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Multilevel Splitting, also called Subset Simulation, is a Sequential Monte
Carlo method to simulate realisations of a rare event as well as to estimate its
probability. This article is concerned with the convergence and the fluctua-
tion analysis of Adaptive Multilevel Splitting techniques. In contrast to their
fixed level version, adaptive techniques estimate the sequence of levels on
the fly and in an optimal way, with only a low additional computational cost.
However, very few convergence results are available for this class of adap-
tive branching models, mainly because the sequence of levels depends on the
occupation measures of the particle systems. This article proves the consis-
tency of these methods as well as a central limit theorem. In particular, we
show that the precision of the adaptive version is the same as the one of the
fixed-levels version where the levels would have been placed in an optimal
manner.
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1. Introduction. Multilevel Splitting techniques were introduced as natural
heuristics in the 1950s by Kahn and Harris [27] and Rosenbluth and Rosen-
bluth [34] to analyze particle transmission energies and molecular polymer con-
formations. In their basic form, these methods can be interpreted as a genetic
mutation-selection algorithm. The mutation transition reflects the free evolution
of the physical model at hand, while the selection is an acceptance-rejection tran-
sition equipped with a recycling mechanism. The samples entering a critical level
are more likely to be selected and duplicated. The genealogy associated with these
genetic type particles model represents the statistical behavior of the system pass-
ing through a cascade of critical rare events.

Interestingly, these models can also be seen as a mean field particle approxi-
mation of Feynman–Kac measures. This interpretation depends on the application
area of interest. In scientific computing and mathematical biology, these stochastic
techniques are often termed genetic algorithms. In machine learning and advanced
signal processing, they are referred as Sequential Monte Carlo or Particle Filters.
In computational and quantum physics, they belong to the class of Diffusion Monte
Carlo methods. The analysis of this class of branching and mean field type particle
methods is now well understood (see, for instance, [9, 10, 14, 17] and references
therein).

The present article concerns the convergence analysis of a more sophisticated
class of adaptive particle methods where both the selection functions and the mu-
tation transitions depend on the occupation of the system. The selection functions
are chosen to sequentially achieve a prescribed proportion of samples in an higher
critical level set, while the mutation transitions are dictated by some Markov Chain
Monte Carlo (MCMC) methods on the adaptive critical level sets. This adaptive
multilevel technique is a natural and popular approach amongst practitioners, but
there are very few convergence results for this class of models.

The first analysis of this class of models has been developed by Del Moral,
Doucet and Jasra in [16], in terms of adaptive resampling times associated with
some criteria such as the effective sample size. Nonetheless, their result only ap-
plies to adaptive models associated with parametric level sets and equipped with
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sequential resampling times related to some fixed threshold. Thus, this does not
correspond precisely to the purpose of Adaptive Multilevel Splitting methods that
we are presently interested in.

In a slightly different framework, the recent article by Beskos, Jasra, Kantas and
Thiéry [3] is also related to the present paper. Specifically, the authors present a
detailed analysis for a class of adaptive Sequential Monte Carlo models under reg-
ularity properties on the dependency of the mutation transitions and the selection
functions with respect to the occupation measures of the system. The proofs in [3]
reveal that these regularity properties are essential to develop a first-order pertur-
bation analysis between the adaptive particle models and their limiting measures.
Unfortunately, this framework does not apply to indicator selection functions aris-
ing in classical multilevel splitting methodologies and developed in the present
article. As a consequence, even if the global goal here is roughly the same as in
[3, 16], the techniques developed for establishing our convergence results are quite
different. Note also that in the context of adaptive tempering (a context considered
in [3]), Giraud and Del Moral give nonasymptotic bounds on the error in [22].

Let us first specify our framework and notation. In all the paper, we suppose that
X is a random vector in R

d with law η that we can simulate, and S is a mapping
from R

d to R, also called a score function. Then, given a threshold L� which lies
far out in the right-hand tail of the distribution of S(X), our goal is to estimate the
rare event probability P = P(S(X) > L�). This very general context includes ap-
plications in queuing networks, insurance risks, random graphs (as found in social
networks, or epidemiology), etc.; see, for example, [24] for some of them, and a
discussion on practical implementations.

In this context, a crude Monte Carlo uses an i.i.d. N -sample X1, . . . ,XN

to estimate P by the fraction P̂mc = #{i : S(Xi) > L�}/N . However, in order
to obtain a reasonable precision of the estimate given by the relative variance
V(P̂mc)/P

2 = (1− P)/(NP ), one needs a sample size N of order at least P−1.
Obviously, this becomes unrealistic when P is very small, hence the use of vari-
ance reduction techniques.

Importance Sampling, which draws samples according to π and weights each
observation X = x by w(x) = dη(x)/dπ(x), may decrease the variance of the
estimated probability dramatically, which in turn reduces the need for such large
sample sizes. We refer to Robert and Casella [33] for a discussion on Importance
Sampling techniques in general, and to Bucklew [7] and L’Ecuyer, Mandjes and
Tuffin [29], Chapter 2, for the application in the context of rare event estimation.
Notice that, in rare event estimation, it is customary to design an importance sam-
pling scheme using a large deviation principle. Although it often gives an effi-
cient method, this approach may fail dramatically, even compared to crude Monte
Carlo, when the rare event has two or more most likely occurrences. As explained
by Glasserman and Wang in the introduction of [23], “Simply put, an analysis of
a first moment cannot be expected to carry a guarantee about the behavior of a
second moment.”
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Multilevel Splitting represents another powerful algorithm for rare event esti-
mation. The basic idea of Multilevel Splitting, adapted to our problem, is to fix a
set of increasing levels −∞= L−1 < L0 < · · ·< Ln−1 < Ln = L�, and to decom-
pose the tail probability thanks to Bayes formula, that is,

P
(
S(X) > L�)= n∏

p=0

P
(
S(X) > Lp|S(X) > Lp−1

)
.

Each conditional probability P(S(X) > Lp|S(X) > Lp−1) is then estimated sepa-
rately. We refer the reader to L’Ecuyer, Le Gland, Lezaud and Tuffin [28], Chap-
ter 3, for an in-depth review of the Multilevel Splitting method and a detailed list of
references. Two practical issues associated with the implementation of Multilevel
Splitting are: first, the need for computationally efficient algorithms for estimat-
ing the successive conditional probabilities; second, the optimal selection of the
sequence of levels.

The first question can be addressed thanks to the introduction of Markov Chain
Monte Carlo procedures at each step of the algorithm. This trick was proposed in
different contexts and through slightly different variants by Au and Beck [1, 2],
Del Moral, Doucet and Jasra [15], Botev and Kroese [5], Rubinstein [35].

The second question is straightforward in the idealized situation where one
could estimate the successive quantities P(S(X) > Lp|S(X) > Lp−1) indepen-
dently at each step. Indeed, considering the variance of the estimator, it is readily
seen that the best thing to do is to place the levels as evenly as possible in terms of
the intermediate probabilities, that is to take, for all p,

P
(
S(X) > Lp|S(X) > Lp−1

)= P
(
S(X) > L�) 1

n+1 .

But, since little might be known about the mapping S, the only way to achieve this
goal is to do it on the fly by taking advantage of the information of the current
sample at each step. This method is called Subset Simulation (see Au and Beck
[1, 2]) or Adaptive Multilevel Splitting (see Cérou and Guyader [11]), and may be
seen as an adaptive Sequential Monte Carlo method specifically dedicated to rare
event estimation.

However, except in the idealized situation where one considers a new indepen-
dent sample at each step (see Cérou, Del Moral, Furon and Guyader [8], Guyader,
Hengartner and Matzner-Løber [25], Bréhier, Lelièvre and Rousset [6], and Si-
monnet [37]), there are only very few results about the theoretical properties of
this efficient algorithm. From a broader point of view, as duly noticed in [3, 16],
this disparity between theory and practice holds true for adaptive Sequential Monte
Carlo methods in general. As such, the present article is in the same vein as [3, 16]
and might be seen as a new step toward a better understanding of the statistical
properties of adaptive Sequential Monte Carlo methods.

In particular, the take-home message here is the same as in [3, 16], namely
that the asymptotic variance of the adaptive version is the same as the one of the
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fixed-levels version where the levels would have been placed in an optimal man-
ner. However, there are substantial differences between [3, 16] and the present
contribution.

In [16], the adaptive parameter is the time at which one needs to resample. This
approach can be used for rare event if we choose a possibly long sequence of
deterministic levels L1, . . . ,Ln, and resample only when the current level sees a
given proportion of particles to be already killed. The authors provide convergence
results, including a CLT, when the number N of particles goes to ∞, but for fixed
levels L1, . . . ,Ln. To get the kind of results of the present contribution, one would
need to let also n go to ∞, and this cannot be achieved by the coupling technique
used in [16] due to the inherent jittering of the adaptive levels, which is typically
of order 1/

√
N . If the granularity of the levels goes to 0 as N goes to ∞, then

there is little hope that the adaptive particle system coincides with the optimal one
with large probability as in their Theorem 2.3.

In [3], the authors consider different scenarios, including adaptive proposal and
adaptive tempering, where they can make a Taylor expansion of the adaptive se-
lection function, and the adaptive kernel, in the vicinity of the optimal parameter.
This leads to additional terms in the asymptotic variance that may cancel in some
cases (adaptive proposal), giving the same variance as in the nonadaptive optimal
case. Yet, let us emphasize again that the inherent unsmoothness of the selection
functions of interest here (going abruptly from 0 to 1 when crossing a level set
for S) leads to different proofs, meaning that their results and even techniques, al-
though very interesting in and by themselves, can definitely not be applied in our
context.

The paper is organized as follows. In Section 2, we introduce some notation and
describe the Multilevel Splitting algorithms. The asymptotic results (laws of large
numbers and central limit theorems) are presented in Section 3. Section 4 comes
back on the assumption required for our CLT type result to be valid. Section 5
is devoted to the proofs of the theorems, while technical results are postponed to
Section 6.

2. Multilevel splitting techniques.

2.1. Framework and notation. We consider an R
d -valued random variable X

with distribution η, for some d ≥ 1. We assume that η has a density with respect to
Lebesgue’s measure dx on R

d and, by a slight abuse of notation, we denote η(x)

this density. We also consider a mapping S from R
d to R. If S is Lipschitz with

|DS| > 0 almost everywhere, where |DS| stands for the Euclidean norm of the
gradient of S, then the co-area formula (see, e.g., [21], page 118, Proposition 3)
ensures that the random variable Y = S(X) is absolutely continuous with respect
to Lebesgue’s measure on R, and its density is given by the formula

(2.1) fY (s)=
∫
S(x)=s

η(x)
d̄x

|DS(x)| ,
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where d̄x stands for the Hausdorff measure on the level set S−1(s) = {x ∈
R

d, S(x)= s}. In this notation, given α ∈ (0,1), the (1−α) quantile of Y is simply
F−1

Y (1− α), where FY stands for the cumulative distribution function (c.d.f. for
short) of Y .

Consider a real number (or level) L� lying far away in the right-hand tail of
S(X) so that the probability P = P(Y ≥ L�) is very small. For any bounded and
measurable function f : Rd → R [denoted f ∈ B(Rd) in all the paper] which is
null below L� (implicitly: with respect to S), our goal is to estimate its expectation
with respect to η, that is the quantity

(2.2) E = E
[
f (X)

]= E
[
f (X)1S(X)≥L�

]
.

To this end, we fix an α ∈ (0,1) (in practice one may typically choose α = 3/4),
and consider the decomposition

(2.3) P = P
(
Y ≥ L�)= r × αn with n=

⌊
logP(Y ≥ L�)

logα

⌋
,

so that r ∈ (α,1]. For the sake of simplicity and since this is always the case in
practice, we assume that r belongs to the open interval (α,1). With the convention
L−1 =−∞, we define the increasing sequence of levels (Lp)p≥−1 as follows:

L0 = F−1
Y (1− α) < · · ·< Ln−1 = F−1

Y

(
1− αn) < L� < Ln = F−1

Y

(
1− αn+1).

Once and for all, we assume that the density fY , as defined in equation (2.1),
is continuous and strictly positive at each Lp , for p ∈ {0, . . . , n}. This will guar-
antee that the quantiles are well defined and that the empirical ones have good
convergence properties.

Following the notation of [13, 14], we associate to these successive levels the
potential functions

∀− 1≤ p < n Gp = 1Ap with Ap = {
x ∈R

d : S(x)≥ Lp

}
.

The restriction of η to Ap−1 is then denoted ηp . More formally, we have

ηp(dx)= α−p1Ap−1(x)η(x) dx = α−pGp−1(x)η(x) dx.

By construction, we have

ηp(Gp)= ηp(1Ap)= P
(
S(X)≥ Lp|S(X)≥ Lp−1

)= α.

We also notice that the interpolating measures ηp are connected by the Boltzmann–
Gibbs transformation

ηp+1(dx)=�Gp(ηp)(dx)= 1

ηp(Gp)
Gp(x)ηp(dx)= α−1Gp(x)ηp(dx).

Moreover, we consider a collection of Markov transitions from Ap−1 into itself
defined for any x ∈Ap−1 by

Mp

(
x, dx′

)=Kp

(
x, dx′

)
1Ap−1

(
x′
)+Kp(x, Āp−1)δx

(
dx′

)
,
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where Āp−1 =R
d −Ap−1, and Kp stands for a collection of η-reversible Markov

transitions on R
d , meaning that for all p and all couple (x, x′), we have the detailed

balance equation

(2.4) η(dx)Kp

(
x, dx′

)= η
(
dx′

)
Kp

(
x′, dx

)
.

We extend Mp into a transition kernel on R
d by setting Mp(x, dx′) = δx(dx′)

whenever x /∈ Ap−1. Under the assumption that Kp is η-symmetric, it is easy to
check that Mp is ηp-invariant, meaning that ηpMp = ηp for all p ≥ 1. In addition,
we have the recursion

ηp

(
dx′

)= α−1(ηp−1Qp)
(
dx′

)= α−1
∫

ηp−1(dx)Qp

(
x, dx′

)
,

with the integral operators

Qp

(
x, dx′

)=Gp−1(x)Mp

(
x, dx′

)
.

Next, let us denote (Xp)p≥0 a nonhomogeneous Markov chain with initial distri-
bution η0 = η and elementary transitions Mp+1. In this situation, it is readily seen
that

(2.5) αnηn(f )= E

[
f (Xn)

n−1∏
q=0

Gq(Xq)

]
⇐⇒ αnηn = η0Q0,n

with the Feynman–Kac semigroup Q0,n associated with the integral operators Qp

defined by

∀0≤ p ≤ n Qp,n =Qp+1Qp+1,n.

In this notation, we have

E = E
[
f (X)

]= E
[
f (X)1S(X)≥L�

]= αn × ηn(f × 1S(·)≥L�),

P = P
(
Y ≥ L�)= P

(
S(X)≥ L�)= αn × ηn(1S(·)≥L)= αn × r

and

f = f × 1S(·)≥L� =⇒
(2.6)

C = E
[
f (X)|S(X)≥L�]= ηn(f )

ηn(1S(·)≥L�)
= ηn(f )

r
.

We will now describe two multilevel splitting techniques in order to estimate
these quantities. The optimal Feynman–Kac particle approximation of the flow
(2.5) corresponds to the fixed-levels method that we describe in Section 2.2. As this
approximation is not possible in practice, we detail in Section 2.3 the correspond-
ing adaptive Feynman–Kac particle approximation, known as Adaptive Multilevel
Splitting or Subset Simulation.
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2.2. The fixed-levels method. Following the notation of [13], the fixed-levels
approximation of the flow (2.5) works as follows.

Let (X1
p, . . . ,XN

p )0≤p≤n be an (Rd)N -valued Markov chain with initial distri-

bution η⊗N
0 and for which each elementary transition Xi

p � Xi
p+1 is decomposed

into the following separate mechanisms:

1. Selection step: compute η̌N
p (Gp), which is the proportion of the sample

(X1
p, . . . ,XN

p ) such that S(Xi
p)≥ Lp .

2. Multinomial step: from the η̌N
p (Gp)N -sample with distribution ηp+1, draw an

N -sample (X1
p+1/2, . . . ,X

N
p+1/2) with the same distribution.

3. Transition step: each Xi
p+1/2 evolves independently to a new site Xi

p+1 ran-

domly chosen with distribution Mp+1(X
i
p+1/2, dx′).

4. Incrementation step: p = p + 1. If p = n, then stop the algorithm, else go to
step 1 (selection step).

Let us denote γ̌ N
n (1) the normalizing constant defined by

γ̌ N
n (1)=

n−1∏
p=0

η̌N
p (Gp).

In our framework, its deterministic counterpart is simply

γn(1)=
n−1∏
p=0

ηp(Gp)= αn.

For any f ∈ B(Rd), the normalized and unnormalized measures η̌N
n (f ) and γ̌ N

n (f )

are respectively defined by

η̌N
n (f )= 1

N

N∑
i=1

f
(
Xi

n

)
and γ̌ N

n (f )= γ̌ N
n (1)× η̌N

n (f ).

The fixed-levels algorithm provides the following estimates:

(i) The estimate of the expectation E = E[f (X)1S(X)≥L�] = γn(f ×1S(·)≥L�)

is given by Ě = γ̌ N
n (f × 1S(·)≥L�).

(ii) The rare event probability P = P(S(X)≥ L�) is estimated by the quantity
P̌ = γ̌ N

n (1S(·)≥L�).
(iii) The estimate of the conditional expectation C = E[f (X)|S(X)≥ L�] is

Č = η̌N
n (f × 1S(·)≥L�)

η̌N
n (1S(·)≥L�)

=
∑N

i=1 f (Xi
n)1S(Xi

n)≥L�∑N
i=1 1S(Xi

n)≥L�

.

