ex[Ty] − cσx,y

]≤ 1

1+ c2 .

In particular, if (Vn,Pn,πn) is a sequence of lazy Markov chains on trees (Tn, on)

which satisfies the product condition, and xn, yn ∈ Vn satisfy that yn ≺ xn and
Exn[Tyn]/t

(n)
rel →∞, then for any ε > 0 we have that

(5.6) lim
n→∞Pxn

[∣∣Tyn −Exn[Tyn]
∣∣≥ εExn[Tyn]

]= 0.

PROOF. We first note that (5.5) follows from (5.4) by the one-sided Chebyshev
inequality. Also, (5.6) follows immediately from (5.5). We now prove (5.4). Let
(v0 = x, v1, . . . , vk = y) be the path from x to y. Define τi := Tvi

− Tvi−1 . Then
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by the tree structure, under Px , we have that Ty =∑k
i=1 τi and that τ1, . . . , τk are

independent. Whence, by (5.3) we get that

Varx[Ty] =
k∑

i=1

Varvi−1[Tvi
] ≤

k∑
i=1

Evi−1

[
T 2

vi

]≤ 4trel

k∑
i=1

Evi−1[Tvi
] = σ 2

x,y.

This completes the proof. �

LEMMA 5.4. If (V ,P,π) is a lazy chain on a (weighted) tree (T , o) then

(5.7) Ex[To] ≤ 4tmix for all x ∈ V.

PROOF. Fix some x ∈ V . Let Cx be the component of T \ {o} containing x.
Denote B := V \Cx . Consider τB := inf{k ∈N :Xktmix ∈ B}. Clearly, To ≤ τBtmix.
Since π(B)≥ 1/2, by the Markov property and the definition of the total variation
distance, the distribution of τB is stochastically dominated by the geometric distri-
bution with parameter 1/2− 1/4= 1/4. Hence, Ex[To] = Ex[TB] ≤ tmixEx[τB] ≤
4tmix. �

COROLLARY 5.5. In the setup of Lemma 5.2, for any x ∈ V denote tx :=
Ex[To]. Fix ε ∈ (0, 1

4 ], Denote

ρ :=max
x∈V tx, and κε :=

√
4ε−1ρtrel, then

ρ ≤ 4tmix, τo(1− ε)≥ ρ − κε and τo(ε) < ρ + κε.(5.8)

PROOF. By (5.7) ρ ≤ 4tmix. Denote σ := √4ρtrel and cε :=
√

ε−1 − 1. Take
x ∈ V \ {o}. By (5.4) σ 2

x,o := Varx[To] ≤ σ 2. The assertion of the corollary now
follows from (5.5) by noting that cεσ ≤ κε . �

Now we are ready to prove Theorem 1.

PROOF OF THEOREM 1. Fix ε ∈ (0, 1
4 ]. It follows from (1.4) and (1.5) that

tmix(ε)− tmix(1− ε)

≤ hit1/2(ε/2)− hit1/2(1− ε/2)+ trel
(
3| log ε| + log 4

)+ 2.
(5.9)

Using Lemma 5.1 with (ε, δ) there replaced by (ε/2, ε/4), it follows that

(5.10) hit1/2(ε/2)− hit1/2(1− ε/2)≤ τo(ε/4)− τo(1− ε/2)+ sε/4,

where sε/4 is as in Lemma 5.1. It follows from (5.9), (5.10) and (5.8) that

tmix(ε)− tmix(1− ε)

≤ κε/4 + κε/2 + trel
(
7| log ε| + 4 log 9− 3 log 4

)+ 3.
(5.11)
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It follows from (5.8) that κε/4+κε/2 ≤ 14
√

ε−1treltmix. For any irreducible Markov
chain on n > 1 states, we have that λ2 ≥− 1

n−1 ([2], Chapter 3, Proposition 3.18).
As any lazy chain is a lazy version of some chain, it follows that for a lazy chain
with at least 3 states we have that λ2 ≥ (1 + (−1

2))/2 and so trel ≥ 4/3. Thus,
by (1.2) trel ≤ 6(trel − 1) log 2 ≤ 6tmix. Using the fact that | log ε| ≤ 2

e
√

ε
for ev-

ery 0 < ε ≤ 1 (h(x) = 2
√

x/e − logx attains its minimum in [1,∞) at e2 and

h(e2) = 0), it follows that 7trel| log ε| ≤ 14
√

6
e

√
ε−1treltmix ≤ 13

√
ε−1treltmix. As√

6(4 log 9− 3 log 4) < 12,
√

ε−1 ≥ 2 and 4
√

treltmix ≥ 4
√

4/3≥ 3; we also have
that trel(4 log 9− 3 log 4)+ 3 ≤ 8

√
ε−1treltmix. Plugging these estimates in (5.11)

completes the proof of the theorem. �

As promised earlier, the following proposition implies the assertion of Lemma
5.2. For any set A ⊂ �, we define ψAc ∈P(Ac) as ψAc(y) := PπA

