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NONEXTENSIVE CONDENSATION IN REINFORCED BRANCHING
PROCESSES1

BY STEFFEN DEREICH∗, CÉCILE MAILLER† AND PETER MÖRTERS†

Westfälische Wilhelms-Universität Münster∗ and University of Bath†

We study a class of branching processes in which a population consists of
immortal individuals equipped with a fitness value. Individuals produce off-
spring with a rate given by their fitness, and offspring may either belong to the
same family, sharing the fitness of their parent, or be founders of new fami-
lies, with a fitness sampled from a fitness distribution μ. Examples that can be
embedded in this class are stochastic house-of-cards models, urn models with
reinforcement and the preferential attachment tree of Bianconi and Barabási.
Our focus is on the case when the fitness distribution μ has bounded support
and regularly varying tail at the essential supremum. In this case, there exists
a condensation phase, in which asymptotically a proportion of mass in the
empirical fitness distribution of the overall population condenses in the max-
imal fitness value. Our main results describe the asymptotic behaviour of the
size and fitness of the largest family at a given time. In particular, we show
that as time goes to infinity the size of the largest family is always negligible
compared to the overall population size. This implies that condensation, when
it arises, is nonextensive and emerges as a collective effort of several families
none of which can create a condensate on its own. Our result disproves claims
made in the physics literature in the context of preferential attachment trees.

1. Background and motivation. The principal aim of this paper is to study
the emergence of a condensate in stochastic models. For this purpose, we consider
a class of branching processes with reinforcement, which probably constitute the
easiest class of models, in which this question can be studied in a meaningful way.
Still we shall see that, due to the reinforcement, these models display rather com-
plex behaviour and not all relevant questions on their behaviour will be answered.

Although our models can describe a variety of objects (see the examples be-
low), we shall describe them as a structured population. Parameters of our model
are a fitness distribution μ on the positive reals, and positive numbers β,γ ≤ 1 with
β+γ ≥ 1. At any time t , the population consists of a finite number N(t) of individ-
uals. Each individual in the population has a fitness, and individuals are organised
into families, such that all members of a family have the same fitness. The process
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is started with one family of one individual, whose fitness is drawn from the dis-
tribution μ. Suppose, at time t ≥ 0, the population consists of M(t) families, and
there are Zn(t) individuals of fitness Fn in the nth family, for 1 ≤ n ≤ M(t). Inde-
pendently in every family birth events occur with a time-dependent rate FnZn(t).
When a birth event occurs in the nth family, independently of everything else, one
or both of the following happen:

• with probability β , a new family is founded, initially consisting of one individ-
ual equipped with a fitness drawn, independently of everything else, from the
distribution μ;

• with probability γ , a new individual with fitness Fn is added to the nth family.
The ability of the system to reproduce particles of the same type constitutes the
reinforcement; see [19].

Note that both things happen simultaneously with probability β + γ − 1 ≥ 0. If μ

has all exponential moments, the total number N(t) of individuals in the popula-
tion remains finite at all times; see, for example, Corollary 3.3 in [17]. Our main
object of interest is the empirical fitness distribution at time t , which is defined as

(1) �t = 1

N(t)

M(t)∑
n=1

Zn(t)δFn.

In this paper, we focus on bounded fitness distributions μ, and specifically the
case in which a condensation phenomenon occurs, which we describe in some
detail. Different phenomena occur in the case of unbounded fitness distributions
and these will be investigated in a companion paper [10]. From now on, we assume
that μ is a probability measure supported by a bounded subinterval of the positive
reals. Without loss of generality, we assume that μ has essential supremum equal
to one. To avoid degeneracies, we also assume that μ has no atom at one.

We now describe our three main examples motivating our work.

EXAMPLE 1 (Branching process with selection and mutation). This model is
a stochastic house-of-cards model in a similar vein as Kingman’s model (which
is deterministic and much easier to analyse, see [11, 16]). We start with a single
individual with a genetic fitness chosen according to μ. Individuals never die and
give birth to new individuals with a rate equal to their genetic fitness, the different
reproduction rates causing the selection effect. When a new individual is born, it
is a mutant with probability β , in which case it gets a fitness drawn independently
of everything else from μ. If the new individual is not a mutant, it inherits the
fitness of its parent. The model corresponds to the parameter choice γ = 1 − β

in our framework. Observe that a mutation causes the complete loss of genetic
information in the affected individual’s ancestry, pictorially speaking ‘the genetic
house of cards collapses’. This is why the term house-of-cards model is used for
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this process; see [14] for a discussion of the relevance of these models in the theory
of evolution.

The number of families M(t) corresponds to the number of mutants in the popu-
lation at time t . We can describe the process (M(t))t>0 as a Crump–Mode–Jagers
process, using the framework of [18]. A mutant x born at time τ with fitness f

produces new mutants at ages according to a random point process ξ . This pro-
cess is a Cox process, that is, a Poisson process with a random intensity measure
βf φx(s) ds. The function φx(s) is given by the size at time τ + s of the family
founded by the mutant and is therefore a Yule processes with intensity (1 − β)f .

The key assumption for the convergence theory of Crump–Mode–Jagers pro-
cesses is the existence of a Malthusian parameter, that is, an α > 0 such that

1 =
∫ ∞

0
e−αs

Eξ(ds).

In our case, we have, for α ≥ 1 − β , that∫ ∞
0

e−αs
Eξ(ds) = E

∫ ∞
0

e−αsβf φx(s) ds = β

∫
f

∫ ∞
0

e−αs+(1−β)f s dsμ(df )

= β

∫
f

α − (1 − β)f
μ(df ).

Hence, a Malthusian parameter exists if and only if β
1−β

∫ f
1−f

μ(df ) ≥ 1. If this
condition fails, the classical convergence theory of Crump–Mode–Jagers processes
fails and very little is known about this case. In particular, in our model the pre-
cise asymptotics of M(t) is unknown. We show that in this case a phenomenon of
condensation occurs, which loosely speaking means that a positive proportion of
individuals have fitnesses converging to the maximal possible value. Key questions
motivating this project are: How fast is this convergence, when did the mutations
arise that form the condensate, and how many mutations contribute to the conden-
sate?

EXAMPLE 2 (Preferential attachment tree of Bianconi and Barabási). This
model is originally a discrete time network model. Putting it into our framework
means embedding it into continuous time, a technique heavily advocated by Jan-
son [15], who attributes the method to Athreya and Karlin [1], and by Bhamidi [3].
The network is constructed successively, starting with one vertex which is formally
given degree one. The vertex is given a fitness, randomly chosen according to μ.
At every time step, a new vertex is introduced, equipped with a fitness, randomly
chosen according to μ, and linked to one of the existing vertices. The probabil-
ity of an existing vertex being chosen is proportional to the product of its fitness
and its degree at the time when the new vertex is introduced. As new vertices pre-
fer to attach to existing vertices of high degree and high fitness, this is called a
preferential attachment model.
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In our representation, we choose β = γ = 1 and observe the system at the birth
times of individuals. We think of every family as a vertex in the network, and of
the size of a family as its degree. Note that when the nth birth event takes place, it
arises in each of the existing families with a probability proportional to the prod-
uct of its fitness and its degree. At the birth event, a new family is founded, that
is, a new vertex is introduced, and simultaneously the family that has given birth
is increased in size by one, meaning that the degree of the corresponding vertex is
incremented by one. Our representation only keeps track of the vertices and their
degrees, not of the actual edges. But this does not matter as the main object of in-
terest for us is the long-term behaviour of the degree-weighted fitness distribution,
which coincides with the empirical fitness distribution in our framework.

This model was analysed by Borgs et al. [6] who proved the existence of
a innovation-pays-off phase in which a proportion of the mass in the degree-
weighted fitness distribution condenses in the maximal fitness. This behaviour was
already predicted in [4] who called this phase the winner-takes-all phase, a heavily
misleading name as we shall see below. The result is reproved in our Theorem 2.1.
Borgs et al. [6] state as an open problem ‘to give an exact quantitative description
of the innovation-pays-off phase. [. . . ] How are the links distributed among the
highest fitnesses present in the system at any given time? At what rate are new
nodes with higher fitness taking over?’ Our main aim here is to make progress on
this problem.

