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Abstract: In binary classification problems, the area under the ROC curve
(AUC) is commonly used to evaluate the performance of a prediction model.
Often, it is combined with cross-validation in order to assess how the re-
sults will generalize to an independent data set. In order to evaluate the
quality of an estimate for cross-validated AUC, we obtain an estimate of
its variance. For massive data sets, the process of generating a single per-
formance estimate can be computationally expensive. Additionally, when
using a complex prediction method, the process of cross-validating a pre-
dictive model on even a relatively small data set can still require a large
amount of computation time. Thus, in many practical settings, the boot-
strap is a computationally intractable approach to variance estimation. As
an alternative to the bootstrap, we demonstrate a computationally effi-
cient influence curve based approach to obtaining a variance estimate for
cross-validated AUC.
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1. Introduction

The area under the ROC curve, or AUC, is a ranking-based measure of per-
formance in binary classification problems. Its value can be interpreted as the
probability that a randomly selected positive sample will rank higher than a
randomly selected negative sample. AUC is a more discriminating performance
measure than accuracy [1], and is invariant to relative class distributions [2].

In practice, we are generally concerned with how well our results will gen-
eralize to new data. Cross-validation is a means of obtaining an estimate that
is generalizable to data drawn from the same distribution but not used in the
training set. Common types of cross-validation procedures include k-fold [3],
leave-one-out [21, 7, 3], and leave-p-out [20] cross-validation. Given the advan-
tages of AUC as a performance measure, along with the desire to produce gen-
eralizable results, cross-validated AUC is frequently used in binary classification
problems.

An important task in any estimation procedure is rigorously quantifying the
uncertainty in the estimates. In many cases, specification of a parametric model
known to contain the truth is not possible, and approaches to inference which are
robust to model misspecification are therefore needed. T'wo approaches to robust
inference include inference based on resampling methods, and inference based
on influence curves (also known as influence functions). In practice, resampling
methods such as the nonparametric bootstrap [11, 12], are commonly used due
to their generic nature and simplicity. However, when data sets are large or
when methods for training a prediction model are complex, bootstrapping can
quickly become a computationally prohibitive procedure.

Although cross-validation lends itself well to parallelization, it can still take
a very long time to generate a cross-validated performance measure, such as
cross-validated AUC, depending on the complexity of the algorithm used to
train the prediction model or the size of the training set. In machine learning,
ensemble methods are prediction methods that make use of, or combine, several
or many candidate learning algorithms to obtain better predictive performance.
This boost in performance is often accompanied by an increase in the time it
takes to generate cross-validated predictions. Alternatively, given massive data
sets, even simple prediction methods can be computationally expensive. In cases
where obtaining a single estimate of cross-validated AUC requires a significant
amount of time and/or resources, the bootstrap is either not an option, or at
the very least, a undesirable option for obtaining variance estimates.
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As a response to the computational costs of the bootstrap, variations of the
bootstrap have been developed that achieve a more desirable computational
footprint, such as the “m out of n bootstrap” [9] and subsampling [19]. An-
other recent advancement that has been made in this area is the “Bag of Little
Bootstraps” (BLB) method [4]. Unlike previous variations, BLB simultaneously
addresses computational costs, statistical correctness and automation, which ap-
pears to be a promising generalized method for variance estimation on massive
data sets.

Regardless of the reduction in computation that different variations of the
bootstrap offer, all bootstrapping variants require repeated estimation on at
least some subset of the original data. By using influence curves for variance
estimation, we avoid the need to re-estimate our parameter of interest, which
in the case of cross-validated AUC, requires fitting additional models. In order
to estimate variance using influence curves, you must first, unsurprisingly, cal-
culate the influence curve for your estimator. For complex estimators, it can be
a difficult task to derive the influence curve. However, once the derivation is
complete, variance estimation is reduced to a simple and computationally neg-
ligible calculation. This is the main motivation for our use of influence curves
as a means of variance estimation.

The main goal of this paper is to establish an influence curve based approach
for estimating the asymptotic variance of the cross-validated area under the
ROC curve estimator. We first define true cross-validated AUC along with a
corresponding estimator and then provide a brief overview of influence curve
based variance estimation. We derive the influence curve for the AUC of both
i.i.d. data and pooled repeated measures data (multiple observations per inde-
pendent sampling unit, such as a patient), and demonstrate the construction
of influence curve based confidence intervals. We conclude with a simulation
that evaluates the coverage probability of the confidence intervals and provide
a comparison to bootstrapped based confidence intervals. The methods are im-
plemented in a publicly available R package called cvAUC [16].

2. Cross-validated AUC as a target parameter

In this section, we formally introduce AUC. We then define the estimator for
cross-validated AUC, as well as the target that it is estimating, the true cross-
validated AUC.