[X1 = y |
X1 ∈ Ac]. For A ⊂ �, we denote T +A := inf{t ≥ 1 : Xt ∈ A} and �(A) :=∑

a∈A,b∈Ac π(a)P (a,b)

π(A)
= PπA

[X1 /∈A]. Note that

π(A)�(A)= ∑
a∈A,b∈Ac

π(a)P (a, b)

= ∑
a∈A,b∈Ac

π(b)P (b, a)= π
(
Ac)�(

Ac).(5.12)

This is true even without reversibility, since the second term (resp., third term) is
the asymptotic frequency of transitions from A to Ac (resp., from Ac to A).

PROPOSITION 5.6. Let (�,P,π) be a finite irreducible reversible Markov
chain. Let A�� be nonempty. Denote the complement of A by B . Then

(5.13) PπB
[TA = t]/�(B)= PψB

[TA ≥ t] for any t ≥ 1.

Consequently,

EψB
[TA] = 1

�(B)
and

EψB

[
T 2

A

]= EψB
[TA](2EπB

[TA] − 1
)≤ 2EψB

[TA]trel

π(A)
.

(5.14)

PROOF. We first note that the inequality EψB
[TA](2EπB

[TA] − 1) ≤
2EψB

[TA]trel/π(A) follows from the second inequality in (3.8) (this is the only
part of the proposition which relies upon reversibility).

Summing (5.13) over t yields the first equation in (5.14). Multiplying both sides
of (5.13) by 2t − 1 and summing over t yields the second equation in (5.14).
We now prove (5.13). Let t ≥ 1. As {TA = t} = {X0 /∈ A, . . . ,Xt−1 /∈ A,Xt ∈
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A}, {T +A = t + 1} = {X1 /∈ A, . . . ,Xt /∈ A,Xt+1 ∈ A} we have by stationarity that
Pπ [TA = t] = Pπ [T +A = t + 1]. Thus,

π(B)PπB
[TA = t]

= Pπ [TA = t] = Pπ

[
T +A = t + 1

]
= Pπ [X1 /∈A, . . . ,Xt /∈A,Xt+1 ∈A]
= Pπ [X1 /∈A, . . . ,Xt /∈A] − Pπ [X1 /∈A, . . . ,Xt /∈A,Xt+1 /∈A]
= Pπ [X1 /∈A, . . . ,Xt /∈A] − Pπ [X0 /∈A, . . . ,Xt /∈A]
= Pπ [X0 ∈A,X1 /∈A, . . . ,Xt /∈A]
= π(A)�(A)PψB

[X0 /∈A, . . . ,Xt−1 /∈A]
= π(A)�(A)PψB

[TA ≥ t],
which by [5.12] implies (5.13). �

5.1. Refining the bound for trees. The purpose of this section is to improve
the concentration estimate (5.5). As a motivating example, consider a lazy nearest
neighbor random walk on a path of length n with some fixed bias to the right.
For concreteness, say, �n := {1,2, . . . , n}, Pn(i, i)= 1/2, Pn(i, i − 1)= 1/8 and
Pn(i, i + 1)= 3/8 for all 1 < i < n. Then t

(n)
mix = 4n(1+ o(1)) and t

(n)
rel =	(1).

In this case, there exists some constant c1 > 0 such that for any λ > 0 we have

that P1[|Tn − 4n| ≥ λ
√

n] ≤ 2e−c1λ
2
. Observe that

√
t
(n)
mixt

(n)
rel = 	(

√
n). Hence,

there exists some constant c2 such that P1[|Tn − 4n| ≥ λ

√
t
(n)
mixt

(n)
rel ] ≤ 2e−c2λ

2
.

Using Proposition 1.8, it is not hard to show that this implies that t
(n)
mix(ε) ≤

t
(n)
mix+ c3

√
t
(n)
mixt

(n)
rel | log ε| and that t

(n)
mix(1− ε)≥ t

(n)
mix− c3

√
t
(n)
mixt

(n)
rel | log ε|. It is also

not hard to verify that in this case (and also in many other examples of birth and
death chains) this is sharp.

