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Abstract. Motivated by a recent work of Benoist and Quint and extending results from the PhD thesis of the third author, we obtain
limit theorems for products of independent and identically distributed elements of GLd (R), such as the Marcinkiewicz–Zygmund
strong law of large numbers, the CLT (with rates in Wasserstein’s distances) and almost sure invariance principles with rates.

Résumé. Motivés par un travail récent de Benoist et Quint, nous étendons certains résultats issus de la thèse de doctorat du
troisième auteur puis établissons des théorèmes limite pour les produits de matrices indépendantes et identiquement distribuées
de GLd (R). Nous nous intéressons notamment aux lois fortes de Marcinkiewicz–Zygmund, au TLC (avec vitesses en distance de
Wasserstein) et au principe d’invariance presque-sûr avec vitesse.
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1. Introduction

Let (Yn)n≥1 be independent random matrices taking values in G := GLd(R), d ≥ 2 (the group of invertible d-
dimensional real matrices), with common distribution μ. Let ‖ · ‖ be the euclidean norm on R

d . We wish to study the
asymptotic behaviour of (log‖Yn · · ·Y1‖)n≥1, where for every g ∈ GLd(R), ‖g‖ := supx,‖x‖=1 ‖gx‖.

We shall say that μ has a (polynomial) moment of order p ≥ 1, if∫
G

(
logN(g)

)p
μ(dg) < ∞, (1)

where N(g) := max(‖g‖,‖g−1‖).
It follows from Furstenberg and Kesten [12] that, as soon as μ admits a moment of order 1,

lim
n→+∞

1

n
log‖Yn · · ·Y1‖ = λμ, P-a.s.,

where λμ := limn→+∞ n−1
E(log‖Yn · · ·Y1‖) is the so-called first Lyapounov exponent.

If moreover, no proper subspace of Rd is invariant by the closed semi-group generated by the support of μ, then
(see for instance Proposition 7.2 page 72 in [5]), for every x ∈ R

d − {0},

lim
n→+∞

1

n
log‖Yn · · ·Y1x‖ = λμ, P-a.s. (2)
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Our goal is to study the rate in the above convergences, assuming higher moments (and stronger algebraic con-
ditions), as well as the Central Limit Theorem (CLT) or the Law of the Iterated Logarithm (LIL), and the rates of
convergence in those limit theorems.

The CLT question benefited from several papers under an exponential moment, i.e.
∫
G
(N(g))αμ(dg) < ∞ for

some α > 0, and some algebraic conditions, see the next section for more details. Let us mention among others the
papers by Le Page [20] and Guivarc’h and Raugi [13].

Quite recently, Benoist and Quint [2] proved the CLT under the existence of a moment of order 2. Their proof is
based on Gordin’s martingale approximation method. By an elegant but somewhat tricky argument, they provide an
explicit martingale-coboundary decomposition adapted to the problem. Moreover, as intermediary steps, they proved a
result about complete convergence as well as an integrability property with respect to the invariant probability measure
on X := Pd−1(R) (the projective space of Rd ), see the next section for further details and definitions. Let us mention
here that most of the results of [2] hold for linear groups on any local field.

Rates in the CLT under polynomial moments have been announced in Jan [16] (with proof in [17]) and the CLT
has been proved in the PhD thesis of the third author [17] under a moment of order 2 + ε, for any ε > 0. His method
of proof is also based on martingale approximation, but relies on estimates that seem more suitable to obtain precise
rates of convergence (in the CLT and the strong invariance principle) than the approach of Benoist and Quint, at least
in the case of GLd(R).

In Section 2 below, we give our main results for the sequence (log‖Yn · · ·Y1x‖)n≥0 and any starting point x ∈
R

d − {0}. We follow the approach described in Jan’s PhD thesis [17] (refining some of his computations), combined
with recent or new results about rates in the strong invariance principle and rates in the CLT (see Section 3). At the
very end of the paper (cf. Section 8), we also borrow one main argument from Benoist and Quint [2], to prove that
the rates of convergence in the CLT apply to the sequence (log‖Yn · · ·Y1‖)n≥1, and to obtain some results for the
sequence of matrix coefficients (log |〈Yn · · ·Y1x, y〉|)n≥1. In the same final section, we also briefly explain how to
weaken the assumption of proximality (see the next section for the definition) by using another argument from [2].

2. Results

Let G := GLd(R), d ≥ 2, endowed with its Borel σ -algebra B(G). Let X := Pd−1(R) be the projective space of
R

d − {0}, and write x as the projection of x ∈ R
d − {0} to X. Then G acts continuously on X in a natural way:

g · x = gx.
Let μ be a probability measure on B(G). Denote by �μ the closed semi-group generated by the support of μ.

Assume that μ is strongly irreducible, i.e. that no proper finite union of subspaces of Rd are invariant by �μ and that
it is proximal, i.e. that there exists a matrix in �μ admiting a unique (with multiplicity one) eigenvalue with maximum
modulus.

For such a measure μ, it is known that there exists a unique invariant measure ν on B(X) (see for instance Theo-
rem 3.1 of [5]) in the following sense: for any continuous and bounded function h from X to R∫

X

h(x)ν(dx) =
∫

G

∫
X

h(g · x)μ(dg)ν(dx).

We consider the left random walk of law μ on X. Let us recall its construction.
Let � := X × GN

∗
and F := B(X) ⊗B(G)⊗N

∗
, where N

∗ = {1,2, . . .}. For every probability measure τ on B(X),
we define Pτ := τ ⊗ μ⊗N

∗
. As usual we note Px := Pδx

, for every x ∈ X. Define the coordinate process (Yn)n∈N
(N = {0,1, . . .}), i.e. Y0((x, g1, g2, . . .)) = x and for every n ∈ N

∗, Yn((x, g1, g2, . . .)) = gn, and then Fn, the σ -
algebra generated by {Y0, . . . , Yn}.

Finally, define a measurable transformation η on � by

η
(
(x, g1, g2, . . .)

) = (g1 · x,g2, g3, . . .).

The left random walk of law μ is the process (Wn)n∈N, defined by W0 := Y0 and for every n ∈ N
∗, Wn = W0 ◦ ηn.

Hence, it is a Markov chain defined by the recursive equation Wn = YnWn−1 for n ∈ N
∗.

Recall that for every probability measure Pτ , Y0 is a random variable with law τ independent from the sequence
(Yn)n∈N∗ of independent and identically distributed (i.i.d.) random variables. Recall also that Pν is η-invariant hence,
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under Pν , (Wn)n∈N is identically distributed with common marginal distribution ν. Moreover, since ν is the unique
μ-invariant probability, then (�,F,Pν, η) is ergodic (see e.g. Proposition 1.14 page 36 of [3]).

We want to study the process (Xn)n∈N∗ given by Xn := σ(Yn,Wn−1) for every n ∈ N
∗, where for every g ∈ G and

every x̄ ∈ X,

σ(g, x̄) = log

(‖g · x‖
‖x‖

)
.

Let us denote A0 = Id and, for every n ∈ N
∗, An := Yn · · ·Y1, so that Xn = σ(Yn,An−1W0). Let Sn := X1 + · · · +

Xn, and note that Sn = log‖AnW
∗
0 ‖, where W ∗

0 is an element of Rd such that W ∗
0 = W0 and ‖W ∗

0 ‖ = 1. Finally, let

Bn =
{

S[nt] − [nt]λμ√
n

− (nt − [nt])√
n

(X[nt]+1 − λμ), t ∈ [0,1]
}

be the partial sum process with values in the space C([0,1]) of continuous functions on [0,1] equipped with the
uniform metric.

As usual in the Markov chain setting, we denote by Xn,x the random variable Xn for which W0 = x. Let also Sn,x

be the corresponding partial sum, and Bn,x be the corresponding process. Note that Sn,x = log‖Anx‖ if ‖x‖ = 1.
Note that the distribution of the sequence (Xn,x)n∈N∗ is the same for any probability Pτ on � (in fact (Xn,x)n∈N∗

is a function of x and (Yn)n∈N∗ , so that its distribution depends only on x and μ). Hence, we shall write “P-almost
surely” (P-a.s.) instead of “Pτ -almost surely”, and E(·) instead of Eτ (·), for all the quantities involving the sequence
(Xn,x)n∈N∗ (and more generally for all the quantities involving only the sequence (Yn)n∈N∗ ). With these notations, for
any positive and measurable function f ,

E
(
f (Xn,x)

) = Ex

(
f (Xn)

) = E
(
f (Xn)|W0 = x

)
.

Our study will only require polynomial moments for μ. As already mentionned, when μ has a moment of order 1,
the strong law of large numbers (2) holds for any starting point. Moreover, one can identify the limit λμ via the ergodic
theorem for strictly stationary sequences. It follows that, for every x ∈ X,

Sn,x

n
−→

n→+∞λμ =
∫

G

∫
X

σ(g,u)μ(dg)ν(du), P-a.s.,

see for instance Corollary 3.4 page 54 of [5] or Theorem 3.28 of [3]. Our goal is to strengthen that strong law of large
numbers when higher moments are assumed.

As already mentionned, in the next theorem, item (ii) has been obtained by Benoist and Quint [2]. As observed in
the introduction of [2], their method also allow to prove item (iii) of the next theorem when p = 2.

Theorem 1. Let μ be a proximal and strongly irreducible probability measure on B(G). Assume that μ has a moment
of order p ≥ 1.

(i) If 1 ≤ p < 2 then, for every x ∈ X,

Sn,x − nλμ

n1/p
−→

n→+∞ 0, P-a.s.