Consider some probability distribution, Py, that is known to be an element of
a statistical model, M. Let O = (X,Y) ~ Py € M, where Y is a binary outcome
variable, and X € RP represents one or more covariates or predictor variables
(p > 1). Without loss of generality, we will denote Y = 1 as the positive class
and Y = 0 as the negative class, and 1 as a function that maps X into (0,1).
The quantity, ¢ (X), is the predicted value or score of a sample. The Area Under
the ROC curve can be defined as the following:

AUC(Py, ) = /0 Po((X)>c|Y =) Py (¥(X)=c|Y =0)de.  (2.1)
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Alternatively, we can define AUC as
AUC(Po,¥) = B ((X1) > ¥(X2) [ Y1 =1,Y2 =0), (2.2)

where (X1,Y7) and (X2, Ys) are i.i.d. samples from Py. The quantity, AUC(Py, ¢),
the true AUC, equals the probability, conditional on sampling two independent

observations where one is positive (Y3 = 1) and the other is negative (Y2 = 0),

that the predicted value (or rank) of the positive sample, 1(X7), is higher than

the predicted value (or rank) of the negative sample, ¥ (X3).

Consider Oq,...,0,, iid. samples from Py, such that O; = (X,,Y;) for
each i, and let P, denote the empirical distribution. Let ng be the number of
observations with Y = 0 and let n; be the number of observations with Y = 1.
In machine learning, the v function is what is learned by a binary prediction
algorithm using the training data. The AUC of the empirical distribution can
be written as follows:

AUC(Pa ) = —— 373 1K) > b(X) T (Y = 0,Y; = 1)

NNy

LSS @) > v,

i=1 j=1

noni

where [ is the indicator function.

We focus on estimating cross-validated AUC. We do not require that the
cross-validation be any particular type; however, in practice, k-fold is common.
We will use a generalized notation to encode the data splitting procedure, where
a binary indicator vector is used to specify which observations belong to the
validation set at each iteration of the cross-validation process. Let B,, € {0,1}"
be a random split of the observations into a training and validation set, and
define Pﬁ} B, and Pr?, p, as the empirical distributions of the validation set,
{i : B,(i) = 1}, and training set, {i : B, (i) = 0}, respectively. Let B,..., BY
be the collection of random splits that define our cross-validation procedure,
where BY € {0,1}". In the case of k-fold cross-validation, k = V, and each of
the BY encodes a single fold; the v validation fold is the set of observations
indexed by {i : BZ(i) = 1}, and the remaining observations belong to the v*"
training set, {i : B2(i) = 0}.

Let Myp denote a nonparametric model that includes the empirical distri-
bution, P,, and let ¥ : Myp — R be an estimator of target parameter, i,
true cross-validated AUC. We assume that ¥(Py) = 1.

For each By, we define p, = @J(PS’B%), where PS,B;; is the empirical
distribution of the observations contained in the v*” training set. The func-
tion tp., which is learned from the v*" training set, will be used to gener-
ate predicted values for the observations in the v** validation fold. We de-
fine n? and nY to be the number of positive and negative samples in the v*"
validation fold, respectively. Formally, ny = " | I (Y; =1)1(B.(i) = 1) and
ng = >, I(Y; =0)I(B:(i) =1). We note that n{ and n{ are random vari-
ables that depend on the value of both By and {Y; : BY(i) = 1}. The AUC for
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a single validation fold, {7 : B:(i) = 1}, is:
AUC(Pﬁ,BZaTZ)B;‘;) =

1 n n

ri 2 2oL (Ve (X)) > ¥y (X)) 1 (¥ = 0., = D1 (BJ(3) = B () = 1).

i=1 j=1

Then the V-fold cross-validated AUC estimator is defined as:

v
1
1 _ 1
Ep, AUC(P, p,.¥5,) = 3 ;AUO(PH,Bn,wB;;) (2:3)

1 \%4 1 n n

= 5 2y 22 2 B (X5) > Uy (X))
4 v=1 0™ 2150

x I(Y;=0,Y; =1)1(B;(i) = B,(j) =1).

The target, 1, of the V-fold cross-validated AUC estimator is defined as:

\%4
1
Ep, AUC(Py,p,) = VZAUC(PO,ng) (2.4)

v=1

y
_ %ZPO (5 (X1) > s (X2) | ¥V = 1,5 = 0) |

v=1

where (X1,Y7) and (X3, Y3) are i.i.d. samples from Py. In other words, our target
parameter, the true cross-validated AUC, corresponds to fitting the prediction
function on each training set, evaluating its true performance (or true proba-
bility of correctly ranking two randomly selected observations, where one is a
positive sample and the other a negative sample) in the corresponding validation
set, and finally, taking the average over the validation sets. The true value of
this target parameter is random, in that it depends on the split of the sampled
data into training sets and corresponding fits of the prediction function. We now
wish to construct confidence intervals for our estimator of cross-validated AUC,
EB”AUC(Pﬁ’Bn7 VB, ).

3. Influence curves for variance estimation

We provide a brief overview of influence curves and their relation to variance
estimation. We outline the general procedure for obtaining confidence intervals
using the influence curve of an estimator. This section serves as a gentle intro-
duction to concepts and notation used throughout the paper.