EXAMPLE 3 (Generalised Pólya urns). A class of generalised Pólya urns also
falls into our framework, with general parameters β,γ > 0 and μ as above. It can
be described as an urn containing balls of different colours. Every colour has a
given activity chosen independently according to μ. At time zero, the urn contains
one ball of colour 1. At every time step, a ball is drawn at random from the urn
with probability proportional to its activity. Then the drawn ball is put back into
the urn together with one or two new balls, at most one ball of the same and one
of a new colour. A ball with the same colour is chosen with probability γ , and
a ball of a new colour with probability β . New colours are chosen independently
according to μ. To embed the urn model into our framework, we again look at the
times of birth events. Observe that �t is now the empirical distribution of activities
in the urn at time t .

Such generalised Pólya urns have apparently not been studied so far in full gen-
erality. Janson [15] is looking at the case where μ is finitely supported, in which
the condensation phenomenon, which is of interest to us, cannot arise. A related
model has been studied by Chung et al. [7] who draw balls depending in a nonlin-
ear way on the distribution of colours in the urn, and by Collevecchio et al. [8] who
allow for a time-dependent replacement rule. Their main focus is on the question
whether there can be an unbounded number of balls of more than one colour, and
if not which colour eventually dominates. In our setup, all colours will have an
unbounded number of balls and we show that the asymptotic proportion of balls of
any colour goes to zero uniformly as time goes to infinity.
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2. Statement of the results. The reinforced branching process is described
by the following family of random variables. We denote by:

• N(t) the total size of the population at time t ,
• M(t) the number of different families at time t ,
• σn the time of the nth birth event,
• τn the time of the foundation of the nth family,
• Zn(t) the size of the nth family at time t [if n > M(t) we set Zn(t) = 0], and
• Fn the fitness of the nth family.

We are first interested in the empirical fitness distribution �t at time t , defined
in (1). The asymptotic behaviour of this empirical distribution shows a phase tran-
sition between a fluid phase and a condensation phase. The condition for conden-
sation is

(Cond)

β

β + γ

∫ 1

0

1

1 − x
dμ(x) < 1 or, equivalently,

β

γ

∫ 1

0

x

1 − x
dμ(x) < 1,

as stated in the following theorem.

THEOREM 2.1 (Existence of a condensation phase). If (Cond) fails, then there
exists a unique λ� ∈ [γ,β + γ ) such that

β

β + γ

∫ 1

0

λ�

λ� − γ x
dμ(x) = 1,

otherwise let λ� := γ . In both cases

• the empirical mean fitness
∫ 1

0 x�t(dx) converges almost surely to λ�

β+γ
,

• and there exists a probability measure π such that, almost surely, the empirical
fitness distribution �t converges weakly to π .

The limit measure π of the empirical fitness distribution is given

(a) if (Cond) fails by

dπ(x) = β

β + γ

λ�

λ� − γ x
dμ(x).

(b) if (Cond) is true by

dπ(x) = β

β + γ

1

1 − x
dμ(x) + ω(β,γ )δ1(dx),

where

ω(β,γ ) := 1 − β

β + γ

∫ 1

0

1

1 − x
dμ(x) > 0.
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REMARK 1. It is easy to see from the law of large numbers that

M(t)

N(t)
−→ β

β + γ
almost surely.

Hence, it is equivalent to ask for the absolute growth of either of the processes
(M(t) : t > 0) or (N(t) : t > 0). Given the population at time σn of the nth birth
event, the waiting time σn+1 − σn until the next individual is born is exponentially
distributed with rate N(σn)

∫
x�σn(dx) ∼ nλ�, where we have used that N(σn) ∼

(β + γ )n by the law of large numbers. Hence, σn ∼ 1
λ� logn and, in particular, we

obtain, almost surely,

lim
t↑∞

1

t
logN(t) = λ�.

If there is no condensation, we can improve this to convergence of e−tλ�
N(t) to a

positive random variable, using the arguments sketched in Section 3.2 below. But
fine results about the growth of the population in the condensation phase are hard
to obtain; see also Section 8.

REMARK 2. We denote the part of the limit mass π which is absolutely con-
tinuous with respect to μ as bulk and the part concentrated in the maximal fitness
as condensate. The theorem shows that in the condensation phase, that is, if (Cond)
holds, we are seeing a phenomenon of self-organised criticality, as the number of
individuals in the bulk and in the condensate are always kept on the same order of
magnitude, without any tuning of parameters. In Dereich [9], one can see that for a
model without self-organisation it can be rather complicated to tune the parameters
in such a way that one has coexistence of bulk and condensate.

Our interest in this paper lies in the emergence of the condensate, that is, how
the condensate manifests itself at large finite times. Following the discussion of
Bose–Einstein condensation in van den Berg et al. [21], two alternative scenarios
are possible:

• For the largest family, the proportion of individuals belonging to this family in
the overall population at time t is asymptotically positive. This phenomenon
of macroscopic occupancy arises in condensation of the free Bose gas below a
critical temperature; see [21].

• No individual family makes an asymptotically positive contribution. Instead, it
is a collective effort of a growing number of families to form the condensate.
This phenomenon is called nonextensive condensation. van den Berg et al. [21]
have shown that this occurs in the free Bose gas for an intermediate temperature
range.
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We shall see in Theorem 2.4 that in our model under a natural assumption on μ

the second scenario prevails. To show this, we need to investigate the behaviour of
the largest family in our system. This requires some regularity assumptions on μ.
We henceforth assume that the fitness distribution μ has a regularly varying tail in
one, meaning that there exists α > 1 and a slowly varying function � with

μ(1 − ε,1) = εα�(ε).(RV)

This corresponds to the most common type of behaviour of μ at its tip that allows
a condensation phase.

We start with a heuristic consideration. Suppose t > 0 is given. At any time s ∈
(0, t) there are exp((λ∗ + o(1))s) families in the system and by an extreme value
calculation the largest fitness in this number of families is of order 1−exp(−(λ∗

α
+

o(1))s). Until time t > s, the family achieving this fitness has time t − s to grow
and, therefore, has size of order exp(γ (t − s)(1 − e− λ∗

α
s)). We therefore expect

the birth time s of the maximal family at time t to be around the maximiser of this
expression over 0 < s < t . This maximum occurs roughly at time s ∼ α

λ� log t .
For the rigorous results, we replace this time s by the stopping time

T (t) := inf
{
s ≥ 0 : M(s) ≥ n(t)

}
where n(t) :=

⌈
1

μ(1 − t−1,1)

⌉
,

which allows us precise control over the number of families in the system. Note
that T (t) ∼ α

λ� log t , as can be seen by putting M(s) = exp((λ∗ + o(1))s) and
logn(t) = (α + o(1)) log t . Our heuristics suggests that the dominant families of
the population at time t are born in a window around time T (t), have fitness Fn

with 1 − Fn of order 1/t , and size of order exp(γ (t − T (t))).
To confirm this intuition, we zoom into this window by considering the point

process:

�t =
M(t)∑
n=1

δ
(
τn − T (t), (t − τn)(1 − Fn), e

−γ (t−T (t))Zn(t)
)
,

where δ(x) is the Dirac mass in x.

THEOREM 2.2 (Poisson limit). Under assumption (RV), the point process
(�t )t≥0 converges vaguely on the space [−∞,∞]×[0,∞]×(0,∞] to the Poisson
point process with intensity measure:

dζ(s, f, z) = αf α−1λ�eλ�se−zeγ (s+f )

eγ (s+f ) ds df dz.

REMARK 3. Note the compactifications at ±∞ in Theorem 2.2. As the lim-
iting point process has a continuous density, Theorem 2.2 implies that all mass of
�t that asymptotically accumulates at infinity in one of the first two components,
must escape at zero in the last component, meaning that the only way points can
disappear in the limit is because the corresponding family size is small relative to
the normalisation.