(ii) If p = 2 then n−1
Eν((Sn − nλμ)2) −→ σ 2 as n → ∞, and, for any continuous and bounded function ϕ from

C([0,1]) (equipped with the sup norm) to R,

lim
n→∞ sup

x∈X

∣∣∣∣E(
ϕ(Bn,x)

) −
∫

ϕ(σ
)w(d
)

∣∣∣∣ = 0,

where w is the distribution of a standard Wiener process.
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(iii) If 2 ≤ p < 4 then, for every (fixed) x̄ ∈ X, one can redefine (Sn,x̄ )n≥1 without changing its distribution on a
(richer) probability space on which there exists i.i.d. random variables (Wn)n≥1 with common distribution N (0, σ 2),
such that,∣∣∣∣∣Sn,x̄ − nλμ −

n∑
i=1

Wi

∣∣∣∣∣ = o(rn), P-a.s.,

where rn = √
n log logn when p = 2 and rn = n1/p

√
logn when 2 < p < 4.

(iv) If p = 4 then, for every (fixed) x̄ ∈ X, one can redefine (Sn,x̄ )n≥1 without changing its distribution on a
(richer) probability space on which there exists i.i.d. random variables (Wn)n≥1 with common distribution N (0, σ 2),
such that,∣∣∣∣∣Sn,x̄ − nλμ −

n∑
i=1

Wi

∣∣∣∣∣ = O
(
n1/4

√
logn(log logn)1/4), P-a.s.

Remark. Let us recall the famous result by Komlós, Major and Tusnády [18]. Let (Vn)n∈N be i.i.d. variables in L
p ,

p > 2. Then, extending the probability space if necessary, it is possible to construct i.i.d. random variables (Zn)n≥1
with common distribution N (0,Var(X1)) such that∣∣∣∣∣

n∑
i=1

(
Vi −E(Vi)

) −
n∑

i=1

Zi

∣∣∣∣∣ = o
(
n1/p

)
a.s.

Hence, for p ∈ (2,4], our results are close to the i.i.d. situation. The logarithmic loss seems to be difficult to avoid
with our approach based on martingale approximation.

Remark. It follows from Theorem 4.11(c) of [2] that σ �= 0 when �μ has unbounded image in PGL(d,R) (the
projective group of GLd(R)).

The proof of Theorem 1 will result from general limit theorems under projective conditions. When 1 < p < 2 those
results are new and when p > 2, the obtained rates slightly improve previous results (see for instance [9]).

We also obtain rates of convergence for Wasserstein’s distances in the central limit theorem. Let us first recall the
definition of these minimal distances. Let L(ν1, ν2) be the set of the probability laws on R

2 with marginals ν1 and ν2.
The Wasserstein distances of order r between ν1 and ν2 are defined as follows:

Wr(ν1, ν2) =
{

inf{∫ |x − y|rP (dx, dy) : P ∈ L(μ, ν)}, if 0 < r < 1,

inf{(∫ |x − y|rP (dx, dy))1/r : P ∈ L(μ, ν)}, if r ≥ 1.

It is well known that, for r ∈ (0,1],
Wr(ν1, ν2) = sup

{
ν1(f ) − ν2(f ) : f ∈ �r

}
,

where �r is the set of r-Hölder functions such that |f (x) − f (y)| ≤ |x − y|r for any reals x, y. For r ≥ 1, one has

Wr(ν1, ν2) =
(∫ 1

0

∣∣F−1
1 (u) − F−1

2 (u)
∣∣r du

)1/r

,

where F1 and F2 are the respective distribution functions of ν1 and ν2, and F−1
1 and F−1

2 are their generalized inverse.
We obtain

Theorem 2. Let μ be a proximal and strongly irreducible probability measure on B(G). For any x ∈ X, denote by
νn,x the distribution of n−1/2(Sn,x − nλμ). Let also Gσ be the normal distribution with mean zero and variance σ 2

given in Theorem 1(ii) (provided μ has a moment of ordrer 2).
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(i) Assume that μ has a moment of order p ∈ (2,3). Then, for any r ∈ [p − 2,p],
sup
x∈X

Wr(νn,x,Gσ ) = O
(
n−(p−2)/2 max(1,r)

)
.

(ii) Assume that μ has a moment of order 3. Then, for any r in (1,3],
sup
x∈X

Wr(νn,x,Gσ ) = O
(
n−1/2r

)
,

and for r = 1,

sup
x∈X

W1(νn,x,Gσ ) = O
(
n−1/2 logn

)
. (3)

Remark. Except for p = 3, r = 1, the rates given in Theorem 2 are consistent with the i.i.d. case, in the following
sense: let (Vi)i≥1 be a sequence of i.i.d. random variables, where the Vi ’s are centered and have a moment of order
p ∈ (2,3). Let νn be the distribution of n−1/2(V1 + · · · + Vn). Then the rates given in Theorem 2 hold for νn instead
of νn,x and σ 2 = E(V 2

1 ). Moreover, these are the best known rates under the stated conditions (see the introduction of
the paper [10]). For p = 3, r = 1 the rate in the i.i.d. case is O(n−1/2), so there is a loss of order logn in (3).

Remark. Starting from Remark 2.3 of [10], we derive from Theorem 2 the following rates of convergence in the
Berry–Esseen theorem: If μ has a moment of order p ∈ (2,3), then

sup
x∈X

sup
t∈R

∣∣P(
n−1/2(Sn,x − nλμ) ≤ t

) − φσ (t)
∣∣ ≤ O

(
n−(p−2)/2(p−1)

)
,

where φσ is the distribution function of Gσ . If μ has a moment of order 3, then

sup
x∈X

sup
t∈R

∣∣P(
n−1/2(Sn,x − nλμ) ≤ t

) − φσ (t)
∣∣ ≤ O

(
n−1/4

√
logn

)
.

Note that, when μ has moments of any order, Jan [17] obtained the rate O(n−a) for any a < 1/2 in the Berry–Esseen
theorem.

3. Auxiliary results on the cocycle

In all this section μ is a proximal and strongly irreducible probability measure on B(G). Let X̃k = Xk − λμ and
X̃k,x = Xk,x − λμ. For p ≥ 1, let ‖ · ‖p,τ be the L

p-norm with respect to the probability Pτ on �. For the quantities
involving Xk,x , we shall write ‖ · ‖p instead of ‖ · ‖p,τ , in accordance with the notations of Section 2.

The proofs of Theorems 1 and 2 will make use of general results for stationary sequences under projective con-
ditions, i.e. conditions relying on the quantities ‖E(X̃n|W0)‖p,ν for p ≥ 1 and ‖E(X̃nX̃k|W0) − Eν(X̃nX̃k)‖p/2,ν for
p ≥ 2.

Those quantities were already studied in [17], where polynomial rates of convergence (to 0) were obtained. By
refining the arguments of [17] we obtain the following improvements.

Proposition 3. Assume that μ has a moment of order p > 1. Then, for q ∈ [1,p),

∞∑
k=1

kp−q−1 sup
x,y∈X

E
(|Xk,x − Xk,y |q

)
< ∞ (4)

and for q ∈ (0,1],
∞∑

k=1

kp−2 sup
x,y∈X

E
(|Xk,x − Xk,y |q

)
< ∞. (5)
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Remark. Since E(Xk,x) = Ex(Xk) = E(Xk|W0 = x), and since Eν(Xk) = λμ, we easily infer from (4) that

∑
k≥1

kp−2 sup
x∈X

∣∣Ex(Xk) − λμ

∣∣ < ∞. (6)

In particular, using that p + 1/p > 2 whenever p > 1, it follows from (6) that∑
k≥1

k−1/p sup
x∈X

∣∣Ex(Xk) − λμ

∣∣ < ∞. (7)

Remark. Let us notice that the third author [17] proved that for every p ≥ 2 and every α ∈ [0,1), there exists Cp,α

such that supx,y∈X E(|Xk,x −Xk,y |) ≤ Cp,α

kp(α−1/2) . In particular, when p = 2, using a theorem of Maxwell and Woodroofe
[21], that estimate is sufficient for the CLT under a second moment and even for the invariance principle (see Peligrad
and Utev [23]). Hence, the full conclusion of item (ii) in Theorem 1 follows from the latter estimate.

We shall also need the following controls.

Proposition 4. Assume that μ has a moment of order p > 2. Then∑
k≥1

kp−3 sup
x,y∈X

E
(∣∣X̃2

k,x − X̃2
k,y

∣∣) < ∞, (8)

and for every γ < p − 3 + 1/p,∑
k≥1

kγ sup
x,y∈X

sup
k≤j<i≤2k

E
(|X̃i,xX̃j,x − X̃i,yX̃j,x |

)
< ∞. (9)

Remark. As in the previous remark, we easily infer that∑
k≥1

kp−3 sup
x∈X

∣∣Ex

(
X̃2

k

) −Eν

(
X̃2

k

)∣∣ < ∞, (10)

and for every γ < p − 3 + 1/p,∑
k≥1

kγ sup
x∈X

sup
k≤j<i≤2k

∣∣Ex(X̃iX̃j ) −Eν(X̃iX̃j )
∣∣ < ∞. (11)

The proof of Propositions 3 and 4 are based on two auxiliary lemmas. The first one gives the regularity of the
cocycle σ with respect to a suitable metric, that we introduce right now.

For x, y ∈ X, define

d(x, y) := ‖x ∧ y‖
‖x‖‖y‖ ,

where ∧ stands for the exterior product, see e.g. [5, page 61] for the definition and some properties. Then, d is a metric
on X.

For every q > 0, define a nondecreasing, concave function Hq on [0,1] by Hq(0) = 0 and for every x ∈ (0,1],
Hq(x) = | log(xe−q−1)|−q .

