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Abstract: We introduce a general method for variable selection in a large-
scale regression setting where both the number of parameters and the num-
ber of samples are extremely large. The proposed method is based on careful
combination of penalized estimators, each applied to a random projection
of the sample space into a low-dimensional space. In one special case that
we study in detail, the random projections are divided into non-overlapping
blocks, each consisting of only a small portion of the original data. Within
each block we select the projection yielding the smallest out-of-sample er-
ror. Our random ensemble estimator then aggregates the results according
to a new maximal-contrast voting scheme to determine the final selected
set. Our theoretical results illustrate the effect on performance of increasing
the number of non-overlapping blocks. Moreover, we demonstrate that sta-
tistical optimality is retained along with the computational speedup. The
proposed method achieves minimax rates for approximate recovery over
all estimators, using the full set of samples. Furthermore, our theoretical
results allow the number of subsamples to grow with the subsample size
and do not require irrepresentable condition. The estimator is also com-
pared empirically with several other popular high-dimensional estimators
via an extensive simulation study, which reveals its excellent finite-sample
performance.

Received July 2015.

1. Introduction

In recent years, statistical analysis of massive data sets has become a sub-
ject of increased interest. Modern data sets, often characterized by both high-
dimensionality and massive sample sizes, introduce a range of unique compu-
tational challenges, including scalability and storage bottlenecks (Fan et al.,
2013). Due to the associated storage and computational constraints, the num-
ber of data points from the original sample that can be processed will be severely
limited (Fithian and Hastie, 2014). In such settings it becomes natural to em-
ploy techniques based on random subsets of the original data that are of a very
small size.

Classical ideas of bootstrap (Efron, 1979), aggregation (Breiman, 1996) and
subsampling (Politis et al., 2001) are the first that come to mind. However, the
key limitation of the traditional bootstrap is that resamples typically have the
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same order of magnitude and size as the original data. In large-scale settings, n
and p are often simultaneously large; orders of magnitude of 106 or more are not
uncommon. Hence, even computation of a simple point estimate on the full data
set can be an issue. Moreover, repeated evaluations of the resamples are likely
to face the same set of computational and storage challenges as the original
problem.

Subsampling provides a viable alternative, as it only requires computations
of samples potentially much smaller than the original data. However, subsam-
pling is quite sensitive to the choice of the subsample size (Samworth, 2003): the
smaller the subsample size is, the larger the variance of the estimates. Kleiner
et al. (2014) propose an alternative approach called bag of little bootstraps,
which combines bootstrap with smaller order subsampling and demonstrates
that for the purpose of estimating continuous parameters, such a method re-
tains bootstrap-like convergence rates. In this work, we consider all of the above
mentioned methods in the context of the support recovery and large-scale re-
gression.

We propose a method that operates with a large number of subsamples,
each of a very small size, which can approximately retrieve the support set
of the regression parameters. We employ an approach of subsample bootstrap
aggregation (subagging) and illustrate how to aggregate estimators in order to
produce stable approximations of the support set S, without requiring the widely
used Irrepresentable condition (van de Geer and Bühlmann, 2009). The key is to
compute estimates, at non-overlapping subsamples using randomized bootstrap
and then exploit the randomization to enlarge support sets of those estimates.
In this way, we ensure uniformity of the results, obtained across subsamples and
avoid the potentially harmful effects of smaller order subsampling.

We consider the simple linear model

Y = Xβ∗ + ε, (1)

where Y ∈ R
n, X ∈ R

n×p and both n and p are very large numbers, possibly of
the order of hundreds of thousands or millions. The noise vector ε is assumed
to be i.i.d. and independent of X. We assume that the vector β∗ is such that
its support set supp(β∗) = S ⊆ {1, · · · , p} describes a particular subset of
important variables of the linear model (1), for which we then assume |S| �
p. The method presented here is quite intuitive: we partition the dataset of
size n randomly into d equal subsets of size N � min{n, p} and compute the
penalized regression estimate for each of the i = 1, . . . , d subsets independently,
using a careful choice of the regularization parameter λN . The estimates are
subsequently averaged, using a new multiple voting scheme that shrinks high
variability in the estimates.

As computations are done independently of each other, the proposed method
is especially suited for implementation across distributed and parallel computing
platforms, often used for processing of large-scale data. Distributed approaches
based on bootstrap aggregation (Breiman, 1996) have been studied by several
authors, including Bühlmann and Yu (2002) for least-squares algorithms, Bach
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(2008) for bootstrapped Lasso algorithm, McDonald et al. (2010) for perceptron-
based algorithms, Kleiner et al. (2014) for distributed versions of a bootstrap,
Zhang et al. (2012) for convex optimization and Zhang et al. (2013) for kernel
ridge regression algorithm. However, support recovery guarantees for subsam-
pled approaches of a smaller scale have not been analyzed much in the existing
literature. Recent proposals include Bayesian median of subsets Minsker et al.
(2014) and related median of subsets Wang et al. (2014) and hard thresholding
followed by a divide and conquer approach of debiased Lasso estimators of Bat-
tey et al. (2015). However, the first two approaches work with subsamples with
sizes proportional to n and the last with the sizes proportional to

√
n/(s log p).

The fundamental observation that underpins our proposal is the fact that
naive aggregation of the estimators computed on the small subsamples, is not
sensible, since most of the subsamples will typically destroy the structure in the
data. Nevertheless, such estimators have great flexibility in a choice of the reg-
ularization parameter. Our theoretical analysis demonstrates that even though
each subsampled estimator is computed only on a very small fraction of the
samples, it is essential to regularize such estimators as if they had all n samples.
As a result of that, each sub-problem is under-regularized, which allows for the
small bias in estimation but causes an adverse blow-up in the variance. Hence,
a simple majority vote of the retained sets can be highly suboptimal; instead,
we argue that the voting should be chosen to minimize the worst case risk. We
show that this voting scheme, named maximal-contrast voting, sufficiently re-
duces the variance of under-regularization. Our main theorem shows that the
proposed method, while achieving computational speedup also retains statisti-
cal optimality; it achieves minimax rates, over all estimators using the set of n
samples.

Our theoretical results are divided into three parts. In the first, we consider
one randomized subsample estimator and quantify the difference between the
selected set of such one subsample estimator and the Lasso estimator computed
on the data of the full size n. We then consider minimax-contrast aggregation
of such randomized estimators computed on non-overlapping blocks. Under a
condition implied by the widely-used restricted eigenvalue assumption (Bickel
et al., 2009), we can then control the difference between the selected set of the
aggregated estimator and the true support set S, as a function of terms that
depend on the number of non-overlapping blocks, the pairwise block distance, as
well as the size of each block and terms that diminish when the number of blocks
grow. Furthermore, we establish minimax optimality of the proposed method.
The final part of our theory gives risk bounds on the naive bagging of Lasso
estimators named Bootstrapped Lasso in Bach (2008), that is, its inability to
retrieve support set when the number of blocks grows.

We briefly introduce the notation used throughout the paper. Let I and J be
two subsets of {1, · · · , n} and {1, · · · , p} respectively. For any set S we use |S| to
denote its cardinality. For any vector x, let xJ ∈ R|J| denote its sub vector with
coordinates belonging to J . We use notation ‖x‖, ‖x‖1 and ‖x‖∞ to denote L2,
L1 and L∞ norms respectively, of a vector x. For any matrix A, let aj denote
its j-th column vector, and let AI,J denote a matrix formed by the rows and
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columns of A, which belong to the set I and J , respectively. Shorthand notation
AI stands for AI,{1,··· ,p}. We also use φmin(A) = λmin(A

TA) and φmax(A) =
λmax(A

TA) with λmin and λmax denoting minimal and maximal eigenvalue,
respectively. We denote with κ(ATA) the conditioning number of matrix A,
and define it as φmax(A)/φmin(A). We use ‖A‖ to denote the operator norm of
a matrix A. Note that λN and λn denote tuning parameters of Lasso problems,
computed over subsample of size N and full sample of size n, respectively.

The rest of the paper is organized as follows. Section 2 describes the pro-
posed weighted small sample bagging of Lasso estimators. Theorems 1 and 2 of
Section 3 discuss the difference between the estimated sparsity sets of the sub-
Lasso and the Lasso estimators. Subsection 3.2 discusses theoretical findings
on support recovery properties of the weighted subagging, with the main result
summarized in Theorem 3. Theorem 4 develops novel minimax rates for ap-
proximate support recovery. Subsection 3.3 outlines the inefficiency of classical
subagging of Lasso estimators, with the main results summarized in Theorems 6
and 7. Finally, in Section 4 we provide details and results of the implementation
of our method on the simulated data.

2. Randomized maximum-contrast selection

We start by describing our sample partitioning and defining the relevant nota-
tion. Let I = {1, · · · , n} denote the sample index set, which we divide into
a group of disjoint subsets each of size N � n. Although we are mostly
interested in subsets of a much smaller order than n, the exposition of the
method does not depend on the choice of N . In this sense, the complete dataset
{(Y1,X1), (Y2,X2) · · · , (Yn,Xn)} is split evenly and uniformly at random into
many small, disjoint subsets. We consider d of such subsets, i.e.

(YIi ,XIi) =
{
(Yi1 ,Xi1), · · · , (YiN ,XiN )

}
, (2)

for i = 1, · · · , d and allow d to grow with n.
Let the weighted sub-Lasso estimator β̂i:k(λN ) be defined as

β̂i:k(λN ) = argmin
β

{
1

2n

∥∥D√
wk

YIi −D√
wk

XIiβ
∥∥2 +λN‖β‖1

}
, (3)

where Dwk
∈ R

N×N is a diagonal matrix with a vector of random weights, wk ∈
R

N on its diagonal. Index k = 1, . . . ,K enumerates the number of random draws
of the weight vector w. Note that β̂i:k(λN ) is computed using only observations

within one subset of the data. Yet, for fixed and discrete choice of wk, β̂i:k(λN )
can be rewritten as the solution to an n× p problem

β̂i:k(λN ) = argmin
β

{
1

2n

∥∥∥Ỹ− X̃i:kβ
∥∥∥2 + λN‖β‖1

}
,

with X̃T
i:k ∈ R

p×n defined as

X̃T
i = [XT

i1 , · · · ,X
T
i1 , · · · ,X

T
iN , · · · ,XT

iN ], (4)
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with the rows Xij ∈ R
1×p repeated wk,ij times, each for j ∈ 1, · · · , N and

k = 1, · · · ,K. In other words, β̂i:k(λN ) minimizes the penalization problem,
computed using a random projection of the original data, where all the features
are kept and the sample space is projected into a low-dimensional space of
size N . The proposed projection places a constraint that the number of distinct
observations N is fixed, non-random and much smaller than n; it differs from the
Efron’s traditional bootstrap method, which has a random number of distinct
observations. Furthermore, we require the following condition on the random
vector wk, for all k = 1, . . . ,K.

Condition 1. Let w = (w1, . . . , wN ) be a random vector, such that w1, . . . , wN

are exchangeable random variables and are independent of the data (Y,X).

Moreover, w1, . . . , wN are such that
∑N

j=1 wj = n and P (w1 > 0) = 1. Ad-

ditionally, for f2
w =

∫ e2n

0
Pw

(
max1≤j≤N wj ≥ 1

2 log t
)
dt, let fw satisfy log fw ≤

pn/N/n almost surely.

Condition 1 is inspired by similar conditions imposed for the weighted boot-
straps (Præstgaard and Wellner, 1993). However, traditional weights do not fit
the Condition 1, as they typically follow the Multinomial Mn(N, ( 1n , · · · ,

1
n ))

distribution of dimension n ≥ N . If we reverse the roles of n andN , they can eas-
ily be adapted to the Condition 1, with vector wk, drawn from the Multinomial
distribution MN (n, ( 1

N , · · · , 1
N )). Each random projection of the original data

is data of size n, drawn with replacement on N � n fixed, original data points.
Kleiner et al. (2014) use these resamples to average continuous estimators. In
contrast, our focus is on the support recovery in large-scale and potentially
high dimensional problems. Other examples of randomized schemes that satisfy
Condition 1 include a Balanced Pólya urn scheme (Antognini and Giannerini,
2007) and a coupling of Poisson and Multinomial distribution; the first includes
a Pólya urn scheme with a strategy guaranteeing that each ball color is repre-
sented at least once, whereas the second scheme includes a randomized game of
throwing n balls into N urns and repeating the throws until all the balls are in
urns.

For the simplicity in presentation we impose the following finite moment
condition on the noise vector of the linear model (1). Nevertheless, we believe
all the results of the manuscript extend to sub-Gaussian errors.

Condition 2. The noise vector ε, (1), is such that Eε|εi|r ≤ r!σ2cr−2/2 for
every r ≥ 2 (and all i) and some constants c < ∞ and σ2 < ∞.

Let the indices {1, . . . , d} be split into b blocks of m-pairs; in particular,
b and m satisfy d = bm. The number of subsamples, d, is allowed to grow
with n; it depends on n through b. Constant m allows for additional flexibility
in estimation. Next, we introduce the maximal-contrast selection, a variant of
stability selection where the subsamples are drawn as N � n, m complementary
pairs from {1, . . . , n}. Thus, the procedure outputs, b, of such m-pairs index sets
{Imq+1−l; q = 1, . . . , b, l = 1, . . . ,m}, where each Imq+1−l is subset of {1, . . . , n}
of size N and Imq+1−1∩· · ·∩Imq+1−m = ∅. A special case of the above sets, with
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m = 1 and m = 2 are the sets of Meinshausen and Bühlmann (2010); Wang
et al. (2014) and the sets of Shah and Samworth (2013), respectively. However,
both are based on the subsets that are of the size proportional to n. As we allow
d to grow with n, our procedure includes subsamples of a much smaller order.
For such cases, simply applying existing methods above leads to a “select all” or
“select none” vote (see Theorem 6 for a detailed proof). We show in Theorem
1 below that subsamples of a much smaller order cause blow-up in the variance
of the estimated non-zero sets of β̂i:k(λN ); that is, the variance of the sets

Ŝi(λN , k) =
{
1 ≤ j ≤ p : β̂i:k,j(λN ) �= 0

}
,

for each fixed vector wk, k = 1, . . . ,K, is large. Hence, naive estimators above
fail and we aim to improve them. After K random draws of wk, for each sub-
sample Ii, we obtain K sets Ŝi(λN , 1), . . . , Ŝi(λN ,K). Initially, we compute the
selection of variable j in a union of those K sets. Next we compute a mini-
max majority vote across m-pairs of these unions, each computed on the non-
overlapping subsamples. The minimax majority vote estimator is defined as

π∗
j (λN , b,m,K) =

1√
b(
√
b+ 1)

b∑
q=1

1
{
j ∈ ∩m

l=1 ∪K
k=1 Ŝmq+1−l(λN , k)

}
(5)

+
1

2

1√
b+ 1

.