2546 S. DEREICH, C. MAILLER AND P. MÖRTERS

REMARK 4. As there is no scaling in the first component of �t , the limit
theorem focuses on a time window of constant width around T (t). The theorem
shows that this is wide enough to capture the largest family at time t . However,
it turns out that in the condensation phase this is not wide enough to capture all
families that contribute to the condensate. This is why important questions on the
emergence of the condensate remain open in this paper; see, for example, the first
two problems in Section 8.

Our Poisson limit result, Theorem 2.2, readily implies the following distribu-
tional limits (denoted by =⇒) for the size, fitness and birth time of the largest
family.

COROLLARY 2.3 (Limits of family characteristics). (i) Asymptotically, as
t → ∞,

e−γ (t−T (t)) max
n∈N Zn(t) =⇒ W− γ

λ� ,

where W is exponentially distributed with parameter �(α + 1)�(1 + λ�

γ
)(λ�)−α .

(ii) Under (Cond), denoting by V (t) the fitness of the family of maximal size at
time t , as t → ∞, we have

t
(
1 − V (t)

)=⇒ V,

where V is Gamma-distributed with scale parameter λ� and shape parameter α.
(iii) Denoting by S(t) the birth time of the family of maximal size at time t , as

t → ∞, we have

S(t) − T (t) =⇒ U,

where U is a real valued random variable.

REMARK 5. The birth time of the family of maximal size at time t is of
asymptotic order T (t)+O(1), and hence (as seen above) of leading order α

λ� log t .
This answers the question of Borgs et al. [6] about the rate at which new nodes
with higher fitness become the leading influence in the population; see Figure 1
for a simulation.

THEOREM 2.4 (The winner does not take it all). Under assumption (RV), the
size of the largest family is negligible relative to the overall population size, that
is,

lim
t→∞

maxn∈{1,...,M(t)} Zn(t)

N(t)
= 0 in probability.
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FIG. 1. A simulation of a reinforced branching process in the condensation case. Parameters are
μ(dx) = 3(1 − x)2 dx and β = γ = 1. Each family is represented by a circle with area proportional
to its size at time t = 12 and centred at its time of birth (horizontal axis) and its fitness (vertical axis).
Simulation courtesy of Anna Senkevich.

REMARK 6. Theorem 2.4 means that asymptotically no single family con-
tributes a positive proportion of the total mass, hence if there is condensation it
is always nonextensive. This means in the context of Examples 2 that no vertex
attracts a positive fraction of the edges in the network. This is at odds with the
informal description of condensation in the preferential attachment networks by
Bianconi and Barabási [4], who are stating that ‘the fittest node [is] acquiring a
finite fraction of the links, independent of the size of the network’. It is also at odds
with more recent work of Godrèche and Luck [13] who use a numerical study and
further analysis based on it to conclude that asymptotically there is an unbounded
number of macroscopic families. Apparently the phenomenon we investigate here
is too subtle to be reliably captured by nonrigorous techniques. In the context of
Examples 3, our theorem states that the proportion of balls of any colour goes to
zero, uniformly over all colours.

The remainder of this paper is organised as follows. In Section 3, we prove
Theorem 2.1 by applying the theory of general branching processes. Section 4
contains an explicit construction of our model and uses this to give crude bounds
on the rate of growth of the branching process. These will be used in Section 5
to derive a local version of Theorem 2.2, that is, a version without the essential
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compactifications of the underlying space. Section 6 provides the estimates needed
to compactify the space, and in Section 7 we complete the proof of Theorem 2.2
and derive Corollary 2.3 and Theorem 2.4. The final section, Section 8, lists some
interesting open problems.

3. Proof of the condensation phenomenon. In the last years, a couple of
techniques were developed to prove limit theorems for empirical distributions in
networks and related structures; see, for example, Borgs et al. [6], Bhamidi [3] and
Dereich and Ortgiese [12]. We now indicate how the theory of general branching
processes can be used to prove Theorem 2.1. Our method is similar to the one
described in [3] but circumvents the use of multitype branching.

3.1. The standard construction of the model. We start with a construction of
our model on an explicit probability space. Let

• F be a μ-distributed random variable,
• given F let Y = (Y (t) : t ≥ 0) be an independent Yule process with rate γF ,
• given F,Y we define a simple point process � = (�(t) : t ≥ 0) as � = �(1) +

�(2) where �(1) only jumps at the jumps of Y , and does so independently for
every jump with probability β+γ−1

γ
, and �(2) is an independent, inhomogeneous

Poisson process with intensity measure (1 − γ )FY (t) dt .

We let (�,F ,P) be the countable product of the joint law of (F,Y,�) and
denote the coordinate process by (Fn,Yn,�n), for n ∈ N. We let τ1 = 0 and
Z1(t) = Y1(t) and iteratively define, for n ∈ {2,3, . . . },
(2) τn = inf

{
t > τn−1 : ∃m ∈ {1, . . . , n − 1} with ��m(t − τm) = 1

}
and

Zn(t) =
{
Yn(t − τn), if t ≥ τn,

0, otherwise.

We let M(t) = max{n : τn ≤ t}, set N(t) =∑M(t)
n=1 Zn(t), and denote by σ1, σ2, . . .

the jump times of (N(t) : t ≥ 0). It is obvious that this construction defines
the reinforced branching process described in the Introduction. Indeed, (Yn(t −
τn) : t ≥ τn) gives the times of birth of new individuals in the nth family, and
(�n(t − τn) : t ≥ τn) the times of creation of the new families which descend di-
rectly from the nth family.

For later reference, we now recall some facts about Yule processes.

LEMMA 3.1. Let Y be a Yule process with rate λ. Then:

(a) (e−λtY (t))t≥0 is a uniformly integrable martingale.
(b) The almost sure limit limt→∞ e−λtY (t) is standard exponentially dis-

tributed.
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(c) For u ∈ [0,1), one has

E

[
sup
t≥0

exp
{
ue−λtY (t)

}]≤ 4

1 − u
.(3)

(d) Denote by Tn = inf{s ≥ 0 : Y(s) ≥ n}. Then for every ε > 0 with high prob-
ability as κ → ∞ for all n0, n ≥ κ

1

λ
log

n

n0
− ε ≤ Tn − Tn0 ≤ 1

λ
log

n

n0
+ ε.

PROOF. (a) and (b) are standard and proofs can be found in Athreya and
Ney [2]. Denote the martingale limit in (b) by A. For the proof of (c), note that
(exp{ue−tY (t)/2} : t ≥ 0) is a sub-martingale by Jensen’s inequality. Doob’s mar-
tingale inequality then gives

E

[
sup
t≥0

(
exp
{
ue−tY (t)/2

})2]≤ 4E
[
exp{uA}]= 4

1 − u
.

To prove (d), we may assume, without loss of generality, that λ = 1. Con-
sider the martingale given by ξt = e−tY (t), and let R(κ) := sup{ ξs

ξu
: s, u ≥ Tκ}.

By (b), (ξt )t≥0 has an almost surely finite, strictly positive limit and one has
limκ→∞ R(κ) = 1, in probability. Further

Y(t + Tn0)

Y (Tn0)
= et

ξt+Tn0

ξTn0

∈
[

1

R(κ)
et ,R(κ)et

]
.

An application of the estimate for all n,n0 ≥ κ with t = Tn − Tn0 gives that

n

n0
∈
[

1

R(κ)
eTn−Tn0 ,R(κ)eTn−Tn0

]
.

Taking logarithms and recalling that R(κ) tends to 1 yields the statement. �

3.2. General branching process theory. The processes (M(t) : t > 0) is a gen-
eral branching process, or Crump–Mode–Jagers process, with the laws of offspring
times given by the point process (�(t) : t > 0). Nerman [18] provides a strong law
of large numbers for this class of processes under the assumption that there exists
λ∗ > γ , called the Malthusian parameter, such that∫ ∞

0
e−λ∗s

E�(ds) = 1.

An easy calculation (which we skip since it is already carried out in detail in the
particular case of Examples 1 above) shows that this is equivalent to

β

β + γ

∫ 1

0

λ�

λ� − γ x
dμ(x) = 1.
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Suppose that φ = φ[F,Y,�] : [0,∞) → N0 is a cadlag process taking values in
the nonnegative integers, such that φ(t) is interpreted as a score assigned to a
family t time units after its foundation. We assume the function t �→ E[φ(t)] is
almost everywhere continuous and there exists h : [0,∞) → (0,∞) integrable,
bounded and nonincreasing such that

E

[
sup
t≥0

e−λ�tφ(t)

h(t)

]
< ∞.