The next lemma may be seen as a version of Lemma 17 of Jan [17].

Lemma 5. For every κ > 1, there exists Cκ > 0 such that for every g ∈ G and every x, y ∈ X,∣∣σ(g, x) − σ(g, y)
∣∣ ≤ Cκ

(
1 + logN(g)

)κ
Hκ−1

(
d(x, y)

)
. (12)
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Proof. By Lemma 12.2 of [3], there exists C > 0 such that for every x, y ∈ X,∣∣σ(g, x) − σ(g, y)
∣∣ ≤ CN(g)d(x, y). (13)

Now, it is not hard to prove that (notice that ‖g−1‖−1 ≤ ‖x‖−1‖gx‖ ≤ ‖g‖ for every g ∈ G and every x ∈R
d −{0}),

for every x ∈ X and every g ∈ G,

σ(g, x) ≤ log
(
N(g)

)
. (14)

Assume that d(x, y) ≤ 1/N(g). Using that t �→ t (Hκ−1(t))
−1 is nondecreasing on (0, e] and that N(g) ≥ 1, we

have

N(g)d(x, y) ≤ Hκ−1(d(x, y))

Hκ−1(N(g)−1)
.

Hence, by (13),∣∣σ(g, x) − σ(g, y)
∣∣ ≤ C

(
Hκ−1

(
N(g)

)−1)−1
Hκ−1

(
d(x, y)

)
≤ C

(
κ + logN(g)

)κ−1
Hκ−1

(
d(x, y)

)
. (15)

Assume now that d(x, y) > 1/N(g). By (14),

∣∣σ(g, x) − σ(g, y)
∣∣ ≤ logN(g)Hκ−1(N(g)−1)

Hκ−1(N(g)−1)
≤ (

κ + logN(g)
)κ

Hκ−1
(
d(x, y)

)
. (16)

Combining (15) and (16), we see that (12) holds. �

The next lemma is a result about complete convergence that may be derived from Proposition 4.1 of Benoist and
Quint [2]. A different proof is given in Section 7.

Lemma 6. Assume that μ has a moment of order p > 1. Then, there exists � > 0, such that∑
k≥1

kp−2 max
k≤j≤2k

sup
x,y∈X,x �=y

P
(
log

(
d(Aj−1 · x,Aj−1 · y)

) ≥ −�k
)
< ∞. (17)

Proof of Proposition 3. Let x, y ∈ X. Let � > 0 be as in Lemma 6. We start from the elementary inequality: If
A = {logN(Yk) ≥ k} and B = {logd(Ak−1 · x,Ak−1 · y) ≥ −�k},∣∣Xk,x − Xk,y

∣∣ ≤ ∣∣σ(Yk,Ak−1x) − σ(Yk,Ak−1y)
∣∣1A + ∣∣σ(Yk,Ak−1x) − σ(Yk,Ak−1y)

∣∣1B

+ ∣∣σ(Yk,Ak−1x) − σ(Yk,Ak−1y)
∣∣1{Ac∩Bc}. (18)

Using (14) and (12) (with κ = (p + q)/q), we infer from (18) that

E
(|Xk,x − Xk,y |q

) ≤ CE
(∣∣logN(Yk)

∣∣q1A

) + CE
(∣∣logN(Yk)

∣∣q1B

)
+ C

∥∥∥∥ (1 + (logN(Yk))
p+q

kp
1Ac

∥∥∥∥
1
,

for some positive constant C, and consequently

E
(|Xk,x − Xk,y |q

) ≤ C

∫
{logN(g)≥k}

(
logN(g)

)q
μ(dg)

+ CP
(
logd(Ak−1 · x,Ak−1 · y) ≥ −�k

)∫
G

(
logN(g)

)q
μ(dg)

+ C

∫
{logN(g)<k}

(logN(g))p+q

kp
μ(dg). (19)
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Now, for q ∈ (0,p) there exist two positive constants K and L such that

∑
k≥1

kp−q−1
∫

{logN(g)≥k}
(
logN(g)

)q
μ(dg) ≤ K

∫
G

(logN)p dμ < ∞ (20)

and

∑
k≥1

kp−q−1
∫

{logN(g)<k}
(logN(g))p+q

kp
μ(dg) ≤ L

∫
G

(logN)p dμ < ∞. (21)

In the case where q ∈ [1,p), since p −q −1 ≤ p−2, we infer from (19), (20), (21) and (17) that (4) holds. In the case
where q ≤ 1, since p − q − 1 ≥ p − 2, the condition (17) implies (5). This completes the proof of Proposition 3. �

Proof of Proposition 4. Let us first prove (8). Using (14), we see that∣∣X̃2
k,x − X̃2

k,y

∣∣ ≤ 2
(
logN(Yk) + |λμ|)∣∣σ(Yk,Ak−1 · x) − σ(Yk,Ak−1 · y)

∣∣.
Proceeding as in (18) and (19), we obtain that

E
(∣∣X̃2

k,x − X̃2
k,y

∣∣) ≤ C

∫
{logN(g)≥k}

logN(g)
(
logN(g) + |λμ|)μ(dg)

+ CP
(
logd(Ak−1 · x,Ak−1 · y) ≥ −�k

)∫
logN(g)

(
logN(g) + |λμ|)μ(dg)

+ C

∫
{logN(g)<k}

(logN(g))p(logN(g) + |λμ|)
kp−1

μ(dg),

for some positive constant C. We conclude as in Proposition 3 (using similar arguments as in (20) and (21)).
Let us prove (9). Let 2k ≥ i > j ≥ k. We start from the simple decomposition

X̃i,xX̃j,x − X̃i,yX̃j,y = X̃i,x

(
σ(Yj ,Aj−1 · x) − σ(Yj ,Aj−1 · y)

)
+ (

σ(Yi,Ai−1 · x) − σ(Yi,Ai−1 · y)
)
X̃j,y := Wi,j + Zi,j .

Using (14), (12) (with κ = p) and independence, and proceeding as in (18) and (19), we obtain that

E
(|Wi,j |

) ≤ (|λμ| + ‖ logN‖1,μ

)∫
{logN(g)≥j}

logN(g)μ(dg)

+ ‖ logN‖1,μ

(|λμ| + ‖ logN‖1,μ

)
P
(
logd(Aj−1 · x,Aj−1 · y) ≥ −�j/2

)
+ C

(|λμ| + ‖ logN‖1,μ

)∫
{logN(g)<j}

(logN(g))p+1

jp
μ(dg)

and

Eν

(|Zi,j |
) ≤ (|λμ| + ‖ logN‖1,μ

)∫
{logN(g)≥k}

logN(g)μ(dg)

+ ‖ logN‖1,μE
((|λμ| + log

(
N(Yj )

))
1{logd(Ai−1·x,Ai−1·y)≥−i�/2}

)
+ C

(|λμ| + ‖ logN‖1,μ

)∫
{logN(g)<k}

(logN(g))p+1

kp
μ(dg),

for some positive constant C. Let γ < p − 3 + 1/p. It suffices to prove that∑
k≥1

kγ max
k≤j<i≤2k

E
(
log

(
N(Yj )

)
1{logd(Ai−1·x,Ai−1·y)≥−i�/2}

)
< ∞.
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Using the Hölder inequality, it is enough to prove that∑
k≥1

kγ max
k≤i≤2k

(
P
(
logd(Ai−1 · x,Ai−1 · y) ≥ −i�/2

))(p−1)/p
< ∞.

Using the Hölder inequality again it suffices to find δ > 1 such that∑
k≥1

kδ/(p−1)kγp/(p−1) max
k≤i≤2k

(
P
(
logd(Ai−1 · x,Ai−1 · y) ≥ −i�/2

))
.

By Lemma 6, it suffices to find δ > 1, such that δ/(p − 1) + γp/(p − 1) ≤ p − 2. in particular, it suffices that
(p − 2)(p − 1) − γp > 1, which holds by assumption. �

4. General results under projective conditions

In this section, we state general results under projective conditions, that will be needed to prove versions of Theorems 1
and 2 in stationary regime. Proposition 7 is new and is somewhat optimal. Proposition 8 slightly improves previous
results. Proposition 9 is taken from Dedecker, Merlevède and Rio [10]. Finally Proposition 10 is a new moment
inequality, in the spirit of von Bahr and Esseen [26], that will be useful to prove that the results hold for any starting
points.

The proofs of Propositions 7, 8 and 10 are given in Section 7.
We shall state Propositions 7 and 8 in presence of an invertible measure preserving transformation, since Proposi-

tion 9 has been proved in that situation. This will be enough for our purpose.
Let (�,F,P) be a probability space and θ be an invertible measure preserving transformation. Let G0 ⊂ F be a

σ -algebra, such that G0 ⊂ θ−1(G0). For every n ∈ Z define Gn := θ−n(G0).
For every Z ∈ Lp(�,F,P), we consider the following maximal functions

Mp(Z, θ) := sup
n≥1

|∑n−1
k=0 Z ◦ θk|
n1/p

if 1 ≤ p < 2. (22)

Write also Tn := Z + · · · + Z ◦ θn−1, and, for any real-valued random variable V and p ≥ 1, let ‖V ‖p,∞ =
supt>0 t (P(|V | > t))1/p .