These particle models associated with a collection of deterministic potential
functions Gp and Markov transitions Mp belong to the class of Feynman–Kac par-
ticle models. This class of mean field particle models has been extensively studied
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in a very general context, including the asymptotic behavior as the number N of
particles goes to infinity. We refer the reader to [13] and the more recent research
monograph [14], with references therein. We will recall some of these results in
Section 3.2.

In our specific context, the obvious drawback of these Feynman–Kac parti-
cle approximations is the impossibility to fix in advance the successive levels
L0, . . . ,Ln, hence the use of adaptive methods that we describe in the following
section.

2.3. The adaptive method. An efficient way to estimate the quantities E, P

and C is to use Adaptive Multilevel Splitting methods. To describe with some
precision these particle splitting models, it is convenient to consider a collection
of potential functions and Markov transitions indexed by R. Thus, for any real
number L, we set

GL = 1AL
with AL = {

x ∈R
d : S(x)≥ L

}
.

We also consider the collection of Markov transitions from AL into itself defined
for any x ∈AL by

Mp,L

(
x, dx′

)=Kp

(
x, dx′

)
1AL

(
x′
)+Kp(x, ĀL)δx

(
dx′

)
.

As before, we extend Mp,L into a transition kernel on R
d by taking

Mp,L

(
x, dx′

)= δx

(
dx′

)
whenever x /∈AL, and we set

Qp,L

(
x, dx′

)=GL(x)Mp,L

(
x, dx′

)
.

In this slight abuse of notation, we have

L= Lp−1 =⇒
(GL,AL)= (Gp−1,Ap−1) and (Mp,L,Qp,L)= (Mp,Qp).

Of special interest will be the case where L is a given quantile. We distinguish two
cases:

• First, for any positive and finite measure ν on R
d with a density with respect

to Lebesgue’s measure, the level Lν is defined as the (1 − α) quantile of the
probability measure (S∗ν)/ν(Rd), that is,

(2.7) Lν = L(ν)= F−1
ν (1− α) where Fν(y)= ν(S−1((−∞, y]))

ν(Rd)
.

In order to lighten the notation a bit, we will write

Gν :=GLν , Aν :=ALν , Mp,ν :=Mp,Lν

and

Qp,ν

(
x, dx′

)=Gν(x)Mp,ν

(
x, dx′

)
.
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• Second, given a sample of vectors (Xi)1≤i≤N in R
d , we consider an auxiliary

sequence of i.i.d. uniformly distributed random variables (U1, . . . ,UN) and the
following total order on the couples (Xi,Ui)1≤i≤N :

(Xi,Ui) < (Xj ,Uj )⇔ S(Xi) < S(Xj ) or
(2.8)

S(Xi)= S(Xj ) and Ui < Uj .

Obviously, since the Ui ’s are uniformly distributed, equality between two cou-
ples almost surely never happens. Hence, we can consider the associated order
statistics

(X(1),U(1)) < · · ·< (X(n),U(n)),

and we define the empirical (1− α) quantile LN as

LN := (
S(X(�N(1−α)�)),U(�N(1−α)�)

)
.(2.9)

In particular, one can notice that the number of couples strictly above LN (with
respect to the previous order) is equal to �Nα�.
REMARKS. In order to lighten the writings, we will usually not mention that

some auxiliary uniform random variables (U1, . . . ,UN) are always attached to
a sample (X1, . . . ,XN). In particular, this will be implicit to define the associ-
ated empirical quantile LN , and the relation S(Xi) > LN must be understood ac-
cordingly. Otherwise, the notation LN refers only to its first component in defini-
tion (2.9). However, considering the context, there should be no ambiguity. Note
also that when considering the convergence of empirical quantiles, only the first
component will be considered, as there is no reason why the uniform random vari-
able would converge.

In our situation, it turns out that equality between several Xi’s will have no
influence on the CLT type result we want to establish. Indeed, ties come from
the multinomial step of the algorithm below, but as mentioned in the proof of
Lemma 6.3, one can control these events very precisely (see for example Chap-
ter 4 of [18]). As we will see, the maximum number of particles on the same level
set for S, at stage q , is typically op((logN)q), making the mass at a single loca-
tion op((logN)q/N), while the error between the conditional measure ηq and its
particle approximation will be of order 1/

√
N as expected.

In this context, the adaptive particle approximation of the flow (2.5) is defined
in terms of an (Rd)N -valued Markov chain (X1

p, . . . ,XN
p )p≥0 with initial distribu-

tion η⊗N
0 . We start with p = 0 and a η⊗N

0 sample (X1
0, . . . ,X

N
0 ). The elementary

transitions Xi
p � Xi

p+1 are decomposed into the following separate mechanisms:

1. Quantile step: Compute the empirical (1 − α) quantile LN
p of the sample

(X1
p, . . . ,XN

p ) in the sense of (2.9). If LN
p ≥ L�, then stop the algorithm, else

go to step 2 (multinomial step).
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2. Multinomial step: Draw an N -sample (X1
p+1/2, . . . ,X

N
p+1/2) with common dis-

tribution

η̃N
p (dx)= 1

�Nα�
∑

i:S(Xi
p)>LN

p

δXi
p
(dx)= 1

�Nα�
�Nα�∑
i=1

δ
X̃i

p
(dx).

3. Exploration step: Each Xi
p+1/2 evolves independently to a new site Xi

p+1 ran-

domly chosen with distribution Mp+1,LN
p
(Xi

p+1/2, dx′).
4. Incrementation step: p = p+ 1. Go to step 1.

Denote n̂ the last index p such that LN
p < L�. This algorithm provides the follow-

ing estimates:

(i) The estimate of the expectation E = E[f (X)] = E[f (X)1S(X)≥L�] con-
sidered in (2.2) is

Ê = αn̂ × ηN
n̂ (f )= αn̂ × 1

N

N∑
i=1

f
(
Xi

n̂

)
1S(Xi

n̂
)≥L�.

(ii) The rare event probability P = P(S(X) ≥ L�) considered in (2.3) is esti-
mated by the quantity

P̂ = αn̂ × ηN
n̂ (1S(·)≥L�)= αn̂ × 1

N

N∑
i=1

1S(Xi
n̂
)≥L�.

(iii) For the conditional expectation C = E[f (X)|S(X) ≥ L�] considered in
(2.6), still with f = f × 1S(·)≥L� , the estimate is

Ĉ = ηN
n̂

(f )

ηN
n̂

(1S(·)≥L�)
=

∑N
i=1 f (Xi

n̂
)1S(Xi

n̂
)≥L�∑N

i=1 1S(Xi
n̂
)≥L�

.

The purpose of Section 3.1 is to expose some asymptotic results on these estima-
tors.

2.4. Metropolis–Hastings kernels. Let us briefly recall Metropolis–Hastings
algorithm [26, 31], which is a possible way to obtain a collection Kp of η-
reversible Markov transitions. We emphasize that, from a practical viewpoint, the
kernels Kp are a key ingredient of the previous algorithms, for fixed levels as well
as for adaptive ones. Hereafter, we follow the presentation of [38].

Let kp be a Markov transition kernel of the form

kp

(
x, dx′

)= kp

(
x, x′

)
dx′.
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Let E+ = {x ∈ R
d, η(x) > 0} and, for the sake of simplicity, assume that

kp(x,E+)= 1 for any x /∈E+. Next, define the acceptance ratio

ap

(
x, x′

)=
⎧⎪⎨⎪⎩min

{
η(x′)kp(x′, x)

η(x)kp(x, x′)
,1

}
, if η(x)kp

(
x, x′

)
> 0,

1, if η(x)kp

(
x, x′

)= 0.

The success of Metropolis–Hastings algorithm comes from the fact that it only
depends on η through ratios of the form η(x′)/η(x), hence η only needs to be
known up to a normalizing constant. If we define the off-diagonal density of a
Metropolis kernel as

ka
p

(
x, x′

)= ap

(
x, x′

)
kp

(
x, x′

)
,

and set

ra
p(x)= 1−

∫
Rd

ka
p

(
x, x′

)
dx′,

then the Metropolis kernel Kp can be written as

Kp

(
x, dx′

)= ka
p

(
x, x′

)
dx′ + ra

p(x)δx

(
dx′

)
.

Since ka
p satisfies the detailed balance equation,

(2.10) η(x)ka
p

(
x, x′

)= η
(
x′
)
ka

p

(
x′, x

)
,

it follows that Kp is an η-reversible Markov transition kernel. Finally, let us men-
tion that, for any function ϕ ∈ B(Rd), we will denote ka

p(ϕ) the function defined
by

ka
p(ϕ)(x)=

∫
Rd

ka
p

(
x, x′

)
ϕ
(
x′
)
dx′ =

∫
Rd

ap

(
x, x′

)
kp

(
x, x′

)
ϕ
(
x′
)
dx′,

so that

(2.11) Kp(ϕ)(x)= ka
p(ϕ)(x)+ ra

p(x)× ϕ(x).

This expression will be useful in the proof of Proposition 5.3.

3. Consistency and fluctuation analysis.

3.1. Adaptive multilevel splitting. We prove in Theorem 3.1 the almost sure
convergence of LN

p to Lp . As a byproduct, we deduce that the probability that the
algorithm does not stop after the right number of steps (i.e., that n̂ �= n) goes to
zero when N goes to infinity. Then, in Theorem 3.2, we focus our attention on the
fluctuations of ηN

n (f ) around ηn(f ).
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THEOREM 3.1. For all p ∈ {0, . . . , n},
LN

p

a.s.−−−−→
N→∞ Lp.

Besides, for all f ∈ L2(η),

ηN
p (f )

P−−−−→
N→∞ ηp(f ),

and for all f ∈ B(Rd),

ηN
p (f )

a.s.−−−−→
N→∞ ηp(f ).

Note that a consequence of Theorem 3.1 is that the couple (LN
n−1,L

N
n ) con-

verges almost surely to (Ln−1,Ln). As claimed before, this ensures that, almost
surely for N large enough, LN

n−1 < L� < LN
n , which means that n̂= n.

The fluctuations of ηN
n around the limiting measure ηn are expressed in terms

of the normalized Feynman–Kac semigroups Qq,p defined by

∀0≤ q ≤ p ≤ n Qq,p = Qq,p

ηq(Qq,p(1))
= αq−p ×Qq,p.

We also need to specify some regularity assumptions on the score function S and
the transition kernels Kq for which our CLT type result is valid. For any q > 0, we
first introduce the set of functions

Bq = {
g :Rd →R,∃(g0, . . . , gq−1) ∈ B

(
R

d)q, g =K1(g0) · · ·Kq(gq−1)
}
.

Notice in particular that any g in Bq is bounded and inherits the regularity proper-
ties of the kernels Kj . Then, for g ∈ Bq , x ∈R

d and L ∈R, let us denote

Hg
q (x,L)=

∫
S(x′)=L

Kq+1
(
x, x′

)
g
(
x′
) d̄x′

|DS(x′)| .

ASSUMPTION [H]. (i) For any q ≥ 0, the mapping x �→ H 1
q (x,Lq) belongs

to L2(η), that is,∫
η(dx)

(∫
S(x′)=Lq

Kq+1
(
x, x′

) d̄x′

|DS(x′)|
)2

<∞.

(ii) For any q > 0, for any g ∈ Bq , there exists h ∈ L2(η) such that for any
ε > 0, there exists δ > 0 such that for any L ∈ [Lq − δ,Lq + δ] and for almost
every x ∈R

d , ∣∣Hg
q (x,L)−Hg

q (x,Lq)
∣∣≤ εh(x).
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We will comment on this assumption in Section 4. In particular, we will see that
it is not restrictive and is verified by most models of interest, for example, when
the level sets {S(x′)= L} have finite Hausdorff measure or when η and the kernels
Kq have light tails.

If the kernels Kj are based on the Metropolis–Hastings algorithm as detailed in
Section 2.4, then one has to consider the set of functions:

Ba
q =

{
g :Rd →R,∃(g0, . . . , gq−1) ∈ B

(
R

d)q, g = ka
1(g0) · · ·ka

q(gq−1)
}
,

as well as the mapping

Hg,a
q (x,L)=

∫
S(x′)=L

ka
q+1

(
x, x′

)
g
(
x′
) d̄x′

|DS(x′)| ,

and Assumption [Ha] defined as follows.

ASSUMPTION [Ha ]. (i) For any q ≥ 0, the mapping x �→ H 1,a
q (x,Lq) be-

longs to L2(η), that is,∫
η(dx)

(∫
S(x′)=Lq

ka
q+1

(
x, x′

) d̄x′

|DS(x′)|
)2

<∞,

and η(H 1,a
q (·,Lq)) > 0.

(ii) For any q > 0, for any g ∈ Ba
q , there exists h ∈ L2(η) such that for any

ε > 0, there exists δ > 0 such that for any L ∈ [Lq − δ,Lq + δ] and for almost
every x ∈R

d , ∣∣Hg,a
q (x,L)−Hg,a

q (x,Lq)
∣∣≤ εh(x).

The main result of this paper is the following central limit type theorem.

THEOREM 3.2. Under Assumptions [H] or [Ha], for any f ∈ B(Rd) such
that f = f × 1S(·)≥L� , we have

√
N
(
ηN

n (f )− ηn(f )
) D−−−−→

N→∞ N
(
0,�(f )

)
,

with the variance functional

(3.1) �(f ) :=
n∑

p=0

ηp

(
Qp,n(f )2 − ηn(f )2).

Theorems 3.1 and 3.2 allow us to specify the fluctuations of the estimates Ê, P̂

and Ĉ.

COROLLARY 3.1. Under the same assumptions as in Theorem 3.2, we have:
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(i) for the estimate of the expectation E = E[f (X)] = E[f (X)1S(X)≥L�],
√

N(Ê −E)
D−−−−→

N→∞ N
(
0, α2n�(f )

);
(ii) for the rare event probability P = P(Y ≥ L�),

√
N(P̂ − P)

D−−−−→
N→∞ N

(
0, α2n�(1S(·)≥L�)

);
(iii) for the conditional expectation C = E[f (X)|S(X)≥ L�], still with f = f ×

1S(·)≥L� ,
√

N(Ĉ −C)
D−−−−→

N→∞ N
(
0,�(g)

)
,

where

g := 1S(·)≥L�

r

(
f − ηn(f )

r

)
.

In the next section, we compare these results with the ones obtained for the
fixed-levels version of Multilevel Splitting, which was initially proposed in [10].
The analysis of this method in the specific context of the present article was done
by some of the authors in [8].

3.2. Comparison with the fixed-levels method. In what follows, we return to
the optimal Feynman–Kac particle approximation (fixed-levels method) that was
presented in Section 2.2.

THEOREM 3.3. For any f ∈ B(Rd), we have the almost sure convergences
limN→∞ γ̌ N

n (f ) = γn(f ), and limN→∞ η̌N
n (f ) = ηn(f ), as well as the conver-

gences in distribution
√

N
(
γ̌ N
n (f )− γn(f )

) D−−−−→
N→∞ N

(
0, α2n�(f )

)
,

√
N
(
η̌N

n (f )− ηn(f )
) D−−−−→

N→∞ N
(
0,�

(
f − ηn(f )

))
with the variance functional � defined in (3.1).

For the proof of this theorem, we report the interested reader to Proposi-
tions 9.4.1 and 9.4.2 in [13]. Just note that straightforward computations give that

α2n�(f )= α2n
n∑

p=0

ηp

(
Qp,n(f )2 − ηn(f )2)

=
n∑

p=0

γp(1)2ηp

((
Qp,n(f )− ηp

(
Qp,n(f )

))2)
,
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which is exactly the variance given in Propositions 9.4.1 in [13] for the case of a
multinomial resampling. In this paper, we prefer using the first expression because
it is how it will appear naturally in the proofs. In Theorem 3.2, the asymptotic
variance has the same form as the one for unnormalized measures in Theorem 3.3.
Actually, in the adaptive case, we have γ N

n = αnηN
n , so that both give the same

asymptotic variance, up to a deterministic multiplicative constant.
Note also that �(f − ηn(f )) can be rewritten as

�
(
f − ηn(f )

)= n∑
p=0

ηp

(
Qp,n

(
f − ηn(f )

)2)
,

which is exactly formula (9.13) in [13].
In the normalized case, it may seem that Theorems 3.2 and 3.3 give different

asymptotic variances, and they do in all generality. But we need to carefully con-
sider what we do at the last step and how we construct our estimates. The speci-
ficity of the last step is that the level is always L�, and thus is not random.

For the normalized measures, the asymptotic variances clearly coincide for
functions f such that ηn(f ) = 0. As we see in the proof of Corollary 3.1, we
can write

Ĉ −C = ηn(1S(·)≥L�)

ηN
n (1S(·)≥L�)

× (
ηN

n (g)− ηn(g)
)
,

where the prefactor
ηn(1S(·)≥L�)

ηN
n (1S(·)≥L�)

converge to 1 in probability, and

g = 1S(·)≥L�

ηn(1S(·)≥L�)

(
f − ηn(f )

ηn(1S(·)≥L�)

)

is such that ηn(g) = 0. As the same trick can be done for Č − C (nonadaptive
case), we have the same asymptotic variance, because g is centered for ηn.

The next corollary, which is a direct consequence of Corollary 3.1 and the above
discussion, constitutes the main message of the present article.

COROLLARY 3.2. Under Assumptions [H] or [Ha], for any f ∈ B(Rd) such
that f = f ×1S(·)≥L� , the estimates Ê and Ě have the same asymptotic variances.
The same result holds for the estimates P̂ and P̌ of the probability P , and for the
estimates Ĉ and Č of the conditional expectation C.

