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THE SHAPE OF THE ONE-DIMENSIONAL PHYLOGENETIC
LIKELIHOOD FUNCTION1
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Fred Hutchinson Cancer Research Center

By fixing all parameters in a phylogenetic likelihood model except for
one branch length, one obtains a one-dimensional likelihood function. In
this work, we introduce a mathematical framework to characterize the shapes
of such one-dimensional phylogenetic likelihood functions. This framework
is based on analyses of algebraic structures on the space of all frequency
patterns with respect to a polynomial representation of the likelihood func-
tions. Using this framework, we provide conditions under which the one-
dimensional phylogenetic likelihood functions are guaranteed to have at most
one stationary point, and this point is the maximum likelihood branch length.
These conditions are satisfied by common simple models including all binary
models, the Jukes–Cantor model and the Felsenstein 1981 model.

We then prove that for the simplest model that does not satisfy our condi-
tions, namely, the Kimura 2-parameter model, the one-dimensional likelihood
functions may have multiple stationary points. As a proof of concept, we con-
struct a nondegenerate example in which the phylogenetic likelihood function
has two local maxima and a local minimum. To construct such examples, we
derive a general method of constructing a tree and sequence data with a spec-
ified frequency pattern at the root. We then extend the result to prove that the
space of all rescaled and translated one-dimensional phylogenetic likelihood
functions under the Kimura 2-parameter model is dense in the space of all
nonnegative continuous functions on [0,∞) with finite limits. These results
indicate that one-dimensional likelihood functions under advanced evolution-
ary models can be more complex than it is typically assumed by phylogenetic
inference algorithms; however, these complexities can be effectively captured
by the Kimura 2-parameter model.

1. Introduction. The likelihood of a phylogenetic model is a function of the
parameters of continuous time Markov chains (CTMCs) used to model sequence
evolution along each branch. It is common to assume a single rate matrix and
stationary frequency for the CTMCs but allow the branch lengths to vary, repre-
senting a single evolutionary process but differing amounts of evolution along each
branch. Commonly used maximum-likelihood phylogeny programs improve like-
lihood by modifying branch lengths iteratively and one at a time [2]. The general
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approach for numerical maximization of the one-dimensional likelihood function
given by fixing every parameter except for one branch length is to iteratively sam-
ple the function at a number of points, use surrogate functions to fit simple curves
to those points, and use those fits as approximations to locate the maximum branch
length. For example, programs often employ Newton’s method, in which the in-
tuitive idea is to use first and second derivatives to approximate the likelihood
function (varying along that branch) by a surrogate quadratic function. Since eval-
uations of the likelihoods (and their derivatives) are computationally expensive,
many approaches have been tried to improve the efficiency of this optimization
procedure [2].

Such approaches, however, rely on the assumptions that one-dimensional phylo-
genetic likelihood functions belong to some class of simple functions, and that the
surrogate model can, at least, capture the shape of the functions. While there has
been a considerable amount of work on finding multiple maxima of the multidi-
mensional likelihood surfaces parameterized by all branch lengths for a tree [3, 12,
13], little has been done about the shapes of one-dimensional phylogenetic likeli-
hood functions. The only attempt to investigate the shape of the one-dimensional
phylogenetic likelihood functions has been [7], which provided a proof of unique-
ness of the stationary points for one-dimensional phylogenetic likelihood functions
in the case of the one parameter model of nucleotide substitution. Based on this
proof, the authors of [7] asserted that there is at most one stationary point of the
full likelihood surface. This claim was later disproved by [13], although the proof
for the one-dimensional case still holds. However, the result has not been examined
for the more complex models used in practice.

In this work, we introduce a mathematical framework to characterize the shapes
of such one-dimensional phylogenetic likelihood functions. This framework is
based on analyses of algebraic structures on the space of all frequency patterns
with respect to a polynomial representation of the likelihood functions. Specif-
ically, we introduce the new concept of logarithmic relative frequency patterns
and analyze algebraic structures on the space of such patterns. These structures,
along with the characteristic polynomial representations of one-dimensional phy-
logenetic likelihood functions, open a new way to explore the space of all pos-
sible likelihood functions. Moreover, by composing these structures, we are able
to tackle the inverse problem of constructing a phylogenetic tree that has a given
frequency pattern at the root. This enables us to construct phylogenetic trees that
approximate any given likelihood function with arbitrary precision.

Using this framework, we provide conditions under which the one-dimensional
phylogenetic likelihood functions are guaranteed to have at most one stationary
point, and this point is the maximum of the one-dimensional function. These con-
ditions are satisfied by common simple models including all binary models, the
Jukes–Cantor model [10] and the Felsenstein 1981 model [5]. We then prove that
for the simplest model that does not satisfy our conditions, namely, the Kimura
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2-parameter model [11], the one-dimensional likelihood functions may have mul-
tiple stationary points. As a proof of concept, we construct a nondegenerate ex-
ample in which the phylogenetic likelihood function has two local maxima and a
local minimum.

We then extend the result to prove that the space of all rescaled and translated
one-dimensional phylogenetic likelihood functions under the Kimura 2-parameter
model is dense in the set of all nonnegative continuous functions on [0,∞) with fi-
nite limits. These results indicates that one-dimensional likelihood functions under
advanced evolutionary models can be more complex than it is typically assumed by
phylogenetic inference algorithms; however, these complexities can be effectively
captured by the Kimura 2-parameter model.

2. Background and definitions.

2.1. Markov models of sequence evolution. Our setting is the standard IID
setting for likelihood-based phylogenetics with a finite number of sites; we review
the basics here but refer the reader to [6] for more details. Let � denote the set of
states and let r = |�|. For convenience, we assume that the states have indices 1
to r .

For an unrooted tree T with N taxa, we use E(T ) and V (T ) to denote the set of
edges and vertices of T , respectively. On each edge e ∈ E(T ), we assume that the
mutation events occur according to a continuous time Markov chain on states �

with instantaneous rate matrix Qe (Figure 1). This rate matrix Qe and the branch
length te on the edge e define the transition matrix P e = eQete on edge e, where
P e

ij (te) denotes the probability of mutating from state i to state j across the edge e

(with length te).
We further assume that for all edges e ∈ E(T ), the Markov chains that describe

the mutation events are ergodic and time-reversible with respect to a fixed station-
ary distribution π , that is,

lim
t→∞P e

ij (t) = πj ,

FIG. 1. [Left:] A general Markov model of DNA evolution along a tree edge. [Right:] An extension
a of the labeling ψi (corresponds to site i in the sequences) of the leaves of a simple tree τ to its
inner nodes.
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and

πiP
e
ij (t) = πjP

e
ji(t) ∀t,

for all i, j ∈ � and e ∈ E(T ).
The phylogenetic likelihood is computed as follows given a set of (aligned)

observed sequences ψ = (ψ1,ψ2, . . . ,ψS) ∈ �N×S of length S over N taxa of a
tree τ . First, orient the edges of τ away from an arbitrarily chosen root ρ of the
tree. (We can choose the root arbitrarily since each Pe is reversible with respect to
π .) Each site i in the sequences determines a labeling ψi of each leaf by a state in
�. An extension a of a labeling ψi is an assignment of states to all of the nodes in
the tree that agrees with ψ on the leaves (Figure 1).

The probability of an extension a given the vector of branch lengths t =
(te)e∈E(T ) is defined to be the probability of the state at the root (given by the
stationary distribution) multiplied by the probabilities of all the state transitions
(including self-transitions) across each branch in the tree

P(a|t) = π(aρ)
∏

(u,v)∈E(T )

P uv
auav

(tuv),

where au denotes the assigned state of node u by a.
The likelihood of the data at site i is then the marginal probability over all the

extensions

P
(
ψi |t) = ∑

a extends ψ

P
(
a|t).

We further assume, as is standard, that evolution is independent between sites. This
implies that the likelihood of a set of sequences evolving is just the product of the
probabilities for the individual sites

L
(
ψ |t) =

S∏
s=1

P
(
ψi |t).