In Lemma 5.8, we show that for any lazy Markov chain on a tree T = (V ,E,o)

and any x ∈ V , we have that Px[|To − Ex[To]| ≥ λ
√
Ex[To]trel] ≤ 2e−c4λ

2
. Be-

sides being of independent interest, using Proposition 1.8, one can deduce from
Lemma 5.8 that under the product condition,

(5.15)
t
(n)
mix(ε)− t

(n)
mix(1− ε)√

t
(n)
mixt

(n)
rel | log ε|

=O(1) for any 0 < ε ≤ 1/4.

The details of the derivation of (5.15) from Lemma 5.8 are left to the reader.

PROPOSITION 5.7. Let (�,P,π) be a finite irreducible reversible lazy
Markov chain. Let 0 < ε < 1. Let A � � be such that π(A) ≥ 1 − ε. De-
note the complement of A by B . Denote p := 1 − 1−ε

trel
and a := EψB

[TA]. Let
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1 < z < max(1/p,2) be such that q := p(z− 1)/(1− p)≤ 1/2. Then

(5.16) EψB

[
zTA−a]≤ exp

[
2a(z− 1)2

(1− p)

]
and EψB

[
za−TA

]≤ exp
[
a(z− 1)2

(1− p)

]
.

PROOF. Let q := p(z−1)
1−p

and 0≤ γ ≤ p. Then by our assumption that pz < 1,
we have that∑

k≥1

(1− γ )(γ z)k−1 = (1− γ )/(1− γ z)≤ (1− p)/(1− pz)

= 1+ q

1− q
≤ 1+ 2q

[alternatively, this follows by noting that (for a fixed z) zk is a monotone increasing
function and that the Geometric distribution with parameter (1−p) stochastically
dominates the Geometric distribution with parameter (1 − γ )]. By Lemma 3.8
[parts (i)–(ii)] and laziness, there exist

∑�
i=1 ai = 1 and 0≤ γi ≤ p such that

∑
k≥1

zk−1PπB
[TA = k] =

�∑
i=1

ai

∑
k≥1

(1− γi)(γiz)
k−1

≤
�∑

j=1

ai(1+ 2q)= 1+ 2q.

Hence, by (5.13)–(5.14) (third equality) we have that

EψB

[
zTA

]=∑
k≥1

zkPψB
[TA = k]

= 1+ (z− 1)
∑
k≥1

zk−1PψB
[TA ≥ k]

= 1+ (z− 1)a
∑
k≥1

zk−1PπB
[TA = k]

≤ 1+ (z− 1)a(1+ 2q)≤ exp
[
a(z− 1)(1+ 2q)

]
.

(5.17)

As for any 1≤ x ≤ 2, we have that 0≤ logx− (x− 1)+ (x− 1)2/2, we also have
that

z−a ≤ exp
[−a(z− 1)+ a(z− 1)2/2

]
.(5.18)

Thus, EψB
[zTA−a] ≤ exp[a(z − 1)2(1/2 + 2p/(1 − p))] ≤ exp[2a(z−1)2

(1−p)
], as de-

sired. We now turn to the task of bounding EψB
[z−TA]. Let y := p(1−z−1)

1−p
. In the
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above notation, much as before, we have∑
k≥1

z−(k−1)PπB
[TA = k] ≥∑

k≥1

(1− p)(p/z)k

= (1− p)/(1− p/z)= 1

1+ y
≥ 1− y,

EψB

[
z−TA

]=∑
k≥1

z−kPψB
[TA = k]

= 1− (
1− z−1) ∑

k≥1

z−(k−1)PψB
[TA ≥ k](5.19)

= 1− (
1− z−1)

a
∑
k≥1

z−(k−1)PπB
[TA = k]

≤ 1− (
1− z−1)

a(1− y)

≤ exp
[−a

(
1− z−1)

(1− y)
]
.

We also have that za ≤ ea(z−1). Note that a(z − 1)− a(1− z−1) = a(z − 1)2/z.

Hence, EψB
[za−TA] ≤ exp[a(z− 1)2(1+ p/(1− p))] ≤ exp[a(z−1)2

(1−p)
]. �

LEMMA 5.8. Let (V ,P,π) be a lazy Markov chain on a tree (T , o). Let x, y ∈
V be such that y ≺ x. Denote tx,y := Ex[Ty] and b= bx,y := √tx,y trel. Then

Px[Ty − tx,y ≥ cb] ∨ Px[tx,y − Ty ≥ cb] ≤ e−3c2/64

(5.20)
for any 0≤ c ≤ 2

√
tx,y/trel.