Whenever possible we suppress b,m,K from π∗
j (λN , b,m,K) and write π∗

j (λN )
for short. This estimator arises as a solution to the minimax estimation of a
mean of a Bernoulli trial (see Chapter 5, Example 1.7 of Lehmann and Casella
(1998) for more details). For small values of b ≤ 40 and all possible values of pj ,

π∗
j (λN ) has a larger bias, (bounded with 2−1(1 +

√
b)−1 in absolute value) but

a smaller variance compared to the maximum likelihood estimator.

Next, we define the weighted maximum-contrast subagging estimator β̂
a
(λN )

to be β̂
a

j (λN ) = 0 if j /∈ Ŝτ ,

Ŝτ (λN ) =
{
1 ≤ j ≤ p : π∗

j (λN ) ≥ τ
}
,

with appropriately chosen thresholding parameter τ . Otherwise, when j ∈ Ŝτ

β̂
a

j (λN ) = K−1d−1
d∑

i=1

K∑
k=1

β̂i:k,j(λN ). (6)

Observe that the aggregated estimator β̂
a

j (λN ) is random and dependent on the
number of random draws K, the number of blocks b and the distance between
blocks m. We emphasize here the additional flexibility afforded by not pre-
specifying the voting threshold τ to be 1/2 or the size of the pairs m to be 1.

The threshold value τ is a tuning parameter whose influence is very small.
For practical values in the range of, say, τ ∈ (0.25, 0.75), results tend to be
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very similar. The choice of m is more intricate. Large values of m lead to the
smaller number of both false and true positives. However, in such cases, they
simultaneously lead to smaller values of b. Such small values are especially suited
for the estimator (6), as they cause greater value of the bias; this, in turn, leads
to an improvement of the selection. For such choices of m, we advocate a smaller
value of the tuning parameter τ . For smaller values of m and hence large values
of b, the estimator (6) resembles majority vote estimator. However, small m
produces a large number of false positives. Further, large values of τ can reduce
this bias in selection.

For m = 1,K = 1, b = d and τ = 1/2, the proposed estimator takes on a
form of the “majority vote” estimator, so that Ŝτ (λN ) consists of all j that
are included in at least half of the sets Ŝi(λN , 1), i = 1, . . . , d. Furthermore,
for τ = 1/4(1 + 1√

d+1
) > 1/4, Ŝτ (λN ) consists of all j that are included in

at least a quarter of the sets Ŝi(λN , 1), i = 1, . . . , d. Moreover, for the case of
m = 2,K = 2, b = �d/2� and τ = 1/2, Ŝτ (λN ) consists of all j that are included
in at least half of the sets

{Ŝi(λN , 1) ∪ Ŝi(λN , 2)} ∩ {Ŝi+�d/2�(λN , 1) ∪ Ŝi+�d/2�(λN , 2)}, i = 1, . . . , �d/2�.

We observe that maximum-contrast selection allows for more structure in
the search of the support set. Moreover, β̂

a

j (λN ) takes the form of a randomized
subagging (Bühlmann and Yu, 2002) and a delete−(n − N)−jackknife (Efron,
1979) with additional discovery control, suited for a smaller order subsamples
and a very large size of the deleted set (with (n−N)/n → 1), respectively.

If we apply Lasso to the full data the estimated set will converge to the true
support set only if stringent conditions are imposed. The next section shows
that the median-contrast selection does not rely on such heavy assumptions,
leading to substantial gains in not only computational time but also feature
selection performance. The intuition for this gain is that a large proportion of
the subsets of the data does not preserve the structure of the full data; this,
in turn, has a sizable influence on the selected sets. By taking biased estimator
with controlled variance and additional randomization steps, we obtain a more
uniform model that is not largely influenced by these altered structure of the
subsets. As large-scale data typically contain outliers and data contamination,
this is a substantial practical advantage.

3. Theoretical properties

Without loss of generality, from this point on we assume that the columns of X
have unit l2 norm. Let a ≥ 1 be a constant. Because of the regularization, the
following cone set is important:

C(a, S) = {v ∈ R
p : v �= 0, ‖vSc‖1 ≤ a‖vS‖1} .

The Restricted Eigenvalue ζN of the matrix [
√
wkX] for a vector wk ∈ R

N and
a design matrix of a partitioned data X ∈ R

N×p is defined in Condition 3.
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Condition 3. Let wk ∈ R
N be vectors of weights. For a matrix X̃i:k ∈ R

n×p,
as in (4), and a > 1, there exists a positive number ζN > 0 such that for all
|S| ≤ 2s

ζN = min
v∈C(a,S)

‖X̃v‖2√
n‖vS‖2

.

The restricted eigenvalues ζN are variants of the restricted eigenvalue intro-
duced in Bickel et al. (2009) and of the compatibility condition in van de Geer
and Bühlmann (2009). In the display above, ‖X̃v‖22 =

∑
l∈Ii

wk,l(Xlv)
2 for any

realization k of the weight vector wk. We use subscript N in ζN to denote the
number of distinct rows of the matrix X̃i:k. As long as the tail of the distribution
of X decays exponentially, column correlation is not too large and N ≥ |S| log p,
the condition above holds with high probability (Raskutti et al., 2010).

It is well established that the necessary condition for the exact recovery of
penalized methods consist of the Irrepresentable condition (van de Geer and
Bühlmann, 2009).

Condition 4 (IR(n)). The design matrix X ∈ R
n×p satisfies IR(n) condition

if the following holds
∥∥XScXS(X

T
SXS)

−1sign(β∗)
∥∥
∞ < 1.

The symbol IR(n) denotes the number of rows in the design matrix X,
with n denoting the sample size. When IR(N) is assumed to hold for every

subsampled dataset, then each of the penalized regression estimates β̂i:k(λN )
would recover the set S with high probability – a commonly used condition in
an existing literature (Wang et al., 2014). A far more interesting scenario is to
allow deviations from IR(N) condition. With subsamples of a very small size,
N � p and N � n, imposing such conditions on each subsample is not realistic;
most of the subsamples will not preserve the original data structure. Instead, we
examine different properties of the design and the sub design matrices without
imposing IR(N) condition.

Lemma 1. Let Condition 3 hold. Let A ⊆ {1, . . . , p} that is of the size |A| =
r ≤ 2s and let I ⊆ {1, . . . , n} be of the size |I| = N . Assume that the matrix
XI ∈ R

N×p satisfies Condition 3 with a = 3. Then, for every j /∈ A,

‖XT
I,AXI,j‖2 ≤ ζ−3

N , (7)∥∥(XT
I,AXI,A)

−1XT
I,AXI,j

∥∥2
1

≤ r/ζ2N . (8)

Observe that, under Condition 3, a result of Lemma 1 is much weaker than
the Irrepresentable condition IR(N), as r ≥ ζ2N and is possibly dependent on
n.

The following lemma characterizes uniform deviation of a randomized weight-
ed sum of negatively correlated random variables and is critical in obtaining
finite sample properties; see Theorem 3 below. To the best of our knowledge
there is no similar result in the literature. We use 〈·, ·〉n to denote the empirical
inner product, i.e. 〈u,v〉n = 1

nu
Tv, for two vectors u,v ∈ R

p.
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Lemma 2. Let w = (w1, · · · , wN ) be a vector of weights that satisfies Condition
1. Let the error ε satisfy Condition 2. Then, for all i = 1, . . . , d there exists a
sequence un of non-negative real numbers, such that

P

(∣∣∣〈εIi ,DwXIi〉n
∣∣∣> un

)
≤ exp

{
N log fw − n2u2

n

2σ2N‖XIi‖∞,2 + 2ncun‖XIi‖∞,∞

}
,

with fw defined in Condition 1. In the display above,

‖XIi‖∞,2 := max
{
X2

Iij : Ii ⊂ {1, · · · , n}, |Ii| = N, 1 ≤ j ≤ p
}

and

‖XIi‖∞,∞ := max
{
|X|Iij : Ii ⊂ {1, · · · , n}, |Ii| = N, 1 ≤ j ≤ p

}
.

Lemma 2 represents a uniform, nonasymptotic exponential inequality for a
sum of negatively correlated random variables. Compared with other concentra-
tion inequalities (Kontorovich and Ramanan, 2008; Permantle and Peres, 2014),
it holds for continuous random variables which are negatively correlated. More-
over, its independence of dimensionality p and dependence on n proves to be
invaluable for the variable selection properties.

3.1. Support sets

When dealing with “imperfect learners”, an important question is how to ag-
gregate information over all learners. In order to examine the performance of

β̂
a

j (λN ), we first study β̂i:k(λN ) and its ability to recover the support set S, for
each fixed k = 1, . . . ,K.

Theorem 1. Let k = 1, . . . ,K be fixed. Let wk be a vector of weights satisfying
Condition 1. Let the error ε satisfy Condition 2. Assume that the matrix XIi

satisfies Condition 3 with a = 3 and i = 1, . . . , d. Then, for every k = 1, · · · ,K,
with a choice of c1σ

√
log p/n ≤ λN ≤ c2σ

√
log p/n, c1 > 0, c2 > 1, there exists

a constant c > 1 such that P (S ⊆ Ŝi(λN , k)) ≥ 1 − p1−c. Moreover, constants
c1, c2 and c do not depend on n, p or s.

The proof of Theorem 1 is in the Appendix. One of the technical challenges
is to control the inner product between XIc

i
and the out-of-sample fit YIc

i
−ŶIc

i

with ŶIc
i
= XIc

i
β̂i:k(λN ). Theorem 1 has immediate consequences.

Remark 1. Theorem 1 shows that the sub-Lasso estimator, computed only on
a small fraction of the data, requires regularization comparable to that of the
complete data – proportional to

√
log p/n. As E[wk] = (n/N, . . . , n/N), existing

work on Lasso estimator (Bickel et al., 2009) implies that a regularization of√
log p/N suffices for the purpose of variable selection. Instead, we obtain a

regularization of much smaller order to be necessary.
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In a different context, Zhang et al. (2013) similarly show that subsampled
kernel smoothing with ridge penalty requires regularization proportional to that
of the original data, albeit for prediction purposes.

Next, we compare the selection set of one sub-Lasso estimator and the Lasso
estimator computed on the original data defined as

β̂(λn) = arg min
β∈Rp

{
1

2n
‖Y −Xβ‖2 + λn‖β‖1

}
. (9)

Whenever Condition 4 holds, the Lasso estimator is an oracle estimator; it
recovers the correct set with high probability. We show that whenever the Ir-
representable Condition IR(n) holds, and all

λN ∈ (0, cλn − c1√
n
) ∪ (ncλn + c2c1,∞),

for some universal constants c > 1 and c1 > 0, the estimated sets of β̂i:k(λN )

and β̂(λn) are nested, with probability converging to 1. Theorem 1, in addition
to Condition 4, guarantees that Ŝ ⊆ Ŝi, i.e. there exists a constant c > 1 such
that for all λN ≤ cλn,

P (β̂i:k,j(λN ) �= 0) ≥ P (β̂j(λn) �= 0), j ∈ S, (10)

whereas Theorem 2 and Condition 4 guarantee Ŝ ⊇ Ŝi, i.e. for λN ≥ ncλn,

P (β̂i:k,j(λN ) �= 0) ≤ P (β̂j(λn) �= 0), j ∈ S. (11)

We obtain the following result.

Theorem 2. Let k = 1, . . . ,K be fixed. Let wk be a vector of weights that
satisfies Condition 1. Let the error ε satisfy Condition 2. Assume that matrix
X satisfies Condition 4 and that there exists a positive constant C ′ such that
λmax

(
1
nX

TX
)
/ζn ≤ C ′. Assume that the matrix XIi satisfies Condition 3 with

a = 3 and i = 1, . . . , d. Then, for all

λN ≥ (n+ 1)λn +
λnC

′3/2s3/2

ζ2nζN−n
+

√
2λnC

′3/2s3/2

ζnζ3N−n

+ 2σ
√

(n−N) log p+ 2σ
√

4C ′ log p/n,

there exists a constant c > 1 such that for every k = 1, · · · ,K,
P (S ⊇ Ŝi(λN , k)) ≥ 1− p1−c.

Hence, the optimal λN , according to the Theorem 2, is of the same order
as σ

√
log p. In contrast, the optimal λN , according to the Theorem 1, is of the

order of σ
√

log p/n. Hence, there does not exists a universal choice of λN , for a
sub-Lasso estimator to have exact support recovery.

Remark 2. This result provides novel insights into finite sample equivalents
of the asymptotic bias of subagging and “majority voting”, as presented in
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Bühlmann and Yu (2002). There the authors suggests that there is asymptoti-
cally zero probability that the subsampled Lasso (sub-Lasso) and Lasso estima-
tors have the same sparsity patterns (see Theorem 3.3 therein). Theorems 1
and 2 show that the given probability is equal to zero. We show more details in
Section 3.3.

The immediate consequence is that the naive “multiple vote” estimate does
not have a single choice of λN that achieves variable selection. Details are pre-
sented in Theorem 6.

3.2. Efficiency and optimality

Next, we state the main theorems on the finite sample variable selection property
and optimality of the proposed minimax voting scheme (6).

The bootstrap scheme is said to be efficient if it mimics the “behavior” of the
original data. In this context, “behavior” can mean many things, like inheriting
rates of convergence in the central limit theorem or in the large deviations. In
this work, we concentrate on two types of efficiency. The first considers “exact
sparse recovery”, where Ŝ = S, for a candidate estimator Ŝ, with high proba-
bility. The second considers “approximate sparse recovery”, where the focus is
on establishing the following two properties simultaneously

P
(
S ⊆ Ŝ

)
≥ 1− δ, for δ ∈ (0, 1) E|Ŝ ∩ Sc| ≤ εs/p, for ε ∈ (0, 1).

Typically, δ and ε in the above considerations are numbers which are very close
to zero.

Theorem 3. Let wk be a vector of weights satisfying Condition 1 for all
k = 1, . . . ,K. Let the error ε satisffy Condition 2. Assume that the matrix
XIi satisfies Condition 3 with a = 3 and i = 1, . . . , d. Let the distribution of{

1
(
j ∈ ∪K

k=1Ŝi(λN , k)
)
, s+ 1 ≤ j ≤ p

}
,

be exchangeable for λN , as in (12) and all i = 1, . . . , d. Moreover, let
‖XIi‖∞,∞ ≤ c2

√
N/ log p, for some constant c2 > 1 and all 1 ≤ i ≤ d. Then,

there exists a bounded, positive, universal constant c′ > 1 such that, for

1

c′

√
log p/n ≤ λN ≤ c′

√
log p/n, (12)

the following holds
P (S ⊆ Ŝτ (λN )) ≥ 1− p1−c′ , (13)

and

sup
τ> 1

2(1+
√

b)

E
[
|Sc ∩ Ŝτ (λN )|

]
≤ 2C

√
b

1 +
√
b

Kmsm

Nmpm−1ζ2mn
, (14)

for all mb = d, dN ≤ n and a constant C that depends only on m.