Interestingly, as detailed in Proposition 3 of [8], there exists another expression
for the asymptotic variance of the estimator P̌ . By Corollary 3.2, this expression
holds for the estimator P̂ as well. We recall it hereafter for the sake of complete-
ness.



FLUCTUATION ANALYSIS OF ADAPTIVE MULTILEVEL SPLITTING 3335

COROLLARY 3.3. Under Assumptions [H] or [Ha], we have

√
N

P̂ − P

P

D−−−−−→
N→+∞ N

(
0, σ 2) and

√
N

P̌ − P

P

D−−−−−→
N→+∞ N

(
0, σ 2),

where σ 2 = α2n

P 2 �(1S(·)≥L) admits the alternative expression

σ 2 =n× 1− α

α
+ 1− r

r

+ 1

α

n−1∑
p=0

E

[(
P(S(Xn)≥L�|Xp+1)

r × αn−(p+1)
− 1

)2∣∣∣S(Xp)≥ Lp

]
(3.2)

+ 1

r
×E

[(
P(S(Xn)≥ L�|Xn)

r
− 1

)2∣∣∣S(Xn−1)≥ Ln−1

]
.

This expression emphasizes that, when using Multilevel Splitting, the relative
variance σ 2 is always lower bounded by an incompressible variance term, namely
that

σ 2 ≥ n× 1− α

α
+ 1− r

r
.

The additive terms in (3.2) depend on the mixing properties of the transition ker-
nels Mp . In particular, if at each step we have an “ideal” kernel, meaning that,
knowing that S(Xp)≥ Lp , Xp+1 is independent of Xp , then these additive terms
vanish. This is the so-called “idealized” version of Adaptive Multilevel Splitting
studied, for example, in [6, 8, 25, 37].

Finally, let us mention that our results also apply directly to the case of general
multilevel splitting. Specifically, let us consider a fixed and known final level L�

and a sequence of prescribed success probabilities (αp)p≥0 corresponding to the
(unknown) sequence of levels −∞= L−1 < L0 < · · ·< Ln−1 < L� < Ln, with

αp = P
(
S(X) > Lp|S(X) > Lp−1

) =⇒ P
(
S(X) > L�)= r

n−1∏
p=0

αp,

with

r = P
(
S(X) > L�|S(X) > Ln−1

) ∈ (αn,1).

Then a quick inspection of the proofs ensures that the Adaptive Multilevel Split-
ting algorithm with a sequence of adaptive levels LN

0 < · · ·< LN
n−1 will have the

same asymptotic variance as the Multilevel Splitting algorithm with the levels
L0 < · · ·< Ln−1. Compared to its fixed-levels counterpart, the cost of the adaptive
version is just a higher complexity by a factor logN , due to the quicksort algorithm
performed on the sample at each step.
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4. Discussion on Assumption [H]. In this section, we return to Assump-
tion [H], and show that it is satisfied on several models of interest. For the sake
of simplicity, we focus our attention on [H] and we will not comment on [Ha],
but the following arguments may be repeated mutatis mutandis by replacing Kq

with ka
q .

4.1. An alternative formulation of [H]. First, we explain how Assump-
tion [H](ii) can be verified via a condition on the kernels Kq . Specifically, we
get an assumption which is easier to check than [H](ii), while only a bit more
restrictive. The proof is given in Section 6.5.

PROPOSITION 4.1. Assumption [H](ii) is fulfilled if there exists a function h

in L2(η) and a real number δ > 0, such that for any q > 0, for all L ∈ (Lq −
δ,Lq + δ) and for almost every x ∈R

d ,∫
S(x′)=L

∣∣∣∣divx′
(
Kq+1

(
x, x′

) DS(x′)
|DS(x′)|2

)∣∣∣∣ d̄x′

|DS(x′)|

+
∫
S(x′)=L

[ q∑
m=1

d∑
j=1

∫ ∣∣∣∣ ∂

∂x′j
Km

(
x′, x′′

)∣∣∣∣dx′′
]
Kq+1

(
x, x′

) d̄x′

|DS(x′)|2(4.1)

≤ h(x).

One may think at first sight that this condition is not much easier to handle than
[H](ii) but, considering our framework, we stress the fact that it is much more
natural since it involves only the measure η, the score function S and the transition
kernels Kq , at the cost of only a very slight restriction. We can also remark that
when Km =K for all m, then the sum in m in equation (4.1) can be omitted.

4.2. Examples. This section exhibits two typical situations where Assumption
[H] is satisfied. In order to verify [H](ii), we will make use of condition (4.1) given
in Proposition 4.1.

4.2.1. The compact case. If the levels sets S−1(L) are compact, then under
mild regularity conditions on S and the kernels Kq , it is not difficult to see that
Assumption [H] is satisfied. The remainder of this section details some sufficient
conditions.

Let us assume that, for any real number L, the set {S(x) ≤ L} is bounded,
with Hausdorff measure bounded by CL, and that for all x ∈ S−1(L), we have
|DS(x)| ≥ cL > 0. Besides, assume that for all q , Kq ≤ C. From these assump-
tions, it is clear that∫

η(dx)

(∫
S(x′)=Lq

Kq+1
(
x, x′

) d̄x′

|DS(x′)|
)2
≤

(
Cq ×C

cq

)2
,
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and condition [H](i) is fulfilled.
Now we consider [H](ii), and use condition (4.1) of Proposition 4.1. Denote

respectively by Cq,δ and cq,δ the upper and lower bounds of CL and cL for L ∈
(Lq − δ,Lq + δ). We reformulate the first term in (4.1) as the integral on the level
set {S(x′)= L} of the quantity

divx′
[
Kq+1(x, x′)
|DS(x′)|2 DS

(
x′
)]

= Kq+1(x, x′)
|DS(x′)|2 �S

(
x′
)+ 1

|DS(x′)|2 Dx′Kq+1
(
x, x′

)
DS

(
x′
)T

− 2
Kq+1(x, x′)
|DS(x′)|4 DS

(
x′
)
HS

(
x′
)
DS

(
x′
)T

,

where �S and HS are respectively the Laplacian and the Hessian of S. From this,
we see that if Kq has bounded first derivatives (in the second variable), and if S is
two times continuously differentiable, then this term is bounded by a constant M

and, returning to (4.1), we get for all L ∈ (Lq − δ,Lq + δ),∫
S(x′)=L

∣∣∣∣divx′
(
Kq+1

(
x, x′

) DS(x′)
|DS(x′)|2

)∣∣∣∣ d̄x′

|DS(x′)| ≤M × Cq,δ

cq,δ

.

The second term in (4.1), namely∫
S(x′)=L

[ q∑
m=1

d∑
j=1

∫ ∣∣∣∣ ∂

∂x′j
Km

(
x′, x′′

)∣∣∣∣dx′′
]
Kq+1

(
x, x′

) d̄x′

|DS(x′)|2 ,

is slightly more challenging because of the inner integral on the whole space.
An obvious sufficient condition is that the kernels Km have bounded first deriva-
tives in the first variable, say by M , and that their supports have uniformly
bounded Lebesgue measures, say by ρ. Then we have, for all L ∈ (Lq − δ,Lq +
δ), ∫

S(x′)=L

[ q∑
m=1

d∑
j=1

∫ ∣∣∣∣ ∂

∂x′j
Km

(
x′, x′′

)∣∣∣∣dx′′
]
Kq+1

(
x, x′

) d̄x′

|DS(x′)|2

≤ C̄q,δ

with the constant C̄q,δ = qdρMC
Cq,δ

c2
q,δ

and condition (4.1) of Proposition 4.1 is

satisfied in this so-called compact case (compact level sets for S plus compact
supports for the transition kernels).

4.2.2. The Gaussian case. Outside this compact framework, there are of
course other situations where Assumption [H] is satisfied. Indeed, in many cases,
Kq and η have exponential decay at infinity (i.e., light tails). If Kq has the form

Kq

(
x, x′

)∝ exp
(−Vq

(
x − x′

))
,
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with Vq equivalent to a polynomial at infinity, then basically its derivatives with
respect to x′ take the form Pq(x, x′)Kq(x, x′), where Pq itself is bounded by
another polynomial at infinity. Then, roughly speaking, its integral is a moment
of the density Kq(x, ·), which typically will be bounded by another polyno-
mial in x. This polynomial in x will in turn be integrable by η if η has light
tails. The upcoming example is going to make this more precise in the Gaussian
case.

Specifically, we will detail the computations on the zero-bit watermarking ex-
ample of [8], Section 5.1. In this case, the score function is defined for any
x ∈ R

d by S(x) = x1/|x|, and η is the standard Gaussian distribution on R
d .

Thus, it is readily seen that, for any σ > 0, the transition kernel K defined
by

K
(
x, x′

)= 1+ σ 2

2πσ 2 exp
(
−1+ σ 2

2σ 2

∣∣∣∣x′ − x√
1+ σ 2

∣∣∣∣2)
is η-reversible. We explain in Section 6.6 that in this situation Assumption [H] is
satisfied.

5. Proofs.

5.1. Some preliminary notation. We let FN−1 := {∅,�} be the trivial sigma-
field and, for q ≥ 0, we denote by FN

q the sigma-field generated

FN
q :=FN

q−1 ∨ σ
((

X1
q,U

1
q

)
, . . . ,

(
XN

q ,UN
q

))
.

Also, according to the definition of the empirical quantile given by (2.9), we set

GN−1 := σ
(
LN

0
)= σ

(
X

(�N(1−α)�)
0 ,U

(�N(1−α)�)
0

)
and, for q ≥ 0,

GN
q :=FN

q ∨ σ
(
LN

q+1
)=FN

q ∨ σ
(
X

(�N(1−α)�)
q+1 ,U

(�N(1−α)�)
q+1

)
.

Then, given FN
q−1,

ηN
q :=

1

N

∑
1≤i≤N

δXi
q

is the empirical measure associated with N conditionally independent random vec-
tors with common distribution

�q

(
ηN

q−1
) := 1

�Nα�
∑

i:S(Xi
q−1)>LN

q−1

Mq,LN
q−1

(
Xi

q−1, ·
)
.

Next, given GN
q−1 and adapting for instance Theorem 2.1 in [4] to our context, it

can be shown that the subsample of the vectors Xi
q above LN

q are conditionally
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independent random vectors denoted by (X̃i
q)1≤i≤�Nα� and with common distribu-

tion

(5.1) Law
((

X̃1
q, . . . , X̃�Nα�

q

)|GN
q−1

)=�G
ηN
q

(
�q

(
ηN

q−1
))⊗�Nα�

,

where, if LN
q = (L,u), we have for any x ∈R

d

GηN
q
(x)= 1S(x)>L + (1− u)1S(x)=L

and, accordingly,

(5.2) �G
ηN
q

(
�q

(
ηN

q−1
))= GηN

q
×�q(ηN

q−1)

�q(ηN
q−1)(GηN

q
)

.

In summary, we have that

(5.3) η̃N
q :=�G

ηN
q

(
ηN

q

)= 1

�Nα�
�Nα�∑
i=1

δX̃i
q

and

(5.4) �q+1
(
ηN

q

)=�G
ηN
q

(
ηN

q

)
Mq+1,LN

q−1
= η̃N

q Mq+1,LN
q
.

Let us also define

(5.5) �q

(
ηN

q−1
) := �Nα�

N
×�q

(
ηN

q−1
)= �Nα�

N
×�G

ηN
q−1

(
ηN

q−1
)
Mq,LN

q−1
.

Alternatively, if ν is absolutely continuous, we define the operator �q [see also
(2.7)] as

(5.6) �q(ν) := α�q(ν)= α�Gν (ν)Mq,ν.

Besides, for any q < p and μ= ν or μ= ηN
q , we set

(5.7) �q,p(μ)=�q+1(μ)Qq+1,p and �q,p(μ)= �q+1(μ)Qq+1,p

(�q+1(μ)Qq+1,p)(1)
,

with the conventions that �q,p = Id =�q,p whenever q ≥ p. This yields

(5.8) ηp = αq−p ×�q,p(ηq)=�q,p(ηq).

Hence, for any f ∈ B(Rd), we have

�q,p(μ)= μQq,p,μ and �q,p(μ)(f )=�q,p(μ)(f )/�q,p(μ)(1),

with the collection of integral operators Qq,p,μ defined by

Qq,p,μ :=Qq+1,μQq+2 · · ·Qp =Qq+1,μQq+1,p.
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In addition, using (5.3), we prove

(5.9) �q+1
(
ηN

q

)= ηN
q Qq+1,ηN

q
= ηN

q (GηN
q
)�q+1

(
ηN

q

)= �Nα�
N

η̃N
q Mq+1,LN

q
,

which implies that

(5.10) �q,p

(
ηN

q

)= �Nα�
N

η̃N
q Q̃q,p,ηN

q

whence, thanks to (5.1),

(5.11) E
[
�q,p

(
ηN

q

)
(f )|GN

q−1
]= �Nα�

N
�G

ηN
q

(
�q

(
ηN

q−1
))

Q̃q,p,ηN
q
(f ),

with the collection of integral operators

Q̃q,p,μ :=Mq+1,μQq+1,p.

Note that by construction, we have

Q̃q,p =Mq+1Qq+1,p =: Q̃q,p and Qq,p,ηq =Qq,p.

We also observe that, according to (5.5),

(5.12) E
[
ηN

q (f )|FN
q−1

]=�q

(
ηN

q−1
)
(f )= N

�Nα��q

(
ηN

q−1
)
(f ),

or, said differently,

(5.13) α−1�q

(
ηN

q−1
)= ρN�q

(
ηN

q−1
)

with ρN := �Nα�
Nα

and

(5.14) α−1�q−1,p

(
ηN

q−1
)= α−1�q,p

(
�q

(
ηN

q−1
))= ρN�q,p

(
�q

(
ηN

q−1
))

.

We note, once and for all, that

0≤ ρN − 1 <
1

Nα
.

Finally, we consider the GN
q−1 measurable random variable εN

q defined by

εN
q = 1− ρN�q

(
ηN

q−1
)
(GηN

q
)/α ⇐⇒

(5.15)
�q

(
ηN

q−1
)
(GηN

q
)= ρ−1

N α
(
1− εN

q

)
.
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5.2. Proof of Theorem 3.1. We will prove the almost sure convergences, and
explain at the end how to get the convergence in probability. We proceed by induc-
tion with respect to the time parameter p, as is done, for example, in [12, 20].

Denoting X1
0, . . . ,X

N
0 an i.i.d. sample with common law η= η0, the strong law

of large numbers tells us that, by definition of ηN
0 and η0, for any f ∈ L2(η), we

have

ηN
0 (f )= 1

N

N∑
i=1

f
(
Xi

0
) a.s.−−−−→

N→∞ η(f )= η0(f ).

Then, since the c.d.f. FY is one-to-one and L0 = F−1
Y (1− α), the theory of order

statistics ensures that

LN
0 = LηN

0

a.s.−−−−→
N→∞ Lη0 =L0.

Next, let us assume that the property is satisfied for p ≥ 0 and recall that FN
p is

the sigma-field generated by the random couples (Xi
p,Ui

p) for i = 1, . . . ,N . We
begin with the following decomposition:∣∣ηN

p+1(f )− ηp+1(f )
∣∣

(5.16)
≤ ∣∣ηN

p+1(f )−E
[
ηN

p+1(f )|FN
p

]∣∣+ ∣∣E[ηN
p+1(f )|FN

p

]− ηp+1(f )
∣∣.

Concerning the second term, (5.12) implies

E
[
ηN

p+1(f )|FN
p

]=�p+1
(
ηN

p

)
(f )= N

�Nα��p+1
(
ηN

p

)
(f ),

and by Proposition 6.2, the induction assumption and (5.8), we get

N

�Nα��p+1
(
ηN

p

)
(f )

a.s.−−−−→
N→∞

1

α
�p+1(ηp)(f )= ηp+1(f ).

Hence, the second term of (5.16) goes almost surely to 0. For the first term of
(5.16), recall that given FN

p , the random variables f (X1
p+1), . . . , f (XN

p+1) are

i.i.d. with mean E[ηN
p+1(f )|FN

p ]. Hence, for any ε > 0, Hoeffding’s inequality
gives

P
(∣∣ηN

p+1(f )−E
[
ηN

p+1(f )|FN
p

]∣∣ > ε|FN
p

)≤ 2 exp
{
− Nε2

2‖f ‖2

}
.(5.17)

Since this upper bound is deterministic, this amounts to saying that

P
(∣∣ηN

p+1(f )−E
[
ηN

p+1(f )|FN
p

]∣∣ > ε
)≤ 2 exp

{
− Nε2

2‖f ‖2

}
.

Consequently, the choice εN = N−1/4 and Borel–Cantelli lemma show that the
first term of (5.16) goes almost surely to 0 as well.
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It remains to show the convergence of LN
p+1 to Lp+1. To achieve this aim, let

us denote Fp+1 the following c.d.f.:

Fp+1(y)= P
(
S(X)≤ y|S(X)≥ Lp

)
.

In this respect, by definition, we have Fp+1(Lp+1)= 1− α. This being done, one
has just to mimic the reasoning of the proof of point (i) in Proposition 6.2 to obtain
the desired result.

To get the convergences in probability for functions f ∈ L2(η), the same argu-
ments apply to the second term of (5.16). About the first one, one may just replace
Hoeffding’s inequality with Chebyshev’s inequality in (5.17) to obtain

P
(∣∣ηN

p+1(f )−E
[
ηN

p+1(f )|FN
p

]∣∣ > ε|FN
p

)≤ σ 2
N

ε2 ,(5.18)

where

σ 2
N = E

[(
ηN

p+1(f )−E
[
ηN

p+1(f )|FN
p

])2|FN
p

]
.