PROOF. Let (v0 = x, v1, . . . , vk = y) be the path from x to y. Define τi :=
Tvi
− Tvi−1 . Then by the tree structure, under Px , we have that Ty =∑k

i=1 τi and
that τ1, . . . , τk are independent. Denote p := 1 − 1

2trel
. Denote ai := Ex[τi]. Fix

some 0 ≤ c ≤ 2
√

tx,y/trel. Set zc = zc,x := 1+ c
8b

. Note that 2p(zc − 1) ≤ c
4b
≤

1
2trel
= 1− p (i.e., q < 1/2) and zc < max(1/p,2). Then by (5.16)

Px[Ty − tx,y ≥ cb]
= Px

[
z
Ty−tx,y
c ≥ zcb

c

]

≤ Ex

[
z
Ty−tx,y
c

]
z−cb
c = z−cb

c

k∏
i=1

Ex

[
zτi−ai
c

]

≤ exp
[(−(zc − 1)+ (zc − 1)2/2

)
cb

] k∏
i=1

exp
[

2ai(zc − 1)2

1− p

]
(5.21)
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= exp
[
−c2

8
+ c3

128b

]
exp

[
4treltx,yc

2

64b2

]

≤ exp
[
−c2

8
+ c3

128b
+ c2

16

]
≤ e−3c2/64.

The inequality Px[tx,y − Ty ≥ cb] ≤ e−3c2/64 is proved in an analogous manner.
�

6. Weighted random walks on the interval with bounded jumps. In this
section, we prove Theorem 2 and establish that product condition is sufficient
for cutoff for a sequence of (δ, r)-SBD chains. Although we think of δ as be-
ing bounded away from 0, and of r as a constant integer, it will be clear that our
analysis remains valid as long as δ does not tend to 0, nor does r to infinity, too
rapidly in terms of some functions of trel/tmix.

Throughout the section, we use C1,C2, . . . to describe positive constants which
depend only on δ and r . Consider a (δ, r)-SBD chain on ([n],P ,π). We call a
state i ∈ [n] a central-vertex if π([i − 1])∨ π([n] \ [i])≤ 1/2. As opposed to the
setting of Section 5, the sets [i−1] and [n] \ [i] need not be connected components
of [n] \ {i} w.r.t. the chain, in the sense that it might be possible for the chain to
get from [i − 1] to [n] \ [i] without first hitting i (skipping over i). We pick a
central-vertex o and call it the root.

Divide [n] into m := �n/r� consecutive disjoint intervals, I1, . . . , Im each of
size r , apart from perhaps Im. We call each such interval a block. Denote by Iõ the
unique block such that the root o belongs to it. Since we are assuming the product
condition (and thus t

(n)
mix →∞), in the setup of Theorem 2 we can assume that

n r , and hence Iõ �= [n] (it is not hard to show that t
(n)
mix can be bounded from

above in terms of n and δ, and thus we must have n→∞). Observe the following.
Consider some v /∈ Iõ and u ∈ Iõ such that |u− v| = 1. Then by the definition of
a (δ, r)-SBD chain, we have for all v′ ∈ Iõ, π(v)≥ δrπ(v′). Hence, π(Iõ)≤ r

r+δr .

For the rest of this section, let us fix α = α(δ, r) := 1− δr

4(r+δr )
.

Recall that in Section 5 we exploited the tree structure to reduce the problem
of showing cutoff to showing the concentration of the hitting time of the central
vertex by showing that starting from the central vertex the chain hits any large set
(with large probability) quickly. We argue similarly in this case with the central
vertex replaced by the central block. First, we need the following lemma.

LEMMA 6.1. In the above setup, let I := {v, v + 1, . . . , v + r − 1} ⊂ [n]. Let
μ ∈P(I ). Then

(6.1) Eμ[TA] ≤max
y∈I Ey[TA] ≤ δ−r min

x∈I Ex[TA] for any A⊂ [n] \ I.
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Consequently, for any i ∈ I and A⊂ [v− 1] (resp. A⊂ [n] \ [v+ r − 1]) we have
that

(6.2) Ei[TA] ≤ δ−rEπ[n]\[v−1] [TA], (
resp. Ei[TA] ≤ δ−rEπ[v+r−1] [TA]).