132 J. Bradic

The proof of Theorem 3 is in the Appendix. An attractive feature of this
result is its generality: no IR(N) assumptions are placed. Yet, it shows that
maximal-contrast is able to approximately retrieve the support set S. Moreover,
it does so for all thresholds τ that are bigger than 1/4. The upper bound on
the number of false positives, see (14), is a function that decreases with both
larger b and larger m as long as K ≤ Np/s. We note that the weights wk

are instrumental in obtaining the theoretical guarantees above. Weights wk are
chosen to minimize the out-of-sample prediction error, which in turn allows for
a simultaneous control of false positives and false negatives.

Remark 3. The results of Section 3.1 imply that aggregation of the sub-Lasso
estimators is needed; no single sub-Lasso can recover the correct set S. Theorem
3 has immediate implications. As long as the sub-Lasso estimators have the
probability of support recovery 1− γ, with γ ∈ (0, 1/2) – are slightly better than
the random guessing – the proposed maximal-contrast selection, (6), guarantees
that this probability is very close to 1.

The study of the proposed estimator (6) is made difficult by the fact that we
are aggregating unstable estimators. The proof is based on allowing deviations
in optimal convergence rates for each of the small subsamples and finding the
smallest such deviation that allows good variable selection properties of the
aggregated estimator. The proof is further made challenging as Condition 1 does
not require

∑N
l=1(wl − 1)2/N to converge to a positive constant c, independent

of n, a condition that is usually imposed for weighted bootstrap samples (Bickel
et al., 1997). This condition is violated in our setting, as c → 0.

In the above result, we require an assumption of an exchangeability of indices
j over the sets ∪K

k=1Ŝi(λN , k) for a few, small values of λN . A similar assumption
appeared in Meinshausen and Bühlmann (2010). For simplicity of presentation,
we do not provide details of the relaxation of this condition, although we believe
the method of Shah and Samworth (2013) applies. It is not hard to show that
a finite sequence of Bernoulli random variables X1, X2, ..., Xn is exchangeable if
any permutation of the Xi’s has the same distribution as the original sequence.
Bayes’ postulate, in our context, implies that the partial sums have discrete
uniform distribution, i.e.

P

⎛⎝ p∑
j∈Sc,j=1

1
(
j ∈ ∪K

k=1Ŝi(λN , k)
)
= h

⎞⎠ = 1/(h+ 1),

for all 1 ≤ h ≤ p − s. Hence, to check the exchangeability assumption we can
perform any goodness of fit test, by splitting each subset (YIi ,XIi) into two
parts, with the first being the training and the second being the testing set.
Moreover, Banerjee and Richardson (2013) provide a number of distributional
characterizations of exchangeable Bernoulli random variables. In our context,

P

(
j ∈ ∪K

k=1Ŝi(λN , k)
)
= pj,K(λN ),

if ps+1,K(λN ) ≥ ps+2,K(λN ) ≥ · · · ≥ pp,K(λN ) ≥ 0 (where indexing is up
to a permutation) for some λN (12), then the condition of exchangeability is
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satisfied. In turn, this implies that any column correlation in X that decays with
the distance between the columns, satisfies our setting. For an approximations
to the distribution of a finite, exchangeable Bernoulli sequence by a mixture of
i.i.d. random variables under appropriate conditions, see Diaconis and Freedman
(1980).

In the remainder of the section, we focus on the optimality of the results
obtained in Theorem 3. Our goal is to provide conditions under which an ε-
approximation of the support set S is impossible – that is, under which there
exist two constants c > 0 and cε > 0, such that

(a) infJ supβ Pβ (S �⊆ J) ≥ c > 0, and
(b) infJ supβ Eβ|Sc ∩ J | ≥ cε > 0,

where the infimum is taken over all possible estimators J of S and supremum
is taken over all s-sparse vectors β. This setup is different from the classical
minimax lower bounds obtained for the purposes of sparse estimation (Lounici
et al., 2011) or variable selection (Comminges and Dalalyan, 2012). Those are
primarily concerned with infJ supβ Pβ (S �= J). In contrast, our setting allows
ε% false discovery control, in which case c is a strictly positive number and
cε = εp/s. To that end, let

ρn = max

{
E(Xlv)

2

√
n‖v‖2

: |S| ≤ s, ‖v‖0 = s

}
,

and let B0(s) be the l0 ball which corresponds to the set of the vectors β, with
at most s non-zero elements, that is

B0(s) :=

{
β ∈ R

p :

p∑
j=1

1{βj �= 0} ≤ s

}
.

Theorem 4. Let Condition 3 hold for the design matrix X ∈ R
n×p. If there

exist two constants c′ > 1 and 1 > cε > 0 such that

s2 log p/s2 > nρn + log 2 + (1− c′) log p

s log(p/s) + s log 2 > max{log cε + nρn, log cε − log(1−
√

nρn/2)}

then
(a) inf

J
sup

β∈B0(s)

Pβ (S �⊆ J) ≥ p1−c′ ,

(b) inf
J

sup
β∈B0(s)

Eβ|Sc ∩ J | ≥ cε > 0.

Remark 4. A particular example of Theorem 4 is the following set of conditions
under which 5% false discovery control is impossible. Namely, as long as n >
2(1 + 5%)2 and

(s+ 1) log p/s+ s log 2 + log 20 > max
{
nρn, log 1/((1−

√
nρn/2))

}
,
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then

inf
J

sup
β∈B0(s)

Eβ|Sc ∩ J | ≥ 5%
s

p
.

In light of Theorem 3 and mb = d, the previous result implies that as long as
the number of subsamples d satisfies the bound

d < 2C
n

s
exp

{
(1− 1

m
)
n

s

}
ζ2n
K

(
p

s
√
m

)1/m

the proposed estimator (6) is efficient for support recovery with 5% false discov-
ery control. In other words, (6) achieves optimal approximate recovery as the
upper bound in Theorem 3 cannot be further improved. Moreover, observe that
the upper bound on d converges to ∞ as n, p → ∞

Apart from the minimax optimality, we show that the support recovery of
the proposed method is more efficient, in comparison to the support recovery
of the Lasso estimator in the classical sense, of possessing smaller variance in
estimation.

Theorem 5. Let πj(λn) = P (β̂j(λn) �= 0) with β̂ as the Lasso estimator

(9). Then, for small values of b and for all λn > 1
c

√
log p/n and all j ∈ S,

var
(
π∗
j (λn)

)
≤ var (πj(λn)) .

3.3. Inefficiency of subagging

Although properties of the Lasso estimator are well understood (see Bunea
(2008), Lounici (2008), Bickel et al. (2009)), there hasn’t been much theoretical
support for the variable selection and prediction properties of subagging of Lasso
estimators (Bach, 2008), or its close variants (Minsker, 2013) for the cases of p ≥
n. Bach (2008) raised a question of whether bagging can be used for retrieving
the support set S and provided a conjecture of its failure for p ≥ n. The following
theorem proves this conjecture and reveals theinefficiency of classical bagged
estimator in such support recovery problems.

We denote the bootstrap averaging estimator, bagged Lasso estimator (Bach,
2008), as

β̂
b
(λ1

n) =
1

d

d∑
i=1

argmin
β

{
1

2N

∑
l∈Ii

(Yl −XT
l β)

2 + λ1
n‖β‖1

}
. (15)

Theorem 6. Assume that matrix X satisfies Condition 4 and that there exists a
positive constant C ′ such that λmax

(
1
nX

TX
)
/ζn ≤ C ′. Assume that the matrix

XIi satisfies Condition 3 with a = 3 and i = 1, . . . , d. Let p > n. Then, for every
λn, there exists no sequence of λ1

n with N ≤ n, such that the bagged estimator

β̂
b
(λ1

n) achieves exact or approximate sparse recovery of the Lasso estimator

β̂(λn).
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Note that Theorem 6 holds without imposing IR(N) condition on every
subsampled dataset. This result is in line with the expected disadvantages of
subagging (Bühlmann and Yu, 2002), but is somehow surprising. The result
also extends Bach (2008). Furthermore, it demonstrates that even the bagged
Lasso estimator (with N = n/2) for diverging n and p (p > n) fails to exactly
recover the sparsity set S, when at least one of the IR(N) conditions is violated.
However, for p ≤ n and N = n, the situation reverses; the bagged estimator
recovers exactly the true sparsity set S with probability very close to 1 (proof
is presented in the Appendix). Although our primary concern is the support
recovery, we present a result on the prediction error of the subagged estimator
(15). Moreover, it seems to be new and of wider interest in and of itself. We show
that only the choices of N ≥ n/4 allow subagging to attain the same predictive
properties as guaranteed by the Lasso (9).

Theorem 7. Let Xb be a matrix obtained by the bootstrap sampling of the rows
of the design matrix X. Assume that Xb satisfies Condition 3, with a = 3.

Then the estimator β̂
b
(λ1

n), defined on the bootstrapped sample of size n/k with
k ≤ 4 and with λ1

n = kσ
√

log p/n, attains the l2 prediction error of the Lasso

estimator β̂(λn).

4. Numerical studies

In this section, we compare statistical finite sample properties of the proposed
weighted maximal-contrast subagging with that of the existing methods via
extensive simulation study. For experiments that include both Gaussian models
and skewed models, we study the variable selection and convergence properties of
of the maximum-contrast selection. We consider traditional subbaging, stability
selection and the Lasso estimator for comparison. The threshold level τ is taken
to be 1, 0.8, 0.5 and 0.3.

The choice of λN . We note that the traditional cross-validation or information
criterion methods, computed within each of the blocks Ii, fail to provide the
λN of the scale

√
log p/n critical for good support recovery. We propose an

alternative, block cross-validation statistics, which sets λ to be the argument
minimum of

K,d∑
k,k′=1;i,i′=1

∥∥D√
wk

YIi
−D√

wk
XIi

βi′:k′ (λ)
∥∥2

(1− ŝ′/n)2
−

∥∥D√
w′

k

Yi′n−D√
w′

k

XI
i
′ βi:k(λ)

∥∥2

(1− ŝ/n)2
,

with βi′:k′(λ) being the estimator (6) computed using only the data Ib
′

m′ and
with k′-th realization of the weight vector wk. The statistic above measures
discrepancy in out-of sample prediction error between different sub-samples.
Proof of Theorem 3 shows guarantees of such a procedure.

The choice of b and m. We want to choose b and m in order to obtain
the best possible performance bounds as described in Section 3 above. Smaller
values reduce the computational cost. However, b and m cannot be chosen small
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simultaneously as d = bm is fixed. Moreover, the the performance bounds rely
on the definition (6), whose strength increases as b increases. Hence we want
to choose b large enough that this estimator has good averaging properties and
such that m is not too large. In Section 4.4 below we see that the random
maximum-contrast method is quite robust to the choice of b, and that small
values of b suffice. We fix b = 3 in Sections 4.1 and 4.2 and perform sensitivity
analysis in Section 4.3.

The choice of K. In order to minimize the second term in the bound in The-
orem 3, we should choose K to be as small as possible. However, the first term
in the bound in Theorem 3, weakens with smaller K. Moreover, the compu-
tational cost of the estimator scales linearly with K. In practice, however, we
found that the proposed method was robust to the choice of K ≤ m. In all of
our simulations, we vary K = 1, 3, 10 and recommend a universal choice K = 3.

4.1. Linear Gaussian model

In this example, we measure performance of the proposed method through true
positive (TP) and false positive (FP) error control. In order to compare perfor-
mance we consider a simple linear model

Yi = XT
i β

∗ + εi

with the varying sample size n. The εis are generated as independent, standard
Gaussian components. We fix the feature size to be p = 4000. We perform three
different studies within this model. For each given n, β∗, X and Y we generate
100 testing datasets independently and report average metric of interest. We
study both the variable section properties of the proposed method and the
prediction properties. We set the λN s according to the block cross-validation
statistics proposed above.

We compare the proposed method with two variable selection procedures:

• The traditional Lasso estimator. We apply the Lasso estimator directly to
the original data of size n. We set the λn by the self-tuned cross-validation
statistic.

• The traditional subagging with the majority vote. We set each of the
λN s according to the traditional cross-validation statistics as advocated
by Bach (2008).

We consider three models:

– Model 1: The design matrix is such that each Xi has a multivariate normal
distribution independently, with a Toeplitz covariance matrix Σ such that
Σij = 0.5|i−j|. β∗ is a sparse vector in which the first 10 elements are
equal to 0.7 and the rest are equal to 0.

– Model 2: The design matrix is such that, columns xj satisfy

xj = 0.2 ∗G+ Z j = 1, . . . , 10
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xj = 0.2 ∗G+W j = 11, . . . , 20

xj = 0.2 ∗G+T j = 21, . . . , 30

xj = R j = 30, . . . , p

where G,Z,W,T,R are independent standard normal vectors. In this
model, we have three equally important groups, and within each group
there are ten members. β∗ is a sparse vector in which the first 30 elements
are equal to 3 and the rest are equal to 0.

– Model 3: Each row of the design matrix, Xi, has a multivariate normal
distribution independently, with the covariance matrix Σ. Σ is a block-
diagonal matrix. Its upper left 60×60 block is an equal correlation matrix
with ρ = 0.4; and its lower right (p − 60) × (p − 60) block is an identity
matrix. β∗ is a sparse vector in which the first 30 elements are equal to 3
and the rest are equal to 0. In this model, the cross-correlation between
the noise and signal columns is non-zero.

We show results with varying subsample size n = 10000,

N = nγ , γ = {0.2, 0.4, 0.45, 0.47, 0.485, 0.5, 0.52, 0.55, 0.6, 0.65, 0.75, 0.8}.

For γ ∈ (0.2, 0.485), N < s log p. We set b and m to be 3 and 3, respectively
and explore a number of different choices of the parameters τ,K:

– K = 1 with τ = 1, 0.8, 0.5. The choice of K = 1, τ = 0.5 corresponds to a
majority vote scheme, where each estimator is randomized and the decision
is made according to the most liberal vote. In contrast, K = 1, τ = 1
corresponds to a conservative vote (the worst case bound), where only
elements that have appeared in all of the sets are kept.

– K = 3 with τ = 1, 0.8, 0.5. The choice of K = 3, τ = 0.5 corresponds to
a majority vote scheme, where each estimator is randomized three times
and the only elements kept are those that have appeared in the most of
unions, of the three estimated sets.

– K = 10 with τ = 1, 0.8, 0.5. The choice of K = 10, τ = 0.5 corresponds
to the most liberal majority voting scheme, as all elements that have
appeared in half of the unions, of the ten estimated sets, are kept.