Proposition 7. Let 1 < p < 2. Let Z ∈ Lp(�,G0,P) be such that

∑
n≥1

‖E(Tn|G0)‖p

n1+1/p
< ∞. (23)

There exists a constant Cp > 0, depending only on p such that

∥∥Mp(Z)
∥∥

p,∞ ≤ Cp

(
‖Z‖p +

∑
n≥1

‖E(Tn|G0)‖p

n1+1/p

)
. (24)

Moreover,

Tn = o
(
n1/p

)
, P-a.s. (25)

and, there exists K > 0 such that for every positive integer d ,

∥∥∥ max
1≤i≤2d

|Ti |
∥∥∥

p
≤ K

p − 1
2d/p

(
‖Z‖p +

d∑
k=0

2−k/p
∥∥E(T2k |G−2k )

∥∥
p

)
. (26)
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Remarks. An inequality similar to (26) is given in Theorem 3 of [27]. It is not hard to prove that (23) holds as soon
as

∑
n≥1

‖E(Z ◦ θn|G0)‖p

n1/p
< ∞. (27)

Condition (23) may be seen as an Lp-analogue of the so-called Maxwell–Woodroofe condition [21]. As in the papers
[23,24] or [7, Section D3], it can be shown that (23) is somewhat optimal for (25).

Proposition 8. Let 2 ≤ p ≤ 4 and assume that θ is ergodic if p = 2. Let Z ∈ Lp(�,G0,P) be such that∑
n≥1

∥∥E(
Z ◦ θn|G0

)∥∥
p

< ∞ for p ∈ [2,4) (28)

and ∑
n≥1

log(n)
∥∥E(

Z ◦ θn|G0
)∥∥

4 < ∞ for p = 4. (29)

If p ∈ (2,4], assume also that

∑
n≥1

‖E(T 2
n |G0) −E(T 2

n )‖p/2

n1+2/p
< ∞.

Then E(T 2
n )/n −→ σ 2 as n → ∞, and

(i) If 2 ≤ p < 4, one can redefine (Tn)n≥1 without changing its distribution on a (richer) probability space on
which there exists i.i.d. random variables (Wn)n≥1 with common distribution N (0, σ 2), such that∣∣∣∣∣Tn −

n∑
i=1

Wi

∣∣∣∣∣ = o(rn), P-a.s., (30)

where rn = √
n log logn when p = 2 and rn = n1/p

√
logn when 2 < p < 4.

(ii) If p = 4, one can redefine (Tn)n≥1 without changing its distribution on a (richer) probability space on which
there exists i.i.d. random variables (Wn)n≥1 with common distribution N (0, σ 2), such that∣∣∣∣∣Tn −

n∑
i=1

Wi

∣∣∣∣∣ = O
(
n1/4

√
logn(log logn)1/4), P-a.s. (31)

Remark. The condition
∑

n≥1 ‖E(Z ◦ θn|G0)‖p < ∞ ensures a martingale-coboundary decomposition. It is possible
to weaken this condition as done for instance in [9]. Since in our application the condition

∑
n≥1 ‖E(Z◦θn|G0)‖p < ∞

is satisfied, we do not state those refinements.

Proposition 9. Let 2 < p ≤ 3. Let Z ∈ Lp(�,G0,P) be such that∑
n≥1

∥∥E(
Z ◦ θn|G0

)∥∥
p

< ∞ for p ∈ (2,3)

and ∑
n≥1

log(n)
∥∥E(

Z ◦ θn|G0
)∥∥

3 < ∞ for p = 3.
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Assume also that

∑
n≥1

‖E(T 2
n |G0) −E(T 2

n )‖p/2

n3−p/2
< ∞.

Then n−1
E(T 2

n ) −→ σ 2 as n → ∞, and, denoting by Ln the distribution of n−1/2Tn and by Gσ the normal distribution
with mean zero and variance σ 2, one has:

(i) If p ∈ (2,3), then, for any r ∈ [p − 2,p],
Wr(Ln,Gσ ) = O

(
n−(p−2)/2 max(1,r)

)
.

(ii) If p = 3, then, for any r ∈ (1,3],
Wr(Ln,Gσ ) = O

(
n−1/2r

)
,

and for r = 1,

W1(Ln,Gσ ) = O
(
n−1/2 logn

)
.

To prove Theorem 2 we shall also need the following von Bahr–Esseen type inequality. This inequality is stated
in the nonstarionary case: the Zi ’s are real-valued random variables adapted to an increasing filtration (Fi )i≥0, and
Tn = Z1 + · · · + Zn.

Proposition 10. Let r ∈ (1,2]. The following inequality holds:

‖Tn‖r
r ≤ 22−r

(
n∑

i=1

‖Zi‖r
r + r

n−1∑
i=1

E
(|Zi |r−1

∣∣E(Tn − Ti |Fi )
∣∣)).

Moreover, letting T ∗
n = max(0, T1, . . . , Tn),

∥∥T ∗
n

∥∥r

r
≤ 4

r − 1

n∑
i=1

‖Zi‖r
r + 6r

r − 1

n−1∑
i=1

E
(|Zi |r−1

∣∣E(Tn − Ti |Fi )
∣∣).

5. On the convergence of series
∑

n n−(1+β)‖E(T 2
n |G0) −E(T 2

n )‖p/2

We keep the same notations as in previous section. For simplicity, if Z belongs to L1(�,F,P), we shall write Zn :=
Z ◦ θn.

We want to find conditions relying on series of the type considered in Proposition 3 such that the above series
converges for a given p > 2 and a given β ∈ [1/2,1). To do so we shall use computations as well as notations from
Dedecker, Doukhan and Merlevède [9].

For every k,m ∈N, define

γp(m,k) := ∥∥E(ZmZm+k|G0) −E(ZmZm+k)
∥∥

p/2,

γ̃p(m) := sup
m≤j<i≤2m

∥∥E(ZiZj |G0) −E(ZiZj )
∥∥

p/2.

Notice that in our definition of γ̃p(m) we take the supremum supm≤j<i≤2m while in [9] they use supi≥j≥m.
Let γ ∈ (0,1), be fixed for the moment. Proceeding as in (4.18) in [9], we see that (notice that [mγ ] + 1 ≤ 2[mγ ],

for m ≥ 1)

∥∥E(
T 2

n |G0
) −E

(
T 2

n

)∥∥
p/2 ≤

n∑
k=1

γp(k,0) + 4
n∑

m=1

[
mγ

]
γ̃p(m) + 2

n∑
m=1

n∑
k=[mγ ]+1

γp(m,k),
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with the usual convention that an empty sum equals 0. We derive that the sum
∑

n n−(1+β)‖E(T 2
n |G0) −E(T 2

n )‖p/2 is
finite provided that the following conditions hold (recall that γ − β > −1):∑

m≥1

m−βγp(m,0) < ∞, (32)

∑
n≥1

nγ−β γ̃p(n) < ∞, (33)

∑
n≥1

1

n1+β

n∑
m=1

n∑
k=[mγ ]+1

γp(m,k) < ∞. (34)

For every m,k ∈N, using the notation Z
(0)
m := Zm −E(Zm|G0), define

γ ∗
p (m,k) := ∥∥E(

Z(0)
m Z

(0)
m+k|G0

) −E
(
Z(0)

m Z
(0)
m+k

)∥∥
p/2.

Writing P1(·) := E(·|G1) −Eν(·|G0), and combining (4.20), (4.23) and (4.24) of [9], we infer that,

n∑
m=1

n∑
k=[mγ ]+1

γp(m,k) ≤
n∑

m=1

n∑
k=[mγ ]+1

m∑
�=1

‖P1Z�‖p‖P1Z�+k‖p

+
n∑

m=1

n∑
k=0

∥∥E(Zm|G0)
∥∥

p

∥∥E(Zm+k|G0)
∥∥

p

≤
n∑

m=1

n∑
k=[mγ ]+1

m∑
�=1

‖P1Z�‖p‖P1Z�+k‖p +
(

2n∑
m=1

∥∥E(Zm|G0)
∥∥

p

)2

.

Hence (34) holds provided that the following conditions are satisfied

∑
n≥1

1

n1+β

(
2n∑

m=1

∥∥E(Zm|G0)
∥∥

p

)2

< ∞, (35)

∑
n≥1

1

n1+β

n∑
m=1

n∑
k=[mγ ]+1

m∑
�=1

‖P1Z�‖p‖P1Z�+k‖p < ∞. (36)

Now, using that
∑n

k=[mγ ]+1 ≤ ∑
k≥[mγ ]+1 in the second equation, we see that

∑
n≥1

n∑
m=1

n∑
k=[mγ ]+1

m∑
�=1

n−1−β‖P1Z�‖p‖P1Z�+k‖p

≤ C
∑
m≥1

m∑
k=[mγ ]+1

m∑
�=1

m−β‖P1Z�‖p‖P1Z�+k‖p

+ C
∑
m≥1

∑
k≥m+1

m∑
�=1

k−β‖P1Z�‖p‖P1Z�+k‖p,

so that

∑
n≥1

n∑
m=1

n∑
k=[mγ ]+1

m∑
�=1

n−1−β‖P1Z�‖p‖P1Z�+k‖p
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≤ C
∑
k≥1

∑
�≥1

[k1/γ ]∑
m=1

m−β‖P1Z�‖p‖P1Z�+k‖p + C
∑
k≥1

∑
�≥1

k∑
m=1

k−β‖P1Z�‖p‖P1Z�+k‖p

≤ C̃
∑

k,�≥1

k(1−β)/γ ‖P1Z�‖p‖P1Z�+k‖p ≤
∑
�≥1

‖P1Z�‖p

∑
k≥1

k(1−β)/γ ‖P1Zk‖p.