In summary, the likelihood of observing ψ given the tree topology τ and the vector
of branch lengths t = (te)e∈E(T ) has the form

L(ψ |t) =
S∏

s=1

∑
a

π(aρ)
∏

(u,v)∈E(T )

P uv
auav

(tuv),

where a ranges over all extensions of ψ to the internal nodes of T and au denotes
the assigned state of node u by a.

For readers familiar with the theory of probabilistic inference on graphical mod-
els, the likelihood functions studied in this paper can be alternatively described as
follows. Consider a tree T and let {Xv : v ∈ V (T )} be a collection of random vari-
ables indexed by the nodes of the tree. For each edge (u, v) ∈ E(T ), we define the
nonnegative potential function:

k(u,v)(i, j, t) := P uv
ij (t).
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We assume that the joint probability distribution p(xV (T )) factorizes over the tree
edges:

p(xV (T )) ∼ ∏
(u,v)∈E(T )

k(u,v)(xu, xv, tuv).

The likelihood functions of interest may then be represented as the marginal prob-
ability of the observation ψ on the leaves of the tree T . This formulation allows
us to study the phylogenetic likelihood functions beyond the reversible Markov
framework. We will investigate partial extensions to this more general case in Sec-
tion 7, but for the next several sections we will focus on the standard phylogenetic
setting (in which we can prove the strongest results).

2.2. One-dimensional phylogenetic likelihood functions. To investigate the
one-dimensional likelihood function on one branch e0, we fix all other branches,
partition the set of all extensions of ψ according to their labels at the end points
of e0, and split E(T ) into two sets of edges Eleft and Eright corresponding to the
location of the edges with respect to e0. The likelihood function can be rewritten
as a univariate function of t , the branch length of e0:

L(ψ |t) =
S∏

s=1

∑
ij

∑
a∈Aij

π(aρ)

( ∏
e∈Eleft

P e
auav

(tuv)

)

× P
e0
ij (t) ×

( ∏
e∈Eright

P e
auav

(tuv)

)
,

where Aij denotes the set of all extensions of ψ for which the labels at the left end
point and the right end point of e0 are i and j , respectively. We note that some Aij

may be empty if e0 is a pendant edge and the observed value on the corresponding
leaf is not i.

By grouping the products over Eleft and Eright as well as the sum over a in a
single term bs

ij , we can define the one-dimensional log-likelihood function as

�e0(t) = logL(ψ |t) =
S∑

s=1

log
(∑

ij

bs
ijP

e0
ij (t)

)
.

Such �e0(t) are the object of study of this paper.
For convenience, we will assume that e0 has been chosen and will drop the

index e0 hereafter.

2.3. Evolutionary models. Throughout the paper, we use the term evolution-
ary model on state set � to refer to a collection H of (Q,π) pairs, where π is
a vector of stationary frequencies and Q is a rate matrix on � that is reversible
with respect to π . If at every edge of the tree τ , the matrix-frequency pair (Qe,π)

belongs to H, we say that τ is a tree under evolutionary model H.
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We will consider a number of different evolutionary models of DNA sequences.
These DNA substitution models differ in terms of the parameters used to describe
the rates at which one state replaces another during evolution and the stationary
frequencies:

• Jukes–Cantor model [10]: this model assumes equal stationary frequencies
(πA = πG = πT = πC = 1/4) and equal mutation rates.

• Felsenstein 1981 model [5]: this is an extension of the Jukes–Cantor model in
which stationary frequencies are allowed to vary.

• Kimura 2-parameter model [11]: this model assumes equal stationary frequen-
cies, but distinguishes between the rates of transitions (A ↔ G, that is, from
purine to purine, or C ↔ T , that is, from pyrimidine to pyrimidine) and transver-
sions (from purine to pyrimidine or vice versa).

Following common usage, we use κ to denote the transition/transversion rate
ratio and write the rate matrix for this model as

Qκ = 1

2(κ + 1)

⎛
⎜⎜⎝

−(κ + 2) κ 1 1
κ −(κ + 2) 1 1
1 1 −(κ + 2) κ

1 1 κ −(κ + 2)

⎞
⎟⎟⎠ .

The special case κ = 3 will play a central role in the analysis of this paper. Note
that the single κ parameter in the Kimura 2-parameter model determines a rate
matrix that is shared across the tree, while this paper primarily concerns the
effect of changing a single branch length parameter.

While the focus here is on DNA models, we emphasize that our theoretical
framework is capable of analyzing any time-reversible evolutionary model on any
state space. In fact, we do not assume a uniform molecular clock, or even a single
evolutionary model along the edges of the tree.

2.4. Characteristic polynomials of one-dimensional phylogenetic likelihood
functions. We will frequently use the following assumption.

ASSUMPTION 2.1. The eigenvalues of the rate matrix Q are equal to

0 = d0γ ≥ −d1γ ≥ −d2γ ≥ · · · ≥ −dr−1γ

for some positive number γ and nonnegative integers d1, . . . , dr−1.

The following remark, the proof of which is provided in the Appendix, guar-
antees that Assumption 2.1 does not affect the generality of our analyses up to an
arbitrarily small approximation error.

REMARK 2.1. The set of rate matrices Q for a given evolutionary model that
satisfy Assumption 2.1 is dense in the set of rate matrices under the same evolu-
tionary model.
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Under Assumption 2.1, if we denote the entries of the diagonalizing matrix
M and N of Q by mij and nij , respectively, then the transition probabilities can
computed as

Pij (t) = ∑
k

mike
−dkγ tnkj .

By reparametrizing with x := e−γ t , we can represent these transition probabilities
as polynomial functions

Pij (x) = ∑
k

mikx
dknkj .

Similarly, the log-likelihood function can be rewritten as

�(x) =
S∑

s=1

log
(
λs(x)

)
where λs(x) = ∑

ij

bs
ijPij (x).

Hereafter, we will refer to Pij (x) and λs(x) as the transition polynomials of the
evolutionary model and the characteristic polynomials of the one-dimensional
phylogenetic likelihood function, respectively.

As we will see in later sections, this polynomial representation will enable us
to exploit many algebraic and analytic properties of the likelihood functions. The
most noticeable feature is that one can use the fundamental theorem of algebra to
factorize λs(x) as products of linear and quadratic polynomials. As a result, the
log-likelihood function can be written in the form

�(x) =
S∑

s=1

is,1∑
i=1

log(αs,i + βs,ix)

+
S∑

s=1

is,2∑
i=1

log
(
μs,i + νs,ix + ωs,ix

2)
,

where μs,i, νs,i,ωs,i are the (real) coefficients of the quadratic polynomials in the
decomposition of λs , while αs,i, βs,i are coefficients of the linear terms in the
decomposition.

This enables us to decompose a complicated evolutionary model into smaller
modules, each of which can be approximated either by a “linear” model (like the
binary symmetric model) or by a “quadratic” model (like the Kimura 2-parameter
model). In Section 3, we use this formulation to prove that if the phylogenetic log-
likelihood function is essentially linear (i.e., there are no quadratic terms in the
expression), its shape resembles those generated by binary models, with a unique
stationary point that is also the maximum point. In Section 5, we illustrate that
this property does not hold for quadratic models by constructing a counterexample
with the Kimura 2-parameter model. Finally, in Section 6, we use this formulation
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once again to prove that the space of all rescaled and translated one-dimensional
phylogenetic likelihood functions under the Kimura 2-parameter model is dense in
the space of all continuous functions on [0,∞) with finite limits.

3. Uniqueness of the stationary point. In this section, we discuss a condition
under which the uniqueness of the stationary branch length is guaranteed.

The analyses in this section stem from two observations:

1. If for every site index s, the characteristic polynomial λs has no nonreal
root, then the likelihood function can be decomposed into smaller modules, each
of which resemble a binary model.

2. The likelihood functions of binary models and summations of such models
are incave.

DEFINITION 3.1 (Hanson [8]). A vector-valued function f is said to be incave
in Rn if there exists a vector-valued function φ(t, u) such that

f (t) − f (u) ≤ φ(t, u) · ∇f (u) ∀t, u ∈ Rn,

where ∇f denotes the gradient of f .