Obtained results are summarized in the Figure 1. In all three models, the
maximum-contrast selection outperforms the traditional majority voting of the
subagging estimator in terms of variable selection. In Models 1–3, the Lasso esti-
mator acts as an oracle estimator. Nevertheless, the maximum-contrast selection
is still competitive and achieves perfect recovery in Model 1, for all the subsam-
ples larger than

√
n = 100. For the case of Model 2, the maximum-contrast

estimator requires larger subsample sizes in order to gain perfect recovery; size
of n0.65 ≈ 400 are needed. In Model 2, the group structure favors methods with
larger number of random draws wk; K = 10 achieves the best performance. We
see that the performance of the subagging is unsatisfactory no matter of the
subsample size. In Model 3, the design matrix has a small correlation between
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Fig 1. X-axes represents the subsample size N on a logarithmic scale and the Y-axes rep-
resents the average selection probability of the signal variables (the first column) and of
the noise variables (the second column). The first row is according to Model 1, the sec-
ond according to Model 2 and the third according to Model 3. Colors represent: red-Lasso,
pink-subagging and minimax (6) with brown–K = 1, τ = 1; dark-brown–K = 1, τ = 1/2;
dark-green–K = 1, τ = 4/5; green–K = 10, τ = 1; green-blue–K = 10, τ = 1/2; light-blue–
K = 10, τ = 4/5; blue–K = 3, τ = 1; purple–K = 3, τ = 1/2; dark-pink–K = 3, τ = 4/5.

the noise and signal variables. Nevertheless, this correlation does not affect the
performance of the maximum-contrast selection estimator. In all three models,
the number of falsely selected components of the maximum-contrast selection
estimator is negligible.

We complement the results presented in the Figure 1 with the results pre-
sented in Tables 1 and 2. There we fix N = 251 and show average of the true
and false positive results for varying choices of the tuning parameter λN .
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Table 1. Average number of true (TP) and false positives (FP) over 100 replication of a Gaussian linear model with Toeplitz design with ρ = 0.2
and β∗ = (1T , 0T )T . The model has p = 1000 and n = 10000. Subagging and Weighted Maximum-Contrast selection use N = 251 and b = 3, m = 3

λN 0.001 0.005 0.008 0.01 0.03 0.05 0.1 0.3 0.9 1.5 1.9

Lasso
TP 1 1 1 1 1 1 1 1 1 1 1
FP 0.94 0.79 0.66 0.59 0.12 0.005 0 0 0 0 0

Subagging
TP 1 1 1 1 1 1 1 1 1 0.93 0.83
FP 0 0 0 0 0 0 0 0 0 0 0

WMCB, K = 1, τ = 1
TP 1 1 1 1 1 1 1 1 1 0.76 0.46
FP 0.82 0.01 0.008 0.007 0 0 0 0 0 0 0

WMCB, K = 3, τ = 1
TP 1 1 1 1 1 1 1 1 1 0.90 0.53
FP 0.99 0.02 0.01 0.01 0 0 0 0 0 0 0

WMCB, K = 10, τ = 1
TP 1 1 1 1 1 1 1 1 1 0.96 0.6
FP 0.99 0.05 0.02 0.01 0.001 0 0 0 0 0 0

WMCB, K = 1, τ = 0.5
TP 1 1 1 1 1 1 1 1 1 1 0.93
FP 0.99 0.24 0.20 0.16 0.09 0.07 0.04 0.004 0 0 0

WMCB, K = 3, τ = 0.5
TP 1 1 1 1 1 1 1 1 1 1 1
FP 0.99 0.47 0.37 0.29 0.13 0.08 0.04 0.003 0 0 0

WMCB, K = 10, τ = 0.5
TP 1 1 1 1 1 1 1 1 1 1 1
FP 0.99 0.6 0.47 0.36 0.16 0.11 0.06 0.004 0 0 0
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Table 2. Average number of true (TP) and false positives (FP) over 100 replication of a Gaussian linear model with Toeplitz design with ρ = 0.2
and β∗ = (0.3T , 0T )T . The model has p = 1000 and n = 10000. Subagging and Weighted Maximum-Contrast selection use N = 251 and b = 3,
m = 3

λN 0.001 0.005 0.008 0.01 0.03 0.05 0.1 0.3 0.9 1.5 1.9

Lasso
TP 1 1 1 1 1 1 1 1 1 0 0
FP 0.88 0.59 0.42 0.29 0.002 0 0 0 0 0 0

Subagging
TP 0.76 0.86 0.86 0.86 0.86 0.86 0.83 0.63 0 0 0
FP 0 0 0 0 0 0 0 0 0 0 0

WMCB, K = 1, τ = 1
TP 1 1 0.96 0.96 0.96 0.96 0.93 0.4 0 0 0
FP 0.01 0.003 0.001 0.001 0 0 0 0 0 0 0

WMCB, K = 3, τ = 1
TP 1 1 0.96 0.96 0.96 0.96 0.96 0.46 0 0 0
FP 0.02 0.001 0 0 0 0 0 0 0 0 0

WMCB, K = 10, τ = 1
TP 1 1 0.97 0.98 0.98 0.99 0.97 0.97 0.97 0.97 0.5
FP 0.04 0.003 0.002 0.001 0.002 0.001 0 0 0 0 0

WMCB, K = 1, τ = 0.5
TP 1 1 1 1 1 1 1 0.9 0 0 0
FP 0.25 0.14 0.11 0.12 0.06 0.04 0.003 0.001 0 0 0

WMCB, K = 3, τ = 0.5
TP 1 1 1 1 1 1 1 0.96 0 0 0
FP 0.46 0.18 0.13 0.13 0.06 0.05 0.01 0 0 0 0

WMCB, K = 10, τ = 0.5
TP 1 1 1 1 1 1 1 1 1 0 0
FP 0.56 0.22 0.16 0.17 0.08 0.09 0.07 0.02 0 0 0
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4.2. Skewed linear model

In the next example, we consider three settings that depart from simple depen-
dency and normality assumptions. We consider the same simple linear model as
above. Parameter choices are made by the same choices as in the Models 1–3
above: n = 10000, p = 4000.

We consider three additional models:

– Model 4: The design matrix has a multivariate Student distribution, with
the covariance matrix Σ from the Model 3 above. β∗ is a sparse vector in
which the first 30 elements are equal to 3 and the rest are equal to 0. The
εis are generated as independent, standard Gaussian components.

– Model 5: The design matrix is such that,Xij ’s are drawn from the Beta dis-
tribution with parameters 1+10 j−1

p−1 and 2 independently for j = 1, . . . , p.
The regression model is calibrated to have mean zero, but the distribution
of Xi is skewed with skewness that varies across dimensions. β∗ is a sparse
vector in which the first 10 elements are equal to 1, 2, 3, . . . , 10 and the rest
are equal to 0. The εis are generated as independent, standard Gaussian
components.

– Model 6: The design matrix is such that each Xi has a multivariate nor-
mal distribution independently, with the covariance matrix Σ. Σ is the
covariance matrix of a fractional white noise process, where the difference
parameter l = 0.2. In other words, Σ has a polynomial off-diagonal decay,
Σij = O(|i−j|1−2l). β∗ is a sparse vector in which the first 10 elements are
equal to 1 and the rest are equal to 0. The εis are generated as independent
components with Student t distribution with 3 degrees of freedom.

Figures 2 shows results for the regression setting under the three above mod-
els. The Lasso estimator is no longer the oracle estimator for all the models; it is
an oracle just for the Model 4 where we observe same patters as in Models 1–3.
Model 5 is particularly difficult, as column correlations depend through dimen-
sionality p. Also, the maximum-contrast estimator is better than the Lasso (for
example, 0.8 versus 0.3, of the average true positive rate in Model 5), which il-
lustrates the advantage of maximum-contrast estimator for correlated or skewed
settings. Model 6 is a challenging model, and we observe that the Lasso estimator
fails to recover the correct set of variables. Nevertheless, the maximum-contrast
estimator achieves a perfect recovery for all subsample larger than

√
n = 100,

which illustrates the additional advantage of maximum-contrast estimator for
correlated designs. Additionally, note that weight vector wk is improving the
estimation and convergence rate of the introduced method, as the subagging
estimators underperform in all of the Models 4–6.

4.3. Mean squared error

Under the same set of Models 1–6, we investigate the convergence of the pro-
posed method with respect to its mean squared error, as the subsample size
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Fig 2. X-axes represents the subsample size N on a logarithmic scale and the Y-axes rep-
resents the average selection probability of the signal variables (the first column) and of
the noise variables (the second column). The first row is according to Model 4, the sec-
ond according to Model 5 and the third according to Model 6. Colors represent: red-Lasso,
pink-subagging and minimax (6) with brown– K = 1, τ = 1; dark-brown–K = 1, τ = 1/2;
dark-green–K = 1, τ = 4/5; green–K = 10, τ = 1; green-blue–K = 10, τ = 1/2; light-blue–
K = 10, τ = 4/5; blue–K = 3, τ = 1; purple–K = 3, τ = 1/2; dark-pink–K = 3, τ = 4/5.

N gets larger and larger. In this case, we keep the sample size n to be 10000.
Results are summarized in the Figure 3. The maximum-contrast estimator ex-
hibits faster convergence rate in comparison to the traditional subagging by a
large margin across all Models 1–6. Moreover, we see that different choices of τ
do not alter the performance of the estimator by much.

4.4. Sensitivity with respect to the number of blocks b

We also test the sensitivity of the proposed method with respect to the choice of
the number of blocks b. For that purpose, we generate synthetic data from the
simple linear model. Model specifications are equivalent to the ones of Model 1.
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Fig 3. X-axes represents the sample size and the Y-axes represents the average l2 error.
Simulation settings: the first row is according to Model 1 and 2, the second according to
Model 3 and 4, and the third according to Model 5 and 6. Colors represent: red-subagging and
(6) with dark green-K = 3, τ = 0.3, blue-K = 3, τ = 0.5 and purple-K = 3, τ = 0.8.

As a measure of performance, we contrast mean selection frequency of the first 30
important variables with a different number of block i.e. boostrap replications.
Figure 4 summarizes our findings and reports average selection frequency and
its 95% confidence interval for 4 different bootstrap replications: b = 1, 2, 5 and
10. As expected, the larger the b, the smaller is the variability in estimating.
Interestingly, b = 2 was sufficient to guarantee perfect recovery for all τ >
1/2. Even for b = 1 this seems to be true in the example considered, but the
variability is significantly larger then for b ≥ 2, hence making general conclusion
seem inappropriate.

5. Discussion

In this paper, we presented results demonstrating that our decomposition-based
method for approximate variable selection achieves minimax optimal conver-
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Fig 4. Variability of selection probabilities π∗
j among signal variables with a change in the

number of data perturbations (B = 1, B = 2,B = 5 blue, green and pink respectively). X-
axes enumerates the first 30 signal variables, whereas the Y-axes show the median selection
probability. Dashed lines represent corresponding 95% confidence intervals of it.

gence rates, whenever the number of data partitions is not too large. We allow
the number of partitions to grow polynomially with the subsample size. The
error guarantees of the maximum-contrast estimator depend on the effective
number of blocks of sample splits and the effective dimensionality of the sup-
port set (recall bound (14) of Theorem 3). For any number of blocks of sample
splits b ≤ exp{(1− 1/m)n/s+ logn/s}/2 and K ≤ max{Nρ2n

√
b/s,Np/s}, our

method achieves approximate support recovery i.e.

P (S ⊆ Ŝτ ) ≥ 1− p1−cN , E|Sc ∩ Ŝτ | ∼
1√
b

s

p
,

for all λN

√
n/ log p ∈ (1/cN , cN ) and cN ≥ 1. Theorem 4 confirms these to be

minimax optimal for approximate recovery. In addition, we achieve substantial
computational benefits coming from the subsampling schemes, in that compu-
tational costs scale linearly with N rather than n.

The maximal-contrast estimator also has deep connections with the literature
of stability selection. Stability selection (Meinshausen and Bühlmann, 2010)
and paired stability selection (Shah and Samworth, 2013), and more recent
median selection (Wang et al., 2014) can be equivalently formulated as voting
estimators. First, we clarify that even when K = 1,m = 1, b = d, maximum-
contrast is not the same procedure as Stability selection, although they share
the same population objective. The difference is that maximum-contrast utilizes
a minimax estimator of the population objective. Second, maximum-contrast is
designed for the settings with a growing number of subsamples of a very small
size; none of the aforementioned methods can be directly implemented. These
methods need a fix number of large subsamples. Third, our theoretical analysis
differs from that in the existing work; we do not require irrepresentable condition
and we show optimality of the proposed method.
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6. Preliminary lemmas

Let us introduce notation used throughout the proofs. We use 〈·, ·〉n to denote
the empirical inner product, i.e. 〈u,v〉n = 1

nu
Tv. Whenever possible, we will

suppress λn and λN in the notation of β̂(λn) and β̂i:k(λN ), and use β̂ and β̂i:k.
Let P and P

∗ stand for the probability measures generated by the error vector
(ε1, · · · , εn) and generated jointly by the weights w1, · · · , wN and the errors
ε1, · · · , εn.

In order to study statistical properties of the proposed estimator, it is useful
to present the optimality conditions for solutions of the problems (9) and (3).

β̂ is a solution to (9), if and only if〈
Xj ,Y−Xβ̂

〉
n
= λnsign(β̂j), if β̂j �= 0 (16)∣∣∣〈Xj ,Y−Xβ̂

〉
n

∣∣∣ ≤ λn, if β̂j = 0. (17)

β̂i:k is a solution to (3), if and only if〈
D√

wk
XIi,j ,D

√
wk

YIi −D√
wk

XIi β̂i:k

〉
n
= λN sign(β̂i:k,j), if β̂i:k,j �= 0

(18)∣∣∣〈D√
wk

XIi,j ,D
√
wk

YIi −D√
wk

XIi β̂i:k

〉
n

∣∣∣ ≤ λN , if β̂i:k,j = 0.

(19)

In the display above the set of indices Ii corresponds to those which were used
for the computation of β̂i:k.

Below we define the new primal dual witness technique to examine when the
solution to one optimization problem is also a solution to the other.

Lemma 3. Suppose β̂i:k is a solution to the sub-Lasso problem, i.e. it satisfies
(18) and (19). Then, if∣∣∣〈Xj ,YIi −XIi β̂i:k

〉
n

∣∣∣ ≤ λn − λN , for all j : β̂i:k,j = 0,

then β̂i:k,j satisfies (17), that is Ŝc
i ⊆ Ŝc.

Lemma 4. Suppose β̂ is a solution to the Lasso problem, i.e. it satisfies (16)
and (17). Then, if∣∣∣〈Xj ,YIi −XIi β̂

〉
n

∣∣∣ ≤ λN/n− λn, for all j : β̂j = 0,

then β̂j satisfies (19), that is Ŝc ⊆ Ŝc
i .

For the purpose of examining condition number of various design matrices,
we first establish a bound on the spectral norm of the difference between the
inverses of two positive semidefinite matrices. To establish this result we use
Theorem III. 2.8 of Bhatia (1997).
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Lemma 5. Let D,G ∈ R
n×n be two semi-positive definite matrices. Let ‖ · ‖ be

a matrix norm induced by the vector l∞ norm. Then,

∥∥D−1 −G−1
∥∥2 ≤ n

(
1

λmin(D)
+

1

λmin(G)

)
.