Given FN
p , the random variables X1

p+1, . . . ,X
N
p+1 are i.i.d. with law �p+1(η

N
p ),

so

σ 2
N =

1

N

{
�p+1

(
ηN

p

)(
f 2)−�p+1

(
ηN

p

)
(f )2}.

Obviously, by (5.12), the induction assumption and Proposition 6.2,

Nσ 2
N ≤�p+1

(
ηN

p

)(
f 2)= N

�Nα��p+1
(
ηN

p

)(
f 2) P−−−−→

N→∞ ηp+1
(
f 2).

This proves that, for any ε > 0,

P
(∣∣ηN

p+1(f )−E
[
ηN

p+1(f )|FN
p

]∣∣ > ε|FN
p

) P−−−−→
N→∞ 0,

and Lebesgue’s dominated convergence ensures that

ηN
p+1(f )−E

[
ηN

p+1(f )|FN
p

] P−−−−→
N→∞ 0.

This completes the proof of Theorem 3.1.

5.3. Proof of Theorem 3.2. Let the symbols V(·) and V(·|GN
q ) denote respec-

tively the variance and the conditional variance operators. We start the analy-
sis with a decomposition which is equivalent to the one given, for example, on
page 216 of [13]. Specifically, for any p ≥ 0, we have the standard following tele-
scoping sum:

ηN
p − ηp =

p∑
q=0

αq−p{�q,p

(
ηN

q

)− α−1�q−1,p

(
ηN

q−1
)}

,
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with the conventions ηN−1 = η0 = η and �0 = αId . By (5.14), this implies that

(5.19)
[
ηN

p − ηp

]
(f )=MN

p +RN
p ,

where

MN
p =

p∑
q=0

αq−p{�q,p

(
ηN

q

)
(f )−E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]}

+
p∑

q=0

αq−p{εN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]

(5.20)

−E
[
εN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]|FN

q−1
]}

is a martingale that will be discussed below, and

RN
p =

p∑
q=0

αq−p
E
[
εN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]|FN

q−1
]

(5.21)

+
p∑

q=0

αq−p{(1− εN
q

)
E
[
�q,p

(
ηN

q

)
(f )|GN

q−1
]− α−1�q−1,p

(
ηN

q−1
)}

,

is a rest that will be negligible. We recall that ρN = �Nα�/N and that εN
q was

defined in equation (5.15) by

εN
q = 1− ρN

α
×�q

(
ηN

q−1
)
(GηN

q
).

The analysis of (5.19) is based on a series of technical results.

PROPOSITION 5.1. For any q ≤ p and any f ∈ B(Rd), we have

Nα2(q−p)
V
(
�q,p

(
ηN

q

)
(f )|GN

q−1
) a.s.−−−−→

N→∞ ηq

(
Qq,p(f )2)− α−1ηp(f )2.

PROPOSITION 5.2. For any q ≤ p and any f ∈ B(Rd), we have

E
[√

NεN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]|FN

q−1
] P−−−−→

N→∞ 0

and

V
[√

NεN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]|FN

q−1
] P−−−−→

N→∞
1− α

α
ηp(f )2.

PROPOSITION 5.3. Under Assumption [H], for any q ≤ p and any f ∈ B(Rd)

such that f = f × 1S(·)≥L�, we have
√

N
(
α
(
1− εN

q

)
E
[
�q,p

(
ηN

q

)
(f )|GN

q−1
]−�q−1,p

(
ηN

q−1
)
(f )

) P−−−−→
N→∞ 0.
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The proofs of these propositions are detailed in Section 6. Now we return to
the proof of Theorem 3.2 by considering the decomposition (5.19). By Proposi-
tions 5.2 and 5.3, we have that

√
NRN

p

P−−−−→
N→∞ 0.

By (5.10), (5.3) and (5.13), we may write MN
p =MN,1

p +MN,2
p with

MN,1
p =

p∑
q=0

αq−p(�q,p

(
ηN

q

)
(f )−E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
])

= �Nα�
N

p∑
q=0

αq−p(η̃N
q Q̃q,p,ηN

q
(f )−E

[
η̃N

q Q̃q,p,ηN
q
(f )|GN

q−1
])

= ρN

�Nα�
p∑

q=0

�Nα�∑
i=1

αq−p+1(Q̃q,p,ηN
q
(f )

(
X̃i

q

)−E
[
Q̃q,p,ηN

q
(f )

(
X̃i

q

)|GN
q−1

])
and

MN,2
p =

p∑
q=0

αq−p(εN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]

−E
[
εN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]|FN

q−1
])

.

Now, remember the role of the auxiliary variables (U1
q , . . . ,UN

q ) as mentioned
in Sections 2.3 and 5.1, and consider the filtration J = (Jj )0≤j≤(p+1)(�Nα�+1)−1
constructed as follows: for q ∈ {0, . . . , p},

J N
q(�Nα�+1) = GN

q−1

and for q ∈ {0, . . . , p} and i ∈ {1, . . . , �Nα�},
J N

q(�Nα�+1)+i = GN
q−1 ∨ σ

((
X̃1

q, Ũ
1
q

)
, . . . ,

(
X̃i

q, Ũ
i
q

))∨�N
q

with

�N
q = σ

((
Xj

q,Uj
q

)
, for the indices j such that S

(
X

j
q

)
< LN

q

)
.

In particular, note that

J N
q(�Nα�+1)+�Nα� = J N

(q+1)(�Nα�+1)−1 =FN
q .

Let us define the sequence of random variables (ZN
j )0≤j≤(p+1)(�Nα�+1)−1 where

the term of rank q(�Nα� + 1) is

ZN
q(�Nα�+1)

= αq−p{εN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]−E

[
εN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]|FN

q−1
]}

= αq−p{εN
q E

[
�q,p

(
ηN

q

)
(f )|J N

q(�Nα�+1)

]
−E

[
εN
q E

[
�q,p

(
ηN

q

)
(f )|J N

q(�Nα�+1)

]|J N
q(�Nα�+1)−1

]}
,
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while the term of rank q(�Nα� + 1)+ i, with 1≤ i ≤ �Nα�, is

ZN
q(�Nα�+1)+i

= ρN

�Nα�α
q−p+1

× {
Q̃q,p,ηN

q
(f )

(
X̃i

q

)−E
[
Q̃q,p,ηN

q
(f )

(
X̃i

q

)|J N
q(�Nα�+1)+i−1

]}
.

Using the fact that, given GN
q−1, the X̃i

q ’s, i ∈ {1, . . . , �Nα�} are i.i.d. random vec-
tors [see equation (5.1)], and that with similar arguments they are independent
of the subsample strictly below LN

q , it is clear that (ZN
j )0≤j≤(p+1)(�Nα�+1)−1 is

a triangular array of martingale increments adapted to the filtration J . It is then
straightforward to check that

MN
p =MN,1

p +MN,2
p =

(p+1)(�Nα�+1)−1∑
j=0

ZN
j ,

which is indeed a J -martingale.
Multiplying this large martingale by

√
N , we can use the CLT theorem for mar-

tingales (page 171 of [32]). The Lindeberg condition is obviously satisfied since
f is assumed bounded, and the limits of the conditional variances are specified by
Propositions 5.1 and 5.2. This terminates the proof of Theorem 3.2.

REMARK. This martingale decomposition may be found far from intuitive,
but it highlights the contributions to the global error of both the empirical quantile,
and the sample error. Moreover, it allows us to have a conditionally i.i.d. sample,
and to use well-known statistical properties of empirical quantiles.

5.4. Proof of Corollary 3.1. Concerning the proof of (i), we just notice that
√

N(Ê −E)=√N(Ê −E)1n̂=n +
√

N(Ê −E)1n̂ �=n.

Then, for any ε > 0, we have

P
(∣∣√N(Ê −E)1n̂ �=n

∣∣ > ε
)≤ P(n̂ �= n).

Now, recall that, by Theorem 3.1, LN
n−1 and LN

n converge almost surely to Ln−1
and Ln, which ensures that n̂ converges almost surely to n. As a consequence,

√
N(Ê −E)1n̂ �=n

P−−−−→
N→∞ 0.

Next, we have
√

N(Ê −E)1n̂=n = αn1n̂=n ×
√

N
(
ηN

n (f )− ηn(f )
)
.
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The first term on the right-hand side converges in probability to αn and, according
to Theorem 3.2, the second one converges in distribution to a Gaussian variable
with variance �(f ). Putting all pieces together, we have shown that

√
N(Ê −E)

D−−−−→
N→∞ N

(
0, α2n�(f )

)
.

Obviously, (ii) is a direct application of this result with f = 1S(·)≥L� . For (iii), we
have

√
N(Ĉ −C)=√N

(
ηN

n (f )

ηN
n (1S(·)≥L�)

− ηn(f )

ηn(1S(·)≥L�)

)

= ηn(1S(·)≥L�)

ηN
n (1S(·)≥L�)

×√N
(
ηN

n (g)− ηn(g)
)
,

where

g = 1S(·)≥L�

ηn(1S(·)≥L�)

(
f − ηn(f )

ηn(1S(·)≥L�)

)
.

Since f = f × 1S(·)≥L� , it is clear that ηn(g) = 0. Taking into account that
ηn(1S(·)≥L�)= r , we get

�(g)=
n∑

p=0

ηp

(
Qp,n(g)2) with g = 1S(·)≥L�

r

(
f − ηn(f )

r

)
.

Moreover, we know from Theorem 3.1 that

ηN
n (1S(·)≥L�)

ηn(1S(·)≥L�)

P−−−−→
N→∞ 1.

This completes the proof of Corollary 3.1.

6. Technical results. This section gathers some general results which are
used for establishing the proofs of Theorems 3.1 and 3.2.

6.1. Some regularity results. For μ an empirical or absolutely continuous
probability distribution (like in Section 5.1), and K a transition kernel, we de-
fine the transition kernel Mμ as the truncated version of K with respect to μ, that
is,

Mμ(x, dy)=Gμ(x)
(
K(x, dy)Gμ(y)+K(1−Gμ)(x)δx(dy)

)
+ (

1−Gμ(x)
)
δx(dy).

Our first result is quite general but will be of constant use in the other proofs.

PROPOSITION 6.1. Assume that ν(S−1({Lν})) = 0 and that |Lμ − Lν | ≤ δ,
then there exist two transition kernels Mδ,− and Mδ,+ such that:
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(i) Mδ,− ≤Mμ ≤Mδ,+,
(ii) for all f ∈L1(ν)∩L1(νK), limδ→0 |ν(Mδ,+ −Mδ,−)(f )| = 0.

Moreover, the same result holds if we replace respectively Mμ with Rμ =GμMμ,
as well as Mδ,− with Rδ,−, and Mδ,+ with Rδ,+.

Before proving this result, let us say something about the way we are going to
apply it. Typically, we will consider the case where ν = ηp and K =Kp+1. Since
ηp ≤ α−pη and recalling that Kp+1 is η invariant, it is clear that if f belongs to
L1(η), then f is in L1(ηp) ∩ L1(ηpKp+1) as well. Moreover, the absolute conti-
nuity of η ensures that ηp(S−1({Lηp}))= 0.

PROOF OF PROPOSITION 6.1. We will first prove the result for Mμ, the other
case is similar, just a bit simpler. We can decompose Mμ =M0 +M1 +M2 with⎧⎪⎪⎨⎪⎪⎩

M0(x, dy)=Gμ(x)Gμ(y)K(x, dy),

M1(x, dy)=Gμ(x)K(1−Gμ)(x)δx(dy),

M2(x, dy)= (
1−Gμ(x)

)
δx(dy).

By construction, GLν+δ ≤Gμ ≤GLν−δ . So we can take

Mδ,+ =M0,δ,+ +M1,δ,+ +M2,δ,+

with ⎧⎪⎪⎨⎪⎪⎩
M0,δ,+(x, dy)=GLμ−δ(x)GLμ−δ(y)K(x, dy),

M1,δ,+(x, dy)=GLμ−δ(x)K(1−GLμ+δ)(x)δx(dy),

M2,δ,+(x, dy)= (
1−GLμ+δ(x)

)
δx(dy)

and similarly, we can take Mδ,− =M0,δ,− +M1,δ,− +M2,δ,− with⎧⎪⎪⎨⎪⎪⎩
M0,δ,−(x, dy)=GLμ+δ(x)GLμ(y)+δ(y)K(x, dy),

M1,δ,−(x, dy)=GLμ+δ(x)K(1−GLμ−δ)(x)δx(dy),

M2,δ,−(x, dy)= (
1−GLμ−δ(x)

)
δx(dy).

Then (i) is obviously satisfied. For (ii), we clearly have for all x /∈ S−1({Lν}),(
Mδ,+ −Mδ,−)(f )(x)−−→

δ→0
0.

Moreover, a straightforward computation reveals that∣∣(Mδ,+ −Mδ,−)(f )
∣∣≤K

(|f |)+ 2|f |,
which belongs to L1(ν) by assumption on f . We conclude using Lebesgue’s dom-
inated convergence theorem. For the other case, we can apply the same reasoning,
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by noticing that Rμ =GμMμ =M0 +M1, so that one can take

Rδ,+ =M0,δ,+ +M1,δ,+ and Rδ,− =M0,δ,− +M1,δ,−. �

In the upcoming result, (νN) is a sequence of empirical probability measures on
R

d . We do not need to make further assumptions on its points for now. Moreover,
let ν be a fixed and absolutely continuous probability measure on R

d . Denote
respectively by L and LN the (1− α) quantiles of ν and νN with respect to the
mapping S as defined in Section 2.3, by A= {x ∈R

d : S(x)≥ L} and AN = {x ∈
R

d : S(x) ≥ LN } the associated level sets, and by G(x) = 1A(x) and GN(x) =
1AN

(x) the related potential functions. We will also assume that the probability
measure ν ◦ S−1 has a density, and that this density is continuous and strictly
positive at L.

Moreover, if K is a transition kernel on R
d , we denote respectively by M and

MN its truncated versions according to L and LN , meaning that

M
(
x, dx′

)= 1Ā(x)δx

(
dx′

)+ 1A(x)
(
K(x, Ā)δx

(
dx′

)+K
(
x, dx′

)
1A

(
x′
))

,

and MN accordingly. The action of the mapping � on ν and νN is then defined as
�(ν)= νGM and �(νN)= νNGNMN . The following result exhibits the continu-
ity of �.

PROPOSITION 6.2. With the previous notation, if for any f ∈ L1(ν) ∩
L1(νK), one has

νN(f )−−−−→
N→∞ ν(f ) a.s. (resp., in probability)

then:

(i) LN −−−−→
N→∞ L a.s. (resp., in probability).

(ii) �(νN)(f )−−−−→
N→∞ �(ν)(f ) a.s. (resp., in probability).

PROOF. We prove only the convergence a.s., the convergence in probability
will follow using a.s. convergence of subsequences.

To prove (i), let us fix ε > 0 and let us denote by F the c.d.f. of the abso-
lutely continuous probability measure ν ◦ S−1. By assumption on F , there exist
two strictly positive real numbers δ− and δ+ such that

F(L− ε)= 1− α− δ− and F(L+ ε)= 1− α+ δ+.

Applying the almost sure convergence of νN(f ) to ν(f ) respectively with f =
1S(·)≤L−ε and f = 1S(·)≤L+ε , we get that for N large enough,

νN(1S(·)≤L−ε)≤ 1− α− δ−

2
and νN(1S(·)≤L+ε)≥ 1− α+ δ+

2
.
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This ensures that, for N large enough, |LN −L| ≤ ε. Since ε is arbitrary, point (i)
is proved.

Now we prove (ii). From (i), for any δ > 0, for N larger than some random N0,
we have that |LνN

− Lν | ≤ δ and we are in a position to apply Proposition 6.1.
Moreover, the triangle inequality gives∣∣(�(νN)−�(ν)

)
(f )

∣∣= ∣∣(νNGNMN − νGM)(f )
∣∣

≤ ∣∣νN(GNMN −GM)(f )
∣∣+ ∣∣(νN − ν)

(
GM(f )

)∣∣,
where the second term can be made arbitrarily small by assumption. For the first
term, we have ∣∣νN(GM −GM)(f )

∣∣≤ νN

(
Rδ,+ −Rδ,−)(|f |),

which converges to |ν(Rδ,+−Rδ,−)(f )| by assumption. We conclude by choosing
δ such that the limit is arbitrarily small. �

Our next result will be used in the proof of Proposition 5.3.

COROLLARY 6.1. For any q ∈ {0, . . . , n− 1}, for all f ∈ L2(η),

η̃N
q (f )

P−−−−→
N→∞ ηq+1(f ),

and for all f ∈ B(Rd),

η̃N
q (f )

a.s.−−−−→
N→∞ ηq+1(f ).

PROOF. We only treat the case where f belongs to L2(η). By (5.3), we have

η̃N
q (f )=�G

ηN
q

(
ηN

q

)
(f )= N

�Nα�η
N
q (GηN

q
× f ).

Assume that the transition kernel Kq+1 is the identity, that is Kq+1(x, ·)= δx , then
by (5.9) and the definition of �q+1, we may write

η̃N
q (f )= N

�Nα��q+1
(
ηN

q

)
(f ).

From Theorem 3.1, we know that

ηN
q (f )

P−−−−→
N→∞ ηq(f ).

Thus, since

L2(η)⊂L1(ηq)=L1(ηq)∩L1(ηqKq+1).