Letting φn = φ[Fn,Yn,�n] we define the score of the population at time t as

Zφ(t) = ∑
n : τn<t

φn(t − τn).

We define

mφ∞ =
∫∞

0 e−λ�t
Eφ(t) dt∫∞

0 te−λ�tE�(dt)
.

Nerman [18] shows that there exists a positive random variable W , not depending
on φ, such that

(4) lim
t↑∞ e−λ�tZφ(t) = Wmφ∞ almost surely.

Under the assumption that (Cond) fails and λ� > γ , we can apply this result with
φ(t) = Y(t), which satisfies the assumptions by Lemma 3.1, to get

lim
t↑∞ e−λ�tN(t) = Wmφ∞ almost surely.

Choosing φ(t) = Y(t)1{F ≥ 1 − x}, for 0 < x < 1, and combining with the above
gives

lim
t↑∞�t [1 − x,1] = β

β + γ

∫ 1

1−x

λ�

λ� − γ x
dμ(x) almost surely,

as required.

3.3. A coupling technique. To extend results to the case when λ� = γ , or when
no Malthusian parameter is available, we use a coupling technique. We look at the
reinforced branching process at the times (σn)n≥1 of the birth events and abbreviate
�̂n := �σn .

Fix ε > 0. We define a discrete-time branching process whose empirical fitness
distribution �̂

(ε)
n has the property that, for all n ≥ 0, (�̂n, �̂

(ε)
n ) ∈ S , where S is

the subset of the set of pairs of probability measures on [0,1] defined by S :=
{(ν,μ) : ν([a, b]) ≥ μ([a, b]) for all a, b ∈ [0,1 − ε)}. Let (Un)n≥1 be a sequence
of i.i.d. random variables uniformly distributed on [0,1].

At time zero, the new process contains one family of fitness F11{F1 < 1 − ε} +
1{F1 ≥ 1 − ε}, and thus (�̂0, �̂

(ε)
0 ) ∈ S . Assume now that, (�̂n, �̂

(ε)
n ) ∈ S . We

construct the new process at time n + 1 as follows:
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• if a new family of fitness f is born at time n+1 (in the original process), then we
add in the (new) process a new family of fitness f 1{f < 1 − ε} + 1{f ≥ 1 − ε}
born at time n + 1;

• if an individual of fitness larger than 1 − ε is born at time n + 1 in the original
process, then we add a new individual of fitness 1 born at time n + 1;

• if an individual of fitness f < 1 − ε is born at time n+ 1 in the original process,
then if

Un+1 ≤
(

�̂
(ε)
n ({f })∫ 1

0 x d�̂
(ε)
n (x)

)(
�̂n({f })∫ 1

0 x d�̂n(x)

)−1
,

we add an individual of fitness f born at time n + 1, otherwise, we add an
individual of fitness 1.

By construction, (�̂n+1, �̂
(ε)
n+1) ∈ S . It is now easy to check that the new process

is the discrete-time version of the reinforced branching process with fitness distri-
bution με := 1[0,1 − ε)μ + μ[1 − ε,1]δ1. Since

β

β + γ

∫ 1

0

dμε(x)

1 − x
= ∞,

the new process admits a Malthusian parameter λε and λε ↓ γ as ε ↓ 0. We deduce
that, for all 0 ≤ a, b < 1 − ε, we have

lim
n→∞ �̂(ε)

n

([a, b])= lim
t→∞ �̂

(ε)
t

([a, b])= β

β + γ

∫ b

a

λε

λε − γ x
dμ(x)

almost surely. For all 0 ≤ a, b < 1 and 0 < ε < 1 − b, we thus have

lim inf
t→∞ �t

([a, b])= lim inf
n→∞ �̂n

([a, b])≥ lim
n→∞ �̂(ε)

n

([a, b])
= β

β + γ

∫ b

a

λε

λε − γ x
dμ(x).

Letting ε ↓ 0 gives the lower bound. A similar argument gives a coupling with
the reinforced branching process with μ replaced by μ(ε) = 1[0,1 − ε)μ + μ[1 −
ε,1]δ1−ε , and provides an upper bound, which is enough to conclude the proof of
Theorem 2.1.

4. Estimates for the number of families in the population. The main dif-
ficulty in our model is that the time of birth of the nth family is not known with
good accuracy. We now give a rough deterministic bound for the births occurring
around the stopping times T (t).

PROPOSITION 4.1. For all ε ∈ (0, λ�), we have with high probability as n0 →
∞, for all n ≥ n0,

1

λ� + ε
log

n

n0
− ε ≤ τn − τn0 ≤ 1

λ� − ε
log

n

n0
+ ε,
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and, for all 1 ≤ n ≤ n0,

1

λ� − ε
log

n

n0
− ε ≤ τn − τn0 ≤ 1

λ� + ε
log

n

n0
+ ε.

PROOF. Recall that, when t goes to infinity, M(t) = e(λ�+o(1))t , implying that

τn0 = 1 + o(1)

λ�
logn0

which implies the estimate for arbitrarily fixed n as n0 goes to infinity. It thus
suffices to prove the statement for all n,n0 ≥ κ with high probability as κ goes to
infinity. Fix ε ∈ (0, λ�) and κ ∈ N and set λ�± := λ� ± ε. The stochastic process
(M(s))s≥0 is a pure birth process with continuous compensator:

γ (s) =
∫ s

0
βN(u)

∫ 1

0
x�u(dx) du.

We consider the stopping time S given by

S = inf
{
s ≥ τκ : βN(s)

M(s)

∫ 1

0
x�s(dx) /∈ [λ�−, λ�+

]}
,

and note that, by Theorem 2.1, S is infinite with high probability as κ → ∞.
Let wn := τn+1 − τn be the inter-arrival times of (M(s))s≥0. Observe that

γ (τn+1) − γ (τn) =
∫ τn+1

τn

βN(s)

∫ 1

0
x�s(dx) ds

∈ [λ�−(τn+1 − τn)n,λ�+(τn+1 − τn)n
]

provided that τn+1 ≤ S. Defining

w±
n := γ (τn+1) − γ (τn)

λ�±n
,

we infer that w+
n ≤ wn ≤ w−

n for all n such that τn+1 ≤ S, and the sequences
(w±

n )n∈N consist of independent exponentials with respective parameter λ�±n

which are the inter-arrival times of Yule processes (Y±(s)) of respective rate λ�±.
By Lemma 3.1, with high probability as κ → ∞, for all n,n0 ≥ κ ,

1

λ�±
log

n

n0
− ε ≤ T ±

n − T ±
n0

≤ 1

λ�±
log

n

n0
+ ε,

where (T ±
n )n∈N denotes the ordered sequence of jump times of (Y±(s))s≥0. Hence,

for all n ≥ n0 ≥ κ ,

τn − τn0 =
n−1∑
k=n0

wk ≤
n−1∑
k=n0

w−
k = T −

n − T −
n0

≤ 1

λ�−
log

n

n0
+ ε.
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Similarly, it follows that with high probability, for κ ≤ n ≤ n0,

τn − τn0 ≤ T +
n − T +

n0
≤ 1

λ�+
log

n

n0
+ ε.

The converse bound follows in complete analogy. �

5. Local convergence. The aim of this section is to prove the following
proposition.

PROPOSITION 5.1. Under assumption (RV), one has convergence in distribu-
tion of the point process:

�t =
M(t)∑
n=1

δ(τn−T (t),(t−τn)(1−Fn),e−γ (t−T (t))Zn(t))

to the Poisson point process with intensity

dζ(s, f, z) = αf α−1λ�eλ�se−zeγ (f +s)

eγ (f +s) ds df dz,

where we endow the set of locally finite measures on (−∞,∞) × [0,∞) × [0,∞]
with the topology of vague convergence.

Proposition 5.1 is a straightforward consequence of the following result.