Next we show that the solution of the sub-Lasso problem (3) has good pre-
dictive properties. Since proof follows the strategy of Bickel et al. (2009), the
proof is presented in the supplement for completeness.

Lemma 6. Let ‖xj
Ii
‖∞ ≤ c2

√
N/ log p, for some constant c2 > 1 and all 1 ≤

j ≤ p. Then, on the event Aq(λN ) =
⋂p

j=1

{
2 1
n

∑
l∈Ii

wk,l|εiXlj | ≤ λN − q
}
, for

q < λN ,
(i) There exists a positive number en such that min

{
n−1/2

Ew{‖X̃v‖2}/
‖vS‖2 : |S| ≤ s,v ∈ R

p, v �= 0,v ∈ C(3, S)
}
> en. Then, for all m and b

∥∥∥XIi(β
∗ − β̂i:k(λN ))

∥∥∥2
2
≤ (4λN − q)2sn

e2n
a2N for c1σ

√
log p

n
≤ λN ≤ c2σ

√
log p

N
,

for some positive constant aN such that P (min1≤l≤N wl ≥ Ew‖√w‖∞a−1
N ) → 1.

(ii) If Condition 3 holds, then

∥∥∥X̃Ii(β
∗ − β̂i:k(λN ))

∥∥∥2
2
≤ (4λN − q)2sn

ζ2N
, for c1σ

√
log p

n
≤ λN .

Lemma 7. If Condition 3 holds almost surely for X̃, and λN ≥ c1σ
√

log p/n,

then |Ŝi(λN , k)| ≤ ŝ := Csλmax(X̃
T X̃)/(nζ2N ) with probability 1− p1−c, c > 1.

7. Proofs of the main results

In this section, we provide detailed proofs of the main theoretical results of the
paper. One difficulty with each of the sub-Lasso problems is that there is no
automatic mechanism to provide the regularization parameter λN . Note that
under Conditions 4 and 3, approximating the true support set becomes equiva-
lent to approximating the support set of the Lasso estimator (9). We explore this
connection and find values of the tuning parameter λN , which allow the sparsity
pattern of the sub-Lasso to approximate the one of the Lasso estimator.

7.1. Proof of Theorem 1

With k fixed, and a little abuse of notation, we use β̂i to denote β̂i:k throughout
this proof alone. Utilizing Lemma 3, it suffices to show that the event

Ωn =
{∣∣∣〈XIc

i ,j
,YIc

i
−XIc

i
β̂i

〉
n

∣∣∣ ≤ λn − λN

}
, for all j : β̂i,j = 0,
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has large probability. In the display above we used notation

1

n

∑
l/∈Ii

Xlj(Yl −Xlβ̂i) :=
〈
XIc

i ,j
,YIc

i
−XIc

i
β̂i

〉
n
.

Let Ŝi denote the set of the non-zero coefficients of β̂i. Let us denote with
Â = Ŝi ∪ S. Let PÂ be a projection operator into the space spanned by all

variables in the set Â, that is

PÂ = XIc
i ,Â

(XT
Ic
i ,Â

XIc
i ,Â

)−1XT
Ic
i ,Â

.

Then, we can split the inner product
〈
XIc

i ,j
,YIc

i
−XIc

i
β̂i

〉
n
into two terms〈

XIc
i ,j

, (I− PÂ)(YIc
i
−XIc

i
β̂i)
〉
n
+
〈
XIc

i ,j
, PÂ(YIc

i
−XIc

i
β̂i)
〉
n
.

Controlling the size of the set Ωn is equivalent to upper bounding previous two
expressions separately. The second one is more challenging and is presented first.

7.1.1. Step I: Controlling
〈
XIc

i ,j
, PÂ(YIc

i
−XIc

i
β̂i)
〉
n

The KKT equations (18) and (19) provide the upper bound〈
XIc

i ,j
, PÂ(YIc

i
−XIc

i
β̂i)
〉
n
≤ λN

n
XT

Ic
i ,j

XIc
i ,Â

(XT
Ic
i ,Â

XIc
i ,Â

)−1(signβ̂i(λN )).

By Lemma 7, with high probability

|Â| ≤ s+ Csλmax(X̃
T X̃)/(nζN ) := r, (20)

for some nonnegative constant C. Hence, λmin(X
T
Â
XÂ) ≥ inf |A|=r λmin(X

T
AXA),

where the last term is strictly positive by the Condition 3 with a constant a = 1
and a vector v = (1, . . . , 1, 0, . . . , 0), supp(v) = A. In turn, we see that the
matrix XT

AXA is invertible with high probability.

We split λN

n XT
Ic
i ,j

XIc
i ,Â

(XT
Ic
i ,Â

XIc
i ,Â

)−1(signβ̂i(λN )) into the sum T1 + T2

with

T1 =
λN |Â|

n
(XT

Â
XÂ)

−1XT
Ic
i ,Â

XIc
i ,j

∈ R
|Â|

and

T2 =
λN |Â|

n

[
(XT

Ic
i ,Â

XIc
i ,Â

)−1 − (XT
Â
XÂ)

−1
]
XT

Ic
i ,Â

XIc
i ,j

∈ R
|Â|.

By the Hölder’s inequality, it suffices to bound ‖T1‖∞ and ‖T2‖∞. We treat
the two terms independently. First, by the triangular inequality

‖T1‖∞ ≤ λN |Â|
n

∥∥∥(XT
Â
XÂ)

−1
[
XT

Ic
i ,Â

XIc
i ,j

−XT
Â
Xj

]∥∥∥
∞

(21)
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+
λN |Â|

n

∥∥(XT
Â
XÂ)

−1XT
Â
Xj

∥∥
∞ (22)

:= T11 + T12.

We proceed to bound T11 and T12 next. Let us first discuss the term T11. By
consistency of the vector norm ‖ ‖ and its corresponding operator norm ‖ ‖,
Proposition IV.2.4 of Bhatia (1997), guarantees that

‖Mx‖ ≤ ‖M‖‖x‖,

for a matrix M and a vector x. Therefore, for M = (XT
Â
XÂ)

−1 and x =

XT
Ic
i ,Â

XIc
i ,j

−XT
Â
Xj ,

‖T11‖∞ ≤ λNr

n

∥∥(XT
Â
XÂ)

−1
∥∥ ∥∥∥XT

Ic
i ,Â

XIc
i ,j

−XT
Â
Xj

∥∥∥
∞

,

with the induced operator normed ‖ · ‖ defined as

∥∥(XT
Â
XÂ)

−1
∥∥ = sup

v 
=0

‖(XT
Â
XÂ)

−1v‖∞
‖v‖∞

.

Let En = {Â = Ŝi ∪ S, |Â| ≤ r : r ≥ 0}.
On the event En, we have

∥∥(XT
Â
XÂ)

−1
∥∥ ≤ sup

A:|A|≤r

sup
v
=0

‖(XT
AXA)

−1v‖∞
‖v‖∞

= max
‖v‖∞=1,v 
=0

sup
A:|A|≤r

‖(XT
AXA)

−1v‖∞.

For a matrix M ∈ R
r×r, and its operator and Frobenious norm, a simple in-

equality holds ‖M‖ ≤ √
r‖M‖F =

√
r
√
λmax(M

TM) (Bhatia, 1997). Using

such inequality, on the event En we have∥∥(XT
Â
XÂ)

−1
∥∥ ≤

√
r sup
A:|A|≤r

√
λmax

(
(XT

AXA)−2
)
.

Furthermore, as λmax(M
−1) = λ−1

min(M) (Bhatia, 1997), on En∥∥(XT
Â
XÂ)

−1
∥∥ ≤

√
r/ sup

|A|≤r

λmin(X
T
AXA) ≤

√
r/ζ2N ,

where in the last step Condition 3 guarantees λmin(X
T
AXA) ≥ ζ2N on the set En.

At the moment, the bound on ‖T11‖∞, conditional on the event En, is as follows

‖T11‖∞ ≤ λNr2

nζ2N

∥∥∥XT
Ic
i ,Â

XIc
i ,j

−XT
Â
Xj

∥∥∥
∞

. (23)
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Now we observe that simple inequality provides

‖XT
Â
Xj‖∞ = max

q∈Â

n∑
i=1

|XiqXij | ≥ max
q∈Â

∑
i∈Ii

|XiqXij | = ‖XT
Ic
i ,Â

XIc
i ,j

‖∞. (24)

Combined with the triangular inequality, conditional on the event En, guarantees
that T11 is bounded as

‖T11‖∞ ≤ 2λNr2

nζ2N

∥∥XT
Â
Xj

∥∥
∞ . (25)

Moreover, the norm inequality ‖x‖∞ ≤ ‖x‖2 holds for any vector x. In combi-
nation with Lemmas 1 and 7,

‖T11‖∞ = OP

(
2λNr2

nζ5N

)
. (26)

For the term T12, we first observe that ‖x‖∞ ≤ ‖x‖1. Second, if we use
equation (8) of Lemma 1, and the result of Lemma 7

‖T12‖∞ = OP

(
λNr3/2

nζN

)
. (27)

We now discuss the term T2. By the the consistency of the operator and the
vector norms we have

‖T2‖∞ ≤ λNr

n

∥∥∥(XT
Ic
i ,Â

XIc
i ,Â

)−1 − (XT
Â
XÂ)

−1
∥∥∥ ‖XT

Ic
i ,Â

XIc
i ,j

‖∞ (28)

where the operator norm above is defined as

∥∥∥(XT
Ic
i ,Â

XIc
i ,Â

)−1 − (XT
Â
XÂ)

−1
∥∥∥ = sup

v 
=0

∥∥∥((XT
Ic
i ,Â

XIc
i ,Â

)−1 − (XT
Â
XÂ)

−1
)
v
∥∥∥
∞

‖v‖∞
.

We treat each term in (28) separately.
Using G = XT

Â
XÂ and D = XT

Ic
i ,Â

XIc
i ,Â

in Lemma 5 we have∥∥∥(XT
Ic
i ,Â

XIc
i ,Â

)−1 − (XT
Â
XÂ)

−1
∥∥∥≤√

r
√

λ−1
min(X

T
Ic
i ,Â

XIc
i ,Â

)+λ−1
min(X

T
Â
XÂ). (29)

Moreover, on the event En

λmin(X
T
Ic
i ,Â

XIc
i ,Â

) ≥ λmin(X
T
Â
XÂ) ≥ inf

|A|=r
λmin(X

T
AXA) ≥ ζ2n,

where the last inequality follows from Condition 3.
Term ‖XT

Ic
i ,Â

XIc
i ,j

‖∞ is bounded similarly as with the term T1. Therefore,

we conclude

‖T2‖∞ = OP

(√
2λNr3/2

nζnζ3N

)
. (30)
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7.1.2. Step II: Controlling
〈
XIc

i ,j
, (I− PÂ)(YIc

i
−XIc

i
β̂i)
〉
n

By definition of Â we have S ⊂ Â and by Lemma 7 that |Â| ≤ r with high
probability. Hence, with r as in (20), the term of interest is upper bounded with

sup
A:|A|≤r

sup
j /∈A

〈
XIc

i ,j
, (I− PA)εIc

i

〉
n
.

Remember ‖Xj‖2 = 1. Note that for all j /∈ A, |XT
j PAε| ≤ ‖PAε‖2. Hence, the

expression in the above display is then bounded with

max
j∈{1,··· ,p}

〈
XIc

i ,j
, εIc

i

〉
n
+ sup

A:|A|≤r

1

n
‖PAεIc

i
‖2. (31)

Observe that ‖XIc
i ,j

‖2 ≤ 1, |Ici | = N − n and that 〈·, ·〉 denotes the empirical
inner product. Since {εi}ni=1 are i.i.d. with bounded moments, we have by the
weighted Bernstein inequality, that there exists a constant c > 0 such that for
a sequence of positive numbers un

P

(
n

n−N
max

j∈{1,··· ,p}

∣∣∣〈XIc
i ,j

, εIc
i

〉
n

∣∣∣ ≥ un

)

= P

⎛⎝ 1

n−N

∑
i∈Ic

i

|Xi,jεi| ≥ un

⎞⎠ ≤ exp

{
−c

(N − n)2u2
n

8σ2

}
. (32)

For a choice of un = 2σ
√

log p/(N − n) the above probability will converge to
zero.

We now bound the second term in (31). Lemma 7 implies that, conditional
on the event En√

(n−N)‖PÂεIc
i
‖2/σ ≤ sup

|A|=r

√
(n−N)‖PAεIc

i
‖2/σ.

Furthermore, sup|A|=r

√
(n−N)‖PAεIc

i
‖2/σ has a χr distribution. Hence, tail

bounds of the Chi-squared distribution (Lemma 1 of Laurent and Massart
(2000)) lead to

P

(
(n−N) sup

A:|A|≤r

‖PAεIc
i
‖22 ≥ σ2r(1 + 4 log p)

)
≤ exp{−3/2r log p}. (33)

Plugging in (32) and (33) into (31), we obtain

∣∣∣〈XIc
i ,j

, (I− PÂ)(YIc
i
−XIc

i
β̂i)
〉
n

∣∣∣ ≤ 2σ

√
(n−N) log p

n2
+ 2σ

√
4r log p

n2(n−N)
(34)

with probability 1− 2p−c.
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Combining (26), (27), (30) and (34) we obtain∣∣∣〈XIc
i ,j

,YIc
i
−XIc

i
β̂i

〉
n

∣∣∣ ≤ 2λNr2

nζ5N
+

2λNr3/2

nζN

+

√
2λNr3/2

nζnζ3N
+ 2σ

√
(n−N) log p

n2
+ 2σ

√
4r log p

n2(n−N)
,

with probability of 1− p1−c, c ≥ 1.
Moreover, according to Lemma 3 the RHS of the expression above needs to

be smaller than λn − λN , for the event Ωn to hold. This leads to the relation of

λn ≥ λN +
2λNr2

nζ5N
+

2λNr3/2

nζN
+

√
2λNr3/2

nζnζ3N

+ 2σ

√
(n−N) log p

n2
+ 2σ

√
4r log p

n2(n−N)
,

which completes the proof.

7.2. Proof of Theorem 2

We show that the condition of Lemma 4 holds with high probability for the
Lasso estimator β̂ = β̂(λn). To that end, we define an event

Ωn =
{∣∣∣〈XIc

i ,j
,YIc

i
−XIc

i
β̂
〉
n

∣∣∣ ≤ λN/n− λn

}
, for all j : β̂j = 0

and show that it has a large probability. In the above, we utilized the following
notation

1

n

∑
l/∈Ii

Xlj(Yl −Xlβ̂) :=
〈
XIc

i ,j
,YIc

i
−XIc

i
β̂
〉
n
.