3350 F. CÉROU AND A. GUYADER

Proposition 6.2 yields

η̃N
q (f )= N

�Nα��q+1
(
ηN

q

)
(f )

P−−−−→
N→∞

1

α
�q+1(ηq)(f )

= 1

α
ηq(Gq × f )= ηq+1(f ). �

The upcoming corollary is at the core of the proofs of Propositions 5.1 and 5.2.

COROLLARY 6.2. For any 1≤ q ≤ p < n, any f ∈ B(Rd), we have

�G
ηN
q

(
�q

(
ηN

q−1
))

(f )
a.s.−−−−→

N→∞ ηq+1(f ),

and for any β > 0,

�G
ηN
q

(
�q

(
ηN

q−1
)){([Q̃q,p,ηN

q
− Q̃q,p](f )

)β} a.s.−−−−→
N→∞ 0.

PROOF. By Theorem 3.1, we know that for all f ∈ B(Rd), we have

ηN
q−1(f )

a.s.−−−−→
N→∞ ηq−1(f ).

Hence, by Proposition 6.2, we deduce that for all f ∈ B(Rd),

�q

(
ηN

q−1
)
(f )

a.s.−−−−→
N→∞ �q(ηq−1)(f ).

Next, by (5.2), we may write

�G
ηN
q

(
�q

(
ηN

q−1
))

(f )=
�q(η

N
q−1)(GηN

q
f )

�q(η
N
q−1)(GηN

q
)

.

Still by Theorem 3.1, we know that

LηN
q
=LN

q

a.s.−−−−→
N→∞ Lq.

Thus, for any δ > 0, almost surely for N large enough, one has

GLq+δ ≤GηN
q
,Gq ≤GLq−δ

and the same reasoning as in the proof of Proposition 6.2 shows that for all f ∈
B(Rd),

�G
ηN
q

(
�q

(
ηN

q−1
))

(f )=
�q(η

N
q−1)(GηN

q
f )

�q(η
N
q−1)(GηN

q
)

a.s.−−−−→
N→∞

�q(ηq−1)(Gqf )

�q(ηq−1)(Gq)
= ηq+1(f ).

For the second point, first notice that

[Q̃q,p,ηN
q
− Q̃q,p](f )= [Mq+1,ηN

q
−Mq+1](Qq+1,p(f )

)
.
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Then, by the first point of Proposition 6.1, we deduce that almost surely for N

large enough∣∣[Mq+1,ηN
q
−Mq+1](Qq+1,p(f )

)∣∣≤ ∣∣[Mδ,+
q+1 −M

δ,−
q+1

](
Qq+1,p(f )

)∣∣.
Therefore, by the previous point,

lim sup
N→∞

∣∣�G
ηN
q

(
�q

(
ηN

q−1
)){([Q̃q,p,ηN

q
− Q̃q,p](f )

)β}∣∣
≤ ηq+1

(∣∣[Mδ,+
q+1 −M

δ,−
q+1

](
Qq+1,p(f )

)∣∣β).
Finally, the desired result is just a consequence of the second point of Proposi-
tion 6.1. �

Basically, the previous results focused on the continuity of the operator �. In
the remainder of this subsection, we go one step further as we are interested in
asymptotic expansions. We recall that

Ba
q =

{
g :Rd →R,∃(g0, . . . , gq−1) ∈ B

(
R

d)q, g = ka
1(g0) · · ·ka

q(gq−1)
}
,

and for g ∈ Ba
q , x ∈R

d and L ∈R, we denote

Hg,a
q (x,L)=

∫
S(x′)=L

ka
q+1

(
x, x′

)
g
(
x′
) d̄x′

|DS(x′)| .

Let us first generalize the notation of Assumption [Ha] to any probability mea-
sure ν. As before, we typically have in mind the case where ν = ηq is the restric-
tion of η above level Lq−1, in which case Assumption [Ha

ν ] will be equivalent to
Assumption [Ha]. If we consider the kernel Kq instead of ka

q , we will have exactly
the same results, as it is a special case for which a(x, x′) is constant equal to 1.

ASSUMPTION [Ha
ν ]. (i) For any q ≥ 0, the mapping x �→ H 1,a

q (x,Lq) be-
longs to L2(ν), that is,∫

ν(dx)

(∫
S(x′)=Lq

ka
q+1

(
x, x′

) d̄x′

|DS(x′)|
)2

<∞,

and ν(H 1,a
q (·,Lq)) > 0.

(ii) For any q > 0, for any g ∈ Ba
q , there exists h ∈ L2(ν) such that for any

ε > 0, there exists δ > 0 such that for any L ∈ [Lq − δ,Lq + δ] and for almost
every x ∈R

d , ∣∣Hg,a
q (x,L)−Hg,a

q (x,Lq)
∣∣≤ εh(x).

The following result will be of constant use in the proof of Proposition 5.3.
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LEMMA 6.1. Assume that for any f ∈ L2(ν), one has

νN(f )
P−−−−→

N→∞ ν(f ).

Then, for any g ∈ Ba
q and any ϕ ∈ B(Rd), under Assumption [Ha

ν ], one has

νN

(
ϕ

∫ LN
q

Lq

Hg,a
q (·,L)dL

)
= (

LN
q −Lq

)
ν
(
ϕHg,a

q (·,Lq)
)+ op

(
LN

q −Lq

)
.

PROOF. We first choose ε > 0. By point (ii) of Assumption [Ha
ν ], the mapping

L �→H
g
q (x,L) is continuous in the neighborhood of Lq for ν almost every x. We

consider N large enough such that LN
q ∈ (Lq − δ,Lq + δ) with arbitrarily large

probability, say 1− γ . Hence, by the mean value theorem, there exists L̃ between
Lq and LN

q such that∫ LN
q

Lq

Hg,a
q (x,L)dL= (

LN
q −Lq

)×Hg,a
q (x, L̃).

As a consequence,

1

LN
q −Lq

νN

(
ϕ

∫ LN
q

Lq

Hg,a
q (·,L)dL

)
= νN

(
ϕHg,a

q (·,Lq)
)+ νN

(
ϕ
(
Hg,a

q (·, L̃)−Hg,a
q (·,Lq)

))
.

Since ϕ and g are both bounded, point (i) of Assumption [Ha
ν ] ensures that the

function ϕH
g,a
q (·,Lq) is in L2(ν), so that by the hypothesis of Lemma 6.1,

νN

(
ϕHg,a

q (·,Lq)
) P−−−−→

N→∞ ν
(
ϕHg,a

q (·,Lq)
)
.

Furthermore, by point (ii) of Assumption [Ha
ν ], we have∣∣νN

(
ϕ
(
Hg,a

q (·, L̃)−Hg,a
q (·,Lq)

))∣∣≤ (‖ϕ‖ × νN(h)
)× ε,

where, since h belongs to L2(ν),

νN(h)
P−−−−→

N→∞ ν(h) <∞.

Since ε and γ are arbitrary, the proof is complete. �

6.2. Proof of Proposition 5.1. Our goal is to prove that, for any q ≤ p and any
f ∈ B(Rd), we have

Nα2(q−p)
V
(
�q,p

(
ηN

q

)
(f )|GN

q−1
) a.s.−−−−→

N→∞ ηq

(
Qq,p(f )2)− α−1ηp(f )2.



FLUCTUATION ANALYSIS OF ADAPTIVE MULTILEVEL SPLITTING 3353

By (5.10), we have

�q,p

(
ηN

q

)= �Nα�
N

η̃N
q Q̃q,p,ηN

q

with the measure η̃N
q defined in (5.3). This shows that

Nα2(q−p)
V
(
�q,p

(
ηN

q

)
(f )|GN

q−1
)

=
(�Nα�

N

)2
Nα2(q−p)

V
(
η̃N

q Q̃q,p,ηN
q
(f )|GN

q−1
)

(6.1)

= α2(q−p) �Nα�
N

V
(
Q̃q,p,ηN

q
(f )

(
X̃1

q

)|GN
q−1

)
.

On the other hand, we have, thanks to (5.1),

V
([Q̃q,p,ηN

q
− Q̃q,p](f )

(
X̃1

q

)|GN
q−1

)
=�G

ηN
q

(
�q

(
ηN

q−1
)){([Q̃q,p,ηN

q
− Q̃q,p](f )

)2}
− (

�G
ηN
q

(
�q

(
ηN

q−1
))([Q̃q,p,ηN

q
− Q̃q,p](f )

))2
.

By the second point of Corollary 6.2, we deduce that

V
([Q̃q,p,ηN

q
− Q̃q,p](f )

(
X̃1

q

)|GN
q−1

) a.s.−−−−→
N→∞ 0.

In other words, coming back to (6.1) and applying the first point of Corollary 6.2,
we have obtained

Nα2(q−p)
V
(
�q,p

(
ηN

q

)
(f )|GN

q−1
)

a.s.−−−−→
N→∞ α2(q−p)+1{ηq+1

([
Mq+1Qq+1,p(f )

]2)
− (

ηq+1Mq+1Qq+1,p(f )
)2}

.

Using elementary computations, it is easy to check that

α2(q−p)+1{ηq+1
([

Mq+1Qq+1,p(f )
]2)− (

ηq+1Qq+1,p(f )
)2}

= ηq

(
Qq,p(f )2)− α−1ηp(f )2,

which completes the proof of Proposition 5.1.

6.3. Proof of Proposition 5.2. We intend to show that, for any q ≤ p and any
f ∈ B(Rd), we have

E
[√

Nαq−pεN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]|FN

q−1
] P−−−−→

N→∞ 0
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and

V
[√

Nαq−pεN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]|FN

q−1
] P−−−−→

N→∞
1− α

α
ηp(f )2.

The proof is carried out given FN
q−1. We begin like in the proof of Proposition 5.1.

From (5.11) and the definition of ρN , recall that

E
[
�q,p

(
ηN

q

)
(f )|GN

q−1
]= αρN�G

ηN
q

(
�q

(
ηN

q−1
))(

Q̃q,p,ηN
q
(f )

)
.

Hence, the quantity of interest in Proposition 5.2 may be rewritten as follows:
√

Nαq−pεN
q E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]

= [√
NαεN

q

]
ρNαq−p�G

ηN
q

(
�q

(
ηN

q−1
))(

Q̃q,p,ηN
q
(f )

)
.

We are going to prove first that

ρN�G
ηN
q

(
�q

(
ηN

q−1
))(

Q̃q,p,ηN
q
(f )

) a.s.−−−−→
N→∞ αp−q−1ηp(f ).

Because |ρN − 1| ≤ 1/(Nα), the factor ρN is unimportant. As in the proof of
Proposition 5.1, we consider the decomposition

�G
ηN
q

(
�q

(
ηN

q−1
))(

Q̃q,p,ηN
q
(f )

)
=�G

ηN
q

(
�q

(
ηN

q−1
))(

Q̃q,p,ηN
q
(f )− Q̃q,p(f )

)+�G
ηN
q

(
�q

(
ηN

q−1
))(

Q̃q,p(f )
)
.

The second point of Corollary 6.2 implies that∣∣�G
ηN
q

(
�q

(
ηN

q−1
))([Q̃q,p,ηN

q
− Q̃q,p](f )

)∣∣ a.s.−−−−→
N→∞ 0,

while the first point of Corollary 6.2 ensures that

�G
ηN
q

(
�q

(
ηN

q−1
))(

Q̃q,p(f )
) a.s.−−−−→

N→∞ ηq+1
(
Q̃q,p(f )

)= αp−q−1ηp(f ).

As f is bounded, by Lebesgue’s dominated convergence theorem, the above con-
vergence also holds in L2.

Now we prove the first assertion of Proposition 5.2. Let us denote for a moment

ZN = ρN�G
ηN
q

(
�q

(
ηN

q−1
))(

Q̃q,p,ηN
q
(f )

)
and by z= αp−q−1ηp(f ) its deterministic limit. We have just shown that ZN − z

converges to 0 in L2. This implies that

E
[
(ZN − z)2|FN

q−1
] P−−−−→

N→∞ 0.

By very similar arguments, we can also see that

E
[(

Z2
N − z2)2|FN

q−1
] P−−−−→

N→∞ 0.
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We have√
NE

[
εN
q ZN |FN

q−1
]=√NE

[
εN
q (ZN − z)|FN

q−1
]+√NzE

[
εN
q |FN

q−1
]
.

Since |ρN − 1| ≤ 1/(Nα), we have

εN
q =

1

α

(
α −�q

(
ηN

q−1
)
(GηN

q
)
)+ o(1/

√
N),

and the convergence of the second term is a direct consequence of the first result
of Lemma 6.2 below. For the first term, we apply the Cauchy–Schwarz inequality∣∣√NE

[
εN
q (ZN − z)|FN

q−1
]∣∣

≤
√

NE
[(

εN
q

)2|FN
q−1

]√
E
[
(ZN − z)2|FN

q−1

]
,

which converges in probability to 0 by the second result of Lemma 6.2, and the L2

convergence of ZN − z.
For the second assertion of Proposition 5.2, we write

NE
[(

εN
q ZN

)2|FN
q−1

]
=NE

[(
εN
q

)2(
Z2

N − z2)|FN
q−1

]+Nz2
E
[(

εN
q

)2|FN
q−1

]
.

The convergence of the second term is a direct consequence of the second result
of Lemma 6.2. For the first term, we use Cauchy–Schwarz again

NE
[(

εN
q

)2(
Z2

N − z2)|FN
q−1

]
≤

√
N2E

[(
εN
q

)4|FN
q−1

]√
E
[(

Z2
N − z2

)2|FN
q−1

]
and we conclude similarly using the third result of Lemma 6.2.

LEMMA 6.2. For any integer q , we have
√

NE
[
�q

(
ηN

q−1
)
(GηN

q
)− α|FN

q−1
] P−−−−→

N→∞ 0,

NE
[(

�q

(
ηN

q−1
)
(GηN

q
)− α

)2|FN
q−1

] P−−−−→
N→∞ α(1− α)

and

N2
E
[(

�q

(
ηN

q−1
)
(GηN

q
)− α

)4|FN
q−1

]=Op(1).

PROOF. Here again, the reasoning is made given FN
q−1. Recall that (Xi

q)1≤i≤N

is an i.i.d. sample with common law �q(ηN
q−1). Accordingly, let us denote

(Y i
q)1≤i≤N = (S(Xi

q))1≤i≤N . Also, for any real number L, define the function

FN(L)= 1−�q

(
ηN

q−1
)
(GL),
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which is more or less a cumulative distribution function. The function FN is con-
tinuous except at a finite number of values, namely at most the �αN� largest values
among the Y i

q−1’s.

Starting from the sample (Y i
q)1≤i≤N , we also construct a new sample U =

(Ui
q)1≤i≤N as follows. If Y i

q is a point of continuity of FN , then Ui
q = FN(Y i

q),

otherwise we draw Ui
k uniformly in the interval(

FN

(
Y i

q

)
, lim
h→0+

FN

(
Y i

q + h
))

.

It is then a simple exercise (see, e.g., [36], page 102) to check that U =
(U1

q , . . . ,UN
q ) is an i.i.d. sample with distribution U(0,1). Denoting

UN
1−α :=UN

(
kN
N

)
=UN

(
�(1−α)N�

N
)
,

we may write

�q

(
ηN

q−1
)
(GηN

q
)− α

= (
UN

1−α −
(
1−�q

(
ηN

q−1
)
(GηN

q
)
))+ (

(1− α)−UN
1−α

)
(6.2)

= (
UN

1−α − FN

(
LN

q

))+ (
(1− α)−UN

1−α

)
.

The first term can easily be bounded in absolute value thanks to the following
lemma, the proof of which is detailed in Section 6.7.

LEMMA 6.3. For any integer q and any � ∈ {1,2,4}, we have

N�/2
E
[(

UN
1−α − FN

(
LN

q

))�|FN
q−1

] P−−−−→
N→∞ 0.

For the second term in (6.2), we have

(1− α)−UN
1−α =

(
(1− α)− kN

N

)
+

(
kN

N
−UN

(
kN
N

)

)
.(6.3)

The first term is deterministic and goes to 0. For the second term, it is well known
that (see, e.g., [36], page 97)

UN

(
kN
N

)
∼ Beta(kN,N − kN + 1).

Therefore,

E
[
UN

(
kN
N

)
|FN

q−1
]= kN

N
and V

(
UN

(
kN
N

)
|FN

q−1
)= kN(N − kN + 1)

(N + 1)2(N + 2)
,

so that

N ×V
(
UN

(
kN
N

)
|FN

q−1
)=N × kN(N − kN + 1)

(N + 1)2(N + 2)
−−−−→
N→∞ α(1− α).
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We also have

N2 ×E

[(
UN

(
kN
N

)
− kN

N

)4∣∣∣FN
q−1

]

=N2 × 3kN(N − kN + 1)(2(N + 1)2 + kN(N − kN + 1)(N − 5))

(N + 1)4(N + 2)(N + 3)(N + 4)
,

which is obviously bounded.
Let us prove the first assertion of Lemma 6.2. From (6.2) and (6.3), we deduce

√
NE

[
�q

(
ηN

q−1
)
(GηN

q
)− α|FN

q−1
]

=√NE
[
UN

1−α − FN

(
LN

q

)|FN
q−1

]+√N

(
(1− α)− kN

N

)
.

The first term goes to 0 in probability thanks to Lemma 6.3, the second one is
deterministic and goes to 0 since |(1− α)− kN/N | ≤ 1/N .