Incave functions were introduced in the optimization literature as a generaliza-
tion of concave functions [8]. It can be proven that a function is incave if and only
if every stationary point is a global maximum [1]. We are interested in the case of
functions of a single real argument, for which the following result also holds.

LEMMA 3.1. If f is a real-valued incave function with a finite number of
stationary points, then f has at most one stationary point. Moreover, if such a
point exists, it is also a global maximum.

PROOF. Denote A = {t ∈ [0,∞) : f ′(t) = 0} and assume that A has more
than one element. Since A is finite, we can choose two elements t1 and t2 in A

such that the interval (t1, t2) ⊂ R − A. Since f is incave, every stationary point
of f is a global maximum. We deduce that t1 and t2 are both global maxima of
f and f (t1) = f (t2). Using the mean value theorem, there exists t ∈ (t1, t2) such
that f ′(t) = 0. This is a contradiction. �

This enables us to prove the following theorem.

THEOREM 3.1. If for every site index s, the polynomial λs has only real roots,
then � has at most one stationary point. Moreover, if such a point exists, it is also
a global maximum.
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PROOF. Since λs has only real roots, it can be written as product of linear
functions

λs(x) =
dp∏
i=1

(αs,i + βs,ix),

where dp , defined in Assumption 2.1, is the degree of the polynomial λs .
The log-likelihood function � can be computed as

�(t) =
S∑

s=1

log
(
λs

(
e−γ t ))

=
S∑

s=1

log

( dp∏
i=1

(
αs,i + βs,ie

−γ t ))

=
S∑

s=1

dp∑
i=1

log
(
αs,i + βs,ie

−γ t ).
For any t, u > 0, we have

�(t) − �(u) =
S∑

s=1

dp∑
i=1

log
(

αs,i + βs,ie
−γ t

αs,i + βs,ie−γ u

)

≤
S∑

s=1

dp∑
i=1

(
αs,i + βs,ie

−γ t

αs,i + βs,ie−γ u
− 1

)

=
m∑

s=1

dp∑
i=1

(
βs,i(e

−γ t − e−γ u)

αs,i + βs,ie−γ u

)

= 1

γ

(
1 − e−γ (t−u)) S∑

s=1

dp∑
i=1

( −βs,iγ e−γ u

αs,i + βs,ie−γ u

)

= 1

γ

(
1 − e−γ (t−u))�′(u).

Hence, � is an incave function.
Furthermore, since λs are polynomial and e−γ t is a bijective map from [0,∞)

to (0,1], we deduce that �(t) only has a finite number of stationary points. Using
Lemma 3.1, we conclude that � has at most one stationary point; moreover, if such
a point exists, it is also a global maximum. �

We note that Theorem 3.1 imposes a condition on the characteristic polynomials
rather than the evolutionary model, and can be applied to assess the uniqueness of
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the stationary point of any time-reversible evolutionary model satisfying Assump-
tion 2.1. In fact, Theorem 3.1 does not assume a uniform molecular clock, or even
a single evolutionary model along the edges of the tree. However, it is worth not-
ing that for the class of models on which the rate matrices have only one nonzero
eigenvalue, the result automatically holds.

COROLLARY 3.1. For binary, Jukes–Cantor and Felsenstein 1981 models, the
one-dimensional likelihood function has at most one stationary point; if such point
exists, it is the global maximum.

We also note that the results in previous studies about the number of maxima of
likelihood surfaces [3, 12, 13] are derived for binary models. Theorem 3.1 com-
plements those results in the sense that while the likelihood surfaces considered in
those work may have multiple (or even a continuum of) local maxima, the station-
ary points of one-dimensional likelihood functions are still unique.

This corollary also extends and clarifies a result from the first attempt to in-
vestigate the shape of the one-dimensional phylogenetic likelihood functions [7].
By studying the location of the solutions of phylogenetic likelihood functions, the
paper proves that one-dimensional phylogenetic likelihood functions have unique
stationary points under the same model assumptions as Corollary 3.1.

This result also provides a full characterization of one-dimensional likelihood
functions of binary models (and those considered by Corollary 3.1). Indeed, since
the derivatives of log-likelihood functions are continuous with at most one zero,
this result implies that:

1. If there is no stationary point, then �(t) is a monotonic function (either
strictly decreasing or strictly increasing).

2. If the stationary point t0 exists and is unique, then the function is increasing
in the interval (0, t0) and is decreasing in (t0,∞).

This simplicity of the shapes of phylogenetic likelihood functions provides a
strong theoretical foundation for the use of simple optimization methods to locate
the maximum likelihood branch length. However, we emphasize that these results
are only about one-dimensional phylogenetic likelihood functions and do not mean
that there is a unique (multivariate) stationary point of the likelihood surface or that
simple hill-climbing methods will find this optima.

4. Algebraic structures on the space of all logarithmic relative frequency
patterns under the Kimura 2-parameter model. While Section 3 provides a
uniqueness result for the maximum likelihood branch lengths under three simple
models, the result does not extend to more general models. In fact, as we will
illustrate in the next section, the shapes of likelihood functions under the Kimura
2-parameter model [11] can be quite complicated, for example, with multiple local
and global maxima.
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In order to enable theoretical analyses of phylogenetic likelihood functions un-
der more complex evolutionary models, here we introduce the concept of con-
ditional logarithmic frequency patterns and study the algebraic structures on the
space of such patterns.

DEFINITION 4.1. Given a rooted tree τ with root ρ and N taxa, some label-
ings ψ=(ψ1, . . . ,ψS) ∈ �N×S of its taxa and a vector of real constants (c1, . . . , cS)

we define the logarithmic relative frequency pattern φ(τ,ψ, c) as the r ×S matrix
with entries

φi,s = cs + log
∑

a∈Zi,s

π(i)
∏

(u,v)∈E(τ)

P uv
auav

(tuv)

for i ∈ �, s = 1, . . . , S and Zi,s being the set of all extensions a of ψs to all the
nodes of τ such that a(ρ) = i.

For convenience, we will use the shorter term frequency pattern to refer to a
logarithmic relative frequency pattern.

In probabilistic terms, for a fixed site index s, the (i, s)-entry of a logarithmic
relative frequency pattern φ(τ,ψ, c) is (up to a constant cs ) the logarithm of the
likelihood of observing state i at the root of the tree, given leaf states ψs . This
definition is directly related to the formulation of the characteristic polynomials
λs , whose coefficients bs

ij are the product of the probabilities of observing state
i and j at the two end points of an edge, given that the labeling ψs is observed
at the taxa. It is straightforward to verify that for models with uniform stationary
distribution on a fixed tree, we have

logbs
ij = φi,s(τ1) + φj,s(τ2) + c̃s

for all i, j, s, where c̃s is a constant depending only on s, and τ1 and τ2 are the trees
obtained by removing the edge e0 from the tree τ and rooting the newly created
trees at the endpoints of e0 (see the proof of Theorem 4.1 in the Appendix for more
details).

Hence, to characterize the space of all phylogenetic characteristic polynomials
under a given evolutionary model, we just need to characterize the space of all
possible logarithmic relative frequency patterns under that model.

DEFINITION 4.2. We denote the space of all possible logarithmic relative fre-
quency patterns under the Kimura 2-parameter model by

G = {
φ(τ,ψ, c) : τ ∈ T ,ψ ∈ �S

τ , c ∈ RS}
,

where T denotes the set of all rooted trees and �S
τ denotes the set of all tuples

(ψ1, . . . ,ψS) of S labelings of the taxa of τ .
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The goal of this section is to establish that for any sequence of S column vectors
v1, v2, . . . , vS in R4, there exists a tree τ under the Kimura 2-parameter model,
labelings ψ = (ψ1,ψ2, . . . ,ψS) of its taxa and a vector of real constants c such
that

φ(τ,ψ, c) = [v1 v2 . . . vS].
The existence of such tree is guaranteed indirectly by proving that under the

Kimura 2-parameter model:

1. G is an algebraic subgroup of (R4×S,+).
2. G is a linear subspace of R4×S .
3. G is equal to R4×S itself.

Noting again that the stationary distribution of the Kimura 2-parameter model is
the uniform distribution across states π = (1/4,1/4,1/4,1/4), the first two steps
are confirmed by the following theorem.