Hence, (36) holds as soon as

∑
k≥1

k(1−β)/γ ‖P1Zk‖p ≤ C
∑
�≥0

2�((1−β)/γ )
2�+1−1∑
k=2�

‖P1Z�‖p

≤ C
∑
�≥0

2�((1−β)/γ+1−1/p)

(
2�+1−1∑
k=2�

‖P1Z�‖p
p

)1/p

< ∞,

where we used Hölder for the last inequality. Applying Lemma 5.2 of [9] with q = p we infer that (36) holds as soon
as

∑
n≥1

n(1−β)/γ−1/p

(∑
k≥n

‖E(Zk|G0)‖p
p

k

)1/p

. (37)

By stationarity, the sequence (‖E(Zk|G0)‖p)k≥1 is nonincreasing. Hence, using that ‖ · ‖�p ≤ ‖ · ‖�1 , we see that (37)
holds provided that

∑
�≥0

2�((1−β)/γ−1/p+1)

(∑
k≥�

∥∥E(Z2k |G0)
∥∥p

p

)1/p

≤
∑
�≥0

2�((1−β)/γ−1/p+1)
∑
k≥�

∥∥E(Z2k |G0)
∥∥

p
< ∞.

Changing the order of summation and using again that (‖E(Zk|G0)‖p)k≥1 is nonincreasing, we infer that (37) holds
provided that∑

k≥1

k(1−β)/γ−1/p
∥∥E(Z2k |G0)

∥∥
p

< ∞. (38)

Collecting all the above estimates and taking care of Proposition 3, we obtain the following result:

Proposition 11. Let p > 2 and β ∈ [1/2,1). Assume that (32) and (35) hold and that there exists γ ∈ (0,1) such that
(33) and (38) hold. Then,

∑
n>0

‖E(T 2
n |G0) −E(T 2

n )‖p/2

n1+β
< ∞. (39)

6. Proofs of Theorems 1 and 2

6.1. Proof of Theorem 1

We first prove a version in stationary regime, i.e. under Pν . The proof makes use of Propositions 7 and 8. Those results
are stated in the context of an invertible dynamical system. Let us explain how to circumvent that technical matter.
Theorem 1 is a limit theorem for the process (Xn)n≥1, which is a functional of the Markov chain ((Yn,Wn−1))n≥1 with
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state space G × X and stationary distribution μ ⊗ ν. Since that Markov chain is stationary, it is well-known that, by
Kolmogorov’s theorem, there exists a probability P̂ on the measurable space (�̂, F̂) = ((G×X)Z, (B(G)⊗B(X))⊗Z),
invariant by the shift η̂ on �̂, and such that the law of the coordinate process (V̂n)n∈Z (with values in G×X ) under P̂
is the same as the one of the process ((Yn,Wn−1))n≥1 under Pν . In particular they both are Markov chains. Moreover,
(�̂, F̂, P̂, η̂) is ergodic, which is not difficult to prove.

For every n ∈ Z, define X̂n := σ(V̂0) ◦ η̂n − Ê(σ (V̂0)) and Ĝn := σ {X̂k : k ≤ n}. Then, using the Markov property
one can prove easily that for every p ≥ 1, and every m ≥ n ≥ 1,∥∥Ê(X̂n|Ĝ0)

∥∥
p

= ∥∥Eν(X̃n|X̃0)
∥∥

p
≤ sup

x,y∈X

E
(|Xn,x − Xn,y |

)
, (40)

∥∥Ê(X̂nX̂m|Ĝ0) − Ê(X̂nX̂m)
∥∥

p
= ∥∥Eν(X̃nX̃m|X̃0) −Eν(X̃nX̃m)

∥∥
p

≤ sup
x,y∈X

E
(|X̃n,xX̃m,x − X̃n,yX̃m,y |

)
. (41)

Let us prove (i). Let us apply Proposition 7 with Z := X̂1. Notice that by (40) and Proposition 3 (see the remark
after it), (27) holds. It follows that

X̂1 + · · · + X̂n = o
(
n1/p

)
, P̂-a.s.

Then, we infer that

Sn − nλμ = o
(
n1/p

)
, Pν-a.s.

or equivalently that for ν-almost every x ∈ X,

Sn,x − nλμ = o
(
n1/p

)
, P-a.s.

In particular, there exists y ∈ R
d with ‖y‖ = 1 such that

log‖Any‖ − nλμ = o
(
n1/p

)
, P-a.s.

Let x ∈ R
d be such that ‖x‖ = 1. By Proposition 3.2 page 52 of [5], there exists a random variable C satisfying

C(ω) > 0 for P-almost every ω ∈ �, and such that, for every n ∈N,

C ≤ ‖Anx‖
‖An‖ ≤ 1. (42)

Applying this inequality with x = y, we infer that

log‖An‖ − nλμ = o
(
n1/p

)
, P-a.s.

and then that for every x ∈R
d such that ‖x‖ = 1,

log‖Anx‖ − nλμ = o
(
n1/p

)
, P-a.s.

Let us prove items (iii) and (iv). Let us apply Proposition 8 with Z = X̂1. Then clearly, the conclusion of Proposi-
tion 8 will hold for Z = X̃1 and, arguing as above, items (iii) and (iv) of Theorem 1 will follow from Lemma 4.1 of
Berkes, Liu and Wu [4].

Notice first that by (40) and (6), (28) (or (29)) holds. Hence, it remains to check (39) with β = 2/p, which follows
from Proposition 12 below.

Proposition 12. Let p > 2 and β ∈ [1/2,1). Take Z := X̃1. Then, (39) holds if β > 3 −p. For instance, one may take
β = 2 − p/2 when 2 < p ≤ 3 and β = 2/p when 2 < p ≤ 4.
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Proof. Let β > 3 − p (with β ≥ 1/2). Using (6) and (40), we see that (35) is satisfied, since β > 0. Using, (6), (8)
and (9) combined with (40) and (41), we infer that (39) holds if

−β ≤ p − 3; (43)

γ − β ≤ p − 3 + 1/p; (44)

(1 − β)/γ − 1/p ≤ p − 2. (45)

Now, (43) holds by assumption and then (44) holds with γ = 1/p. It is then not difficult to prove that (45) also holds
with γ = 1/p. �

Let us prove item (ii). By Proposition 3, we have

∑
n≥1

(∫
X

∣∣Eu(Xn) − λμ

∣∣2
ν(du)

)1/2

< ∞.

It is well-known then that Gordin’s method applies, i.e. that we have a martingale-coboundary decomposition (with
respect to Pν ), and the martingale has stationary and ergodic increments. Hence we have the weak invariance principle
under Pν (see [15]) meaning that, for any continuous and bounded function ϕ from C([0,1]) to R,

lim
n→∞

∣∣∣∣Eν

(
ϕ(Bn)

) −
∫

ϕ(σ
)w(d
)

∣∣∣∣ = 0, (46)

where w is the distribution of a standard Wiener process.
Assume now that (ii) does not hold. Then, there exists a continuous and bounded function ϕ0 from C([0,1]) to R,

and a sequence xn of elements of X such that∣∣∣∣E(
ϕ0(Bn,xn)

) −
∫

ϕ0(σ
)w(d
)

∣∣∣∣ does not converge to 0 as n → ∞. (47)

Now, if ψ is any bounded and Lipschitz function from C([0,1]) to R, it follows frow the first assertion of Lemma 13
below that

lim
n→∞

∣∣E(
ψ(Bn,xn)

) −Eν

(
ψ(Bn)

)∣∣ = 0. (48)

Putting together (46) and (48), we infer that Bn,xn converges in distribution to σW , where W is a standard Wiener
process. This is in contradiction with (47), which completes the proof of (ii). �

It remains to prove the following lemma (note that the first assertion has already been proved in [17] when p > 2).

Lemma 13. Assume that μ has a moment of order p ≥ 2. Then

sup
x,y,‖x‖=‖y‖=1

∥∥log‖Anx‖ − log‖Any‖∥∥1 < ∞,

for r ∈ (1,2],

sup
x,y,‖x‖=‖y‖=1

∥∥log‖Anx‖ − log‖Any‖∥∥
r
=

{
O(1) if r ≤ p − 1,

O(n(r+1−p)/r ), if r > p − 1,

and for p ∈ [2,3],
sup

x,y,‖x‖=‖y‖=1

∥∥log‖Anx‖ − log‖Any‖∥∥
p

= O
(
n1/p

)
.
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Proof. For any x, y ∈R
d such that ‖x‖ = ‖y‖ = 1, one has

log‖Anx‖ − log‖Any‖ =
n∑

k=1

Xk,x − Xk,y.

Hence

∥∥log‖Anx‖ − log‖Any‖∥∥1 ≤
n∑

k=1

‖Xk,x − Xk,y‖1. (49)

Using (49) and (4) (with q = 1 and p ≥ 2), the first assertion of Lemma 13 follows.
For the case r ∈ (1,2], we apply Proposition 10. Let sn(x, y) = ∑n

k=1 Xk,x − Xk,y . Then

∥∥log‖Anx‖ − log‖Any‖∥∥r

r
≤ 2

n∑
k=1

‖Xk,x − Xk,y‖r
r

+ 4
n−1∑
k=1

∥∥|Xk,x − Xk,y |r−1
E

(
sn(x, y) − sk(x, y)|Fk

)∥∥
1. (50)

From equality (3.9) in [2] (which can also be deduced from (6)) we infer that

Xk,x − Xk,y = dk(x, y) + ψ(Ak−1x,Ak−1y) − ψ(Akx,Aky), (51)

where dk(x, y) is Fk-measurable and such that E(dk(x, y)|Fk−1) = 0, and ψ is a bounded function (with |ψ | < M).
In particular, it follows from (51) that∥∥|Xk,x − Xk,y |r−1

E
(
sn(x, y) − sk(x, y)|Fk

)∥∥
1 ≤ 2M

∥∥|Xk,x − Xk,y |r−1
∥∥

1,

so that, by (50),

∥∥log‖Anx‖ − log‖Any‖∥∥r

r
≤ D

n∑
k=1

(‖Xk,x − Xk,y‖r
r + ∥∥|Xk,x − Xk,y |r−1

∥∥
1

)
, (52)

for some positive constant D. Applying (4) (with p ≥ 2 and q = r) and (5) (with p ≥ 2 and q = r − 1), we infer that

n∑
k=1

(‖Xk,x − Xk,y‖r
r + ∥∥|Xk,x − Xk,y |r−1

∥∥
1

) = O
(
max

(
1, n(r+1−p)

))
,

and the second assertion of Lemma 13 follows from (52).
Let us prove the last assertion. Let

Zn,x,y = Xn,x − Xn,y and Tn(x, y) =
n∑

k=1

Zk,x,y := gn(x, y,Y1, . . . , Yn).