For the second assertion of Lemma 6.2, relation (6.2) gives

NE
[(

�q

(
ηN

q−1
)
(GηN

q
)− α

)2|FN
q−1

]
=NE

[(
UN

1−α − FN

(
LN

q

))2|FN
q−1

]+NE
[(

(1− α)−UN
1−α

)2|FN
q−1

]
(6.4)

+NE
[(

UN
1−α − FN

(
LN

q

))(
(1− α)−UN

1−α

)|FN
q−1

]
.

Here again, the first term goes to 0 in probability thanks to Lemma 6.3. For the
second one, just notice that

E
[(

(1− α)−UN
1−α

)2|FN
q−1

]=V
(
UN

(
kN
N

)
|FN

q−1
)+ (

(1− α)− kN

N

)2
,

which implies that

NE
[(

(1− α)−UN
1−α

)2|FN
q−1

]−−−−→
N→∞ α(1− α).

Finally, Cauchy–Schwarz shows that the last term in (6.4) goes to 0 in probability,
and the second assertion of Lemma 6.2 is established.

Concerning the third assertion of Lemma 6.2, it suffices to remark that

N2
E
[(

�q

(
ηN

q−1
)
(GηN

q
)− α

)4|FN
q−1

]
≤ 4N2

E
[(

UN
1−α − FN

(
LN

q

))4|FN
q−1

]
+ 4N2

E
[(

(1− α)−UN
1−α

)4|FN
q−1

]
.

Then Lemma 6.3 and the fourth moment of the Beta distribution of interest en-
sure that this quantity is bounded in probability. This completes the proof of
Lemma 6.2. �
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6.4. Proof of Proposition 5.3. We have to show that, under Assumption [H],
for any q ≤ p and any f ∈ B(Rd) such that f = f × 1S(·)≥L� ,

√
N
(
α
(
1− εN

q

)
E
[
�q,p

(
ηN

q

)
(f )|GN

q−1
]−�q−1,p

(
ηN

q−1
)
(f )

) P−−−−→
N→∞ 0.

It turns out that the proof is quite technical and requires several auxiliary results
whose proofs are postponed to the end of the present section. Here again, the rea-
soning is carried out given FN

q−1. By (5.7), (5.9) and the definition of ρN , we have

�q−1,p

(
ηN

q−1
)
(f )= ηN

q−1(GηN
q−1

)�q

(
ηN

q−1
)
Qq,p(f )

= αρN�q

(
ηN

q−1
)
Qq,p(f )

and by (5.15) and (5.11),

α
(
1− εN

q

)
E
[
�q,p

(
ηN

q

)
(f )|GN

q−1
]

= ρN�q

(
ηN

q−1
)
(GηN

q
)E

[
�q,p

(
ηN

q

)
(f )|GN

q−1
]

= αρ2
N�q

(
ηN

q−1
)
(GηN

q
)�G

ηN
q

(
�q

(
ηN

q−1
))

Q̃q,p,ηN
q
(f )

= αρ2
N�q

(
ηN

q−1
)(

Qq,p,ηN
q
(f )

)
.

Since f is bounded and ρN − 1=O(N−1), this implies that

α
(
1− εN

q

)
E
[
�q,p

(
ηN

q

)
(f )|GN

q−1
]−�q−1,p

(
ηN

q−1
)
(f )

= αρN�q

(
ηN

q−1
)([Qq,p,ηN

q
−Qq,p](f )

)+O
(
N−1).

Thus, introducing the probability measure νN
q =�q(ηN

q−1) and the bounded func-
tion ϕ =Qq+1,p(f ), our objective is to show that

√
NνN

q

([Qq+1,ηN
q
−Qq+1](ϕ)

) P−−−−→
N→∞ 0.

Before going further, let us recall that if G= 1S(·)≥L is a potential function, K a
transition kernel and M its truncated version defined by

M(x,dy)=K(x,dy)G(y)+K(1−G)(x)δx(dy),

then for any finite measure μ and any bounded and measurable function ϕ, we
have the following general formula:

μ
(
GM(ϕ)

)= ∫∫
μ(dy)G(y)K(y, x)G(x)ϕ(x) dx

+
∫∫

μ(dx)G(x)K(x, y)
(
1−G(y)

)
ϕ(x)dy(6.5)

= μ
(
G×K[Gϕ])+μ

(
K[1−G] × (Gϕ)

)
.
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Thus, we get

νN
q

([Qq+1,ηN
q
−Qq+1](ϕ)

)
= νN

q

(
GηN

q
Kq+1[GηN

q
ϕ])− νN

q

(
GqKq+1[Gqϕ])(6.6)

+ νN
q

(
Kq+1[1−GηN

q
](GηN

q
ϕ)

)− νN
q

(
Kq+1[1−Gq](Gqϕ)

)
.

We may simplify a bit the latter by noticing that

ϕ =Qq+1,p(f )=Gq+1 × Q̃q+1,p(f )=Gηq+1 × Q̃q+1,p(f ).

Indeed, we know from Theorem 3.1 that

LηN
q

a.s.−−−−→
N→∞ Lηq =Lq < Lq+1 = Lηq+1 .

Therefore, almost surely for N > N0, we have GηN
q
ϕ = Gqϕ = ϕ, and (6.6) re-

duces to

νN
q

([Qq+1,ηN
q
−Qq+1](ϕ)

)
(6.7)

= νN
q

(
(GηN

q
−Gq)Kq+1[ϕ])− νN

q

(
Kq+1[GηN

q
−Gq]ϕ).

In the remainder of the proof, we will only treat the more difficult case where
the kernels Kp are obtained by the Metropolis–Hastings procedure (see Sec-
tion 2.4) and we will suppose that Assumption [Ha] is satisfied. According to
equation (2.11), we have

Kp[ϕ](x)= ka
p[ϕ](x)+ ra

p(x)× ϕ(x).

In this expression, recall that ka
p has density

ka
p

(
x, x′

)= ap

(
x, x′

)
kp

(
x, x′

)
.

All the upcoming arguments remain valid in the easier case where Kp itself has a
density since it suffices to take a = 1, so that ra

p = 0 and Kp = kp .
In the Metropolis–Hastings situation, combining (6.7) and (2.11), we are led to

νN
q

([Qq+1,ηN
q
−Qq+1](ϕ)

)
= νN

q

(
(GηN

q
−Gq)ka

q+1[ϕ]
)− νN

q

(
ka

q+1[GηN
q
−Gq]ϕ)(6.8)

=AN
q −BN

q .

Thanks to the co-area formula, BN
q rewrites

BN
q =

∫
νN
q

(
dx′

)
ϕ
(
x′
) ∫ LN

q

Lq

(∫
S(x)=�

ka
q+1

(
x′, x

) d̄x

|DS(x)|
)

d�

= νN
q

(
ϕ

∫ LN
q

Lq

H 1,a
q (·, �) d�

)
.
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Next, since

νN
q =�q

(
ηN

q−1
)= N

�Nα��q

(
ηN

q−1
)
.

we deduce from Assumption [Ha], Theorem 3.1, Proposition 6.2 and Lemma 6.1
that

BN
q =

(
LN

q −Lq

)× ηq

(
ϕH 1,a

q (·,Lq)
)+ op

(
LN

q −Lq

)
= (

LN
q −Lq

) ∫∫
S(x)=Lq

ηq

(
dx′

)
ϕ
(
x′
)
ka

q+1
(
x′, x

) d̄x

|DS(x)|
+ op

(
LN

q −Lq

)
.

Concerning AN
q , coming back to (6.8) and decomposing νN

q in absolutely contin-
uous and discrete parts, we may write

AN
q = νN,(0)

q

(
(GηN

q
−Gq)ka

q+1[ϕ]
)+ νN,(1)

q

(
(GηN

q
−Gq)ka

q+1[ϕ]
)

=AN,(0)
q +AN,(1)

q ,

where

(6.9) νN,(0)
q (dx)= 1

�Nα�
�Nα�∑
i=1

ka
q

(
X̃i

q−1, dx
)
GηN

q−1
(x)

and

(6.10) νN,(1)
q (dx)= 1

�Nα�
�Nα�∑
i=1

(
ka

q[1−GηN
q−1
](X̃i

q−1
)+ ra

q

(
X̃i

q−1
))

δX̃i
q−1

(dx).

As previously, since almost surely for N > N0,

GηN
q−1

(x)
(
GηN

q
(x)−Gq(x)

)=GηN
q
(x)−Gq(x),

we get

AN,(0)
q =

∫ 1

�Nα�
�Nα�∑
i=1

ka
q

(
X̃i

q−1, dx
)(

ka
q+1[ϕ]GηN

q−1
(GηN

q
−Gq)

)
(x)

=
∫ 1

�Nα�
�Nα�∑
i=1

ka
q

(
X̃i

q−1, dx
)(

ka
q+1[ϕ](GηN

q
−Gq)

)
(x)(6.11)

= η̃N
q−1

(∫ LN
q

Lq

H
ka

q+1[ϕ],a
q (·, �) d�

)
,
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the last equation consisting in the application of the co-area formula. Then As-
sumption [H], Corollary 6.1 and Lemma 6.1 yield

AN,(0)
q = (

LN
q −Lq

) ∫∫
S(x)=Lq

ηq

(
dx′

)
ka

q

(
x′, x

)
ka

q+1[ϕ](x)
d̄x

|DS(x)|
+ op

(
LN

q −Lq

)
.

Using equation (2.10), it is clear that for any pair (x, x′),

ηq

(
dx′

)
ka

q

(
x′, x

)
1S(x)≥Lq−1 = α−qη

(
x′
)
1S(x′)≥Lq−1 dx′ka

q

(
x′, x

)
1S(x)≥Lq−1

= α−qη(x)1S(x)≥Lq−1ka
q

(
x, dx′

)
1S(x′)≥Lq−1 .

Accordingly, denoting wq−1 = ka
q[1−Gq−1], this leads to

AN,(0)
q = (

LN
q −Lq

) ∫
S(x)=Lq

(
1− ra

q(x)−wq−1(x)
)
α−qη(x)

× ka
q+1[ϕ](x)

d̄x

|DS(x)|(6.12)

+ op

(
LN

q −Lq

)
.

By applying again (2.10), and taking into account that ϕ(x′)1S(x′)≥Lq−1 = ϕ(x′),
we have

α−qη(x)ka
q+1[ϕ](x)=

∫
ηq

(
dx′

)
ka

q+1
(
x′, x

)
ϕ
(
x′
)
,

and finally

AN,(0)
q = (

LN
q −Lq

) ∫∫
S(x)=Lq

ηq

(
dx′

)
ϕ
(
x′
)

× ka
q+1

(
x′, x

)(
1− ra

q(x)−wq−1(x)
) d̄x

|DS(x)|
+ op

(
LN

q −Lq

)
.

Next, we come back to A
N,(1)
q , defined as

AN,(1)
q = 1

�Nα�
�Nα�∑
i=1

((
ka

q[1−GηN
q−1
] + ra

q

)(
ka

q+1[ϕ](GηN
q
−Gq)

))(
X̃i

q−1
)

(6.13)
= η̃N

q−1
((

ka
q[1−GηN

q−1
] + ra

q

)
ka

q+1[ϕ](GηN
q
−Gq)

)
.

Then, if we denote

wN
q−1(x)= ka

q[1−GηN
q−1
](x)= 1− ra

q(x)− ka
q[GηN

q−1
](x),
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we have

AN,(1)
q = η̃N

q−1
((

wN
q−1 + ra

q

)
ka

q+1[ϕ](GηN
q
−Gq)

)
.

At this step, it is quite natural to consider the deterministic functions wδ−
q−1 ≤wδ+

q−1
defined by

wδ±
q−1(x)= ka

q[1−GLq−1±δ](x)= ka
q[1−GLq−1±δ](x).

Accordingly, let us also introduce the random variable

(6.14) ÂN,(1)
q = η̃N

q−1
((

wq−1 + ra
q

)
ka

q+1[ϕ](GηN
q
−Gq)

)
.

In what follows, we assume that f is nonnegative, otherwise we decompose f =
f+ − f− and the same reasoning applies to both parts. If f ≥ 0, then the same
is true for ϕ = Qq+1,p(f ) and we have 0 ≤ ka

q+1[ϕ] ≤ 1. Besides, we remark

that the sign of wN
q−1(x) − wq−1(x) is independent of x, which is also true for

GηN
q
(x)−Gq(x). As a consequence, since LN

q−1 tends almost surely to Lq−1, we
have that, almost surely for N > N0,∣∣AN,(1)

q − ÂN,(1)
q

∣∣≤ ∣∣�N
q−1

∣∣,
where

�N
q−1 = η̃N

q−1
((

wδ+
q−1 −wδ−

q−1
)
(GηN

q
−Gq)

)
.

We will first focus our attention on �N
q−1 and then exhibit the limit of Â

N,(1)
q .

Concerning �N
q−1, we may reformulate it as

�N
q−1 =

N

�Nα�η
N
q−1

((
wδ+

q−1 −wδ−
q−1

)
(GηN

q
−Gq)

)
,

and Corollary 6.3 implies that

(6.15) �N
q−1 =

1

α
νN
q−1

((
wδ+

q−1 −wδ−
q−1

)
(GηN

q
−Gq)

)+ op(1/
√

N).

As before, given FN
q−2, we split

νN
q−1 =�q−1

(
ηN

q−2
)= ν

N,(0)
q−1 + ν

N,(1)
q−1

in absolutely continuous and discrete parts; see equations (6.9) and (6.10) with
(q − 1) instead of q , ka

q−1 instead of ka
q and ra

q−1 instead of ra
q , leading to

�N
q−1 =

1

α

(
�

N,(0)
q−1 +�

N,(1)
q−1

)+ op(1/
√

N),

where

�
N,(0)
q−1 =

∫ 1

�Nα�
�Nα�∑
i=1

ka
q−1

(
X̃i

q−2, dx
)((

wδ+
q−1 −wδ−

q−1
)
(GηN

q
−Gq)

)
(x)
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and

�
N,(1)
q−1 = 1

�Nα�
�Nα�∑
i=1

((
wN

q−2 + ra
q−1

)(
wδ+

q−1 −wδ−
q−1

)
(GηN

q
−Gq)

)(
X̃i

q−2
)
.

Clearly, �N,(0)
q−1 shares some resemblance with A

N,(0)
q as given in (6.11). Therefore,

mutatis mutandis, we get an equivalent expression as (6.12), namely

�
N,(0)
q−1 = (

LN
q −Lq

) ∫
S(x)=Lq

ηq−1(x)
((

wδ+
q−1 −wδ−

q−1
)

× (
1− ra

q−1 −wq−2
))

(x)
d̄x

|DS(x)|
+ op

(
LN

q −Lq

)
.

Since 0≤ 1− ra
q−1 −wq−2 = ka

q−1[Gq−2] ≤ 1, we deduce in particular that

∣∣�N,(0)
q−1

∣∣≤ ∣∣LN
q −Lq

∣∣ ∫
S(x)=Lq

ηq−1(x)
(
wδ+

q−1 −wδ−
q−1

)
(x)

d̄x

|DS(x)|
(6.16)

+ op

(
LN

q −Lq

)
.

Regarding �
N,(1)
q−1 , since 0≤wN

q−2 ≤ 1, we get |�N,(1)
q−1 | ≤ |�N

q−2|, with

�N
q−2 =

1

�Nα�
�Nα�∑
i=1

((
wδ+

q−1 −wδ−
q−1

)
(GηN

q
−Gq)

)(
X̃i

q−2
)
.

Putting all pieces together yields

∣∣AN,(1)
q − ÂN,(1)

q

∣∣≤ 1

α

(∣∣�N,(0)
q−1

∣∣+ ∣∣�N
q−2

∣∣)+ op(1/
√

N),

and finally∣∣AN,(1)
q − ÂN,(1)

q

∣∣≤ α−1∣∣�N,(0)
q−1

∣∣+ · · ·+α1−q
∣∣�N,(0)

1

∣∣+α1−q
∣∣�N

0

∣∣+ op(1/
√

N).

By (6.16), for every k ∈ {1, . . . , q − 1}, we have the upper bound

∣∣�N,(0)
k

∣∣≤∣∣LN
q −Lq

∣∣ ∫
S(x)=Lq

ηk(x)
(
wδ+

q−1 −wδ−
q−1

)
(x)

d̄x

|DS(x)|
+ op

(
LN

q −Lq

)
,

and, by (6.15), we have

�N
0 =

1

α
νN

0
((

wδ+
q−1 −wδ−

q−1
)
(GηN

q
−Gq)

)+ op(1/
√

N).
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Since νN
0 = η0 = η, the co-area formula yields

∣∣�N
0

∣∣≤ 1

α

∣∣LN
q −Lq

∣∣ ∫
S(x)=Lq

η0(x)
(
wδ+

q−1 −wδ−
q−1

)
(x)

d̄x

|DS(x)|
+ op

(
LN

q −Lq

)+ op(1/
√

N).

Lebesgue’s dominated convergence theorem ensures that∫
S(x)=Lq

ηk(x)
(
wδ+

q−1 −wδ−
q−1

)
(x)

d̄x

|DS(x)| −−→δ→0
0,

and Lemma 6.3 says that LN
q −Lq =Op(1/

√
N), so we conclude that

AN,(1)
q − ÂN,(1)

q = op(1/
√

N).

Now we turn to the estimation of Â
N,(1)
q as defined in (6.14). The analysis is

roughly the same as for �N
q−1 except that we have to be a bit more precise since this

time we want an estimate and not an upper bound. However, we can reformulate it
as

ÂN,(1)
q = N

�Nα�η
N
q−1

((
ra
q +wq−1

)
ka

q+1[ϕ](GηN
q
−Gq)

)
,

and Corollary 6.3 implies that

ÂN,(1)
q = 1

α
νN
q−1

((
ra
q +wq−1

)
ka

q+1[ϕ](GηN
q
−Gq)

)+ op(1/
√

N).