PROOF. We first note that (6.2) follows from (6.1). Indeed, by condition (i) of
the definition of a (δ, r)-SBD chain, if A⊂ [v − 1] (resp. A⊂ [n] \ [v + r − 1]),
then under Pπ[n]\[v−1] (resp., under Pπ[v+r−1]), TI ≤ TA. Thus, (6.2) follows from
(6.1) by averaging over XTI

. We now prove (6.1).
Fix some A such that A ⊂ [n] \ I . Fix some distinct x, y ∈ I . Let B1 be the

event that Ty ≤ TA. One way in which B1 can occur is that the chain would move
from x to y in |y − x| steps such that |Xk − Xk−1| = 1 for all 1 ≤ k ≤ |y − x|.
Denote the last event by B2. Then

Ex[TA] ≥ Ex[TA1B2] ≥ Px[B2]Ey[TA] ≥ δrEy[TA].
Minimizing over x yields that for any y ∈ I we have that Ey[TA] ≤
δ−r minx∈I Ex[TA], from which (6.1) follows easily. �

The next proposition reduces the question of proving cutoff for a sequence of
(δ, r)-SBD chains under the product condition to that of showing an appropriate
concentration for the hitting time of the central block. The argument is analogous
to the one in Section 5, and hence we only provide a sketch to avoid repetitions.
As in Section 5, for ε ∈ (0,1) let τC(ε) := min{t : Px[TIõ

> t] ≤ ε, ∀x ∈ [n]}. As

always, we write τ
(k)
C (·) to indicate that this parameter is taken w.r.t. the kth chain

in a sequence of (δ, r)-SBD chains.

PROPOSITION 6.2. Let ([nk],Pk,πk) be a sequence of (δ, r)-SBD chains.
Suppose that there exist constants Cε for ε ∈ (0, 1

8) and a some sequence (wk)
∞
k=1

of numbers such that for all k

(6.3) τ
(k)
C (ε)− τ

(k)
C (1− ε)≤ Cεwk for all 0 < ε < 1/8.

Then there exist some constants C′ε,C′′ε such that for all k and all ε ∈ (0,1/8)

hit(k)
1/2(3ε/2)− hit(k)

1/2(1− 3ε/2)≤ Cεwk +C′εt
(k)
rel and(6.4)

t
(k)
mix(2ε)− t

(k)
mix(1− 2ε)≤ Cεwk +C′′ε t

(k)
rel .(6.5)

PROOF. Observe that (6.5) follows from (6.4) using Proposition 1.8 and
Corollary 3.4. To deduce (6.4) from (6.3), we argue as in Lemma 5.1 using
Lemma 6.3 below, which shows that starting from any vertex in Iõ the chain hits
any set of π -measure at least α in time proportional to trel with large probability.
We omit the details. �



1480 R. BASU, J. HERMON AND Y. PERES

LEMMA 6.3. Let v ∈ Iõ. Let D ⊂ [n] be such that π(D) ≥ 1+α
2 . Then

Ev[TD] ≤ C(α)δ−r trel for some constant C(α). In particular, by Markov inequality
hitα,v(ε)≤ ε−1C(α)δ−r trel.

PROOF. Let Iõ = {v1, v1 + 1, . . . , v2}. Set A1 = [v1 − 1] and A2 = [n] \ [v2].
For i = 1,2, let Di =D ∩Ai . Using the definition of α, without loss of generality
let π(D1)≥ 1−α

2 . Set A=A2 ∪ Iõ. By (6.2) and the fact that π(A)≥ 1
2

Ev[TD] ≤ Ev[TD1] ≤ δ−rEπA
[TD1] ≤ 2δ−rEπ [TD1].

The proof is completed using Lemma 3.5. �

Observe that, arguing as in Corollary 5.5, it follows using Chebyshev inequal-
ity that (6.3) holds for some constants Cε if we take wn = maxx∈[n]

√
Varx[TIõ

].
Theorem 2 therefore follows at once from Proposition 6.2 provided we estab-
lish Varx[TIõ

] ≤ C1Ex[TIõ
]trel for all x /∈ Iõ [since as in (5.8) (first inequality)

Ex[TIõ
] =O(tmix), alternatively, this follows by (1.7)]. This is what we shall do.

Observe that the root induces a partial order on the blocks. We say that Ij ≺ Ik

if Ij is a block between Ik and Iõ. For j ∈ [m], Ij �= Iõ, we define the parent block
of Ij in the obvious manner and denote its index by fj . We define

T (j) := TIj
and τ̄j := T (fj )− T (j).

Consider some arbitrary x ∈ [n] and j ∈ [m] \ {õ} such that x ∈ Ij . Denote
k := |j − õ|, j0 = j and ji+1 = fj for all 0 < i < k. Observe that starting from x

we have that TIõ
=∑k−1

�=0 τ̄j�
. As mentioned above, we will bound Varx[∑k−1

�=0 τ̄j�
].

As opposed to the situation in Section 5, the terms in the sum are no longer
independent. We now show that the correlation between them decays exponen-
tially (Lemma 6.5) and that for all � we have that Varx[τ̄j�

] ≤ C2trelEx[τ̄j�
]

(Lemma 6.6). The desired variance estimate, Varx[∑k−1
�=0 τ̄j�

] ≤ C1Ex[TIõ
]trel, fol-

lows by combining these two lemmata. We omit the details.