PROPOSITION 5.2. Under assumption (RV), we have vague convergence of
the point process:

�t =
M(t)∑
n=1

δ(τn−T (t),(t−τn)(1−Fn),e−γFn(t−τn)Zn(t))

to the Poisson point process with intensity

dζ �(s, f, z) = αf α−1λ�eλ�se−z ds df dz

on (−∞,∞) × [0,∞) × [0,∞].

PROOF OF PROPOSITION 5.1. This follows directly from the fact that the
point process �t is the image of �t by the continuous function (s, f, z) �→
(s, f, e−γ (s+f )z), and that ζ is the image of ζ � by the same continuous function.

�

The proof of Proposition 5.2 consists of the following two steps. We approxi-
mate �t by a point process:

��
t = ∑

n∈N
δ(τ�

n (t)−T (t),t (1−Fn),ξn),
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where the birth times τn are replaced by approximate birth times

τ �
n(t) = T (t) + log n

n(t)

λ�

and the rescaled family sizes e−γFn(t−τn)Zn(t) by their limits

ξn = lim
u→∞ e−γFn(u−τn)Zn(u).

In the approximating process ��
t , the components are decoupled, which makes it

easier to study. We prove that:

(1) this approximation process converges vaguely to the Poisson point process
of intensity ζ �, and

(2) ��
t is close enough to �t to imply Proposition 5.2.

The two steps correspond to the two lemmas below.

LEMMA 5.3. (��
t )t≥0 converges vaguely on [−∞,∞) × [0,∞) × [0,∞] to

the Poisson point process with intensity ζ �.

PROOF. We apply Kallenberg’s theorem; see [20], Proposition 3.22. Since ζ �

is diffuse, to prove Lemma 5.3, it is enough to show that, for every precompact
relatively open box B ⊂ [−∞,∞) × [0,∞) × [0,∞]:

(a) P(��
t (B) = 0) → exp(−ζ �(B)), as t ↑ ∞, and

(b) E��
t (B) → ζ �(B), as t ↑ ∞.

It suffices to consider nonempty boxes B of the form (a0, a1) × (b0, b1) × (c0, c1)

since, almost surely, neither the point processes �t nor the limiting Poisson process
put points on the boundary ∂([−∞,∞) × [0,∞) × [0,∞]). Here, a0 = −∞ and
c1 = ∞ is an allowed choice. Note that

ζ �(B) = (eλ�a1 − eλ�a0
)(

bα
1 − bα

0
)(

e−c0 − e−c1
)
.

(a) By the construction of the probability space at the beginning of Section 4,
(Fn, ξn)n≥1 is a sequence of i.i.d. random variables with each Fn being indepen-
dent of ξn. Hence,

P
(
��

t (B) = 0
)= ∏

n(t)eλ�a0<n<n(t)eλ�a1

P
(
t (1 − Fn) /∈ (b0, b1) or ξn /∈ (c0, c1)

)
= (1 − P

(
t (1 − F1) ∈ (b0, b1)

)
P
(
ξ1 ∈ (c0, c1)

))ra0,a1 (t)
,

where ra0,a1(t) denotes the number of elements n ∈ N with n(t)eλ�a0 < n <

n(t)eλ�a1 .
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We note that, as t → ∞, we have ra0,a1(t) ∼ (eλ�a1 − eλ�a0)/μ(1 − t−1,1) and,
in view of Assumption RV,

(5)
μ((1 − b1

t
,1 − b0

t
))

μ(1 − 1
t
,1)

∼ bα
1 − bα

0 as t ↑ ∞.

Further P(ξ1 ∈ (c0, c1)) = e−c0 − e−c1 . Thus, as t → ∞,

P
(
��

t (B) = 0
)= (1 − μ

(
1 − b1

t
,1 − b0

t

)(
e−c0 − ec1

))ra0,a1 (t)

∼ exp
(
−(eλ�a1 − eλ�a0

)μ((1 − b1
t
,1 − b0

t
))

μ(1 − 1
t
,1)

(
e−c0 − ec1

))
→ exp

(−ζ �(B)
)
.

(b) To compute the limit of E[��
t (B)], we apply the asymptotic estimates from

above,

E
[
��

t (B)
]= ∑

n(t)eλ�a0<n<n(t)eλ�a1

μ

([
1 − b1

t
,1 − b0

t

])
P
(
ξn ∈ [c1, c2])

= ra0,a1(t)μ

([
1 − b1

t
,1 − b0

t

])
P
(
ξ1 ∈ [c1, c2])→ ζ �(B). �

LEMMA 5.4. For all Lipschitz continuous, compactly supported functions f :
(−∞,∞) × [0,∞) × [0,∞] →R,∣∣∣∣∫ f d��

t −
∫

f d�t

∣∣∣∣→ 0 in probability, as t ↑ ∞.

PROOF. Let f be a Lipschitz continuous function supported on K = [−a, a]×
[0, b] × [0,∞] for a, b ≥ 1. We have∣∣∣∣∫ f d�t −

∫
f d��

t

∣∣∣∣
≤

M(t)∑
n=1

∣∣f (τn − T (t), (t − τn)(1 − Fn), e
−γFn(t−τn)Zn(t)

)
− f

(
τ �
n(t) − T (t), t (1 − Fn), ξn

)∣∣
≤ c

∑
n∈I (t)

(∣∣τn − τ �
n(t)

∣∣+ τn(1 − Fn) + ∣∣e−γFn(t−τn)Zn(t) − ξn

∣∣),
(6)

where c is the Lipschitz constant of the function f and I (t) is the random set of
indices n ∈ N such that

(a)
∣∣τn − T (t)

∣∣≤ a and (t − τn)(1 − Fn) ≤ b
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or

(b)
∣∣τ �

n(t) − T (t)
∣∣≤ a and t (1 − Fn) ≤ b.

For ε ∈ (0,1/2), we denote by Tε(t) the event that the following properties hold:

• |τn − τ �
n(t)| ≤ ε(1 + |τ �

n(t) − T (t)|) for all n ∈ N and
• T (t) ≤ t/3.

We note that, in view of Proposition 4.1, Tε(t) holds with high probability as
t → ∞.

Let now Ī (t) := {n ∈ N : |τ �
n(t) − T (t)| ≤ 2a, t (1 − Fn) ≤ 2b}. We show that

for t ≥ 6a one has I (t) ⊂ Ī (t) on Tε(t). Suppose that n ∈ I (t) and that Tε(t)

holds. It suffices to consider the case where condition (a) is satisfied. Then b ≥
(t − τn)(1 − Fn) ≥ (t − T (t) − a)(1 − Fn) ≥ t (1 − Fn)/2, which proves that the
second inequality in the definition of Ī (t) is satisfied. Let us further assume that
n ≤ n(t). Then a ≥ |τn − T (t)| ≥ (1 − ε)|τ �

n(t) − T (t)| − ε, which implies that∣∣τn − τ �
n(t)

∣∣≤ ε
(
1 + ∣∣τ �

n(t) − T (t)
∣∣)≤ ε

(
1 + a + ε

1 − ε

)
≤ 4aε.

The same inequality holds if n ≥ n(t), and thus we have proved that I (t) ⊂ Ī (t)

on Tε(t) for all t ≥ 6a.
We now consider the sum on the right-hand side of (6), but taken over all n ∈

Ī (t). First, note that, for n ∈ Ī (t), on Tε(t), we have τn ≤ T (t) + (1 + ε)(τ �
n(t) −

T (t)) + ε ≤ t
3 + 3a, if n ≥ n(t), and τn(1 − Fn) ≤ 2b

t
(T (t) + 3a). Second, we let,

for n ∈ N and s ≥ 0,

Rn(s) := sup
u≥s

∣∣e−uZn(τn + u/Fn) − ξn

∣∣
and using that for t ≥ 4b and n ∈ Ī (t) one has Fn ≥ 1

2 we conclude that for all
t ≥ max(4b,18a),∣∣e−γFn(t−τn)Zn(t) − ξn

∣∣≤ Rn

(
γFn(t − τn)

)≤ Rn(γ t/4).