Again, given FN
q−2, we split νN

q−1 = ν
N,(0)
q−1 + ν

N,(1)
q−1 into its absolutely continuous

and discrete parts to get

ÂN,(1)
q = 1

α

(
A

N,(0)
q−1 +A

N,(1)
q−1

)+ op(1/
√

N),

where, as in (6.11) and (6.13),

A
N,(0)
q−1 =

∫ 1

�Nα�
�Nα�∑
i=1

ka
q−1

(
X̃i

q−2, dx
)((

ra
q +wq−1

)
ka

q+1[ϕ](GηN
q
−Gq)

)
(x)

and

A
N,(1)
q−1 = 1

�Nα�
�Nα�∑
i=1

(
ka

q−1(1−GηN
q−2

)+ ra
q−1

)((
ra
q +wq−1

)
× ka

q+1[ϕ](GηN
q
−Gq)

)(
X̃i

q−2
)
.
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By the same arguments as above, under Assumption [Ha], it is readily seen that

A
N,(0)
q−1 = (

LN
q −Lq

)
×

∫∫
S(x)=Lq

ηq−1
(
dx′

)
ϕ
(
x′
)
ka

q+1
(
x′, x

)((
ra
q +wq−1

)
× (

1− ra
q−1 −wq−2

))
(x)

d̄x

|DS(x)|
+ op

(
LN

q −Lq

)
.

Moreover, by the same machinery as for the majorization of �N
q−1, we get

A
N,(1)
q−1 − Â

N,(1)
q−1 = op(1/

√
N).

Consequently, we have

AN
q =AN,(0)

q + 1

α
A

N,(0)
q−1 + 1

α
Â

N,(1)
q−1 + op(1/

√
N).

At this point, it remains to notice that

ηq

(
dx′

)
ϕ
(
x′
)= 1

α
ηq−1

(
dx′

)
ϕ
(
x′
)
,

which implies that

AN,(0)
q + 1

α
A

N,(0)
q−1 = (

LN
q −Lq

)
×

∫∫
S(x)=Lq

ηq

(
dx′

)
ka

q+1
(
x′, x

)
× ((

1− ra
q −wq−1

)(
ra
q−1 +wq−2

))
(x)

d̄x

|DS(x)|
+ op

(
LN

q −Lq

)
,

and a straightforward recursion gives

AN
q =

(
LN

q −Lq

)
×

∫∫
S(x)=Lq

ηq

(
dx′

)
ϕ
(
x′
)
ka

q+1
(
x′, x

)((
1− ra

q −wq−1
)

× (
ra
q−1 +wq−2

)) · · · (ra
1 +w0

))
(x)

d̄x

|DS(x)|
+ α1−qÂ

N,(1)
1 + op

(
LN

q −Lq

)+ op(1/
√

N),

where

Â
N,(1)
1 = 1

αq
νN

0
((

ra
q +wq−1

) · · · (ra
1 +w0

)
ka

q+1[ϕ](GηN
q
−Gq)

)+ op(1/
√

N).
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Since νN
0 = η, we finally get

Â
N,(1)
1 = (

LN
q −Lq

)
×

∫∫
S(x)=Lq

ηq

(
dx′

)
ϕ
(
x′
)
ka

q+1
(
x′, x

)((
ra
q +wq−1

) · · ·
× (

ra
1 +w0

))
(x)

d̄x

|DS(x)|
+ op

(
LN

q −Lq

)+ op(1/
√

N),

so that, coming back to (6.8) and thanks to Proposition 6.3, we have eventually
shown that

νN
q

([Qq+1,ηN
q
−Qq+1](ϕ)

)= op

(
LN

q −Lq

)+ op(1/
√

N)

= op(1/
√

N).

This terminates the proof of Proposition 5.3.
The following lemma is a key tool to prove Proposition 6.3 and its Corollary 6.3,

which were useful in the previous proof.

LEMMA 6.4. For any C > 0, for any integer 0 ≤ q < n and for any L ∈
{Lq, . . . ,Ln−1}, consider the class of sets

AN,C =
{
S−1

([
L− c1√

N
,L+ c2√

N

])
,0 < c1 < C,0 < c2 < C

}
.

Then, for any φ ∈ B(Rd), we have that

sup
A∈AN,C

√
N
∣∣νN

q (φ1A)− ηN
q (φ1A)

∣∣ P−−−−→
N→∞ 0.

PROOF. Here again, the proof is made given FN
q−1. Let AN,C denote the

largest set in AN,C , that is,

AN,C = S−1
([

L− C√
N

,L+ C√
N

])
.

Let us write some preliminary algebra. In the following, kN stands for the number
of sample points belonging to AN,C , meaning that

kN =N × ηN
q (AN,C)=

N∑
i=1

1AN,C

(
Xi

q

)
.
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We start from the decomposition

sup
A∈AN,C

√
N
∣∣νN

q (φ1A)− ηN
q (φ1A)

∣∣
≤√NνN

q (AN,C) sup
A∈AN,C

∣∣∣∣∣ νN
q (φ1A)

νN
q (AN,C)

− 1

kN

N∑
i=1

1A

(
Xi

q

)
φ
(
Xi

q

)∣∣∣∣∣(6.17)

+ sup
A∈AN,C

∣∣∣∣∣ 1

kN

N∑
i=1

1A

(
Xi

q

)
φ
(
Xi

q

)∣∣∣∣∣×
∣∣∣∣∣√NνN

q (AN,C)− kN√
N

∣∣∣∣∣.(6.18)

Consider the first expression (6.17). We study the class AN,C from the viewpoint
of Vapnik–Chervonenkis theory (see, e.g., Chapters 12 and 13 in [19]). We denote
by s(AN,C,N) the shattering coefficient of AN,C . Very elementary reasoning gives
that s(AN,C,N)≤N2.

As φ is bounded, for any ε > 0 we can find a simple function φε =∑nε

j=1 bj 1Bj

such that ‖φ − φε‖< ε. Let us denote by Bε the finite collection of Borelian sets
in the expression of φε . If we consider now

Aε
N,C = {A=A1 ∩A2,A1 ∈AN,C,A2 ∈ Bε},

then it is clear that its shatter coefficient verifies s(Aε
N,C,N)≤ 2nεN2.

Now, in (6.17), we show that the supremum factor goes to 0 in probability. We
first have

sup
A∈AN,C

∣∣∣∣∣ νN
q (φ1A)

νN
q (AN,C)

− 1

kN

N∑
i=1

1A

(
Xi

q

)
φ
(
Xi

q

)∣∣∣∣∣
≤ sup

A∈AN,C

∣∣∣∣νN
q ((φ − φε)1A)

νN
q (AN,C)

∣∣∣∣+ sup
A∈AN,C

∣∣∣∣∣ ν
N
q (φε1A)

νN
q (AN,C)

− 1

kN

N∑
i=1

1A

(
Xi

q

)
φε(Xi

q

)∣∣∣∣∣
+ sup

A∈AN,C

∣∣∣∣∣ 1

kN

N∑
i=1

1A

(
Xi

q

)(
φε − φ

)(
Xi

q

)∣∣∣∣∣,
hence

sup
A∈AN,C

∣∣∣∣∣ νN
q (φ1A)

νN
q (AN,C)

− 1

kN

N∑
i=1

1A

(
Xi

q

)
φ
(
Xi

q

)∣∣∣∣∣
≤ 2

∥∥φ − φε
∥∥+ sup

A∈AN,C

∣∣∣∣∣
nε∑

j=1

bj

(
νN
q (1A∩Bj

)

νN
q (AN,C)

− 1

kN

N∑
i=1

1A∩Bj

(
Xi

q

))∣∣∣∣∣
≤ 2ε+

(
nε∑

j=1

|bj |
)
× sup

A∈Aε
N,C

∣∣∣∣∣ νN
q (1A)

νN
q (AN,C)

− 1

kN

N∑
i=1

1A

(
Xi

q

)∣∣∣∣∣



3368 F. CÉROU AND A. GUYADER

≤ 2ε+
(

nε∑
j=1

|bj |
)
× ε′

≤ 3ε,

for ε′ chosen small enough, with probability at least

1− 8s
(
Aε

N,C,N
)
e−Nε′2/32 ≥ 1− 2nε+3N2e−Nε′2/32,

which can be made arbitrarily close to 1 for N large enough. We notice that here
we have used Theorem 12.5 in [19], and the fact that, given FN

q−1, the Xi
q ’s are

i.i.d. with distribution νN
q , and thus the kN ones in AN,C are i.i.d. with distribution

νN
q · 1AN,C

/νN
q (AN,C).

Now, to complete the proof of the lemma, it suffices to show that the pre-factor√
NνN

q (AN,C) in (6.17) can be bounded with arbitrarily large probability. In this
aim, we proceed by induction on q . Consider first q = 0. In that case νN

q = η, and
it is clear using the co-area formula and the law of large numbers that

νN
q (AN,C)=Op(1/

√
N).

For the general case q > 0, we have the decomposition νN
q = ν

N,(0)
q +ν

N,(1)
q where

the first term is absolutely continuous with respect to Lebesgue’s measure, and the
second term is a discrete one. A quick inspection reveals that

(6.19) νN,(0)
q ≤ 1

α
ηN

q−1ka
q and νN,(1)

q ≤ 1

α
ηN

q−1.

When applied to AN,C both are Op(1/
√

N). For the first one, we simply apply the
co-area formula and the law of large numbers. For the second one, we notice that
NηN

q−1(AN,C) is a Binomial r.v. with parameters N and νN
q−1(AN,C). The mean

νN
q−1(AN,C) is Op(1/

√
N) by the induction assumption. For the distance to the

mean, we use Hoeffding’s inequality

P

(∣∣νN
q−1(AN,C)− ηN

q−1(AN,C)
∣∣≥ A√

N

∣∣∣FN
q−2

)
≤ 2e−2A2

,

which can be made arbitrarily small by choosing A large enough. This shows that
|νN

q−1(AN,C)− ηN
q−1(AN,C)| is also Op(1/

√
N).

Consider now expression (6.18). It is clear that the supremum is less than ‖φ‖.
For the factor |√NνN

q (AN,C)− kN√
N
|, let us denote IN

q = νN
q (AN,C). From usual

considerations on the Xi
q ’s, we see that kN is Binomial B(N, IN

q ) distributed, thus
we have

E

[
kN

N

∣∣∣FN
q−1

]
= IN

q and V

(
kN

N

∣∣∣FN
q−1

)
= IN

q (1− IN
q )

N
.
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By Chebyshev’s inequality, we deduce that, for any ε > 0,

P

(√
N

∣∣∣∣kN

N
− IN

q

∣∣∣∣ > ε|FN
q−1

)
≤ IN

q (1− IN
q )

ε2
P−−−−→

N→∞ 0,

since, as justified above, IN
q = νN

q (AN,C)=OP (1/
√

N). �

PROPOSITION 6.3. For all q ∈ {0, . . . , n− 1},
LN

q −Lq =Op(1/
√

N).

PROOF. The proof is done by induction on q . We will actually make the induc-
tion on the following double property: for all δ > 0, for all measurable function φ

such that 0≤ φ ≤ 1 and with support above Lq (i.e., φ =Gqφ), there exist C > 0
and N0 such that for all N > N0, with probability at least (1− δ), we have∣∣LN

q −Lq

∣∣≤ C√
N

and
∣∣(ηq − νN

q

)
(φ)

∣∣≤ C√
N

.

First, note that for q = 0, since νN
0 = η0, the second assertion is trivial, and the

first one is obtained by very standard properties of empirical quantiles (e.g., CLT)
when the i.i.d. sample is drawn from a distribution with a strictly positive density
at point L0.

Now, assume the property is true up to step (q − 1). Then, we have

α
(
νN
q − ηq

)
(φ)= ηN

q−1(GLN
q−1

Mq,ηN
q−1

φ)− νN
q−1(Gq−1Mqφ)(6.20)

+ (
νN
q−1 − ηq−1

)
(Gq−1Mqφ)+ o(1/

√
N).(6.21)

The second term (6.21) is easy as ‖Gq−1Mqφ‖ ≤ 1 and, from the recurrence as-
sumption, its absolute value is less than C/

√
N with probability at least (1− δ).

For the first term, namely (6.20), let us write∣∣ηN
q−1(GLN

q−1
Mq,ηN

q−1
φ)− νN

q−1(Gq−1Mqφ)
∣∣

≤ ∣∣ηN
q−1

(
(GLN

q−1
Mq,ηN

q−1
−Gq−1Mq)φ

)∣∣(6.22)

+ ∣∣νN
q−1(Gq−1Mqφ)− ηN

q−1(Gq−1Mqφ)
∣∣.(6.23)

Let us first consider (6.23). Since ηN
q−1 is an empirical measure of an i.i.d. sample

drawn with νN
q−1, Chebyshev’s inequality implies that, for all t > 0,

P
(∣∣νN

q−1(Gq−1Mqφ)− ηN
q−1(Gq−1Mqφ)

∣∣≥ tσN

)≤ 1

t2 ,

with

σN ≤ 1√
N

√
νN
q−1

[
(Gq−1Mqφ)2

]≤ 1√
N

.
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Thus, if we take

t = 1/
√

δ and C >
1√
δ
,

it turns out that, for N large enough, we have with probability at least (1− δ),∣∣νN
q−1(Gq−1Mqφ)− ηN

q−1(Gq−1Mqφ)
∣∣≤ C√

N
.

Now we decompose (6.22) in a similar way as (6.8) and taking into account that
Gqφ = φ, which gives

ηN
q−1

(
(GLN

q−1
Mq,LN

q−1
−Gq−1Mq)φ

)
(6.24)

= ηN
q−1

(
(GLN

q−1
−Gq−1)ka

q[φ]
)− ηN

q−1
(
φka

q[GLN
q−1
−Gq−1]).

With probability at least (1− δ), for N large enough, we have for the second term,
using the recurrence assumption and the co-area formula,∣∣ηN

q−1
(
φka

q[GLN
q−1
−Gq−1])∣∣

≤ ∣∣ηN
q−1

(
φka

q[GLq−1− C√
N

−G
Lq−1+ C√

N

])∣∣
≤

∣∣∣∣ηN
q−1

(
φ

∫
{S(y)=Lq−1}

ka
q(·, y)

d̄y

|DS(y)|
)∣∣∣∣× 2C√

N
+ op(1/

√
N),

with the main factor converging in probability to

ηq−1

(
φ

∫
{S(y)=Lq−1}

ka
q(·, y)

d̄y

|DS(y)|
)
.

For the first term in (6.24) we have, thanks to Lemma 6.4,

ηN
q−1

(
(GLN

q−1
−Gq−1)ka

q[φ]
)= νN

q−1
(
(GLN

q−1
−Gq−1)ka

q[φ]
)+ op(1/

√
N).

We then upper bound νN
q−1 like in (6.19) in order to write∣∣νN

q−1
(
(GLN

q−1
−Gq−1)ka

q[φ]
)∣∣

≤ 1

α

∣∣ηN
q−2

(
(GLN

q−1
−Gq−1)ka

q[φ]
)∣∣

+ 1

α

∣∣∣∣ηN
q−2

(∫
ka

q−1(·, y)(GLN
q−1
−Gq−1)(y)ka

q[φ](y) dy

)∣∣∣∣.
For the second term, we use the co-area formula and the recurrence assumption just
as above, and for the first term, we replace ηN

q−2 with νN
q−2 by virtue of Lemma 6.4.

We iterate the reasoning until we get terms with νN
0 = η, which can be dealt by

applying the co-area formula again.
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Now we consider the other part of the recurrence assumption. Let us define the
function FN(�)= 1− νN

q (G�) and

LνN
q
= inf

{
t such that

(
1− FN(t)

)≥ 1− α
}
.

Following the same arguments as in the proof of Theorem 3.1, we can easily see
that LνN

q
a.s. converges to Lq . We obviously have

(6.25)
∣∣LN

q −Lq

∣∣≤ ∣∣LN
q −LνN

q

∣∣+ ∣∣LνN
q
−Lq

∣∣.
We first deal with |LN

q −LνN
q
|. From the proof of Lemma 6.2, we see that

FN(LνN
q
)= α+ oL2(1/

√
N),

so that

V
(
FN

(
LN

q

)− FN(LνN
q
)|FN

q−1
)≤ 2E

[(
FN

(
LN

q

)− α
)2|FN

q−1
]+ op(1/N).

Moreover, from Lemma 6.2 we have

(6.26) NE
[(

FN

(
LN

q

)− α
)2|FN

q−1
] P−−−−→

N→∞ α(1− α).

Hence, using Chebyshev’s inequality we see that, given FN
q−1, the random variable√

N(FN(LN
q )− FN(LνN

q
)) is bounded with arbitrarily large probability, and so it

is unconditionally, for in (6.26) the limit is deterministic.
As mentioned before, the function FN is absolutely continuous except at a fi-

nite number of points, namely at most the �Nα� largest Y i
q−1’s. Denoting fN the

density of the absolutely continuous part of FN , and Ji ’s the heights of the jumps,
we may write

FN(LνN
q
)− FN

(
LN

q

)= ∫ L
νN
q

LN
q

fN(�) d�+ ∑
i:Y i

q−1∈[LN
q ,L

νN
q
]
Ji,

where [LN
q ,LνN

q
] stands for [LN

q ,LνN
q
] or [LνN

q
,LN

q ]. We want to show that, with
large probability,∣∣FN(LνN

q
)− FN

(
LN

q

)∣∣≥ ∣∣∣∣∫ L
νN
q

LN
q

fN(�) d�

∣∣∣∣≥Cq

∣∣LN
q −LνN

q

∣∣,
where Cq > 0 is some deterministic constant. We have∫ L

νN
q

LN
q

fN(�) d�= η̃N
q−1

∫ L
νN
q

LN
q

H 1,a
q (·, �) d�.