With these notations, let T̂n(x, y) = gn(x, y,Y2, . . . , Yn+1). Now, it is easy to see that Tn(x, y) = Z1,x,y +
T̂n−1(Y1x,Y1y). Letting ψp(t) = |t |p , we have

∣∣Tn(x, y)
∣∣p = ∣∣T̂n−1(Y1x,Y1y)

∣∣p + Z1,x,y

∫ 1

0
ψ ′

p

(
T̂n−1(Y1x,Y1y) + tZ1,x,y

)
dt.

Hence∣∣Tn(x, y)
∣∣p ≤ ∣∣T̂n−1(Y1x,Y1y)

∣∣p + 2p−2|Z1,x,y |p + p2p−2|Z1,x,y |
∣∣T̂n−1(Y1x,Y1y)

∣∣p−1
.
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Let Gn,p(x, y) = E(|Tn(x, y)|p). Taking the conditional expectation with respect to Y1, we get

E
(∣∣Tn(x, y)

∣∣p|Y1
) ≤ Gn−1,p(Y1x,Y1y) + 2p−2|Z1,x,y |p + p2p−2|Z1,x,y |Gn−1,p−1(Y1x,Y1y).

Let un = supx,y,x �=0,y �=0 Gn,p(x, y) and vn = supx,y,x �=0,y �=0 Gn,p−1(x, y). It follows that

E
(∣∣Tn(x, y)

∣∣p|Y1
) ≤ un−1 + 2p−2|Z1,x,y |p + p2p−2|Z1,x,y |vn−1.

Taking first the expectation, and then the maximum, we get

un ≤ un−1 + 2p−2 sup
x,y,x �=0,y �=0

E
(|Z1,x,y |p

) + p2p−2 sup
x,y,x �=0,y �=0

E
(|Z1,x,y |

)
vn−1.

Since p − 1 ∈ [1,2], we know from the second assertion of the lemma that vn = O(1). Consequently, there exists a
positive constant C such that

un ≤ un−1 + C.

It follows that un = O(n), which is the desired result, since

un = sup
x,y,x �=0,y �=0

∥∥∥∥∥
n∑

k=1

Xk,x − Xk,y

∥∥∥∥∥
p

p

= sup
x,y,‖x‖=‖y‖=1

∥∥log‖Anx‖ − log‖Any‖∥∥p

p
.

�

6.2. Proof of Theorem 2

Let νn be the distribution of n−1/2(Sn − nλμ) under Pν . As in the proof of Theorem 1, it is enough to apply Proposi-
tion 9 with Y = X̂1. From Proposition 12 (with β = 2−p/2) combined with (40) and (41), we see that the assumptions
of Proposition 9 are satisfied. It follows that:

(i) If μ has a moment of order p ∈ (2,3), then, for any r ∈ [p − 2,p],
Wr(νn,Gσ ) = O

(
n−(p−2)/2 max(1,r)

)
.

(ii) If μ has a moment of order 3, then, for any r ∈ (1,3],
Wr(νn,Gσ ) = O

(
n−1/2r

)
,

and for r = 1,

W1(νn,Gσ ) = O
(
n−1/2 logn

)
.

Recall that W ∗
0 is an element of Rd such that W ∗

0 = W0 and ‖W ∗
0 ‖ = 1. To prove the results for any starting point,

we use the following elementary inequalities:
For r ≤ 1,

sup
x∈X

Wr(νn, νn,x) ≤ n−r/2 sup
x,‖x‖=1

∥∥log‖Anx‖ − log
∥∥AnW

∗
0

∥∥∥∥r

1,ν
.

For r > 1,

sup
x∈X

Wr(νn, νn,x) ≤ n−1/2 sup
x,‖x‖=1

∥∥log‖Anx‖ − log
∥∥AnW

∗
0

∥∥∥∥
r,ν

.

From the first assertion of Lemma 13, we infer that: for r ≤ 1,

sup
x∈X

Wr(νn, νn,x) = O
(
n−r/2).
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This proves Theorem 2 for r ∈ [p − 2,1], since in that case

sup
x∈X

Wr(νn, νn,x) = O
(
n−(p−2)/2).

From the last assertion of Lemma 13, we infer that: for p ∈ (2,3],
sup
x∈X

Wp(νn, νn,x) = O
(
n−(p−2)/2p

)
.

This proves the result for r = p.
It remains to consider the case r ∈ (1,p). We use the elementary inequality

(
Wr(νn, νn,x)

)r ≤ (
W1(νn, νn,x)

)(p−r)/(p−1)(
Wp(νn, νn,x)

)p(r−1)/(p−1)
.

It follows form the preceding upper bounds for W1(νn, νn,x) and Wp(νn, νn,x) that

sup
x∈X

(
Wr(νn, νn,x)

)r = O
(
n−(p−2)(p−r)/2(p−1)n−(p−2)(r−1)/2(p−1)

) = O
(
n−(p−2)/2),

which concludes the proof.

7. Proofs of the intermediate results

7.1. Proof of Lemma 6

We first recall the following notation: for any x ∈R
d − {0} and g in G, g · x̄ = g · x.

Since
∫
G

logN(g)μ(dg) < ∞, we may define a bounded function F1, by setting

F1(x̄, ȳ) =
∫

G

log
(
d(g · x̄, g · ȳ)/

(
d(x̄, ȳ)

))
μ(dg) ∀x̄, ȳ ∈ X, x̄ �= ȳ.

Then, we define a cocycle as follows. For every g ∈ G and every x̄, ȳ ∈ X with x̄ �= ȳ, set σ1(g, (x̄, ȳ)) := log(d(g ·
x̄, g · ȳ)/(d(x̄, ȳ))) − F1(x̄, ȳ).

Finally, write

log
(
d(Anx̄,Anȳ)/d(x̄, ȳ)

) = Mn + Rn,

with

Rn = Rn(x̄, ȳ) :=
n∑

k=1

F1(Ak−1x̄,Ak−1ȳ)

and

Mn :=
n∑

k=1

σ1
(
Yk, (Ak−1x̄,Ak−1ȳ)

)
,

and notice that (Mn)n≥1 is a martingale in Lp , since μ has a moment of order p.
Using that d(x̄, ȳ) ≤ 1, the proposition will be proved if we can prove that there exists � > 0, such that

∑
k≥1

kp−2 max
k≤j≤2k

sup
x̄,ȳ∈X,x̄ �=ȳ

P
(
Rj (x̄, ȳ) ≥ −2�k

)
< ∞, (53)
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and ∑
k≥1

kp−2 max
k≤j≤2k

sup
x̄,ȳ∈X,x̄ �=ȳ

P
(∣∣Mj(x̄, ȳ)

∣∣ ≥ �k
)
< ∞. (54)

Proof of (53). Let K > 0 be such that |F1| ≤ K . Let n ≥ 1 be an integer. Then |Rn| ≤ 2nK and using that |ex −
1 − x| ≤ x2e|x| for every x ∈R, we see that, for every a > 0,∣∣E(

eaRn
) − 1 − aE(Rn)

∣∣ ≤ a2K2eaK.

By Proposition 6.4(ii) in [5], there exists n0 ∈ N and δ > 0, such that

sup
x̄,ȳ∈X

E
(
Rn0(x̄, ȳ)

) ≤ −δ.

For this n0, we can find a0 > 0 small enough such that

sup
x̄,ȳ∈X

E
(
ea0Rn0 (x̄,ȳ)

) ≤ 1 − a0δ/2 := ρ < 1.

Using that R(k+1)n0 = Rkn0 + Rn0 ◦ ηkn0 and conditioning with respect to Fkn0 , we infer that

sup
x̄,ȳ∈X

E
(
ea0R(k+1)n0 (x̄,ȳ)

) ≤ sup
x̄,ȳ∈X

E
(
ea0Rkn0 (x̄,ȳ)

)
sup

x̄,ȳ∈X

E
(
ea0Rn0 (x̄,ȳ)

) ≤ ρk+1.

Hence, there exists C > 0, such that for every n ∈N,

sup
x̄,ȳ∈X

E
(
ea0Rn(x̄,ȳ)

) ≤ Cρn/n0 .

Let k ≥ 1 and k ≤ j ≤ 2k and let α := | logρ|/(2a0n0). Then

P
(
Rj (x̄, ȳ) ≥ −αk

) ≤ ea0αk
E

(
ea0Rj (x̄,ȳ)

) ≤ Cea0αkρk/n0 ≤ Cρk/(2n0),

and (53) holds with � = α/2.
Proof of (54). The proof makes use of a result about complete convergence for martingales that we recall below.