Let Ŝ be the set of non-zero coefficients of the Lasso estimator β̂. Let PŜ be

the projection operator into the space spanned by all variables in the set Ŝ.
By repeating similar decomposition analysis developed in Theorem 1,〈
XIc

i ,j
,YIc

i
−XIc

i
β̂
〉
n
is bounded with〈

XIc
i ,j

, (I− PŜ)(YIc
i
−XIc

i
β̂)
〉
n
+
〈
XIc

i ,j
, PŜ(YIc

i
−XIc

i
β̂)
〉
n
,

the proof setup of Step I and II of Theorem 1 extends easily.

Controlling
〈
XIc

i ,j
, (I− PŜ)(YIc

i
−XIc

i
β̂)
〉
n
follows by adapting the proof

of Theorem 1 to a different projection matrix. This term is upper bounded by
utilizing KKT conditions with

λn

n
XT

Ic
i ,j

XIc
i ,Ŝ

(XT
Ic
i ,Ŝ

XIc
i ,Ŝ

)−1(signβ̂(λn))



152 J. Bradic

Expression above is bounded by

λn

n
XT

Ic
i ,j

XIc
i ,Ŝ

(XT
Ŝ
XŜ)

−1(signβ̂(λn))

+
λn|Ŝ|
n

∥∥∥[(XT
Ic
i ,Ŝ

XIc
i ,Ŝ

)−1 − (XT
Ŝ
XŜ)

−1
]
XT

Ic
i ,Ŝ

XIc
i ,j

∥∥∥
∞

:= U1 + U2. (35)

We proceed to bound U1 and U2 independently. By Condition 4, the first term,
U1, can be bounded with

λn

n
+

λn|Ŝ|
n

∥∥∥(XT
Ŝ
XŜ)

−1
[
XT

Ic
i ,j

XIc
i ,Ŝ

−XT
j XŜ

]∥∥∥
∞

.

By the Hölder’s inequality, the expression above is bounded from above by

λn

n
+

λn|Ŝ|
n

sup
|A|≤r

λ−1
min

(
XT

AXA

)
sup
|A|≤r

sup
j /∈A

∥∥∥XT
Ic
i ,A

XIc
i ,j

−XT
AXj

∥∥∥
∞

,

where r denotes the size of the set Ŝ. Its size follows from Lemma B.1 of Bickel
et al. (2009), i.e.

|Ŝ| ≤ Csλmax

(
1

n
XTX

)
/ζn := r (36)

with probability approaching 1. Next, by Condition 3 and Lemma 7 we have,
sup|A|≤r λ

−1
min

(
XT

AXA

)
≤ 1

ζ2
n
and∥∥∥XT

Ic
i ,A

XIc
i ,j

−XT
AXj

∥∥∥
∞

≤
∥∥∥XT

Ic
i ,A

XIc
i ,j

−XT
AXj

∥∥∥
2
≤ √

r/ζN−n, respective-

ly. Combining all of the above,

U1 = OP

(
λn

n
+

λnr
3/2

nζ2nζN−n

)
. (37)

Regarding U2 we note that (29) still holds with Ŝ replacing Â. Moreover,
Lemma 1 still applies. Hence, we can conclude

U2 = OP

(√
2λnr

3/2

nζnζ3N−n

)
. (38)

Controlling
〈
XIc

i ,j
, PŜ(YIc

i
−XIc

i
β̂)
〉
n
is done as in Theorem 1. The same

steps still apply by noticing that S ⊆ Ŝ (as Conditions 4 and 3 hold) and that
Lemma 1 holds. Hence, we obtain

∣∣∣〈XIc
i ,j

, (I− PÂ)(YIc
i
−XIc

i
β̂)
〉
n

∣∣∣ ≤ 2σ

√
(n−N) log p

n2
+ 2σ

√
4r log p

n2(n−N)
(39)
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Adding results of (37) and (38) with the one above, we obtain∣∣∣〈XIc
i ,j

,YIc
i
−XIc

i
β̂
〉
n

∣∣∣ ≤ λn

n
+

λnr
3/2

nζ2nζN−n
+

√
2λnr

3/2

nζnζ3N−n

+ 2σ

√
(n−N) log p

n2
+ 2σ

√
4r log p

n2(n−N)

with probability 1− p1−c, c > 1. Note that for all λn ≥ σ
√

log p/n, there exists
a constant C ′ > 1, such that r ≤ Csλmax

(
1
nX

TX
)
/ζn ≤ C ′s. According to the

definition of Ωn it suffices to have the RHS above bounded with λN

n − λn. In
turn, this implies

λN

n
≥ λn +

λn

n
+

λnC
′3/2s3/2

nζ2nζN−n
+

√
2λnC

′3/2s3/2

nζnζ3N−n

+ 2σ

√
(n−N) log p

n2
+ 2σ

√
4C ′s log p

n2(n−N)
.

7.3. Proof of Theorem 3

The main ingredient of the proof is based on the intermediary results stated in
Theorems 1 and 2. The first part of the statement follows by utilizing Theorem
1 in order to conclude that S ⊆ Ŝτ , with probability close to 1. Unfortunately,
as conditions of Theorems 2 contradict those of Theorem 1, we cannot easily use
their results to conclude the second part of the statement. Therefore, this paper
develops and presents a new method for finding the optimal value of the tuning
parameter λN . It is based on finding the optimal bias-variance tradeoff, where
bias is replaced with variable selection error and variance with prediction error.
It allows good, but not the best, prediction properties while obtaining desired
variable selection properties. We split the proof into two parts. The first bounds
the number of false positives, whereas the second finds the optimal choice of λN .

7.3.1. Bounding false positives

Let Ŝi(λN ) = ∪K
k=1Ŝi(λN , k). Assume that the weighted maximal-contrast sub-

baging procedure is not worse than a random guess (see Theorem 1 of Mein-
shausen and Bühlmann (2010)), i.e. for

|Sc|E
[
|S ∩ Ŝi(λN )|

]
≥ |S|E

[
|Sc ∩ Ŝi(λN )|

]
(40)

then the expected number of falsely selected variables is bounded by

E[|Sc ∩ Ŝτ |] ≤ 2

√
b

1 +
√
b

KM
(
max1≤k≤K E|Ŝ1(λN , k)|

)M
pM−1

,

for all choices of τ ≥ 1
2(1+

√
b)
.
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Proof
Define a binary random variable Hλ

K = 1{j ⊆ ∩m
l=1Ŝmq+1−l(λN )} for all

variables j ⊂ {1, . . . , p} with Ŝi(λN ) = ∪K
k=1Ŝi(λN , k) and q = 1, · · · , b. Re-

member that mb = d. Then, the selection probability is expressed as a function
of simultaneous selection probability

π∗
j (λN ) :=

√
b

1 +
√
b
P
∗(j ⊆ ∩m

l=1Ŝmq+1−l(λN )) +
1

2(1 +
√
b)

=

√
b

1 +
√
b
E(Hλ

j |Z) +
1

2(1 +
√
b)

where the probability P
∗ denotes probability with respect to the random sample

splitting. Here Z = (X1, . . . , Xn, Y1, . . . , Yn) denotes the whole original sample
of size n. Then, for p∗j (λN ) = P∗(j ⊆ ∩m

l=1Ŝmq+1−l(λN )), we have

P (π∗
j (λN ) ≥ τ) = P

(
p∗j (λN ) ≥ 1 +

√
b√

b

(
τ − 1

2(1 +
√
b)

))
Then,

E(Hλ
j |Z) = E(p∗j (λN )) = P (Hλ

K = 1)

≤
m∏
l=1

P (K ⊆ Ŝmq+1−l) = P (j ⊆ Ŝ1(λN ))m.

Here Ŝ1(λN ) denotes ∪K
k=1Ŝ1(λN , k). By Markov inequality for exchangeable

Bernoulli random variables, we know that

P (p∗j (λN ) ≥ ξ) ≤ E(p∗j (λN ))/ξ ≤ P (j ⊆ Ŝ1(λN ))m/ξ.

By arguments similar to that of Theorem 1 in Meinshausen and Bühlmann
(2010), we know that

P (j ⊆ Ŝ1(λN )) ≤ E|Ŝ1(λN )|/p ≤ max
1≤k≤K

KE|Ŝ1(λN , k)|/p.

Hence, for a threshold τ ≥ 1
2(1+

√
b)

we have

P (π∗
j (λN ) ≥ τ) ≤

√
bKm(max1≤k≤K E|Ŝ1(λN , k)|)m

(1 +
√
b)(τ − 1

2(1+
√
b)
)pm

≤ 2

√
b

1 +
√
b

Km(max1≤k≤K E|Ŝ1(λN , k)|)m
pm

.

Together with E[|Sc ∩ Ŝτ |] =
∑

j∈Sc P (maxλN
π∗
j (λN ) ≥ τ), it leads to the

E[|Sc ∩ Ŝτ |] ≤ 2

√
b

1 +
√
b

Km(max1≤k≤K E|Ŝ1(λN , k)|)m
pm−1

.
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7.3.2. Optimal choice of λN

Next, we show that proposed aggregated sub-Lasso estimators are better than
the random guess in the sense of (40). As expected, such property is not achieved
for all values of λN . By analyzing equation (40) and utilizing results of Theorem
1, we infer that the sequence of λN that achieves control of false positives and
allows results of Theorem 1 to hold, is the optimum of the following optimization
problem

min q (41)

s.t. E|Ŝi(λN )| ≤ 1

2
p1−1/m

P (Aq(λN )) ≥ 1− δ

λN > 0, q ≥ 0, δ > 0

where the events

Aq(λN ) =

p⋂
j=1

{
2
1

n

∑
l∈Ii

wk,l|εiXlj | ≤ λN + q

}
.

Although the problem (41) is stated in terms of q, the paper demonstrates that
the optimal value of q leads to the optimal value of λN .

We provide a few comments on the optimization problem (41). While allowing
deviations of the IR(N) conditions, the first constraint is sufficient to guarantee
that sub-Lasso estimators are better than random guessing (i.e. that (40) is
satisfied). The second constraint restricts our attention to a sequence of random
coverage sets Aq(λN ). They control variable selection properties, whereas the
first constraint intrinsically controls predictive properties. Hence, they cannot
be satisfied simultaneously on sets A0(λN ). For q = 0 the best prediction is still
achievable, but variable selection is not. Hence, we need to allow for possible
deviation of the smallest sets A0(λN ) by allowing small perturbations of size
q. Our goal is to find the smallest possible perturbation q, which allows high
probability bounds on the selection of the false negatives and simultaneously
controls the size of the selected sets in sub-Lasso estimators.

We further represent conditions of the stochastic problem (41) in a concise
way. Note that from KKT conditions of each of the sub-Lasso problems and
definition of the sets Aq, we can see that for all j such that β̂i:k,j(λN ) �= 0

1

n

∑
l∈Ii

wk,l|
[
Ỹl − X̃lβ̂i:k(λN )

]
Xlj | = λN sign(β̂i:k,j(λN )).

Moreover, triangle inequality upper bounds the LHS with

1

n

∑
l∈Ii

wk,l|
[
X̃lβ

∗ − X̃lβ̂i:k(λN )
]
Xlj |+

1

n

∑
l∈Ii

|wk,lXljεl|.
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On the set Aq(λN ) we have that the last term is bounded with (λN +q)/2. This
leads to

1

n

∑
l∈Ii

wk,l

∥∥∥[X̃lβ
∗ − X̃lβ̂i:k(λN )

]
Xlj

∥∥∥
∞

≥ λN − λN + q

2
. (42)

Then, on the event Aq from the from the KKT conditions of β̂i:k(λN ) �= 0 for

all j, such that β̂i:k,j(λN ) �= 0,

=
1

n2

p∑
j=1

∥∥∥X̃T

k,j

(
X̃kβ

∗ − X̃kβ̂i:k(λN )
)∥∥∥2

2

(i)

≥ 1

n2

∑
j∈Ŝi(λN ,k)

∥∥∥X̃T

k,j

(
X̃kβ

∗ − X̃kβ̂i:k(λN )
)∥∥∥2

2

(ii)
= |Ŝi(λN , k)|(λN − q)2/4,

where (i) follows from the non-negativity of the summands and (ii) from (42)
and inequality of the vector norms ‖x‖∞ ≤ ‖x‖2, for a vector x. All of the above
leads to

|Ŝi(λN , k)|
(i)

≤ 4λmax(X̃
T
k X̃k)

(λN − q)2n2

∥∥∥X̃k

[
β∗ − β̂i:k(λN )

]∥∥∥2
2
, (43)

where inequality (i) follows from the above manipulations and inequality of
the norms ‖MTx‖22 ≤ λmax(M

TM)‖x‖22, with a matrix M and a vector x.
Moreover, from Lemma 6 (ii) we have that

1

n
‖X̃k(β

∗ − β̂i:k(λN ))‖22 ≤ (16λ2
N + q2)s

ζ2N
.

The tower property of expectations together, with (43),

E|Ŝi(λN )| ≤ (64λ2
N + 4q2)sK

n(λN − q)2ζ2N
max

1≤k≤K
Ew

(
λmax(X̃

T
k X̃k)

)
. (44)

In the above expressions λN ≥ c4
√
log p/n, for some c4 > 0. We are left to

evaluate the size of sets Aq. This step of the proof is based on a Bernstein’s
inequality for the exchangeable weighted bootstrap sequences contained in an
intermediary result Lemma 2. From Lemma 2 we have

P

(∣∣∣〈εIi ,DwXIi〉n
∣∣∣> un

)
≤ exp

{
N log fw − n2u2

n

2σ2N‖XIi‖∞,2 + 2ncun‖XIi‖∞,∞

}
,

with fw defined in Condition 1. In display above, ‖XIi‖∞,2 := max
{
X2

Iij
:

Ii ⊂ {1, · · · , n}, |Ii| = N, 1 ≤ j ≤ p
}

and ‖XIi‖∞,∞ := max
{
|X|Iij : Ii ⊂
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{1, · · · , n}, |Ii| = N, 1 ≤ j ≤ p
}
. Hence, for un = tσ

√
2, and t such that for two

constants c5 and c6

c6
√

log p/N ≥ t ≥ c5
√
log p/n (45)

and ‖XIi‖∞,∞ ≤ c6
√
N/ log p then there exists a positive constant c0 > 1

P

(
1

n

∣∣∑
l∈Ii

wk,lXljεl
∣∣> tσ

√
2

)
≤ 2 exp

{
−c0

nt2

‖XIi‖∞,2

}
.

In particular, any choice of c5 < 1 < c6 would work; even those as large as
c5 = N/n, c6 = n satisfy previous constraints. For a choice of t of λN − q we
then have

P (Aq(λN )) ≥ 1− 2 exp
{
−cn(λN − q)2/‖XIi‖∞,2

}
→ 1, (46)

as long as logwN
2 < n/N log p, which in turn is guaranteed by the Condition 1.