LEMMA 6.4. In the above setup, let v ∈ [m] \ {õ}. Let (v0 = v, v1, . . . , vs)

be indices of consecutive blocks. Let μ1,μ2 ∈P(Iv). Let k ∈ [s]. Denote by ν
(j)
k

(j = 1,2) the hitting distribution of Ivk
starting from initial distribution μj (i.e.,

ν
(j)
k (z) := Pμj

[XT (vk) = z]). Then ‖ν(1)
k − ν

(2)
k ‖TV ≤ (1− δr)k .

PROOF. It suffices to prove the case k = 1 as the general case follows by in-
duction using the Markov property. The case k = 1 follows from coupling the
chain with the two different starting distributions in a way that with probability at
least δr there exists some zv ∈ Iv such that both chains hit zv before hitting Ifv

(not necessarily at the same time) and from that moment on (which may occur at
different times for the two chains) they follow the same trajectory. The fact that
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the hitting time of zv (and thus also of Ifv ) might be different for the two chains
makes no difference [as regardless of the hitting time of Ifv w.r.t. the two chains,

this coupling is also a coupling of (ν
(1)
1 , ν

(2)
1 ), having the desired property]. We

now describe this coupling more precisely.
Let μ1,μ2 ∈ P(Iv). Let (X

(1)
t )t≥0 and (X

(2)
t )t≥0 be independent Markov

chains where (X
(i)
t )t≥0 is distributed as the chain (�,P,π) with initial distribu-

tion μi (i = 1,2) as follows. Pick v1 ∼ μ1 and v2 ∼ μ2, respectively. Run the chain
X

(1)
t started from v1. Let R :=min{t :X(1)

t =X
(2)
0 } and Li :=min{t :X(i)

t ∈ Ifv }.
Let S denote the event: R ≤ L1. On S, define Y

(1)
t by setting Y

(1)
t =X

(1)
t for t < R

and Y
(1)
R+t =X

(2)
t for any t ≥ 0, and on Sc, define Y

(1)
t =X

(1)
t for all t . Denote the

joint law of (Y
(1)
t ,X

(2)
t ) by Pμ1,μ2 and of (X

(1)
t , Y

(1)
t ,X

(2)
t ) by Pμ1,μ1,μ2 . Clearly,

Pμ1,μ2 is a coupling with the correct marginals and Pμ1,μ1,μ2[S] ≥ δr . Let L2 be as

above and L̄1 :=min{t : Y (1)
t ∈ Ifv }. Note that on S, X

(2)
L2
= Y

(1)

L̄1
. Hence, for any

D ⊂ Ivk
,

ν
(1)
1 (D)− ν

(2)
1 (D)= Pμ1,μ2

[
Y

(1)

L̄1
∈D

]− Pμ1,μ2

[
X

(2)
L2
∈D

]

≤ Pμ1,μ2

[
Y

(1)

L̄1
∈D,X

(2)
L2

/∈D
]

≤ 1− Pμ1,μ1,μ2[S] ≤ 1− δr . �

LEMMA 6.5. In the setup of Lemma 6.4, let 0 ≤ i < j < s. Let μ ∈P(Iv).
Write τi := τ̄vi

and τj := τ̄vj
. Then

Eμ[τiτj ] ≤ Eμ[τi]Eμ[τj ](1+ (
1− δr)j−i−1

δ−r).
PROOF. Let μi+1 and μj be the hitting distributions of Ivi+1 and of Ivj

, re-
spectively, of the chain with initial distribution μ. By the Markov property, the
hitting distribution of Ivj

for the chain started with initial distribution either μ or
μi+1 is simply μj . Again by the Markov property Eμ[τj ] = Eμi+1[τj ] = Eμj

[τj ]
and

(6.6) Eμ[τiτj ] ≤ Eμ[τi] max
y∈Ivi+1

Ey[τj ].

Let y∗ ∈ Ivi+1 be the state achieving the maximum in the RHS above. By
Lemma 6.4, we can couple successfully the hitting distribution of Ivj

(and thus
also τj ) of the chain started from y∗ with that of the chain starting from initial
distribution μi+1 with probability at least 1− (1− δr)j−i−1. If the coupling fails,
then by (6.1) we can upper bound the conditional expectation of τj by δ−r Eμ[τj ].
Hence,

Ey∗[τj ] ≤ Eμj
[τj ] + (1− δ)j−i−1δ−rEμ[τj ] = Eμ[τj ](1+ (

1− δr)j−i−1
δ−r).