Hence, we get that, for sufficiently large t , on Tε(t),∣∣∣∣∫ f d�t −
∫

f d��
t

∣∣∣∣
≤ c

∑
n∈Ī (t)

(∣∣τn − τ �
n(t)

∣∣+ τn(1 − Fn) + ∣∣e−γFn(t−τn)Zn(t) − ξn

∣∣)

≤ c
∑

n∈Ī (t)

(
4aε + 2b

t

(
T (t) + 3a

)+ Rn(γ t/4)

)

≤ c
∣∣Ī (t)

∣∣(4aε + 2b

t

(
T (t) + 3a

))+ c
∑

n∈Ī (t)

Rn(γ t/4).
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By construction, the random processes (Rn)n≥1 are independent of (Fn)n≥1, and
thus also of the random set Ī (t). We recall that, by Proposition 5.2, |Ī (t)| con-
verges in distribution to a Poisson distribution and lims→∞ Rn(s) = 0, almost
surely. Hence,

lim
t→∞

∑
n∈Ī (t)

Rn(γ st/4) = 0 in probability.

Since further limt→∞ T (t)/t = 0, almost surely, we conclude that, with high prob-
ability, ∣∣∣∣∫ f d�t −

∫
f d��

t

∣∣∣∣≤ 8εac
(∣∣Ī (t)

∣∣+ 1
)
.

Recalling again that |Ī (t)| converges in distribution and that ε ∈ (0,1/2) can be
made arbitrarily small we obtain convergence to zero in probability, as t ↑ ∞. �

PROOF OF PROPOSITION 5.2. Let f : R×[0,∞)×[0,∞) →R be Lipschitz
continuous and compactly supported. Combining Lemmas 5.3 and 5.4, together
with Slutzky’s lemma we get the desired result,∫

f d�t ⇒
∫

f dPPP
(
ζ �) as t ↑ ∞,

where PPP(ζ �) denotes the Poisson point process with intensity ζ �. �

6. Negligibility of families outside the main window. To deduce Theo-
rem 2.2 from Proposition 5.1, one has to control the contribution of the point pro-
cess near the closed boundaries of [−∞,+∞] × [0,+∞] × (0,+∞]. We prove
that the families that are born too late, or that are not fit enough, are too small to
contribute in the limit. They get absorbed by the open lower bound of the third co-
ordinate. We first provide a simple calculation, which is at the heart of our proofs.
Recall that

n(t) =
⌈

1

μ(1 − 1
t
,1)

⌉
.

LEMMA 6.1. Let F be a random variable with law μ. There exists t0 > 0 such
that, for all C ≥ 0, D > 0, there exists K = K(C,D) > 0 such that

E

[
1
{
F ≤ 1 − C

t

}
e−D(1−F)t

]
≤ K

n(t)
for all t ≥ t0.

Moreover, for all D, we have limC↑∞ K(C,D) = 0.

To prove this lemma, we need Potter’s bound; see Theorem 1.5.6(ii) in [5].
Since μ verifies equation (RV), and is bounded from zero and infinity on every
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compact set of (0,1], for all δ > 0, there exists a constant � = �(δ) such that, for
all 0 < x,y ≤ 1,

(7)
μ(1 − y,1)

μ(1 − x,1)
≤ �

(
y

x

)α+δ

.

PROOF OF LEMMA 6.1. Fix δ > 0. We have

E

[
1
{
F ≤ 1 − C

t

}
e−D(1−F)t

]
=
∫ ∞

0
P

(
1
{
F ≤ 1 − C

t

}
e−D(1−F)t ≥ x

)
dx

=
∫ ∞

0
P

(
1 − log 1

x

Dt
≤ F ≤ 1 − C

t

)
dx

≤
∫ e−CD

0
μ

(
1 − log 1

x

Dt
,1
)

dx

≤ �(δ)μ

(
1 − 1

t
,1
)∫ e−CD

0

(
1

D
log

1

x

)α+δ

dx,

where �(δ) is defined by the Potter’s bound [see equation (7)]. Changing variables
y = 1

D
log 1

x
, we get

E

[
1
{
F ≤ 1 − C

t

}
e−D(1−F)t

]
≤ D�(δ)μ

(
1 − 1

t
,1
)∫ ∞

C
yα+δe−Dy dy.

Recall that n(t) = � 1
μ(1−1/t,1)

�, and let K(C,D) := D�(δ)
∫∞
C yα+δe−Dy dy to

complete the proof. �

6.1. Contribution of the unfit families.

LEMMA 6.2. For every η > 0 and c > 0, there exists κ > 0 such that, for all
sufficiently large t , we have

P

(
max

n≤M(t)
1
{
Fn ≤ 1 − κ

t

}
Zn(t) ≥ ceγ (t−T (t))

)
≤ η.

PROOF. Let c > 0 and κ > 0. We analyse the event that there exists a family
with fitness Fn ≤ 1 − κ

t
and size e−γ (t−T (t))Zn(t) ≥ c. To this end, we define the

time-shifted version (Z�
n(t) : t ∈ R) of the size of the nth family by

Z�
n(t) := Zn

(
t + τn − τ �

n

)
,

where

τ �
n :=

⎧⎪⎪⎨⎪⎪⎩
T (t) + 1

λ� − ε
log

n

n(t)
− ε if n ≤ n(t),

T (t) + 1

λ� + ε
log

n

n(t)
− ε if n ≥ n(t).
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In view of Proposition 4.1, we have, with high probability as t → ∞, that
Z�

n(t) ≥ Zn(t) for all n ≥ 0. Recalling the construction of the probability space
at the beginning of Section 4, we note that the family (An)n≥1 given by

An = max
s≥τ�

n

Z�
n(s)

eγFn(s−τ�
n )

= max
s≥τn

Zn(s)

eγFn(s−τn)

forms a sequence of i.i.d. random variables which is independent of (Fn)n≥1. Fur-
ther, {

Zn(t) ≥ ceγ (t−T (t))}⊂ {Z�
n(t) ≥ ceγ (t−T (t))}

⊂ {An ≥ ceγ [(t−T (t))−Fn(t−τ �
n )]}

= {An ≥ ceγ [(1−Fn)(t−T (t))−Fn(T (t)−τ�
n )]}.

Therefore,

(8)

P

(
max

n≤M(t)
1
{
Fn ≤ 1 − κ

t

}
Zn(t) ≥ ceγ (t−T (t))

)

≤ P

(
T (t) ≥ t

2

)

+
∞∑

n=1

P

(
An1

{
Fn ≤ 1 − κ

t

}
≥ ceγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )]
)
.

In terms of ϕ(u) := P(A1 ≥ u), we have

P

(
An1

{
Fn ≤ 1 − κ

t

}
≥ ceγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )]
)

= E

[
1
{
Fn ≤ 1 − κ

t

}
ϕ
(
ceγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )])].

By Lemma 3.1, we have ϕ(u) ≤ C0e
−u/2 so that

E

[
1
{
Fn ≤ 1 − κ

t

}
ϕ
(
ceγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )])]

≤ C0E

[
1
{
Fn ≤ 1 − κ

t

}
exp
{
−c

2
eγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )]
}]

.

Noting that T (t) − τ �
n is deterministic we get that the expectation on the right

equals

E

[
1
{
F ≤ 1 − κ

t

}
exp
{
−c

2
eγ [(1−F) t

2 −F(T (t)−τ�
n )]
}]

,

where F is a random variable of law μ. We now fix small numbers δ, � > 0 and
note that there exists a constant C� such that e−y ≤ C�y−� for all y ≥ 0. Using
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this, and recalling the definition of τ �
n , we get, for n ≥ n(t),

E

[
1
{
δ ≤ F ≤ 1 − κ

t

}
exp
{
−c

2
eγ [(1−F) t

2 −F(T (t)−τ�
n )]
}]

≤ E

[
1
{
F ≤ 1 − κ

t

}
exp
{
−c

2

(
n

n(t)

) δγ

λ�+ε

eγ [(1−F) t
2 −ε]

}]

≤ C�

(
c

2

)−�

eγ�ε

(
n(t)

n

)�
γ δ

λ�+ε

E

[
1
{
F ≤ 1 − κ

t

}
e−�γ (1−F) t

2

]
.