This result represents a very small sample of the general situations treated by Alsmeyer [1], and later generalized by
Hao and Liu [14].

Recall that a sequence of random variables (Dn)n≥1 is said to be dominated by a (nonnegative) random variable X,
if there exists C > 0 such that for every x > 0, P(|Dn| > x) ≤ CP(X > x).

The next theorem follows directly from Theorem 2.2 of [14].

Theorem 14 (Alsmeyer [1], Hao and Liu [14]). Let (Dn)n∈N be a sequence of (Fn)n∈N-martingale differences
dominated by a variable X. For every q > 1, every γ ∈ (1,2] and every L ∈ N, there exists C > 0, such that for every
n ≥ 1 and every ε > 0,

P

(
max

1≤k≤n
|D1 + · · · + Dk| ≥ εn

)

≤ nP

(
X >

εn

4(L + 1)

)
(55)

+ C

(εn)qγ (L+1)/(q+L)

∥∥E(|D1|γ |F0
) + · · · +E

(|Dn|γ |Fn−1
)∥∥q(L+1)/(q+L)

q
.

We apply Theorem 14 with Dk := σ1(Yk, (Ak−1x̄,Ak−1ȳ)), X := 2 logN(Y1), γ = min(p,2) and q = L (to be
chosen later). Notice that (Dn)n∈N is dominated by X, see for instance Lemma 5.3 page 62 of [5].
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Since E(Xp) < ∞, it is easy to check that for every δ > 0,

∑
n≥1

np−2
P(X > δn) < ∞.

Moreover,

∥∥E(|D1|γ |F0
) + · · · +E

(|Dn|γ |Fn−1
)∥∥

q
≤ 2n‖X‖p.

Hence, the series

∑
n≥1

np−2
P

(
max

1≤k≤n
|D1 + · · · + Dk| ≥ εn

)

converges for every ε > 0, as soon as

∑
n≥1

np−2

n(γ−1)(q+1)/2
< ∞,

which holds provided that q > 2(p − 1)/(γ − 1) − 1. In particular, we infer that (54) holds by taking ε = �.

7.2. Proof of Proposition 7

We first give a maximal inequality in the spirit of Proposition 2 of [22]. The present form is just Proposition 4.1 of [7].

Proposition 15. Let X ∈ L1(�,G0,P). For every k ≥ 0, write uk := |E(T2k |G−2k )| and dk := E(T2k |G−2k ) +
(E(T2k |G−2k )) ◦ θ2k −E(T2k+1 |G−2k+1). Then, for every integer d ≥ 0, we have (with the convention

∑−1
k=0 = 0)

max
1≤i≤2d

|Ti | ≤ max
1≤i≤2d

∣∣∣∣∣
i−1∑
�=0

(
Z −E(Z|G−1)

) ◦ θ�

∣∣∣∣∣ +
d−1∑
k=0

max
1≤i≤2d−k−1

∣∣∣∣∣
i−1∑
�=0

dk ◦ θ2k+1�

∣∣∣∣∣
+ ud +

d−1∑
k=0

max
0≤�≤2d−1−k−1

uk ◦ θ2k+1�. (56)

In particular, there exists C > 0, such that for every p ≥ 1,

Mp(X, θ) ≤ C

(∑
k≥0

uk

2k/p
+

∑
k≥0

(M1(u
p
k , θ2k+1

))1/p

2k/p

+Mp

(
X −E−1(X), θ

) +
∑
k≥0

Mp(dk, θ
2k+1

)

2k/p

)
. (57)

By Hopf’s dominated ergodic theorem (see Corollary 2.2 page 6 of [19]), for every f ∈ L1(�,P) and every k ∈N,

∥∥M1
(
f, θ2k )∥∥

1,∞ ≤ ‖f ‖1.

Then, (24) follows from Proposition 15 combined with Proposition 2.1 of [6].
Let us prove (25). Define MWp := {Z ∈ Lp(�,G0,P) : ‖Z‖MWp < ∞}. Then, (MWp,‖ · ‖MWp) is a Banach

space.



Limit theorems for GLd (R) 1859

For every Z ∈ L1(�,G0,P) define QZ = E0(Z ◦ θ). Notice that Qn(Z) = E0(Z ◦ θn). Then, clearly Q is a
contraction of Lp(�,G0). Now, we see that

‖Z‖MWp =
∑
n≥0

‖∑2n−1
k=0 QkZ‖p

2n/p
if 1 < p < 2.

Hence, in any case, Q is a contraction on MWp .
Writing Vn := I + · · · + Qn−1 and using that ‖VnVkZ‖p ≤ C min(k‖Vn‖p,n‖VkZ‖p), we see that, for every

Z ∈ MWp ,

‖V2nZ‖MWp

2n
≤ Cp

(‖V2nZ‖p

2n/p
+

∑
k≥n+1

‖V2kZ‖p

2k/p

)
−→

n→+∞ 0. (58)

Now, for every n ≥ 1, taking m such that 2m ≤ n < 2m+1, we have ‖VnZ‖MWp ≤ C
∑m

k=0 ‖V2kZ‖MWp = o(n).
In particular, we see that Q is mean ergodic on MWp and has no nontrivial fixed point (see e.g. Theorem 1.3

page 73 of [19]), i.e.,

MWp = (I − Q)MWp
MWp

. (59)

Now, by (24) and the Banach principle (see Proposition C.1 of [6]) it is enough to prove (25) for a set of elements
of MWp that is dense, in particular on (I −Q)MWp . So let Z = (I −Q)Y , with Y ∈ MWp . Then, Z = Y ◦ θ −QY +
Y − Y ◦ θ , is a martingale-coboundary decomposition in Lp(�,P). Hence (25) holds since Y ◦ θn = o(n1/p), P-a.s.
(by the Borel–Cantelli lemma) and by the Marcinkiewicz–Zygmund strong law of large numbers for martingales with
stationary differences in Lp .

It remains to prove (26). We shall apply once more (56). The Lp-norm of the first two terms may be estimated
thanks to Proposition 10. To estimate the Lp-norm of the last term in (56), we just notice that

max
0≤�≤2d−1−k−1

uk ◦ θ2k+1� ≤
( ∑

0≤�≤2d−1−k−1

u
p
k ◦ θ2k+1�

)1/p

,

and (26) follows.

7.3. Proof of Proposition 8

Since
∑

n≥1 ‖E(Zn|G1)‖p < ∞, we define a variable R in Lp(�,F,P) by setting

R :=
∑
n≥1

E(Zn|G1).

Then, we have

Z1 = R ◦ θ −E(R ◦ θ |G1) + R − R ◦ θ := D + R − R ◦ θ.

Since R ∈ Lp(�,F,P) it is a standard consequence of the Borel–Cantelli lemma that n−1/pR ◦ θn −→ 0, P-a.s. as n

tends to infinity. Hence, it suffices to prove (30) with Mn := D + · · · + D ◦ θn−1 in place of Sn.
Since D ∈ Lp , it follows from Theorem 2.1 of Shao [25] (see the proofs of Corollaries 2.5, 2.7 and 2.8 in Cuny

and Merlevède [8]) that we only have to prove that:

n∑
i=1

(
E

(
D2|G1

) −E
(
D2)) ◦ θi−1 = o

(
n2/p

)
, P-a.s., (60)
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if 2 ≤ p < 4, and that

n∑
i=1

(
E

(
D2|G1

) −E
(
D2)) ◦ θi−1 = O

(
(n log logn)1/2), P-a.s., (61)

if p = 4.
When p = 2, (60) follows from the ergodic theorem. Now, by Proposition 7 (the ergodicity of θ is not required)

and using orthogonality of martingale increments, (60) holds provided that

∑
n≥1

‖E(M2
n |G0) −E(M2

n)‖p/2

n1+2/p
< ∞.

Similary, using Theorem 5.2 of [7], (61) holds provided that

∑
n≥1

‖E(M2
n |G0) −E(M2

n)‖2

n3/2
< ∞.

Since by assumption, for p ∈ (2,4],
∑
n≥1

‖E(T 2
n |G0) −E(T 2

n )‖p/2

n1+2/p
< ∞,

it suffices to prove that

∑
n≥1

‖E(M2
n |G0) −E(T 2

n |G0)‖p/2

n1+2/p
< ∞.

In case p ∈ (2,4), this can be done as to prove (5.38) in [10] (see the proof of Theorem 3.1 in [10]). In case p = 4,
this can be done as to prove (5.43) in [10] (see the proof of Theorem 3.2 in [10]).

7.4. Proof of Proposition 10

We proceed as in the proof of Proposition 1 of [11]. For r ∈ (1,2], let ψr be the function from R to R
+ defined by

ψr(x) = |x|r . We start from the following elementary decomposition (using the convention T0 = 0):

|Tn|r = ψr(Tn) =
n∑

i=1

ψr(Ti) − ψr(Ti−1) =
n∑

i=1

Zi

∫ 1

0
ψ ′

r (Ti−1 + tZi) dt

=
n∑

i=1

Zi

∫ 1

0

(
ψ ′

r (Ti−1 + tZi) − ψ ′
r (Ti−1)

)
dt +

n∑
i=1

Ziψ
′
r (Ti−1).