The assertion of the lemma follows by plugging this estimate in (6.6). �
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LEMMA 6.6. Let j ∈ [m] \ {o}. Let ν ∈ P([n]). Then there exists some
C1,C2 > 0 (depending on δ and r) such that Eν[τ̄ 2

j ] ≤ C1trel�(Ij )
−1 ≤

C2trelEν[τ̄j ].

PROOF. Let μ :=ψIj
. By condition (i) in the definition of a (δ, r)-SBD chain,

μ ∈P(Ij ). By (5.14), Eμ[τ̄ 2
j ] ≤ C3trel�(Ij )

−1 ≤ C4trelEμ[τ̄j ] for constants C3,
C4 depending on δ and r . The proof is complete using the same reasoning as in
the proof of (6.1) to argue that the first and second moments of τ̄j w.r.t. different
initial distributions can change by at most some multiplicative constant. �

7. Examples.

7.1. Aldous’ example. We now present a small variation of Aldous’ example
of a sequence of chains which satisfies the product condition but does not exhibit
cutoff. The reason we present this example is that it demonstrates that Theorem 2
may fail if condition (ii) in the definition of a (δ, r)-semi birth and death chain
is not satisfied. Loosely speaking, the main point in the construction is that the
set of stationary measure at least 1/2 which is hardest to hit (by time t for all t)
can be taken to be a certain singleton, {2n + 1}, and that there is a state, −10n,
satisfying limn→∞ supt |P−10n[T2n+1 > t] − p(n)(1/2, t)| = 0 such that T2n+1 is
not concentrated under P−10n. In particular, there is no hit1/2-cutoff. Because this
example is classic and was analyzed in details in [5, 6], we shall only give a sketch
of the proof of the above claims.

EXAMPLE 7.1. Consider the chain (�n,Pn,πn), where �n := {−10n,

−10n+2, . . . ,−2,0}∪[2n+1]. Think of �n as two paths (we call them branches)
of length n joined together at the ends and a path of length 5n joined to them at
0 (see Figure 1). Set Pn(x, x) = 1/2 if x is even, Pn(x, x) = 3/4 if x is odd and
x < 2n+ 1 and Pn(2n+ 1,2n+ 1)= 9/10.

Conditionally on making a nonlazy step the walk moves with a fixed bias toward
2n+ 1 (apart from at the states −10n,0,2n+ 1):

Pn

(
2i,min{2i + 2,2n+ 1})= 2Pn(2i,2i − 2)= 2Pn(2i − 1,2i + 1)

= 4Pn

(
2i − 1,max{2i − 3,0})= 1

3 .

Finally, we set Pn(−10n,−10n+ 2)= 1/2, Pn(0,2)= Pn(0,1)= 2Pn(0,−2)=
1
5 and Pn(2n+1,2n)= Pn(2n+1,2n−1)= 1

20 . It is easy to check that this chain
is indeed reversible.

By Cheeger inequality (e.g., [18], Theorem 13.14), t
(n)
rel = O(1), as the

bottleneck-ratio is bounded from below. In particular, the product condition holds.
As πn(2n+ 1) > 1/2, there is hit1/2-cutoff [and hence by Proposition 3.6 there is
hitα-cutoff for all α ∈ (0,1)] iff starting from −10n, the hitting-time of 2n+ 1 is
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FIG. 1. We consider a Markov chain on the above graph with the following tran-
sition probabilities: Pn(x, x) = 1/2 for x even and Pn(x, x) = 3/4 for x < 2n + 1
and odd. Pn(0,2) = Pn(0,1) = 1

5 ,Pn(0,−2) = 1
10 , Pn(−10n,−10n + 2) = 1/2,

Pn(2n+ 1,2n)= Pn(2n+ 1,2n− 1)= 1
20 , and hence Pn(2n+ 1,2n+ 1)= 9

10 . All other transition

probabilities are given by: Pn(2i,min{2i+2,2n+1})= 1
3 , Pn(2i,2i−2)= Pn(2i−1,2i+1)= 1

6 ,

Pn(2i − 1,max{2i − 3,0})= 1
12 .

concentrated. We now explain why this is not the case. In particular, by Theorem 3,
there is no cutoff.