Now with (44), (45) and (46) we can represent the solution to the stochastic
optimization problem (41) as a solution to the following program

min q ≥ 0 (47)

s.t.
(λN − q)2

λ2
N + q2/4

≥ 16sp1/m

Nζ2Np
max

1≤k≤K
Ew

(
λmax(X̃

T
k X̃k)

)
,

P (Aq(λN )) ≥ 1− 2 exp
{
−cn(λN − q)2/‖XIi‖∞,2

}
max{c4, c5}σ

√
log p

n
< λN ≤ c6σ

√
log p

N
.

for constants max{c4, c5} < c6. The RHS of the last constraint inequality is
a consequence of Lemma 6 (which is used numerous times in the steps of the
proof). The first constraint of the above problem can be reformulated as

λ2
N > q2 + 32q2

sp1/m

Nζ2Np
ΛK

(
1− 16sp1/m

Nζ2Np
ΛK

)−1

,

with ΛK = max1≤k≤K Ew

(
λmax(X̃

T
k X̃k)

)
. Then we can see that the optimal

values of q are of the order of c7σ
√

log p
n for a constant c7 > 0 that satisfies

c7 ≤
√

n−N

n

√
ζN + 2

√
ΛK

2
√
ζN +

√
ζN/λmin(X

T
Ic
i
XIc

i
)
.

Notice that the optimal value of q allows sets Aq(λN ) to have large coverage
probability. c4, c5, c6 and c7 are constants; they satisfy 0 < max{c4, c5}+c7 < c6.
They are not close, as there is a great deal of latitude as to which number once
can choose. For example, constant c6 can be chosen to be max{c4, c5} + 1 as
constant c7 ≤ 1. All of the above results in the choice of the optimal value

of the tuning parameter λN as follows c8σ
√

log p
n ≤ λN ≤ c9σ

√
log p
n , where

c8 = max{c1, c4, c5} ≤ 1 and c9 = min{c2, (c6 − c7)} > 1.
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7.4. Proof of Theorem 4

7.4.1. Part(a)

To prove the part (a), we use the standard technique of Fanno’s lemma in order
to reduce the minimax bound to one problem of testing M + 1 hypothesis. We
split p covariates into M ≥ s disjoint subsets J1, . . . , JM , each of size p/M .
Let Jl be a collection of disjoint sets each of sparsity s, which we denote with
{Jl}. Hence, each subset Jl is a collection of

(
p/M
s

)
, s-sparse sets. We proceed

by defining probability measures μl on the B0(s) ball to be Dirac measures at
βl where βl is chosen as follows. We define βl for l �= 0 as linear combination
of vectors in Z

p

βl =
∑
z∈Zp

θz,lz,

with θz,l = 1 if z = (z1, . . . , zp) = (1{1 ∈ Jl}, . . . , 1{p ∈ Jl}) and zero otherwise.
Obviously, all βl ∈ B0(s) and have Jl as sparsity pattern. These measures μl

are chosen in such a way that for each l ≥ 1 there exists a set Jl of cardinality
s such that μl{S ⊆ Jl} = 1 and all the sets Jl are distinct. The measure μ0 is
the Dirac measure at 0. Consider these μl as priors on B0(s) ball and define the
corresponding posteriors P0, . . . ,PM by Pl(A) =

∫
β∈B0(s)

Pβ(A)dμl(β).

With this choice of βl we can easily check

K(Pβl
,P0) ≤ nρn, (48)

where K denotes the Kullback-Leibler divergence between two probability mea-
sures and for ρn < ∞ and such that

max

{
n∑

l=1

E(Xlv)
2

√
n‖vS‖2

: |S| ≤ s,v ∈ R
p,v �= 0,v ∈ C(3, S)

}
< ρn. (49)

Next, observe that

inf
J

sup
β∈B0(s)

Pβ (S �⊆ J) ≥ inf
J

sup
l=1,··· ,M

sup
β∈Θl

Pβ (S �⊆ J)

for Θl = {β : supp(β) ⊂ Jl}. By the Scheffe’s theorem and the first Pinsker’s
inequality (see Lemma 2.1 and 2.6 of Tsybakov (2009)), the RHS above can be
lower bounded with

1− 1

M

M∑
l=1

‖Pβl
− P0‖TV ≥ 1− 1

M

M∑
l=1

(1− 1

2
exp{−K(Pβl

,P0)}),

where ‖ ‖TV denotes total variation distance between two probability measures.

Notice that we can choose the sets within a collection Jl into
(
p/M
s

)
ways.

Together with (48) we have

inf
J

sup
β∈B0(s)

Pβ (S �⊆ J) ≥ 1

2
exp{log

(
p/M

s

)
−nρn} ≥ 1

2
exp{s2 log(p/s2)−nρn}.

It suffixes to notice that the RHS is bigger than p1−c′ under conditions of the
theorem.
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7.4.2. Part(b)

To prove part (b), we use the Assouad’s lemma with appropriately chosen hy-
pothesis to reduce the minimax bound to Q problems of testing only 2 hypoth-
esis. Consider the set of all binary sequences of length p that have exactly s non
zero elements,

Ω = {ω = (ω1, . . . , ωp), ωi ∈ {0, 1} : ‖ω‖0 = s}.

Note that the cardinality of this set is |Ω| = 2s
(
p
s

)
. Let ρ(ω, ω′) be the Hamming

distance between ω and ω′, that is ρ(ω, ω′) =
∑Q

q=1 1{ωq �= ω′
q}. First, the focus

is on accessing the cardinality of the set {ω′ ∈ Ω : ρ(ω, ω′) ≤ 1}. Observe that
one can choose a subset of size 1 where ω and ω′ agree and then choose the
other s− 1 coordinates arbitrarily. Hence, the cardinality is less than 3

(
p
1

)
. Now

consider the set A ⊂ Ω such that |A| ≤
(
p
s

)
/
(
p
1

)
≤ (p− s). The set of elements

ω ∈ Ω that are within Hamming distance 1 of some element of A has cardinality
of at most |A|3

(
p
1

)
< |Ω|. Therefore, for any such set with cardinality |A|, there

exists an ω ∈ Ω such that ρ(ω, ω′) > 1. The expected number of false positives
of an estimator J is given by

Eω|J \ Sω| =
Q∑

q=1

Eωdq(J, ωq)

with dq(J, ωq) = ρ(1{q ∈ J}, wq) and ρ as Hamming distance. Define the statis-
tic ω′

q = argmint=0,1 dq(J, t). Then, by the definition of ω′
q we have dq(ω

′
q, ωq) =

|ωq − ω
′

q| ≤ dq(J, ω
′
q) + dq(J, ωq) ≤ 2dq(J, ωq). Moreover,

Eω|J \ Sω| ≥
1

2

p∑
q=1

Eω|ω′
q − ωq| =

1

2
Eωρ(ω

′, ω).

Therefore, from Assouad’s Lemma (see Theorem 2.12 of Tsybakov (2009)) we
have

inf
J

sup
β∈B0(s)

Eβ|Sc ∩ J | ≥ 1

2
inf
ω′

sup
ω∈Ω

Eωρ(ω
′, ω)

≥ 1

4
2s
(
p

s

)
max

{
exp{−α}, (1−

√
α/2)

}
as long as K(Pω′ ,Pω) ≤ α < ∞. Straight forward computation shows that
K(Pω′ , Pω) ≤ nρn.

7.5. Proof of Theorem 5

Proof follows simple computations using result of Theorem 1 and equations (10)
and (11).
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The risk of the estimator π∗(λn) is equal to E(π∗(λn) − pj)
2 = 1

4
1

(1+
√
b)2

.

Moreover,

var
(
π∗
j (λn)

)
≤ 1

4

1

(1 +
√
b)2

(i)
<

pj(1− pj)

b

(ii)

≤
P (β̂j(λn) �= 0)

(
1− P (β̂j(λn) �= 0)

)
b

= var (πj(λn))

where (i) holds for all pj ∈ (1/2−cn, 1/2+cn) and for small values of b, cn ∼ 1/2
and (ii) follows from Theorem 1 and equations (10) and (11).

7.6. Proof of Theorem 6

Lemmas 3 and 4 are stated for general sub-Lasso estimator and can easily be
adapted to case of bagged estimator. With their help and results of Theorems 1
and 2, we are ready to finalize the proof of Theorem 6. Equivalent of Lemma 3

requires |
∑

l/∈Ii
(Yl −XT

l β̂
b
(λ1

n))Xlj | ≤ nλn − nλ1
n to hold, whereas equivalent

of Lemma 4 requires |
∑

l/∈Ii
(Yl−Xlβ̂(λn)Xlj | ≤ λ1

n/n−nλn to hold. The proof
follows easily as a consequence of results obtained in Theorems 3, 1 and 2.

Approximating sparse recovery is not possible as a consequence of the proof
of Theorem 3. For the bagged estimator (15), there exists no feasible q that is
different from zero, which solves the equivalent of (47). The equivalent of (47)
would require, on one side q >

√
log p/N and on the other q <

√
log p/n. For

N � n this is not possible as
√
log p/N >

√
log p/n. For a special case of

N = n/k, only the choice of k = 1 and fixed, not divergent s and p, allows both
conditions to be satisfied.

Second, on the subject of the exact sparse recovery, as a consequence of
previous equivalent of Lemma 4 and Theorem 1,

λn ≥ λ1
n +

2c9λ
1
ns

2

nζ5N
+

2c10λ
1
ns

3/2

nζN
+

√
2c11λ

1
ns

3/2

nζnζ3N
(50)

+ 2σ

√
(n−N) log p

n2
+ 2σ

√
4r log p

n2(n−N)
,

for some universal, positive and bounded constants c9, c10, c11. As a consequence
of equivalent of Lemma 3 and Theorem 2 (where a factor of 1/n is lost due to
the fact that all weights are equal to 1)

λ1
n ≥ λn +

λn

n
+

c12λns
3/2

nζ2nζN−n
+

√
2c13λns

3/2

nζnζ3N−n

(51)
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+ 2σ

√
(n−N) log p

n2
+ 2σ

√
4C ′s log p

n2(n−N)
,

for some universal, positive and bounded constants c12, c13.
If N ≤ n then, from the above contradictory conditions one can see that

for all fixed λn and all j ∈ Ŝ(λn), for all λ1
n, P (j ∈ Ŝi(λ

1
n)) = 0. Moreover,

we employ the Massart’s Dvoretzky-Kiefer-Wolfowitz inequality to bound the
distance between an empirically determined distribution function and the pop-
ulation distribution function. Hence,

P

(
1

d

d∑
i=1

1(j ∈ Ŝi(λ
1
n)) ≤

1

2
P (j ∈ Ŝ1(λ

1
n))

)

≤ P

(
sup

λ∈(0,λ1
n]

√
n

∣∣∣∣∣1d
d∑

i=1

1(j ∈ Ŝi(λ
1
n))

−P (j ∈ Ŝ1(λ
1
n))

∣∣∣∣∣ ≥ √
d/2 P (j ∈ Ŝ1(λ

1
n))

)
≤ 2e−dP (j∈Ŝ1(λ

1
n))

2/2.

As we have shown that for all λ1
n, P (j ∈ Ŝi(λ

1
n)) = 0, it follows that subagged

estimator does not have the same sparsity set as the Lasso estimator, i.e.

P
(
∃λn ≥ 0, ∃λ1

n ≥ 0 : Ŝ(λn) = Ŝb(λ1
n)
)
= 0.

For a special case of N = n/k we see that the only choice of k = 1 and fixed,
not divergent s and p allows equations (50) and (51) to be satisfied up to a
constant. That is, there exist two constants 0 < c < ∞ and 0 < c1 < ∞ such
that for the choice of λn = cλ1

n ≥ c1n
−1/2 (i.e. result of Bach (2008) only holds

for fixed p)

7.7. Proof of Theorem 7

If Condition 3 holds on the bootstrapped data matrix, then the result of this
Theorem follows by repeating the steps of the proof of Lemma 6 with simplifi-
cation of no weighting scheme wk, to obtain

√∑
j∈S

|β̂i:k,j − β∗
j |2 ≤

∥∥∥XIi(β̂i:k(λN )− β∗)
∥∥∥
2

ζN
√
n

.

Following the steps parallel to those in Bickel et al. (2009), one can obtain the
predictive bounds of the order of sλN/ζ2N , forN = n/k and λN ≥ 2σ

√
2k log p/n.

From the classical results on Lasso prediction bounds, we know that optimal
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λn ≥ 2σ
√
2 log p/n. The statement of the theorem follows, if we are able to

bound the following expression

δn =

∣∣∣∣λN

ζ2N
− λn

ζ2n

∣∣∣∣
We write |ζ2N−ζ2n| = ζ2n−ζ2N = εn for some εn ≥ 0. Then for λN ≤ 2σ

√
2k log p/n

we have

δn =

∣∣∣∣ λN

ζ2n − εn
− λn

ζ2n

∣∣∣∣ < 2σ
√

log p
n

ζ2n

(
√
k

1

1− εn
ζ2
n

− 1

)
now we claim that if k ≤ 4 then

√
k 1
1− εn

ζ2n

− 1 ≤ C for some bounded constant

C > 1. This claim is equivalent to claiming that
1+εn/ζ

2
n

1−εn/ζ2
n
≤ C, that is εn/ζ

2
n ≤

C−1
C+1 . However, from Condition 3 applied on the full data matrix X, we know

that 0 ≤ εn < ηζ2n for some constant η < 1. Hence, constant C > 1 that
satisfies above properties is (η + 1)/(1 − η). Therefore, one can conclude that

δn ≤ 2Cσ
ζ2
n

√
log p
n .

8. Proofs of Lemmas

8.1. Proof of Lemma 1

Proof. Observe that XI,A(X
T
I,AXI,A)

−1XT
I,AXI,j is a projection of XI,j onto

space spanned by the columns of XI,A. Moreover, ‖Xj‖22 = 1 and

1 =

n∑
l=1

X2
lj ≥

∑
l∈I

X2
lj = ‖XI,j‖22.

Therefore, by the properties of the projection matrices∥∥XI,A(X
T
I,AXI,A)

−1XT
I,AXI,j

∥∥2
2
≤ 1.

Moreover, observe that

‖Mx‖22 = xTMTMx ≥ λmin(M
TM)‖x‖22.

With M = XI,A and x = (XT
I,AXI,A)

−1XT
I,AXI,j ,∥∥XI,A(X

T
I,AXI,A)

−1XT
I,AXI,j

∥∥2
2

≥ λmin

(
XT

I,AXI,A

) ∥∥(XT
I,AXI,A)

−1XT
I,AXI,j

∥∥2
2
.

Next, notice that the last two inequalities combined lead to∥∥(XT
I,AXI,A)

−1XT
I,AXI,j

∥∥2
2
≤ 1/λmin

(
XT

I,AXI,A

)
≤ 1/ζ2N ,
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where in the last step we used Condition 3 with the vector v = (1, . . . 1, 0, . . . , 0)T

and the constant a = 1 and have made a simple observation λmin

(
XT

I,AXI,A

)
≥

λmin

(
1
nX

T
I,AXI,A

)
. By the inequality of lp norms, ‖x‖2 ≥ √

r‖x‖1 for all vectors
x ∈ R

r, ∥∥(XT
I,AXI,A)

−1XT
I,AXI,j

∥∥2
1
≤ r/ζ2N .