THEOREM 4.1. If the stationary frequency of the evolutionary model is the
same for every state, then the following properties hold:

1. (G,+) is a subgroup of (R4×S,+).
2. G is path-connected.
3. G is a linear subspace of R4×S .

SKETCH OF PROOF. A detailed proof of this theorem is provided in the Ap-
pendix, but the main arguments can be simply illustrated. The fact that G is closed
under addition follows because we can add two frequency patterns just by gluing
the roots of the two corresponding trees, labeling the taxa of τ correspondingly
and taking the pattern at the new root (Figure 2). Similarly, we can create the in-
verse of a pattern by gluing all permuted versions of its corresponding tree (with
an appropriate vector of real constants).

To prove that G is path-connected, given two arbitrary trees with roots ρ1, ρ2,
we create a new tree by adding a new root ρ, joining ρ1, ρ2 with ρ by two new
edges of length t and 1/t , respectively, and making ρ the root of τ (Figure 3). By
varying t continuously from zero to infinity, we can make a continuous path in G

that connects the two frequency patterns. Since any path-connected subgroup of
Rn is a linear subspace [9], so is G. �

We note that although the aforementioned arguments are made for the Kimura 2-
parameter model, which describes a model of DNA evolution (r = 4), Theorem 4.1
only requires that the stationary frequency of the evolutionary model is the same
for every state. Hence, this result also extends to models with more parameters.

Similarly, the fact that (G,+) is a subgroup of (Rr×S,+) can be established
under the assumption that the root distribution π is uniform, without assuming that
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FIG. 2. G is closed under addition: we can add two frequency patterns [X] and [Y ] just by gluing
the roots of the two corresponding trees, labeling the taxa of τ correspondingly and taking the pattern
at the new root.

it is the stationary distribution of the evolutionary process. However, our current
approach requires the uniform root distribution to be the stationary distribution
for the proof of path-connectivity of G, and an alternative approach to the proof
of path-connectivity will be needed if we want to extend the analyses to a more
general framework.

FIG. 3. G is path-connected: We can connect any two patterns [X] and [Y ] by adding a new root
ρ, joining it with the roots of the two corresponding trees with two new edges of length t and 1/t ,
respectively, and making ρ the root of τ .
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Recalling that the Kimura 2-parameter model corresponds to the uniform sta-
tionary distribution and a family of rate matrices Qκ indexed by κ , the transi-
tion/transversion rate ratio, we then establish that when κ = 3, the space of all
frequency pattern G =R4×S . The proof is done through proving by induction that
G contains 4 × S independent frequency patterns (also proven in the Appendix).

THEOREM 4.2. The set of all possible logarithmic conditional frequency pat-
terns with S sites under the Kimura 2-parameter model with κ = 3 is equal to
R4×S .

With those results, we finally can establish the main theorems of the section.

THEOREM 4.3. For any sequence of column vectors v1, v2, . . . , vS in R4,
there exists a rooted tree τ under the Kimura 2-parameter model with κ = 3, S

labelings ψ1,ψ2, . . . ,ψS of its taxa, and a vector of real constants c such that

φ(τ,ψ, c) = [v1 v2 . . . vS].
While Theorem 4.3 provides a theoretical guarantee about the existence of a

tree under the Kimura model with a given frequency patterns, the proof is not
constructive. This raises some concerns about the practicality of the approach.
For example, one cannot derive an estimation of the number of edges required to
produce a given frequency pattern. Those concerns are addressed by the following
theorem.

THEOREM 4.4. A tree as in Theorem 4.3 can be constructed with at most 64S

edges.

Not only does the theorem provide an upper bound on the number of edges
required to construct a tree with a given frequency pattern, its proof also provides
a simple algorithm to construct such a tree.

PROOF OF THEOREM 4.4. The main steps of the proof are as follows:

Step 1. As shown in the Appendix, any frequency pattern of the form
[x,0,0,0]t can be produced (up to a real constant c1) by a tree τ with 4 edges
and some labeling ψ of its taxa.

Step 2. Using τ from Step 1, we create a tree τ ′ of 16 edges by gluing the roots
of 4 different versions τ1, τ2, τ3, τ4 of τ together and define S labelings of τ ′ as
follows.

• For s = 1, we copy the labeling of τ onto τ ′.
ψ1(a) = ψ(a)

for each taxon a of τ1, τ2, τ3, τ4.
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• For all s ≥ 2, the labelings are defined as follows:

ψs(a) = σj (
ψ(a)

)
if a is a taxon of τj ,

where σ is the permutation (A G T C) in cycle notation.

The construction of τ ′ is similar to the construction of the inverse of elements
in the group G in the proof of Theorem 4.1. Because of symmetry, for s ≥ 2, the
frequency pattern corresponding to site s at the root of the newly created tree will
be the same for every state while for s = 1, the frequency pattern of τ ′ is obtained
by multiplying the frequency pattern of τ by a factor of 4.

We deduce that the pattern created by (τ ′, {ψi}) is⎛
⎜⎜⎝

4x 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

c1 c2 . . . cS

c1 c2 . . . cS

c1 c2 . . . cS

c1 c2 . . . cS

⎞
⎟⎟⎠

for some real constants c1, c2, . . . , cS .
Step 3. By similar arguments, for any i = 1,2,3,4 and s = 1,2, . . . , S, we can

construct a tree of 16 edges for any patterns with S sites whose only nonzero entry
is at the (i, s)-position. Hence, it takes 16 × 4S = 64S edges to construct a tree
with an arbitrary given frequency pattern. �

5. Nonuniqueness of stationary points: Kimura 2-parameter model. In
this section, we provide an example for which there are multiple stationary points
of the likelihood function. To construct such an example, we find two polynomials
p1(x) and p2(x) with coefficients b1, b2 such that the product p1p2 has 2 local
maxima in [0,1], and p1 and p2 can be expressed as positive linear combination
of the basis polynomial functions Pi derived from an evolutionary model (as will
be carefully described in this section). This gives a counterexample with S = 2
sites.

Consider the Kimura 2-parameter model with κ = 3 which has the rate matrix

(5.1) Q =

⎛
⎜⎜⎝

−5/8 3/8 1/8 1/8
3/8 −5/8 1/8 1/8
1/8 1/8 −5/8 3/8
1/8 1/8 3/8 −5/8

⎞
⎟⎟⎠ .

This matrix has eigenvalues 0 > −γ > −2γ where γ = 0.5. The transition proba-
bilities under this evolutionary model can be computed explicitly by

P1(t) = 0.25 + 0.25 exp(−0.5t) + 0.5 exp(−t),

P2(t) = 0.25 + 0.25 exp(−0.5t) − 0.5 exp(−t),

P3(t) = P4(t) = 0.25 − 0.25 exp(−0.5t),
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where P1(t),P2(t),P3(t),P4(t) are the probabilities of transitioning from state A

to state A,T ,G,C, respectively. This simple model is “universal” in an appropriate
sense as shown in the end of the paper.

This leads to a representation of the likelihood as the product of two different
linear combinations of the transition polynomials

P1(x) = 0.25 + 0.25x + 0.5x2,

P2(x) = 0.25 + 0.25x − 0.5x2,(5.2)

P3(x) = P4(x) = 0.25 − 0.25x,

where x = exp(−0.5t).
We assume that the likelihood is computed by observing two sites s1 and s2,

and that the edge of interest e is a pendant edge with the observed values at that
tip being A for both sites. Assume further that the state observation probabilities
at the inner node of the edge e are provided by

b1 = [0.24977275,0.34067358,0.2051904,0.20436327]
and

b2 = [0.25,0.16087344,0.29328435,0.29584221].
As discussed earlier, the log-likelihood function can be computed as

(5.3) �(t) = log
(
λ1(t)

) + log
(
λ2(t)

)
,

where

λs(t) =
4∑

i=1

bs(i)Pi(t).