Therefore, using Assumption [Ha], as for N large both LN
q and LνN

q
are close to

Lq , we can write

−εh(·)≤H 1,a
q (·, �)−H 1,a

q (·,Lq)≤ εh(·),
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uniformly for � between LN
q and LνN

q
. From all that, we get∣∣FN(LνN

q
)− FN

(
LN

q

)∣∣≥ ∣∣LN
q −LνN

q

∣∣× η̃N
q−1

(
H 1,a

q (·,Lq)− 2εh
)
.

By the law of large numbers, the last factor on the right can be made larger than
Cq = ηq(H

1,a
q (·,Lq))/4 with large probability. Notice that Cq > 0 by Assumption

[Ha]. We conclude by reminding that we have just proved that
√

N(FN(LN
q ) −

FN(LνN
q
)) is bounded with arbitrarily large probability.

Now, for the last term |LνN
q
−Lq | of (6.25), the technique is quite similar. From

the first part of the recurrence, taking φ =Gq , we have with arbitrarily large prob-
ability for N large enough,∣∣νN

q (Gq)− α
∣∣= ∣∣νN

q (Gq)− ηq(Gq)
∣∣≤ C√

N
.

But we also may write∣∣νN
q (Gq)− α

∣∣= ∣∣FN(Lq)− FN(LνN
q
)
∣∣+ oL2(1/

√
N).

Using the same reasoning as above, we get that for some deterministic constant
C′q > 0,

C′q |Lq −LνN
q
| ≤ ∣∣FN(Lq)− FN(LνN

q
)
∣∣,

and we conclude following the same line. �

Our last result is then a direct application of Lemma 6.4 and Proposition 6.3.

COROLLARY 6.3. For any integer 0 ≤ q < n and for any bounded and mea-
surable function φ, we have

ηN
q

(
φ(GηN

q
−Gq)

)= νN
q

(
φ(GηN

q
−Gq)

)+ op(1/
√

N).

6.5. Proof of Proposition 4.1. We will use the following auxiliary result,
which corresponds to Lemma 2.2 in Legoll and Lelièvre [30].

LEMMA 6.5. Let f denote a mapping from R
d to R, then the function F :

R→R defined by

F(L)=
∫
S(x)=L

f (x)
d̄x

|DS(x)|
is differentiable with derivative

F ′(L)=
∫
S(x)=L

div
(
f (x)

DS(x)

|DS(x)|2
)

d̄x

|DS(x)|
=

∫
S(x)=L

[
DS(x) ·Df (x)

|DS(x)|2 + f (x)div
(

DS(x)

|DS(x)|2
)]

d̄x

|DS(x)| ,
provided that the right-hand side is well defined.
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Let us apply this result to the context of Proposition 4.1. We remind the reader
that

Hg
q (x,L)=

∫
S(x′)=L

g
(
x′
)
Kq+1

(
x, x′

) d̄x′

|DS(x′)| .
By the first expression of the derivative in Lemma 6.5, we have

∂

∂s
Hg

q (x, s)=
∫
S(x′)=L

divx′
[
g
(
x′
)DS(x′)Kq+1(x, x′)

|DS(x′)|2
]

d̄x′

|DS(x′)| ,
provided that the right-hand term is well defined. To prove this, notice that

divx′
[
g
(
x′
)DS(x′)Kq+1(x, x′)

|DS(x′)|2
]
= g

(
x′
)× divx′

[
DS(x′)Kq+1(x, x′)

|DS(x′)|2
]

+ (
Dg

(
x′
) ·DS

(
x′
))× Kq+1(x, x′)

|DS(x′)|2 ,

where “·” stand for the usual scalar product in R
d . For the first term, we use the fact

that g is bounded, while for the second one, we apply Cauchy–Schwarz inequality
and the inequality between the Euclidean norm | · | and the L1 norm | · |1 to obtain∣∣∣∣divx′

[
g
(
x′
)DS(x′)Kq+1(x, x′)

|DS(x′)|2
]∣∣∣∣

≤C ×
∣∣∣∣divx′

[
DS(x′)Kq+1(x, x′)

|DS(x′)|2
]∣∣∣∣+ ∣∣div

[
g
(
x′
)]∣∣

1 ×
Kq+1(x, x′)
|DS(x′)| .

Concerning the second term, recall that g belongs to

Bq = {
g :Rd →R,∃(g0, . . . , gq−1) ∈ B

(
R

d)q, g =K1(g0) · · ·Kq(gq−1)
}
,

so that

∂g

∂x′j

(
x′
)= q∑

m=1

K1(g0)
(
x′
) · · ·Km−1(gm−2)

(
x′
)

×
(∫

∂

∂x′j
Km

(
x′, x′′

)
gm−1

(
x′′

)
dx′′

)
Km+1(gm)

(
x′
) · · ·Kq(gq−1)

(
x′
)
,

and since all the mappings gm’s are assumed bounded, we get∣∣∣∣ ∂g

∂x′j

(
x′
)∣∣∣∣≤ C

q∑
m=1

∫ ∣∣∣∣ ∂

∂x′j
Km

(
x′, x′′

)∣∣∣∣dx′′,

and finally

∣∣div
[
g
(
x′
)]∣∣

1 ≤ C

[ q∑
m=1

d∑
j=1

∫ ∣∣∣∣ ∂

∂x′j
Km

(
x′, x′′

)∣∣∣∣dx′′
]
.
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By the assumption of Proposition 4.1, we deduce that s �→ H
g
q (x, s) is differen-

tiable. Moreover, using the mean value theorem, we deduce that∣∣Hg
q (x,L)−Hg

q (x,Lq)
∣∣≤ |L−Lq |× sup

s∈(L,Lq)

∣∣∣∣ ∂

∂s
Hg

q (x, s)

∣∣∣∣≤ C|L−Lq |×h(x),

with h ∈ L2(η), so that [H](ii) is satisfied.

6.6. Proof of the Gaussian case. In order to keep the notation as simple as
possible, we will explain what happens in dimension d = 2 only. Thus, the score
function is defined, for any x = (x1, x2) ∈ R

2, by S(x) = x1/|x| = cosx, so that
−1≤ S(x)≤ 1 and

DS(x)=
[

x2
2

|x|3 ,
−x1x2

|x|3
]

⇒ ∣∣DS(x)
∣∣= |x2|

|x|2 .

Hence, denoting r = |x|, one has for any L ∈ (−1,+1)

S(x)= L ⇐⇒ (x1, x2)= (|x|L,±|x|
√

1−L2
)= (

rL,±r

√
1−L2

)
so that ∣∣DS(x)

∣∣= √1−L2

|x| −−−−→|x|→∞ 0,

and, whatever L, |DS(x)| is clearly not bounded from below on the level set
{S(x)= L}. However, for any test function f and any L ∈ (−1,+1), the co-area
formula gives∫

S(x)=L
f (x)

d̄x

|DS(x)| =
1√

1−L2

∫ ∞
0

f
(
rL, r

√
1−L2

)
r dr

(6.27)

+ 1√
1−L2

∫ ∞
0

f
(
rL,−r

√
1−L2

)
r dr.

In particular, since in this example X is a centered standard Gaussian random
vector in R

2, equation (2.1) shows that the random variable Y = S(X) has density

fY (s)= 1

π
√

1− s2
1|s|<1.

This is not surprising since the point X/|X| is uniformly distributed on the unit
circle so that Y =X1/|X| is just the cosine of such a point. Moreover, the transition
kernel K =Kq+1 is a Gaussian transition kernel defined, for the tuning parameter
σ > 0, by

K
(
x, x′

)= 1+ σ 2

2πσ 2 exp
(
−1+ σ 2

2σ 2

∣∣∣∣x′ − x√
1+ σ 2

∣∣∣∣2).
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Let us recall that point (i) of Assumption [H] requires that∫
η(dx)

(∫
S(x′)=Lq

Kq+1
(
x, x′

) d̄x′

|DS(x′)|
)2

<∞.

In our context, setting

I =
∫
S(x′)=L

Kq+1
(
x, x′

) d̄x′

|DS(x′)| ,

denoting α =
√

(1+ σ 2)/σ 2 and, for any x = (x1, x2),

A+ = x1L+ x2
√

1−L2
√

1+ σ 2
and A− = x1

√
1−L2 − x2L√

1+ σ 2
,

as well as

B+ = x1
√

1−L2 + x2L√
1+ σ 2

and B− = x1L− x2
√

1−L2
√

1+ σ 2
,

a straightforward computation reveals that

I = φ(αA−)(φ(αA+)+ αA+�(αA+))+ φ(αB+)(φ(αB−)+ αB−�(αB−))√
1−L2

,

where φ and � are respectively the p.d.f. and the c.d.f. of a standard Gaussian
random variable. Since max(|αA+|, |αB−|)≤ |x|/σ , we deduce that

I ≤ 2√
1−L2

(
1+ |x|

σ

)
and ∫

η(dx)

(∫
S(x′)=Lq

Kq+1
(
x, x′

) d̄x′

|DS(x′)|
)2

≤ 4

1−L2
q

∫
R2

(
1+ |x|

σ

)2 e−
|x|2

2

2π
dx,

which is obviously finite and, therefore, [H](i) is satisfied.
In order to prove that [H](ii) is fulfilled as well, we will make use of Proposi-

tion 4.1. Consider first the integral in the sum. From the expression of Kq , we have
for any m > 0,∫ ∣∣∣∣ ∂

∂x′j
Km

(
x′, x′′

)∣∣∣∣dx′′ ≤
∫

C
(∣∣x′j ∣∣+ ∣∣x′′j ∣∣)Km

(
x′, x′′

)
dx′′ ≤ C1

∣∣x′∣∣α1 +C2,

for C1, C2 and α1 large enough. Consequently, we have the same type of upper
bound for the whole expression in brackets, meaning that

q∑
m=1

d∑
j=1

∫ ∣∣∣∣ ∂

∂x′j
Km

(
x′, x′′

)∣∣∣∣dx′′ ≤ C1
∣∣x′∣∣α1 +C2.
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Then, remembering that on the level set {S(x′) = L}, one has |DS(x′)| =√
1−L2/|x′|, and since Lq − δ ≤ L≤ Lq + δ, we are led to∫

S(x′)=L

∣∣x′∣∣α1 Kq+1(x, x′)
|DS(x′)|2 d̄x′

≤
∫
S(x′)=L

Kq+1
(
x, x′

) |x′|2+α1

1−L2 d̄x′

≤ 1

1− (Lq + δ)2

∫
S(x′)=L

Kq+1
(
xL, x′

)∣∣x′∣∣2+α1 d̄x′,

where xL = (|x|L,±|x|√1−L2) when x′ = (|x′|L,±|x′|√1−L2). Simple ge-
ometric facts indeed show that |x − x′| ≥ |xL − x′| and thus Kq+1(xL, x′) ≥
Kq+1(x, x′). Now, by using the same formulation as in (6.27), the last integral
is in fact one-dimensional, and is up to a constant a moment of a Gaussian random
variable, which is polynomial in its mean:∫

S(x′)=L

∣∣x′∣∣α1 Kq+1(x, x′)
|DS(x′)|2 d̄x′ ≤ 1

1− (Lq + δ)2

(
C1|xL|α2 +C2

)
.

Since |xL| = |x|, we have∫
S(x′)=L

∣∣x′∣∣α1 Kq+1(x, x′)
|DS(x′)|2 ≤ 1

1− (Lq + δ)2

(
C1|x|α2 +C2

)
,

and more generally,∫
S(x′)=L

[ q∑
m=1

d∑
j=1

∫ ∣∣∣∣ ∂

∂x′j
Km

(
x′, x′′

)∣∣∣∣dx′′
]
Kq+1

(
x, x′

) d̄x′

|DS(x′)|2
(6.28)

≤ 1

1− (Lq + δ)2

(
C1|x|α2 +C2

)
.

Hence, the second term in equation (4.1) is upper bounded by a polynomial in |x|,
which is of course integrable with respect to the Gaussian measure η.

Now we consider the first term in (4.1). Observe first that

DS(x′)
|DS(x′)|2 =

[∣∣x′∣∣,−∣∣x′∣∣x′1
x′2

]
and div

(
DS(x′)
|DS(x′)|2

)
= ∣∣x′∣∣ x′1

(x′2)2 ,

we get, when S(x′)= L and setting r = |x′| as before,

DS(x′)
|DS(x′)|2 =

[
r,∓r

L√
1−L2

]
and

div
(

DS(x′)
|DS(x′)|2

)
= L

1−L2 .



FLUCTUATION ANALYSIS OF ADAPTIVE MULTILEVEL SPLITTING 3377

Then∣∣∣∣divx′
[
DS(x′)Kq+1(x, x′)

|DS(x′)|2
]∣∣∣∣

≤
∣∣∣∣div

[
DS(x′)
|DS(x′)|2

]∣∣∣∣Kq+1
(
x, x′

)+ ∣∣∣∣ DS(x′)
|DS(x′)|2

∣∣∣∣× ∣∣Dx′Kq+1
(
x, x′

)∣∣
1

≤ L

1−L2 Kq+1
(
x, x′

)+ |x′|√
1−L2

× ∣∣Dx′Kq+1
(
x, x′

)∣∣
1.

As before, we have∣∣Dx′Kq+1
(
x, x′

)∣∣
1 ≤ C

(|x| + ∣∣x′∣∣)Kq+1
(
x, x′

)
,

and, for any L ∈ [Lq − δ,Lq + δ],∣∣∣∣divx′
[
DS(x′)Kq+1(x, x′)

|DS(x′)|2
]∣∣∣∣

≤
(

Lq + δ

1− (Lq + δ)2 +
C|x′|(|x| + |x′|)√

1− (Lq + δ)2

)
Kq+1

(
x, x′

)
,

which ensures that, for the term∫
S(x′)=L

∣∣∣∣divx′
[
DS(x′)Kq+1(x, x′)

|DS(x′)|2
]∣∣∣∣ d̄x′

|DS(x′)| ,
we get the same type of upper bound as in (6.28). Putting all things together,
we have shown inequality (4.1) of Proposition 4.1, which means that Assumption
[H](ii) is satisfied.

6.7. Proof of Lemma 6.3. Our goal is to prove that, for any integer q and any
� ∈ {1,2,4}, we have

N�/2
E
[(

UN
1−α − FN

(
LN

q

))�|FN
q−1

] P−−−−→
N→∞ 0.

The principle is to sequentially upper bound the left-hand side. Set q > 0 and
for any x ∈R

d and any i = 1, . . . ,N , let us define the random variables

Wx
q :=

1

N

N∑
j=1

1
X

j
q=x

and for i = 1, . . . ,N, Wi
q :=W

Xi
q

q .

Then, by definition of FN(L), it is readily seen that∣∣UN
1−α − FN

(
LN

q

)∣∣≤ sup
x∈Rd

Wx
q = max

1≤i≤N
Wi

q.

First note that, by the assumption on the gradient of S, this supremum can only
be reached at a sample point Xi

q−1. Indeed, since the level sets of S have zero
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Lebesgue measure, then as soon as a transition by the kernel K is accepted, it will
give almost surely a unique value of S. Hence, the accumulation of the particles
Xi

q on a same point X
j
q−1 can only be caused by resampling.

Specifically, recall that the multinomial step as described in Section 2.3 consists
in drawing an N -sample (X̂1

q−1, . . . , X̂
N
q−1) with common distribution

1

�Nα�
∑

j :Xj
q−1≥LN

q−1

δXi
q−1

(dx).

Let us denote

{x1, . . . , x�Nα�} := {
X

j
q−1 :Xj

q−1 ≥ LN
q−1

}
the set of the �Nα� particles which are cloned at the multinomial step and, for
1≤ j ≤ �Nα�, N

j
q stands for the random number of clones of xj . Said differently,

we have (
N1

q , . . . ,N�Nα�
q

)∼M
(
N,

(
1

�Nα� , . . . ,
1

�Nα�
))

,

where M(n, (p1, . . . , pm)) is the multinomial law with parameters n and (p1, . . . ,

pm). Then a moment’s thought reveals that

max
1≤i≤N

Wi
q ≤ max

1≤i≤N
Wi

q−1 × max
1≤j≤�Nα�N

j
q

and since the N
j
q ’s are independent of FN

q−1, we are led to

E
[∣∣UN

1−α − FN

(
LN

q

)∣∣�|FN
q−1

]≤ (
max

1≤i≤N
Wi

q−1

)�
E

[(
max

1≤j≤�Nα�N
j
q

)�]
.

Next, Theorem 4.4 in [18] ensures that

E

[(
max

1≤j≤�Nα�N
j
q

)�] ∼
N→∞

(
logN

log logN

)�

.

In particular, one has

E

[(
max

1≤j≤�Nα�N
j
q

)�]≤ C�(logN)�,

and a straightforward induction gives

E
[∣∣UN

1−α − FN

(
LN

q

)∣∣�]≤ C
q
� (logN)�qE

[(
max

1≤i≤N
Wi

0

)�]
.

Finally, as η0 is absolutely continuous, max1≤i≤N Wi
0 = 1/N and we get

N�/2
E
[∣∣UN

1−α − FN

(
LN

q

)∣∣�]≤ C
q
� (logN)�qN−�/2 −−−−→

N→∞ 0,

which completes the proof of Lemma 6.3.
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