We now apply Lemma 6.1 and get, for n ≥ n(t),

E

[
1
{
δ ≤ F ≤ 1 − κ

t

}
exp
{
−c

2
eγ [(1−F) t

2 −F(T (t)−τ�
n )]
}]

≤ C�

(
c

2

)−�

eγ�ε

(
n(t)

n

)�
γ δ

λ�+ε K(κ,
�γ
2 )

n(t)
.

(9)

Similarly, we get, for n ≤ n(t),

E

[
1
{
δ ≤ F ≤ 1 − κ

t

}
exp
{
−c

2
eγ [(1−F) t

2 −F(T (t)−τ�
n )]
}]

≤ C�

(
c

2

)−�

eγ�ε

(
n(t)

n

)�
γ

λ�−ε K(κ,
�γ
2 )

n(t)
.

(10)

Applying (9) with �+ > λ�+ε
γ δ

, if n > n(t), and (10) with �− < λ�−ε
γ

, if n ≤ n(t),
we get

∞∑
n=1

P

(
An1

{
Fn ≤ 1 − κ

t

}
≥ ceγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )]
)

≤ C0C�−

(
c

2

)−�−
eγ�−ε K(κ,

�−γ
2 )

n(t)

n(t)∑
n=1

(
n(t)

n

)�− γ

λ�−ε

+ C0C�+

(
c

2

)−�+
eγ�+ε K(κ,

�+γ
2 )

n(t)

∞∑
n=n(t)+1

(
n(t)

n

)�+ γ δ

λ�+ε + C0P(F < δ)

≤ C

(
K

(
κ,

�−γ

2

)
+ K

(
κ,

�+γ

2

))
+ C0P(F < δ),

where C is a constant not depending on κ or t , using that both sums are bounded by
a constant multiple of n(t). Recall that limκ→∞ K(κ,

�±γ
2 ) = 0 and P(F < δ) → 0

as δ ↓ 0. Recalling (8) and noting that P(T (t) ≥ t
2) → 0, as t ↑ ∞, completes the

proof. �
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6.2. Contribution of the families born late.

LEMMA 6.3. For every η > 0 and c > 0 there exists υ > 1 such that, for all
sufficiently large t , we have

P

(
max

υn(t)≤n≤M(t)
Zn(t) ≥ ceγ (t−T (t))

)
≤ η.

PROOF. The proof is similar to the proof of Lemma 6.2. Let c > 0 and define
the processes (Z�

n(t) : t ∈ R), the sequence (An), and the numbers τ �
n as above. We

have {
Zn(t) ≥ ceγ (t−T (t))}⊂ {Z�

n(t) ≥ ceγ (t−T (t))}
⊂ {An ≥ ceγ [(1−Fn)(t−T (t))−Fn(T (t)−τ�

n )]}.
Therefore, for any υ > 1 and n ≥ υn(t),

(11)

P

(
max

n≥υn(t)
Zn(t) ≥ ceγ (t−T (t))

)

≤ P

(
T (t) ≥ t

2

)
+

∞∑
n=υn(t)

P
(
An ≥ ceγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )]).

An argument analogous to Lemma 6.2 yields, for any δ > 0,

P
(
An ≥ ceγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )])

≤ C0E

[
exp
{
−c

2
eγ [(1−F) t

2 −δ(T (t)−τ�
n )]
}]

+ C0P(F < δ),

where F is a random variable of law μ. We now pick � > λ�+ε
γ δ

. As in Lemma 6.2,
we use existence of a constant C� such that e−y ≤ C�y−�, for all y ≥ 0, and
Lemma 6.1 to get

E

[
exp
{
−c

2
eγ [(1−F) t

2 −δ(T (t)−τ�
n )]
}]

≤ C�

(
c

2

)−�

eγ�ε

(
n(t)

n

)�
γ δ

λ�+ε K(0,
�γ
2 )

n(t)
.

Summing over n ≥ υn(t) yields∑
n≥υn(t)

P
(
An ≥ ceγ [(1−Fn) t

2 −Fn(T (t)−τ�
n )])

≤ C0C�

(
c

2

)−�

eγ�ε K(0,
�γ
2 )

n(t)

∞∑
n=υn(t)

(
n(t)

n

)�
γ δ

λ�+ε + C0P(F < δ)

≤ Cυ
1−�

γ δ

λ�+ε + C0P(F < δ),

where C is a constant that does not depend on t or υ . Finally, using that 1 −
�

γ δ
λ�+ε

< 0, recalling that P(F < δ) → 0, as δ ↓ 0, P(T (t) ≥ t
2) → 0, as t ↑ ∞,

and plugging this into (11) completes the proof. �
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6.3. Families born early are not fit enough. The following lemma is a standard
extreme value result that is included for completeness.

LEMMA 6.4. For all κ, η > 0, there exists w = w(κ,η) > 0 such that, for all
t large enough,

P
(
�t

([−∞,− logw] × [0, κ] × [0,∞])= 0
)≥ 1 − η.

PROOF. We have

P
(
�t

([−∞,− logw] × [0, κ] × [0,∞])= 0
)

= P

(
Fn < 1 − κ

t
,∀n s.t. τn ≤ T (t) − logw

)
= P

(
Fn < 1 − κ

t
,∀n ≤ M

(
T (t) − logw

))
,

where we recall that M(T (t)− logw) is the number of families that were founded
before time T (t) − logw. Thus, in view of Hypothesis (RV),

P
(
�t

([−∞,− logw] × [0, κ] × [0,∞])= 0
)

= E

[
μ

(
0,1 − κ

t

)M(T (t)−logw)]
= (1 + o(1)

)
E

[
exp
(
−M

(
T (t) − logw

)(κ

t

)α

�

(
κ

t

))]
,

when t tends to infinity. Note that, by Lemma 4.1, with probability tending to one,

logw = T (t) − (T (t) − logw
)≤ τn(t) − τM(T (t)−logw)

≤ 1

λ� − ε
log

n(t)

M(T (t) − 1)
+ ε,

implying that

M
(
T (t) − 1

)≤ n(t) exp
[−(λ� − ε

)
(logw − ε)

]
.

Recall that, using (RV) again, n(t) ∼ tα/�(1
t
). We thus get

P
(
�t

([−∞,− logw] × [0, κ] × [0,∞])= 0
)

≥ (1 + o(1)
)

exp
(
−e−(λ�−ε)(logw−ε)κα�

(
κ

t

)/
�

(
1

t

))
.

Since � is a slowly varying function, we have that �(κ
t
)/�(1

t
) → 1 when t tends to

infinity. In conclusion,

P
(
�t

([−∞,− logw] × [0, κ] × [0,∞])= 0
)

≥ (1 + o(1)
)

exp
(−e−(λ�−ε)(logw−ε)κα)→ 1,

as w ↑ ∞, which completes the proof. �
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7. Proof of nonextensiveness of condensation.

7.1. Proof of Theorem 2.2. Let η, c > 0. By Lemma 6.2, there exists κ =
κ(c, η) such that

lim inf
t→∞ P(�t

([−∞,∞] × [κ,∞] × (c,∞]) = 0
)≥ 1 − η.

By Lemma 6.3, there exists υ = υ(c, η) > 1 such that

lim inf
t→∞ P(�t

([logυ,∞] × [0,∞] × (c,∞]) = 0
)≥ 1 − η.

By Lemma 6.4, there exists w = w(κ,η) > 0 such that

lim inf
t→∞ P

(
�t

([−∞,− logw] × [0, κ] × [0,∞])= 0
)≥ 1 − η.

Finally, Proposition 5.1 gives that �t converges on (−∞, logυ)×[0, κ)× (c,∞]
to the Poisson process with intensity measure ζ . Combining these four facts and
using that η > 0 is arbitrarily small, we get convergence on [−∞,∞] × [0,∞] ×
(c,∞]. As this holds for all c > 0, the proof is complete.