Plots of the log-likelihood function � and its perturbations (by varying the co-
efficients slightly) in terms of x and t are provided in Figure 4 and Figure 5, re-
spectively. The figures show that � has three stationary points (two local maxima at
t1 < t2 and one local minimum), all in the interval [0,1]. The fact that �(t1) > �(t2)

for some cases and �(t1) < �(t2) for some others indicates that there exist some val-
ues of bs

i such that �(t1) = �(t2), that is, the smoothly varying likelihood function
can even have two global maxima.

We note that these examples can be achieved under the assumption that given
any positive coefficients bs

i of the inner node, we can find some trees under the
Kimura 2-parameter model with these precise coefficients. This assumption is con-
firmed by the following result, proven in the Appendix.
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FIG. 4. The log-likelihood (5.3) as a function of x = exp (−0.5t) for various values of the coeffi-
cients of the characteristic polynomial.

FIG. 5. The log-likelihood (5.3) as a function of branch length t for various values of the coeffi-
cients of the characteristic polynomial.
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THEOREM 5.1. For every set of positive coefficients ηs
i , there exist a phyloge-

netic tree τ and S labelings ψ1,ψ2, . . . ,ψS of the taxa such that for some edge e

in τ , the one-dimensional likelihood function on e under the Kimura 2-parameter
model with κ = 3 satisfies

�(τ, t) = C0 +
S∑

s=1

log
(∑

i

ηs
i Pi(t)

)
,

where Pi(t) is the probability of transition from state A to state i and C0 is a
constant. Moreover, such a tree τ can be constructed with at most 64S + 1 edges.

In our examples, the upper bound on the number of edges to produce the given
frequency pattern is 64 × 2 + 1 = 129 edges.

REMARK 5.1. While the algorithm to construct a tree given a frequency pat-
tern given by Theorem 4.4 always outputs a star-tree (a tree without internal edges),
we note that:

1. We can approximate any star tree by resolved trees with arbitrary precision.
2. The maximum number of stationary points of a polynomial of degree four is

3, hence small perturbations on the coefficient of a polynomial of degree four with
three stationary points do not change the number of stationary points.

We deduce that there are resolved trees for which the one-dimensional likeli-
hood function on certain edges have multiple maxima.

Since a resolved tree with n taxa has 2n−3 edges, the upper bound on the num-
ber of edges of a resolved tree for which the one-dimensional likelihood function
on certain edges has multiple maxima is 2 × 129 − 3 = 255 edges.

6. Universality and complexity of the Kimura 2-parameter model. As we
discussed earlier in the paper, the main idea behind the results in Section 3 and
Section 4 is that by using the fundamental theorem of algebra, we can decompose
a complicated evolutionary model into smaller modules, each of which can be
approximated either by a “linear” model or by a “quadratic” model. This paradigm
focuses on the branch lengths of the tree and is independent of the state space � of
the evolutionary model, which provides a way to represent advanced evolutionary
models (amino-acid models, codon models) by simple ones (nucleotide models).

This motivates the problem of constructing a complete characterization of one-
dimensional likelihood functions. The main question is: does there exist an evolu-
tionary model that can represent all one-dimensional likelihood functions of any
time-reversible evolutionary model?

Such a model M, if it exists, and which we will refer to as a universal model,
needs to satisfy the following two conditions:
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1. All one-dimensional likelihood functions under any reversible evolutionary
model can be written as a product of polynomials, each of which is a positive linear
combination of the transition polynomials of M.

2. For every set of positive coefficients bs
ij , there exists a phylogenetic tree τ

and S labelings ψ1,ψ2, . . . ,ψS of the taxa such that for some edge e in τ , the
one-dimensional likelihood function on e under the M satisfies

�(τ, t) = C1 +
S∑

s=1

log
(∑

ij

bs
ijPij (t)

)

for some constant C1.

In this section, we will prove that the Kimura 2-parameter model with κ = 3 is,
in fact, a universal model. The key components of the proof are Theorem 5.1, the
fundamental theorem of algebra and the fact that the transition polynomials of the
Kimura 2-parameter model effectively span a large class of linear and quadratic
polynomials.

6.1. Universality of the Kimura 2-parameter model. We first make the follow-
ing observation, proven in the Appendix.

LEMMA 6.1. If f is a real-coefficient polynomial that satisfies:

1. f is positive on [0,1],
2. degf = 1 or f is a quadratic polynomial with no real root,

then f can be written as positive linear combination of the transition polynomials
of the Kimura 2-parameter model if and only if:

1. degf = 1 and f (−1) > 0,
or
2. degf = 2 and f has no root inside the set

(6.1) B = {
z ∈ C : |z + 1| ≤ 1 or |z − 1| ≤ √

2
}
.

This enables us to establish the universality of the Kimura 2-parameter model.

THEOREM 6.1 (Universality). If L is a one-dimensional phylogenetic likeli-
hood function of a tree under an arbitrary time-reversible model that satisfies As-
sumption 2.1, then up to translation and rescaling, L is equal to a one-dimensional
likelihood under the Kimura 2-parameter model.

That is, there exist c1, c2, c3 > 0 such that

L(t) = c2LK2P(τ,ψ, c3t) − c1 ∀t ∈ [0,∞),

where LK2P(τ,ψ, ·) is the one-dimensional likelihood function under the Kimura
2-parameter model on some edge of a tree τ with labeling ψ .
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PROOF. Assumption 2.1 implies that the function

L(x) := L

(
− 1

γ
logx

)

is a polynomial in x for some γ > 0. Since L is continuous and the set B defined
by (6.1) is compact, if we define

c1 = 1 + sup
z∈B

∣∣L(z)
∣∣,

then by the triangle inequality, the polynomial L(x) + c1 has no root in B .
By the fundamental theorem of algebra, the polynomial L(x)+c1 can be written

as

L(x) + c1 =
S∏

s=1

gs(x),

where each gs is either a quadratic polynomial with no real root, or a polynomial of
degree 1. Moreover, each gs is positive on [0,1] and has no root in B [which also
implies gs(−1) > 0 if deggs = 1]. Lemma 6.1 implies that each gs can be written
as a positive linear combination of the transition polynomials of the Kimura 2-
parameter model

gs(x) = ∑
ij

bs
ijPij (x).

We deduce that

log
(
L(x) + c1

) =
S∑

s=1

log
(∑

ij

bs
ijPij (x)

)
.

We recall that the Kimura 2-parameter model has symmetries such that any
transition probability Pij (t) is in fact equal to PAl(t) = Pl(t) for some l. Therefore,
by grouping

ηs
l := ∑

i,j :Pij=PAl

bs
ij ,

we have

log
(
L(x) + c1

) =
S∑

s=1

log
(∑

l

ηs
l Pl(x)

)
.

Also, the characteristic polynomial for the Kimura 2-parameter model (5.1) with
κ = 3 is parameterized by x = exp(−0.5t) such that the one-dimensional likeli-
hood LK2P(τ,ψ, t) satisfies

LK2P(τ,ψ, t) = LK2P
(
τ,ψ, exp(−0.5t)

)
.
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Now, Theorem 5.1 guarantees that there exists a tuple (τ,ψ) under the Kimura
2-parameter model on an edge of the tree such that

logLK2P(τ,ψ, x) = − log c2 +
S∑

s=1

log
(∑

l

ηs
l Pl(x)

)

for some positive constant c2.
In other words, we have

L(x) = c2LK2P(τ,ψ, x) − c1 ∀x ∈ (0,1].
Hence,

L

(
− 1

γ
logx

)
= c2LK2P(τ,ψ,−2 logx) − c1 ∀x ∈ (0,1]

or

L(t) = c2LK2P(τ,ψ, c3t) − c1, c3 = γ /2 ∀t ∈ [0,∞).