Consequently,

|Tn|r =
n∑

i=1

Zi

∫ 1

0

(
ψ ′

r (Ti−1 + tZi) − ψ ′
r (Ti−1)

)
dt +

n∑
i=1

Zi

(
i−1∑
j=1

ψ ′
r (Tj ) − ψ ′

r (Tj−1)

)

=
n∑

i=1

Zi

∫ 1

0

(
ψ ′

r (Ti−1 + tZi) − ψ ′
r (Ti−1)

)
dt +

n−1∑
i=1

(
ψ ′

r (Ti) − ψ ′
r (Ti−1)

)
(Tn − Ti).
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Now, it is easy to check that |ψ ′
r (x) − ψ ′

r (y)| ≤ r22−r |x − y|r−1. Using this simple fact and taking the conditional
expectation, we obtain

E
(|Tn|r

) ≤ 22−r
n∑

i=1

E
(|Zi |r

)∫ 1

0
rtr−1 dt + r22−r

n−1∑
i=1

E
(|Zi |r−1

∣∣E(Tn − Ti |Fi )
∣∣),

and the first inequality is proved.
Let us prove the second inequality. We first write that

(
T ∗

n

)r =
n∑

i=1

(
T ∗

i

)r − (
T ∗

i−1

)r
.

Note that for a ≥ b ≥ 0, (r − 1)(ar − br) ≤ ra(ar−1 − br−1). Hence,

(
T ∗

n

)r ≤ r

r − 1

n∑
i=1

T ∗
i

((
T ∗

i

)r−1 − (
T ∗

i−1

)r−1) = r

r − 1

n∑
i=1

Ti

((
T ∗

i

)r−1 − (
T ∗

i−1

)r−1)
, (62)

the last equality being true because (T ∗
i )r−1 − (T ∗

i−1)
r−1 is nonzero iff T ∗

i = Ti . Now

n∑
i=1

Ti

((
T ∗

i

)r−1 − (
T ∗

i−1

)r−1) =
n∑

i=1

Ti

(
T ∗

i

)r−1 − Ti−1
(
T ∗

i−1

)r−1 −
n∑

i=1

Zi

(
T ∗

i−1

)r−1

= Tn

(
T ∗

n

)r−1 −
n∑

i=1

Zi

(
T ∗

i−1

)r−1
. (63)

Recall Young’s inequality (based on the concavity of the logarithm): for any a, b ≥ 0 and any p,q > 1 such that
1/p + 1/q = 1,

ab ≤ ap

p
+ bq

q
.

Hence, for x, y ≥ 0

xyr−1 ≤ 2r−1

r
xr + r − 1

2r
yr .

We infer that

r

r − 1
|Tn|

(
T ∗

n

)r−1 ≤ 2r−1

r − 1
|Tn|r + 1

2

(
T ∗

n

)r
. (64)

Combining (62), (63) and (64), we get that

(
T ∗

n

)r ≤ 2r

r − 1
|Tn|r − 2r

r − 1

n∑
i=1

Zi

(
T ∗

i−1

)r−1
.

Proceeding as for the first inequality, we get that

(
T ∗

n

)r ≤ 2r

r − 1
|Tn|r − 2r

r − 1

n−1∑
i=1

((
T ∗

i

)r−1 − (
T ∗

i−1

)r−1)
(Tn − Ti).
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Since, for x, y ≥ 0, |xr−1 − yr−1| ≤ |x − y|r−1, we finally get that

E
((

T ∗
n

)r) ≤ 2r

r − 1
E

(|Tn|r
) + 2r

r − 1

n−1∑
i=1

E
(|Zi |r−1

∣∣E(Tn − Ti |Fi )
∣∣).

Combining this inequality with the first inequality of the proposition, the result follows.

8. Extension of the results

In this section, we shall first explain why the results of Section 2 still hold for the sequence (log‖An‖)n≥1 (with
obvious changes in the statements). Next, we shall briefly explain how to deal with (log |〈Anx,y〉|)n≥1.

8.1. Matrix norm

The fact that the statements of Theorem 1 hold for log‖An‖ instead of Sn,x̄ is clear from the proof Theorem 1 (cf.
Section 6.1). The crucial point here is Inequality (42).

Let μn be the distribution of log‖An‖. The fact that the statements of Theorem 2 hold for μn instead of νn,x̄

requires some explanations.
Let μ̃n be the distribution of∫

X

logSn,uν(du).

The first point to notice is that the statements of Theorem 2 are valid for μ̃n instead νn,x̄ . This can be proved exactly
as for the proof of Theorem 2, by using some easy consequences of Lemma 13, such as

sup
x,‖x‖=1

∥∥∥∥log‖Anx‖ −
∫

X

Sn,uν(du)

∥∥∥∥
p

= O
(
n1/p

)
,

if μ has a moment of order p ∈ [2,3].
The next step is to replace μ̃n by μn. To do this, we need to introduce

δ(x̄, ȳ) := |〈x, y〉|
‖x‖‖y‖ . (65)

It follows from Proposition 4.5 of [2] that if μ has a moment of order p > 1, then

sup
v∈X

∫
X

∣∣log
(
δ(u, v)

)∣∣p−1
ν(du) < ∞. (66)

Now, from [5] pages 52–53, we know that there exists a random variable V (ω) with values in X, such that, for any
x ∈ R

d such that ‖x‖ = 1,

0 ≤ log‖An‖ − log‖Anx‖ ≤ ∣∣log δ(x̄,V )
∣∣.

Integrating this inequality, we get∥∥∥∥log‖An‖ −
∫

X

Sn,uν(du)

∥∥∥∥∞
≤ sup

v∈X

∫
X

∣∣log
(
δ(u, v)

)∣∣ν(du) < ∞

the term on right-hand being finite because μ has a moment of order 2. The result easily follows.
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8.2. Results without proximality

Proceeding as in the proof of Theorem 4.11 of [2] (using their Lemma 4.13) we infer that the results for matrix norm
hold without proximality. Then, we see that the results of Theorems 1 and 2 hold also without proximality, since (42)
does not require proximality but only strong irreducibility.

8.3. Matrix coefficients

We shall now explain how to derive results for matrix coefficients, i.e. for any given x, y ∈ R
d with ‖x‖ = ‖y‖ = 1,

we study the behaviour of (log |〈Anx,y〉|)n≥1.
We were not able to extend Theorem 2 to the matrix coefficients. We only succeeded to extend Theorem 1, but

under a stronger moment assumption (and it does not seem possible to get rid of the proximality assumption here).
Our argument is inspired by [17]. We shall use the distance δ defined in (65) and the upper bound (66).

Let 1 < p ≤ 4. Assume that μ has a moment of order p +1. Let us explain why the results from Theorem 1 may be
extended to the matrix coefficients. Actually, using similar arguments as below, one may see that a moment of order 2
is enough to derive item (ii) of Theorem 1 for the matrix coefficients.

Let x, y ∈ R
d such that ‖x‖ = ‖y‖ = 1. We have

log
∣∣〈Anx,y〉∣∣ = log‖Anx‖ + log‖y‖ + log

|〈Anx,y〉|
‖Anx‖‖y‖ .

The behaviour of (log‖Anx‖)n≥1 is described in Theorem 1.
It is obvious (using Lemma 4 of [4] to deal with items (iii) and (iv)) that the results of Theorem 1 will hold for the

matrix coefficients if we can prove that∣∣∣∣log
|〈Anx,y〉|
‖Anx‖‖y‖

∣∣∣∣ = o
(
n1/p

)
, P-a.s.

or, equivalently, that∣∣log δ(Anx̄, ȳ)
∣∣ = o

(
n1/p

)
, P-a.s.

(recall that Anx̄ = Anx). Since δ ≤ 1, we are back to prove that for every ε > 0, P-a.s., we have

δ(Anx̄, ȳ) ≥ e−εn1/p

for all n large enough.

Now, it is well-known (see e.g. Definition 4.1 page 55 and (9) page 61 of [5]), that, for any x′, y′ in R
d − {0},

|〈x′, y′〉|
‖x′‖‖y′‖ =

√
1 − (

d
(
x′, y′))2

. (67)

Hence

δ2(Anx̄, ȳ) = 1 − d2(Anx̄, ȳ).

Now,

1 − d2(Anx̄, ȳ) ≥ 1 − (
d(Anx̄,Wn) + d(Wn, ȳ)

)2

≥ 1 − d2(Anx̄,Wn) − 2d(Anx̄,Wn)d(Wn, ȳ) − d2(Wn, ȳ).

Since for every n ∈ N, Wn has law ν, the variables (log δ(Wn, ȳ))n∈N are identically distributed in Lp(�,F,P). In
particular, it follows from the Borel–Cantelli lemma that∣∣log δ(Wn, ȳ)

∣∣ = o
(
n1/p

)
, Pν-a.s. (68)
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Hence, for every ε > 0, Pν -a.s., we have

δ(Wn, ȳ) ≥ e−εn1/p

for all n large enough,

and using (67) again, for every ε > 0, Pν -a.s., we have

d(Wn, ȳ) ≤
√

1 − e−2εn1/p for all n large enough. (69)

As in the proof of Lemma 6, we may write

log

(
d(Anx̄,Wn)

d(x̄,W0)

)
:= Mn + Rn,

where (Mn)n≥1 is a (centered) martingale with increments dominated by a variable in Lp+1 and (Rn)n≥1 is such that
there exists � > 0 such that∑

n≥1

P(Rn ≥ −�n) < ∞.

It is well-known, since p + 1 ≥ 2, that (Mn)n≥1 satisfies the strong law of large numbers (actually even the law of
the iterated logarithm). Hence, we have, Pν -a.s.

logd(Anx̄,Wn) ≤ −�n/2 for every n large enough.

Finally, we infer that, for every ε, Pν -a.s., we have

1 − d2(Anx̄, ȳ) ≥ 1 − e−�n − e−�n

√
1 − e−2εn1/p − (

1 − e−2εn1/p) ≥ Ce−2εn1/p

,

which is exactly what we wanted to prove.
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