In addition, the following holds

1/ζ2N ≥
∥∥(XT

I,AXI,A)
−1XT

I,AXI,j

∥∥2
2
≥ λmin

(
(XT

I,AXI,A)
−2
) ∥∥XT

I,AXI,j

∥∥2
2
,

where the last step follows from the observation ‖Mx‖22 = xTMTMx ≥
λmin(M

TM)‖x‖22, with M = (XT
I,AXI,A)

−1 and x = XT
I,AXI,j . Moreover, uti-

lizing the bound λmin(A
−1) = λ−1

min(A) for any positive semi-definite matrix
A,

‖XT
I,AXI,j‖2 ≤ λ−1

min(X
T
I,AXI,A)/ζN (52)

≤ inf
|A|=r

λ−1
min

(
XT

I,AXI,A

)
/ζN ≤ ζ−3

N ,

where Condition 3 guarantees λmin

(
XT

I,AXI,A

)
≥ ζN for any A, such that

|A| ≤ r.

8.2. Proof of Lemma 2

Proof. By simple Markov’s inequality we have

P
∗

(
|
∑
l∈Ii

wlXljεl| > nun

)
(53)

≤ inf
q≥0

{
exp{−nqun}E∗ exp{q|

∑
l∈Ii

wlXljεl|}
}
.

Observe that Condition 1 implies that random variables exp{wlXljεl} are neg-
atively dependent. Hence the RHS can be upper bounded with

exp{−nqun}
∏
l∈Ii

E
∗ exp{q|wlXljεl|},

for every q ≥ 0. Let w = (w1, . . . , wN ) be a vector of exchangeable random
variables that satisfy Condition 1.

Let us define S to be a random permutation over the set of all combinations
of N sized subsets of 1, . . . , n, by requiring that wS(1) ≥ wS(2) ≥ · · · ≥ wS(N)

and if wS(j) = wS(j+1) then S(j) < S(j+1). This is one possible definition that
is unambiguous to the presence of ties. Let R denote a random permutation
uniformly distributed over the set of all combinations of N sized subsets of
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1, . . . , n. Note that X1, . . . , Xn are independent of (w,R). Observe that R is
independent of (w,S). Notice that P = Pε × Pw. By exchangeability of vector
wk, for l ∈ Ii we have

E exp{q|wlXljεl|} = EwEε exp{q|wlXljεl|} = EwEε exp q|wlXR(l)jεR(l)|
= EwEε exp q|wS(l)XR◦S(l)jεR◦S(l)|.

Let ◦ denote pointwise multiplication. Observe that R ◦ S is independent of S
and has the same distribution as R. Therefore, for an l ∈ Ii,

E exp{|qwlXljεl|} = Ew

[
Eε

[
exp q|wS(l)XR◦S(l)jεR◦S(l)|

]]
(i)

≤
√

Ew

[
exp 2|wS(l)|

]√
Eε

[
exp 2q|XR(l)jεR◦S(l)|

]
(ii)

≤ w2

√
Eε

[
exp 2q|XR(l)jεR(l)|

]
, (54)

where (i) follows from Cauchy–Schwarz inequality and (ii) follows from

f2
w = Ew exp 2|wS(l)| =

∫ ∞

0

Pw

(
exp 2|wS(l)| ≥ t

)
dt

=

∫ ∞

0

Pw

(
|wS(l)| ≥

1

2
log t

)
dt.

Next, observe that Pw(Xi > a) ≤ Pw(supi Xi > a) holds for any a ∈ R.
Hence,

fw ≤
√∫ ∞

0

sup
l∈Ii

Pw

(
wS(l) ≥

1

2
log t

)
dt ≤

√∫ e2n

0

Pw

(
wS(1) ≥

1

2
log t

)
dt.

(55)

where in the last step we observed that maxl∈Ii wi ≤
∑

l∈Ii
wl = n by Condition

1. Furthermore, the Taylor expansion around 0 provides

Eε exp q|XR(l)jεR(l)|

= 1 + Eεq|XR(l)jεR(l)|+ q2|XR(l)j |2
∞∑
r=2

1

r!
|qXR(l)j |r−2Eε|εR(l)|r.

Since Eε[εi] = 0 and Eε|εR(l)|r ≤ r!σ2cr−2/2 we have

Eε exp q|XR(l)jεR(l)| ≤ 1 +
|XR(l)j |2σ2q2

2

∞∑
r=2

qr−2|XR(l)j |r−2cr−2,

for some constant c < ∞.
As log eλx ≤ eλx − 1, for all q ≤ 1/c, we have the following estimation of

logarithmic moment generating function

logEε exp q|XR(l)jεR(l)| ≤ |XR(l)j |2σ2q2
(
1− qc|XR(l)j |

)−1
.
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Observe that |XR(l)j | ≤ max1≤l≤N ‖XR(l)‖∞ ≤ ‖XIi‖∞,∞. Hence, the logarith-
mic moment generating function satisfies

logEε exp q|XR(l)jεR(l)| ≤ |XR(l)j |2σ2q2 (1− qc‖XIi‖∞,∞)
−1

. (56)

Utilizing (53) - (56)

P

(
|
∑
l∈Ii

wlXljεl| > nun

)

≤ fw
N inf

q≥0

{
exp

{
−nqun +

σ2q2

2

N∑
l=1

|XR(l)j |2 (1− qc‖XIi‖∞,∞)
−1

}}
.

Since the right hand side above depends on q, we proceed to find the optimal
q that minimizes it. This is simply done, and the optimal q is

q =
nun

σ2
∑N

l=1 |XR(l)j |2 + cnun‖XIi‖∞,∞
.

This optimal q leads to the bound

P

(
|
∑
l∈Ii

wlXljεl| > nun

)

≤ fw
N exp

{
− n2u2

n

2
∑N

l=1 |XR(l)j |2σ2 + 2ncun‖XIi‖∞,∞

}
.

By observing simple relations∑N
l=1 |XR(l)j |2 = ‖XR(l)j ◦XR(l)j‖1 ≤ N max1≤l≤N max1≤j≤p |XR(l)j |2, with

the last term being upper bounded with N‖XIi‖∞,2 = N max1≤j≤p |XIij |2 we
obtain

P

(
|
∑
l∈Ii

wlXljεl| > nun

)

≤ exp

{
N log fw − n2u2

n

2σ2N‖XIi‖∞,2 + 2ncun‖XIi‖∞,∞

}
.

8.3. Proof of Lemma 3

Proof. We want to show that for all j for which β̂i:k,j(λN ) = 0 and (19) hold,
equation (17) also hold, that is∣∣∣〈Xj ,Y−Xβ̂i:k

〉
n

∣∣∣ ≤ λn.

As wk is a vector of a strictly positive random variables, min1≤j≤N
√
wk,j <∑N

j=1

√
wk,j . Hence, the desired inequality above follows easily from the follow-

ing inequality∣∣∣〈Xj ,Y−Xβ̂i:k

〉
n

∣∣∣
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≤
∣∣∣〈D√

wk
XIi,j ,D

√
wk

YIi −D√
wk

XIi β̂i:k

〉
n

∣∣∣+ ∣∣∣〈XIc
i ,j

,YIc
i
−XIc

i
β̂i:k

〉
n

∣∣∣
where the first term in the rhs is bounded by λN (by (19)) and the second with
λn − λN (by the assumption of the Lemma).

8.4. Proof of Lemma 4

Proof. Let us assume that for those j such that β̂j = 0, (17) holds. We show
that for such j’s, equation (19) also holds. First we observe,∣∣∣〈Xj ,Y−Xβ̂

〉
n

∣∣∣ ≥ ∣∣∣〈XIi,j ,YIi −XIi β̂
〉
n
−
〈
XIc

i ,j
,YIc

i
−XIc

i
β̂
〉
n

∣∣∣
By analyzing two cases individually:

Case (I):
∣∣∣〈XIi,j ,YIi −XIi β̂

〉
n

∣∣∣ ≤ ∣∣∣〈XIc
i ,j

,YIc
i
−XIc

i
β̂
〉
n

∣∣∣, and
Case (II):

∣∣∣〈XIi,j ,YIi −XIi β̂
〉
n

∣∣∣ ≥ ∣∣∣〈XIc
i ,j

,YIc
i
−XIc

i
β̂
〉
n

∣∣∣, we have∣∣∣〈XIi,j ,YIi −XIi β̂
〉
n

∣∣∣ ≤ ∣∣∣〈XIc
i ,j

,YIc
i
−XIc

i
β̂
〉
n

∣∣∣+ λn

holds in both cases. With it we can then see that∣∣∣〈D√
wk

XIi,j ,D
√
wk

YIi −D√
wk

XIi β̂
〉
n

∣∣∣ ≤ n
∣∣∣〈XIc

i ,j
,YIc

i
−XIc

i
β̂
〉
n

∣∣∣+ nλn

since ‖D2√
wk

‖F = ‖Dwk
‖F ≤ n for all k almost surely. Hence to show that β̂

satisfies KKT for sub-Lasso as well, we need
∣∣∣〈XIc

i ,j
,YIc

i
−XIc

i
β̂
〉
n

∣∣∣ ≤ λN

n −λn.

We observe that the last inequality is in the statement of the lemma.

8.5. Proof of Lemma 5

Proof. Note that by ‖D‖ ≤ √
n‖D‖F and the definition of the Frobenius norm

we have that for two semi-positive definite matrices D,G ∈ R
n×n

∥∥D−1 −G−1
∥∥ =

√
n

√
max

{∣∣λmin(D
−1 −G−1)

∣∣ , ∣∣λmax(D
−1 −G−1)

∣∣ }.
For all i, j ≥ 1 and i + j − 1 ≤ n, Weyls inequalities and Theorem III.2.8 of
Bhatia (1997) we have

λi+j−1(D+G) ≤ λi(D) + λj(G).

Utilizing that λmax(−G−1) = −λmin(G
−1) = −λ−1

min(G) and λmax(D
−1) =

λ−1
max(D) we have

λmax(D
−1 −G−1) ≤

∣∣∣∣ 1

λmax(D)
− 1

λmin(G)

∣∣∣∣ ,
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λmin(D
−1 −G−1) ≤

∣∣∣∣ 1

λmin(D)
− 1

λmin(G)

∣∣∣∣ .
Therefore,

∥∥D−1 −G−1
∥∥ ≤

√
n

√∣∣∣∣ 1

λmin(D)
− 1

λmin(G)

∣∣∣∣ ≤ √
n

√
1

λmin(D)
+

1

λmin(G)
.

A. Supplementary matterials

A.1. Proof of Lemma 6

Proof. Note that part (ii) of this Lemma is an easy consequence of Lemma B.1
in Bickel et al. (2009), hence we omit the details. For part(i) we proceed as
follows. From the definition, we have for every realization of random weights
wk,

1

n

∑
l∈Ii

wk,l(Yl −Xlβ̂i:k(λN ))2 + 2λN‖β̂i:k(λN )‖1

≤ 1

n

∑
l∈Ii

wk,l(Yl −Xlβ)
2 + 2λN‖β‖1

holds for any value of β. For simplicity of the notation we have suppressed the
dependence β̂i:k(λN ) of λN and k. By using Yi = Xlβ

∗+εi, and setting β = β∗,
previous becomes equivalent to

1

n

∑
l∈Ii

wk,l(Xlβ
∗ −Xlβ̂i:k(λN ))2 ≤ 2

‖β̂i:k(λN )− β∗‖1
n

max
1≤j≤p

(∑
l∈Ii

wk,l|εiXlj |
)

+ 2λN‖β∗‖1 + 2λN‖βi‖1.

Consider the event Aq(λN ) =
⋂p

j=1

{
2 1
n

∑
l∈Ii

wk,l|εiXlj | ≤ λN − q
}
, for q <

λN . Using the fact that wl ≥ 1 for all l ∈ Ii we have the following

1

n
min

1≤l≤N
wl

∥∥∥XIi(β
∗ − β̂i:k(λN ))

∥∥∥2
2
+ λN‖β̂i:k(λN )− β∗‖1

≤ 1

n

∑
l∈Ii

wl(Xlβ
∗ −Xlβ̂i:k(λN ))2 + λN‖β̂i:k(λN )− β∗‖1

≤ (2λN − q)‖β̂i:k(λN )− β∗‖1 + 2λN‖β∗‖1 − 2λN‖β̂i:k(λN )‖1
≤ (4λN − q)

∑
j∈S

|β̂i,j − β∗
j |

which leads to the first conclusion. From the previous result

λN‖β̂i:k(λN )−β∗‖1 ≤ (4λN −q)
∑
j∈S

|β̂i,j−β∗
j | ≤ (4λN −q)

√
s

√∑
j∈S

|β̂i,j − β∗
j |2
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leading to β̂i:k(λN )−β∗ ∈ C(3, S). Using the Expected RE Condition on the set

Ωw we have
√∑

j∈S |β̂i,j − β∗
j |2 ≤ Ew

∥∥∥X̃(β̂i:k(λN )− β∗)
∥∥∥
2
/(en

√
n). Here Ew

denotes expectation taken with respect to the probability measure generated
by wk. Using Jensen’s inequality for concave functions and independence of the
weighting scheme wk of vectors Xl, we have

Ew

∥∥∥X̃(β̂i:k(λN )− β∗)
∥∥∥
2
≤
∥∥∥Ew[X̃](β̂i:k(λN )− β∗)

∥∥∥
2

≤ Ew‖
√
w‖∞

∥∥∥XIi(β̂i:k(λN )− β∗)
∥∥∥
2
.

(57)

Combining previous inequalities we have

1

n
min

1≤l≤N
wl

∥∥∥XIi(β̂i:k(λN )− β∗)
∥∥∥2
2

≤ (4λN − q)
√
sEw‖

√
w‖∞

∥∥∥XIi(β̂i:k(λN )− β∗)
∥∥∥
2

en
√
n

.

leading to ‖XIi(β
∗−β̂i:k(λN ))‖2 ≤ (4λN − q)

√
snEw‖√w‖∞/en(min1≤l≤N wl).

Hence, if we define aN as such that event {min1≤l≤N wl ≥ Ew‖√w‖∞/aN} has
probability close to 1, then∥∥∥XIi(β

∗ − β̂i:k(λN ))
∥∥∥2
2
≤ (4λN − q)2sn

e2n
a2N . (58)

The size of the set Aq(λN ) can be deduced from Lemma 2 and is hence omitted.

A.2. Proof of Lemma 7

In light of the result of Lemma 6, the proof follows by repeating exact steps of
Theorem 7.2 of Bickel et al. (2009). By contrast, with the difference that the loss
function is now weighted least squares loss function; hence we omit the proof.
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