That is, up to translation and rescaling, L is equal to a one-dimensional phyloge-
netic likelihood function under the Kimura 2-parameter model. �

Since the set of rate matrices for a given evolutionary model that satisfy As-
sumption 2.1 is dense in the set of all possible rate matrices under the same evolu-
tionary model (Remark 2.1), we also have the following corollary.

COROLLARY 6.1. Any one-dimensional phylogenetic likelihood function un-
der an arbitrary time-reversible evolutionary model can be uniformly approxi-
mated with arbitrary precision by (rescaled and translated) one-dimensional phy-
logenetic likelihood functions under the Kimura 2-parameter model.

We also note that the rescaling and translation constants in the statements of
Theorem 6.1 cannot be removed: Lemma 6.1 indicates that some polynomial func-
tion cannot be represented exactly as a Kimura 2-parameter likelihood function.
For example, one of the transition polynomials of the Jukes–Cantor model is

J (x) = 0.25 + 0.75x

which has J (−1) < 0. For this reason, some likelihood functions under the Jukes–
Cantor model may not be represented exactly by the Kimura 2-parameter model
without adjusting by an additive constant.
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6.2. Complexity of the Kimura 2-parameter model. The universality results in
the previous section can be adapted easily to analyze the set of all one-dimensional
phylogenetic likelihood functions under the Kimura 2-parameter model. The fol-
lowing complexity results imply that one-dimensional likelihood functions under
advanced evolutionary models can be more complex than it is typically assumed
by phylogenetic inference algorithms.

First, it is straightforward to check that Theorem 6.1 still holds (without chang-
ing the proof) if we replace the one-dimensional phylogenetic likelihood function
L with an arbitrary polynomial P in x = exp(−γ t) for some γ > 0 and relax
Assumption 2.1. Moreover, if P is of degree n, then by Theorem 5.1, it can be rep-
resented by a one-dimensional likelihood function of a tree with at most (64n+ 1)

edges with respect to some n-site labeling of its taxa.

COROLLARY 6.2. Given an arbitrary polynomial P of degree n and γ > 0,
then up to translation and rescaling, P(exp(−γ t)) is equal to a one-dimensional
likelihood under the Kimura 2-parameter model on a phylogeny with at most 64n+
1 edges.

This corollary indicates that by increasing the number of sites and the size of
the tree, we can obtain likelihood functions shaped like an arbitrary polynomial in
the interval [0,1]. For example, given an arbitrary finite sequence t1, t2, . . . , tk ∈
(0,∞), we can construct a polynomial Pk that peaks precisely at xk = exp(−0.5tk)

and use Corollary 6.2 to obtain the following result.

COROLLARY 6.3. Given an arbitrary finite sequence t1, t2, . . . , tk ∈ (0,∞),
there exists a phylogenetic tree τ and some labeling of its taxa such that for
some edge of the tree, the one-dimensional likelihood function under the Kimura
2-parameter model peaks precisely at t1, t2, . . . , tk .

Furthermore, since rescaling and translation do not change the relative order
of the likelihood values at the stationary points, we can make any of the ti ’s (or all
of them) the function’s global maxima.

Finally, we can replace the phylogenetic likelihood functions in Corollary 6.1 by
an arbitrary continuous function f with finite limit to obtain the following density
result.

COROLLARY 6.4. The space of all rescaled and translated one-dimensional
phylogenetic likelihood functions under the Kimura 2-parameter model is dense in
the space of all nonnegative continuous functions on [0,∞) with finite limits.

PROOF. Let f be a continuous function on [0,∞) with finite limit. Define

g(x) = f
(− log(x)

) ∀x ∈ (0,1],
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then g(x) can be extended continuously to [0,1]. By Weierstrass’s theorem [4],
there exists a sequence of positive polynomials {Pn} such that

sup
x∈[0,1]

∣∣Pn(x) − g(x)
∣∣ → 0.

This implies that

sup
t∈[0,∞)

∣∣Pn

(
exp(−t)

) − f (t)
∣∣ → 0.

On the other hand, we deduce from Corollary 6.1 that Pn(exp(−t)) is, up to rescal-
ing and translation, a one-dimensional likelihood under the Kimura 2-parameter
model. This completes the proof. �

7. Nonreversible Markov models of evolution. As we mentioned in Sec-
tion 2, the analyses in the previous sections can be described in the more general
framework of probabilistic inference for graphical models. In this framework, the
likelihood function can be be defined as the marginal distribution on the leaf nodes
of a joint probability distribution that factorizes over the edges of the tree via the
nonnegative kernels (also referred to as potential functions) ke(i, j, t). The one-
dimensional phylogenetic likelihood functions can be obtained by fixing all but
one branch length.

In this section, we briefly analyze the extent to which our analyses of one-
dimensional likelihood functions are valid in this more general setting. As we
illustrate below, the results in this section do not assume the reversibility of the
kernels, and thus apply for nonreversible models of evolution. However, we need
to modify our assumptions accordingly.

Several parts of our analysis rely on the core assumption that the kernel func-
tions need to be polynomials of x = exp(−γ t) for some γ > 0. Thus, we require
the following assumption, which is the equivalent of Assumption 2.1 but in a more
general setting.

ASSUMPTION 7.1 (Polynomial representation). There exists a constant γe >

0 and polynomials p
ij
e (x) such that

ke(i, j, t) = pij
e

(
exp(−γet)

) ∀t,

for all i, j ∈ � and e ∈ E(T ).

This assumption implies that the limit of ke(i, j, t) for large t exists, that is, the
kernels are stationary. We also note that using the density results for Bernstein’s
polynomial approximation (see, e.g., [4]), any nonnegative continuous function
on [0,∞) with finite limit can be approximated with arbitrary precision by some
kernels that satisfy Assumption 7.1.

Under this assumption, the characteristic polynomials λs(x) can be defined in a
similar manner and the result in Section 3 (Theorem 3.1) is still valid.
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THEOREM 7.1. Under Assumption 7.1, if for every site index s, the polyno-
mial λs has only real roots, then one-dimensional likelihood function has at most
one stationary point. Moreover, if such a point exists, it is also a global maximum.

While Section 4 is specifically developed to analyze the Kimura 2-parameter
model, the logarithmic relative frequency pattern can be extended easily by replac-
ing the transition probabilities across the edge e by the kernel ke and by setting the
distribution of the root by the uniform distribution. Building upon this concept, we
can study the algebraic structure of the space of all frequency patterns and obtain
a partial extension of Theorem 4.1 in a more general setting as described below.
However, the proofs of Theorems 4.2 and 4.3 are tailor-made for the Kimura 2-
parameter model and are not easily extended to the general case. We leave their
extension as open problems.

We do obtain the following partial extension of Theorem 4.1 in the more general
setting.

THEOREM 7.2. The following properties hold:

1. (G,+) is a subgroup of (Rr×S,+).
2. Assume

lim
t→∞ke(i, j, t) = pij

e (0) = 1

r
and lim

t→0
ke(i, j, t) = pij

e (1) = δij

for all i, j ∈ � and e ∈ E(T ), where δij = 1 if i = j and δij = 0 otherwise. Then
G is a linear subspace of Rr×S .

We recall that the frequency patterns can be defined without the polynomial
representation of the likelihood. Thus, in Theorem 7.2, Assumption 7.1 is not re-
quired. We further note that for part (1) of the theorem to be valid, we do not need
to assume that the kernels are stationary. In fact, the only condition required is
that the distribution at the root is uniform. To provide a proof for path-connectivity
of G, however, the conditions about the behavior of the kernels at 0 and ∞ are
necessary.

Polynomial representation of likelihood functions (Assumption 7.1) is needed
to extend the results of Section 6. By the same arguments as in the proof of Theo-
rem 6.1, we obtain an equivalent result.