7.2. Proof of Corollary 2.3. (i) We fix x > 0 and apply the vague convergence
proved in Theorem 2.2 to the compact set K := [−∞,+∞] × [0,∞] × [x,∞].
We get, as t → ∞, that

M(t)∑
n=1

1K

(
τn − T (t), (t − τn)(1 − Fn), e

−γ (t−T (t))Zn(t)
)⇒ Poisson

(∫
K

dζ

)
.

Hence,

P

(
e−γ (t−T (t)) max

n∈{1,...,M(t)}Zn(t) ≥ x
)

→ P

(
Poisson

(∫
K

dζ

)
≥ 1
)

= 1 − exp
(
−
∫
K

dζ

)
.

(12)

Integrating out gives∫
K

dζ =
∫ +∞
−∞

∫ ∞
0

∫ ∞
x

αf α−1λ�eλ�se−zeγ (s+f )

eγ (s+f ) dz df ds

=
∫ ∞

0
e−w

∫ ∞
0

αf α−1
∫ 1

γ
log w

x
−f

−∞
λ�eλ�s ds df dw

=
(∫ ∞

0
e−w

(
w

x

) λ�

γ

dw

)(∫ ∞
0

αf α−1e−λ�f df

)

= �(α + 1)�(1 + λ�

γ
)

(λ�)α
x

− λ�

γ .
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Thus, the right-hand side in (12) is 1 − exp(−�x−η), for � = �(α+1)�(1+ λ�

γ
)

(λ�)α
and

η = λ�

γ
. Summarising,

P

((
e−γ (t−T (t)) max

n∈{1,...,M(t)}Zn(t)
)−η ≤ y

)
→ 1 − exp(−�y) = P

(
Exp(�) ≤ y

)
,

which proves the statement.
(ii) The probability that t (1 − V (t)) is in an interval [a, b], for some 0 ≤ a < b,

converges to ∫ +∞
−∞

∫ b

a

∫ ∞
0

e−ζ([−∞,+∞]×[0,∞]×[z,∞])ζ(ds, df, dz),

where the inner integration is with respect to z, the middle with respect to f , and
the outer with respect to s. We recall from above that

ζ
([−∞,+∞] × [0,∞] × [z,∞])= �(α + 1)�(1 + λ�

γ
)

(λ�)α
z
− λ�

γ .

Under (Cond), we have λ� = γ and the right-hand side becomes α�(α,λ�)
z

, where

�
(
α,λ�) := ∫ ∞

0
f α−1e−λ�f df = �(α)

(λ�)α
.

We get, substituting v = eγ (s+f ) and recalling that λ� = γ ,∫ +∞
−∞

∫ ∞
0

e−ζ([−∞,+∞]×[0,∞]×[z,∞]) dζ(s, f, z)

= αf α−1e−λ�f df

∫ ∞
0

(∫ ∞
0

ve−zv dv

)
e− α�(α,λ�)

z dz

= αf α−1e−λ�f df

∫ ∞
0

e− α�(α,λ�)
z

z2 dz = f α−1e−λ�f df

�(α,λ�)
.

(iii) By Theorem 2.2, the random variable S(t) − T (t) converges to a random
variable U with density∫ ∞

0

∫ ∞
0

e−ζ([−∞,+∞]×[0,+∞]×[z,+∞])ζ(s, df, dz).

7.3. Proof of Theorem 2.4. We have in view of Theorem 2.2, for all ε > 0 as
t ↑ ∞,

e−γ (t−T (t))
M(t)∑
n=1

Zn(t) =
∫

z d�t (s, f, z) ≥
∫

z1(ε,1)(z) d�t(s, f, z)

→
∫

z1(ε,1)(z) dPPPζ (s, f, z),
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where PPPζ is the counting measure of a Poisson process with intensity measure ζ .
Observe that, for all m ∈ N,∫

z1(ε,1)(z) dPPPζ (s, f, z) ≥
m(1−ε)−1∑

k=0

∫ ε+ k+1
m

ε+ k
m

z dPPPζ (s, f, z)

≥
m(1−ε)−1∑

k=0

(
ε + k

m

)
Pk,

where (Pk)k≥0 is a sequence of independent Poisson random variables of parame-
ters ζ(R× (0,∞) × (ε + k

m
, ε + k+1

m
)). As before, we find

ζ
(
R× (0,∞) × (a, b)

)= �(α + 1)�(1 + λ�

γ
)

(λ�)α

(
a

− λ�

γ − b
− λ�

γ
)
.

We abbreviate � := �(α+1)�(1+ λ�

γ
)

(λ�)α
and get

E

[
m(1−ε)−1∑

k=0

(
ε + k

m

)
Pk

]

= �

m(1−ε)−1∑
k=0

(
ε + k

m

)((
ε + k

m

)− λ�

γ −
(
ε + k + 1

m

)− λ�

γ
)

∼ �

m

m(1−ε)−1∑
k=0

(
ε + k + 1

m

)− λ�

γ ∼ �

∫ 1−ε

0
(ε + x)

− λ�

γ dx,

as m → ∞, by Riemann integration. The right-hand side is of order log(1
ε
) if

λ� = γ , and of order ε
1− λ�

γ if λ� > γ . In any case, the expectation goes to infinity,
as ε ↓ 0. With a similar reasoning, we get

Var

[
m(1−ε)−1∑

k=0

(
ε + k

m

)
Pk

]
≤ �

m

m(1−ε)−1∑
k=0

(ε + k
m

)
2− λ�

γ

ε + k+1
m

∼ �

∫ 1−ε

0
(ε + x)

1− λ�

γ dx.

If λ� = γ , the variance is therefore bounded, and otherwise it grows of a slower
order than the square of the expectation. Thus, by Chebyshev’s inequality, we get

lim
ε↓0

lim
m→∞

m(1−ε)−1∑
k=0

(
ε + k

m

)
Pk = ∞,

in probability, and this implies the claimed result.
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8. Open problems.

Precise growth of the system. A question that remains open is about the pre-
cise growth of N(t) in the condensation phase. Recall from Remark 1 that if
condensation is absent we have logN(t) = λ∗t + O(1) but we do not have a
similarly strong statement in the condensation case. We get a lower bound on
the growth by considering the size of the largest family. Under (RV), this gives
logN(t) − γ t + γ T (t) → ∞ with T (t) ∼ α

λ∗ log t . A plausible conjecture would
be that in the condensation case this bound is sharp to logarithmic order, that is,
logN(t) = λ∗t − α log t + o(log t).

Shape of the condensate. Our results offer only a partial answer to the ques-
tion raised in Borgs et al. [6] how the links in the network are distributed among
the highest fitnesses present in the system at any given time. The most important
question that remains open here is whether the families that together form the con-
densate have a characteristic collective behaviour prior to condensation. The work
on Kingman’s model in Dereich and Mörters [11], and on a growth model without
self-organisation in Dereich [9], suggests that this is indeed the case. In particular,
in the model of [9], it is shown that for parameters chosen in the condensation
regime, the random mass distribution in a suitably shrinking neighbourhood of the
maximal fitness value satisfies a law of large numbers with limiting shape given
by a Gamma distribution. We believe that this is a phenomenon of universal nature
and conjecture the same behaviour in our model.

CONJECTURE 8.1 (Condensation wave). Under assumption (RV), we have

lim
t→∞�t

(
1 − x

t
,1
)

= ω(β,γ )

�(α + 1)

∫ x

0
yαe−y dy,

in probability, that is, the condensation wave has the shape of a Gamma distribu-
tion with shape parameter 1 + α.

Other classes of bounded fitness distributions. In this paper, we have inves-
tigated the class of fitness distributions in the maximal domain of attraction of
the Weibull distribution, that is, those bounded distributions of regular variation at
the maximal fitness value. It would also be interesting to discuss fitness distribu-
tions with a faster decay at the maximal fitness value, for example, in the maximal
domain of attraction of the Gumbel distribution. This includes the interesting ex-
ample of distributions with logμ(1 − ε,1) ∼ −ε−γ , for some γ > 0. What is the
shape of the condensation wave in this case? Will we also see nonextensive con-
densation? More generally, can we find bounded fitness distributions where we
experience condensation by macroscopic occupancy? This circle of problems is
currently under investigation.
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