Let Y denote the last step away from 0 before T2n+1. Observe that if Y = 2
(resp., Y = 1), then the chain had to reach 2n+ 1 through the path (2,4, . . . ,2n)

[(1,3, . . . ,2n − 1), resp.]. Denote, Zi := T2n+11Y=i , i = 1,2. Then on Y = i,
T2n+1 = Zi , and its conditional distribution is concentrated around 42n for i = 1
and around 36n for i = 2, with deviations of order

√
n. Since both Y = 1 and

Y = 2 have probability bounded away from 0, it follows that dn(37n) and dn(41n)

are both bounded away from 0 and 1 (see Figure 2). In particular, the product
condition holds but there is no cutoff.

7.2. Sharpness of Theorem 3. Now we give an example to show that in Propo-
sition 3.7 (and hence in Theorem 3) the value 1

2 cannot be replaced by any larger
value.

EXAMPLE 7.2. Let (�n,Pn,πn) be the nearest-neighbor weighted random
walk from Figure 3. Then t

(n)
rel =	(t

(n)
mix), yet for every 1/2 < α < 1, the sequence

exhibits hitα-cutoff.

PROOF. Let �n := minA⊂�n:0<πn(A)≤1/2 �n(A) be the Cheeger constant of

the nth chain, where �n(A) :=
∑

a∈A,b∈Ac πn(a)Pn(a,b)

πn(A)
. Then by taking A to be either
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FIG. 2. Decay in total variation distance for Aldous’ example: it does not have cutoff.

A1 or A2, by Cheeger inequality (e.g., [18], Theorem 13.14), we have that t
(n)
rel ≥

1
2�n
≥ c1n

2 ≥ c2t
(n)
mix [it is easy to show that by (1.7) and the fact that πn(Ai) =

1/2− o(1) for i = 1,2 we have that t
(n)
mix ≤ Cn2]. By (1.2), indeed t

(n)
rel =	(t

(n)
mix)

and it follows from Fact 1.1 that there is no cutoff.
Fix some 1/2 < α < 1. Let B ⊂�n be such that πn(B)≥ α. Denote the set of

vertices belonging to the path, but not to A1 by D. Then πn(D)=O(n−2)= o(1).
Consequently, πn(Ai ∩B)≥ α − 1/2− o(1), for i = 1,2. Using this observation,

FIG. 3. We consider a lazy weighted nearest-neighbor random walk on the above graph consist-
ing of two disjoint cliques A1 and A2 of size n connected by a single edge and a path of length
kn = �logn� connected to A1. The edge weights of all edges incident to vertices in A1 ∪ A2 is 1,
while those belonging to the path are indicated in the figure. Inside the path, the walk has a fixed
bias towards the clique.
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it is easy to verify that for all x ∈A1 ∪A2 we have that

(7.1) hitα,x(ε)≤ cα log(1/ε) for any 0 < ε < 1,

for some constant cα independent of n.
Let y be the endpoint of the path which does not lie in A1. Let z be the other

endpoint of the path. The hitting time of z under Py is concentrated around time
6 logn. Then by (7.1), together with the Markov property (using the same reason-
ing as in the proof of Lemma 5.1) for all sufficiently large n we have that for any
0 < ε ≤ 1/4

hit(n)
α,y(2ε)≤ (

6+ o(1)
)

logn+ hit(n)
α,z(ε)=

(
6+ o(1)

)
logn,

hit(n)
α,y(1− ε)≥ (

6− o(1)
)

logn.
(7.2)

Similarly to the proof of Lemma 5.1, for any B ⊂ �n and any x ∈ D, we have
that Py[TB\D > t] ≥ Px[TB > t], for all t . Since πn(D) = o(1), this implies that
for all sufficiently large n, for any 1/2 < α < 1, there exists some 1/2 < α′ < α

(α′ depends on α but not on n), such that for any x ∈D we have that hit(n)
α,y(ε) ≥

hit(n)
α′,x(ε), for all 0 < ε < 1. This, together with (7.1) and the fact that the leftmost

terms in both lines of (7.2) are up to negligible terms independent of α and ε,
implies that the sequence of chains exhibits hitα-cutoff for all 1/2 < α < 1. �

REMARK 7.3. One can modify the sequence from Example 7.2 into a se-
quence of lazy simple nearest-neighbor random walks on a graph. Construct the
nth graph in the sequence as follows. Start with a binary tree T of depth n. Denote
its root by y, the set of its leaves by A1 and D := T \ A1. Turn A1 into a clique
by connecting every two leaves of T by an edge. Take another disjoint complete
graph of size |A1| = 2n and denote its vertices by A2. Finally, connect A1 and A2

by a single edge. Since the number of edges which are incident to D is at most
2n+2, while the total number of edges of the graph is greater than 22n, we have
that πn(D)= o(1). The analysis above can be extended to this example with mi-
nor adaptations (although a rigorous analysis of this example is somewhat more
tedious).
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