THEOREM 7.3. If L is a one-dimensional phylogenetic likelihood function of
a tree under a model whose kernels satisfy Assumption 7.1, then up to translation
and rescaling, L is equal to a one-dimensional likelihood under the Kimura 2-
parameter model.
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8. Conclusions and discussion. In this work, we investigate the problem of
characterizing the shape of one-dimensional phylogenetic likelihood functions.
Our results classify all evolutionary models into two categories:

1. For binary, the Jukes–Cantor and Felsenstein 1981 models: the one-dimen-
sional likelihood function has at most one stationary point.

2. For the Kimura 2-parameter model and more advanced evolutionary models:
the shape of the one-dimensional likelihood function can be much more complex.
In fact, the space of all rescaled and translated one-dimensional phylogenetic like-
lihood functions under such a model is dense in the set of all nonnegative contin-
uous functions on [0,∞) with finite limits.

Despite the complexity of the one-dimensional likelihood functions under ad-
vanced evolutionary models, we prove that all one-dimensional phylogenetic like-
lihood function are essentially Kimura 2-parameter likelihood functions. This re-
sult establishes a strong foundation for the use of the Kimura 2-parameter as the
building block of all evolutionary models.

Our results are based on two novel techniques. First, we introduce and use char-
acteristic polynomial representations of one-dimensional phylogenetic likelihood
functions and the fundamental theorem of algebra to decompose any evolutionary
models into smaller modules, each of which resembles the Kimura 2-parameter
model. Second, we introduce the new concept of logarithmic relative frequency
patterns and analyze algebraic structures on the space of such patterns. These
structures open a new way to explore the space of all possible likelihood func-
tions. Moreover, by analyzing these structures, we are able to tackle the inverse
problem of constructing a phylogenetic tree that has a given frequency pattern at
the root. This enables us to construct phylogenetic trees that approximate any given
likelihood function with arbitrary precision.

There are several avenues for improvement. First, while we know that the shape
of one-dimensional likelihood function can be very complex, it is not clear how
frequently multimodality might be encountered in practice and to which degree it
affects the accuracy of phylogenetic algorithms. Since the space of high degree
polynomials are dominated by multimodal functions, one might expect that as the
number of sites and the size of the tree increase, multimodality becomes more
likely. However, since the space of phylogenies is known to possess considerable
hidden structure which sometimes lead to counterintuitive properties, careful anal-
ysis of the space of all rescaled and translated one-dimensional phylogenetic like-
lihood functions under the Kimura 2-parameter model are required to evaluate this
hypothesis. Second, although the focus of this work is on one-dimensional phylo-
genetic likelihood functions, it is possible to utilize the framework we propose to
study full phylogenetic likelihood functions. This will be a subject for future work.
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APPENDIX

PROOF OF REMARK 2.1. If we denote the entries of the diagonalizing matrix
M and N of Q by mij and nij , respectively, then

Qij = ∑
k

mike
−rknkj ,

where −rk are the eigenvalues of Q. (The eigenvalues are known to be nonpositive,
so rk are nonnegative.)

Since the set of rational numbers Q is dense in R+, we can find r(k, l) ∈ Q+
such that for all k, r(k, l) → rk as l approaches infinity. If we define

Ql
ij = ∑

k

mike
−r(k,l)nkj ,

then Ql → Q element-wise as l approaches infinity. Since r(k, l) are all rational
the matrices are of fixed finite dimension, we can also find γl > 0 and d(k, l) ∈ N

such that r(k, l) = d(k, l)γl . �

PROOF OF THEOREM 4.1. We define the equivalence relation ∼ on R4×S as
follows: u ∼ v if and only if there exists a vector of real constants c = (c1, . . . , cS)

such that for all i = 1,2,3,4 and s = 1, . . . , S, we have

ui,s = vi,s + cs.

If we define [
h(τ,ψ)

]
i,s = log

∑
a∈Zi,s

∏
(u,v)∈E(τ)

P uv
auav

(tuv)

for i ∈ �, s = 1, . . . , S and Zi,s being the set of all extensions a of ψs to all the
nodes of τ such that a(ρ) = i.

Recall that the Kimura 2-parameter model has a uniform stationary distribution,
for all τ,ψ, c, we have φ(τ,ψ, c) ∼ h(τ,ψ).

1. (Addition): Consider any two elements x1, x2 ∈ G. By the definition of G

and since the stationary frequency of the evolutionary model is the same for every
state, there exist trees τ1, τ2 with n1, n2 taxa and labelings ψ1,ψ2 such that

xi ∼ h(τi,ψi), i = 1,2.

If we construct a new tree τ from τ1 and τ2 by gluing the roots ρ1, ρ2 and label the
taxa of τ corresponding to ψ1,ψ2, then we have[

h(τ,ψ)
]
i,s = log

∑
a∈Zi,s

∏
(u,v)∈E(τ1)

P uv
a1
ua2

v
(tuv)

∏
(u,v)∈E(τ2)

P uv
a2
ua2

v
(tuv),

where each term a in the sum corresponds uniquely to a pair of extensions (a1, a2)

of ψs
1,ψs

2 to the internal nodes of τ1, τ2, respectively, such that a1(ρ) = a2(ρ) = i.
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Therefore,[
h(τ,ψ)

]
i,s = log

∑
a1

∏
(u,v)∈E(τ1)

P uv
a1
ua1

v
(tuv) + log

∑
a2

∏
(u,v)∈E(τ2)

P uv
a2
ua2

v
(tuv)

= [
h(τ1,ψ1)

]
i,s + [

h(τ2,ψ2)
]
i,s

for all i ∈ � and s = 1, . . . , S.
Therefore,

h(τ,ψ) ∼ h(τ1,ψ1) + h(τ2,ψ2)

and

x1 + x2 ∼ h(τ,ψ) ∈ G

which implies that G is closed under addition.
2. (Inverse): Consider any element x ∈ G and its corresponding representative

tree τ and labeling ψ . For any permutation σ of the states, we define the labeling
ψσ as

ψσ (ω) = σ
(
ψ(ω)

)
for every taxon ω of T . For example, if σ is the permutation (A G T C) in cycle
notation, then ψσ is obtained from ψ by replacing A by G, G by T , T by C and
C by A.

Now let σ0 be a permutation of order r on the state space �, create r identical
copies τ1, τ2, . . . , τr of the tree τ with labelings ψσ0 , ψσ 2

0
, . . . , ψσr

0
and glue the

root of all the trees together with taxon labeling γ corresponding to the labelings
of τ1, τ2, . . . , τr . Then because of symmetry, the frequency pattern f at the root of
the newly created tree μ will be the same for every state, that is, f ∼ 0. We deduce
that 0 ∈ G and for every x ∈ G, there exists y ∈ G such that x + y = 0.

This property and the fact that G is closed under addition prove that (G,+) is a
subgroup of (Rr×S,+).

3. (Connectedness): Consider any two elements x1, x2 ∈ G and their corre-
sponding trees τ1, τ2, labelings ψ1,ψ2 and vectors of real constants c1, c2. For
any α ∈ (0,1), we create a new tree τ(α) by adding a new root ρ, joining ρ1, ρ2
by new edges of length t1 = tan(π

2 α), t2 = 1/t1, respectively. We make ρ the root
of τ and label the taxa of τ according to ψ1,ψ2.

Now we note that when α → 0, we have

h
(
τ(α),ψ

) → h(τ1,ψ1) + log
1

r

since the contribution of τ2 becomes stationary (the stationary frequency is 1/r

because of the model’s symmetry). Similarly, when α → 1, we have

h
(
τ(α),ψ

) → h(τ2,ψ2) + log
1

r
.
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Therefore, the function g(α) = φ(τ(α),ψ) can be extended continuously to the
closed interval [0,1]. By changing c continuously from c1 to log (1/r), varying α

continuously from 0 to 1, then changing c continuously from log (1/r) to c2, we
can make a path in G that connects x1 and x2.

4. Since any path-connected subgroup of Rn is a linear subspace [9], so is G.
�

PROOF OF THEOREM 4.2. Denote by H the set of all rooted trees with one
edge (which have varying branch lengths) and

H = {
φ(τ,ψ, c) : τ ∈ H,ψ = (ψ1,ψ2, . . . ,ψS) ∈ RS, c ∈ RS}

.

Note that in the context of this paper, trees with different branch lengths (or in
other words, different values of x) are considered as different trees. Thus, the set
H defined here is nontrivial.

We have

(A.1)
[
h(τ,ψ)

]
j,s = logPψsj (x),

where x = exp(−0.5t), j = A,G,T ,C, and t is the length of the unique edge of τ .
Let x1 = 1/4, x2 = 1/2, x3 = 3/4. We will prove, by induction on S, that H

contains 4 × S independent frequency patterns.
For S = 1, by considering the 4 different patterns (A), (G), (T ), (C) at the only

leaf and the 3 values of x (corresponding to different branch lengths) described
above, we can create a set of 4 × 3 = 12 different pairs (τ,ψ). A quick check
by computer shows that the corresponding frequency patterns generated by those
pairs span the whole vector space R4×1. We can achieve similar result for S = 2
with the patterns (A,G), (G,T ), (T ,C), (C,A).

Now assume that for S = n, H contains 4 × n independent frequency patterns
of the form (A.1).

For l = A,G,T ,C and x ∈ [0,1], we define the building blocks

Rl(x) := [
logPlA(x) logPlG(x) logPlT (x) logPlC(x)

]
,

Wl(x) :=
⎛
⎝Rl(x1)

Rl(x2)

Rl(x3)

⎞
⎠ .

The induction hypothesis implies that there exist 4 × n independent frequency
patterns of the form (A.1). This means that for some labelings ψ1,ψ2, . . . ,ψ4n,
the block matrix

J =

⎛
⎜⎜⎝

B1
B2
· · ·
B4n

⎞
⎟⎟⎠
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has maximal rank 4n, where

Bs :=
⎛
⎜⎝

Rψ1
s
(x1) · · ·Rψn

s
(x1)

Rψ1
s
(x2) · · ·Rψn

s
(x2)

Rψ1
s
(x3) · · ·Rψn

s
(x3)

⎞
⎟⎠ .

For s = 1, . . . ,4n, we consider all the labelings obtained by appending ψs with
one of the four nucleotides A,G,T ,C. By doing so, we create a set of 48n different
frequency patterns. We want to prove that the block matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 WA(x)

B2 WA(x)

· · · · · ·
B4n WA(x)

B1 WG(x)

B2 WG(x)

· · · · · ·
B4n WG(x)

B1 WT (x)

B2 WT (x)

· · · · · ·
B4n WT (x)

B1 WC(x)

B2 WC(x)

· · · · · ·
B4n WC(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has maximal rank 4n + 4.
Note that this matrix is row-equivalent to(

J U

0 V

)
,

where each row of V is of the form Ri(xk)−RA(xk) for i = G,T ,C. [This is done
by subtracting the blocks (Bs Ri(x)) by the block (Bs RA(x)) then rearranging
the row to obtain the sub-matrix J at the top-left corner.]

On the other hand, from the case S = 1, we have

rank

⎛
⎜⎜⎝

WA(x)

WG(x)

WT (x)

WC(x)

⎞
⎟⎟⎠ = 4,

which implies that rank(V ) = 4. Hence, rank(C) = rank(J ) + rank(V ) = 4n + 4.
We deduce that for every S, the set G of all possible logarithmic conditional

frequency patterns with S sites under the Kimura 2-parameter model is a linear
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subspace of R4×S (Theorem 4.1) that contains 4S linearly independent vectors.
This implies that G = R4×S . �

PROOF OF THEOREM 4.4 (STEP 1). (Any pattern of the form v = [x 0 0 0]
can be produced by a tree τ with four edges.)

Denote

x1(t) = PAA(t), x2(t) = PAG(t),

x3(t) = PAT (t), x4(t) = PAC(t)

we note that in the Kimura 2-parameter model, x3(t) = x4(t).
Now consider two trees τ1 and τ2, each with one edge, whose branch lengths are

t and s, respectively. We label the only nodes of τ1 and τ2 by the patterns ψ1 = (A)

and ψ2 = (G), and obtain the frequency patterns f1(t) and f2(s), respectively. By
gluing the roots of τ1 (1 edge) and the “inverse” of the tree τ2 (3 edges)), we obtain
a tree T (t, s) with 4 edges whose frequency pattern is equivalent to

f1(t) − f2(s) ∼
[
log

x1(t)x4(s)

x4(t)x2(s)
, log

x2(t)x4(s)

x4(t)x1(s)
,0,0

]
.

On the other hand, we note that for the Kimura 2-parameter model (5.1),

x2(t)

x4(t)
= 1 + 2 exp(−0.5t)

only admits values in the interval [1,3], while x1(s)/x4(s) is a continuous decreas-
ing function in s that admits all values in the interval [1,∞). Hence, for every
t > 0, there exists a unique k(t) > 0 such that

x2(t)x4(k(t))

x4(t)x1(k(t))
= 1.

Moreover, k(t) is a continuous function in t and

lim
t→∞k(t) = ∞, lim

t→0
k(t) = k0,

where k0 satisfies x1(k0)/x4(k0) = 3.
Now if we denote

g(t) = x1(t)x4(k(t))

x4(t)x2(k(t))

then g(t) is a continuous function that satisfies

lim
t→∞g(t) = 1, lim

t→0
g(t) = ∞.

We deduce that for a range of t

f1(t) − f2
(
k(t)

) ∼ [
logg(t),0,0,0

]
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which admits every patterns of the form [x,0,0,0] with x > 0. Similarly,

f2
(
k(t)

) − f1(t) ∼ [− logg(t),0,0,0
]

admits every patterns of the form [x,0,0,0] with x < 0. This completes the proof.
�

PROOF OF THEOREM 5.1. From Theorem 4.1, there exists a rooted tree τ , a
labeling ψ and a vector of real constants c = (c1, . . . , cS) such that

cs + log
∑

a∈Zi,s

π(i)
∏

(u,v)∈E(τ)

P uv
auav

(tuv) = log
(
ηs

i

)
.

[Recall that Zi,s is the set of all extensions a of ψs to all the nodes of τ such
that a(ρ) = i.] For any t > 0, we create a new tree τ(t) by adding an edge e of
length t to the root ρ and labeling the additional taxon by the constant vector
(A,A, . . . ,A). The log-likelihood function on e of τ(t) given this taxon labeling
is

�(t) =
S∑

s=1

log
(∑

i

∑
a∈Zi,s

π(i)
∏

(u,v)∈E(τ)

P uv
auav

(tuv)PiA(t)

)

= −
S∑

s=1

cs +
S∑

s=1

log
(∑

i

ηs
i Pi(t)

)
.

Theorem 4.4 implies that the tree τ can be constructed with at most 64S edges.
Hence, τ(t) has at most (64S + 1) edges. �

PROOF OF LEMMA 6.1. We first consider the case of linear functions. Assume
that f (x) = ax + b such that f is positive in [0,1]. We deduce that b + a =
f (1) > 0. Hence, f can be written as

f (x) = ax + b

= 2(b − a)

(
1

4
− 1

4
x

)
+ (b + a)

(
1

4
+ 1

4
x − 1

2
x2

)

+ (b + a)

(
1

4
+ 1

4
x + 1

2
x2

)

= 2(b − a)P3(x) + (b + a)P2(x) + (b + a)P1(x)

using the transition polynomials Pi(x) from equation (5.2).
Since {P1,P2,P3} are linearly independent, we deduce that f can be expressed

as positive linear combination of P1,P2,P3 if and only if f (−1) = b − a > 0.
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If f (x) is a monic polynomial of degree 2 with no real roots, then f can be
written as

f (x) = x2 − 2ax + a2 + b2

= [
(a − 1)2 + b2 − 1

]
P1(x)

+ [
(a − 1)2 + b2 − 2

]
P2(x)

+ 2
[
(a + 1)2 + b2 − 1

]
P3(x).

The coefficients are positive if and only if a ± bi do not belong to B . �
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