Suppose that O = Oq,...,0, are i.i.d. samples from a probability distribu-
tion, Py, that is known to be an element of a statistical model, M. Let F be
some class of functions of O. Throughout this paper, we will use the notation
Pf, where P is a probability distribution, to denote [ f(z)dP(x). We consider
the empirical process, (Pof : f € F), which is a “vector” of true means. Let
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U : M — R? be a parameter of interest, and let ¢y = W(Py) = U(Pyf : f € F)
be the true parameter value; 1y is a function of true means. Now let Myp
denote a nonparametric model that includes the empirical distribution, P, of
O1,...,0,. We consider the empirical process (P.f: f€F), which is a “vec-
tor” of empirical means. Let UM ~p — R? be an estimator of 1y that maps
the empirical distribution, P,, or rather, a “vector” of empirical means, into R¢.
Let W(P,) = U(P,f : f € F). We assume that W(Py) = 1, so that the esti-
mator targets the desired target parameter, ¢g. This estimate is asymptotically
linear at Py if

U(P,) — W(Py) = ZIO Py)(0;) + op(1/y/n) (3.1)

for some zero-mean function, IC(Fp), of O (i.e. PoIC(Py) = 0). The function,
IC(Fy), that results from demonstrating asymptotic linearity is called the in-
fluence curve (or influence function) of the estimator, U. The main task in the
process of constructing influence curve based confidence intervals is demonstrat-
ing the asymptotic linearity of your estimator.

By the Central Limit Theorem, we find that /n (¥(P,)—¥(Py)) 4 N(0,%0),
where ¥y = PyIC(Py)IC(Py)T. This covariance matrix can be estimated with
the empirical covariance matrix 1C (0;),i=1,...,n where T IC is an estimate
of IC(Py). When our target parameter is one—dimenblonal, as in cross-validated
AUC, we can write the following:

Vi (B(P) = B(R)) 5 N (0.9%(Ry)) (32)

where ®*(Py) = [ IC(Py)(z)?dPy(z). We can estimate ®*(F,) as

8= 0% = 1Y 10p)0.2 (33)

however, other estimators of the variance of the influence curve can be consid-
ered. Letting z, denote the r" quantile of the standard normal distribution, it
follows that for any estimate ®2 = ®2(P,,) of ®2(P,), we have that

(‘i/(Pn) - Zl—a/Z% ) \ij(Pn) + Zl—a/Q%) (34)

forms an approximate 100 x (1 — )% confidence interval for vy = ¥(Pp).

In order to assume that asymptotically linear estimators of 1 exist, we must
assume that the parameter ¥ is pathwise differentiable [10]. This method for
establishing the asymptotic linearity and normality of the estimator is called
the functional delta method [22, 14], which is a generalization of the classical
delta method for finite dimensional functions of a finite set of estimators.
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4. Confidence intervals for cross-validated AUC

In this section, we establish the influence curve for AUC and show that the
empirical AUC is an asymptotically linear estimator of the true AUC. Using
these results, we follow the methodology from Section 3 to derive confidence
intervals for cross-validated AUC. Then we provide a description of the practical
construction of the confidence intervals from an i.i.d. data sample.

Theorem 4.1. Let O = (W,Y) ~ Py, where W represents one or more variables
and Y is binary. Without loss of generality, assume Y € {0,1} and that ¢ is a
function that maps W into (0,1). Define AUC(Py,v) as

/0 Py ((X) > ¢ | Y = 1) By ((X) = ¢ | Y = 0) de.

The efficient influence curve of AUC(Py, ), evaluated at a single observation,
0; = (X,,Y;), for a nonparametric model for Py is given by

ICave(Po)(0) = =S P wlX) <w |y =o)]
1Y =0) _
t Ry o P> wlY =1) ‘w:wxi)
Ii=0) | 1G=1)
- {PO(Y ~0) + Py = 1) } AUC(Py, ).

For each 1, the empirical AUC(P,,) is asymptotically linear with influence
curve ICayc(Po,¥). Let B, € {0,1}™ be a random split of the observations
into a training and validation set. Let P, 5 and P,‘i B, be the empirical distri-
butions of the validation set, {i : B, (i) = 1}, and training set, {i : B,(i) = 0},
respectively. We assume that B, has only a finite number of values uniformly
inn, as in V-fold cross-validation. We assume that p =", B, (i)/n is bounded
away from a § > 0, with probability 1. Define the cross-validated area under the
ROC curve as

R(¥, P,) = Ep, AUC (P}, W(PD5)). (4.1)

n

We also define the target of this cross-validated area under the ROC curve as
R(¥, P,) = Ep, AUC (PO, @(P,?}Bn)) . (4.2)
We assume that there exists a ¥ € ¥ so that
P {ICAUC (P07 ‘i/(Pn)> — ICavc(Fo, ¢1)}2
converges to zero in probability as n — oo. We also assume that

sup sup [ ICavc(FPo,1)(0)] < oo,
YeET O
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where the supremum over O is over a support of Py. Then,
. 1 &
R(W, Pp) = R(V, Pp) =~ > ICAuc(05) + op(1/v/n). (4.3)
i=1

In particular, /rn(R(V, P,)— R(¥, P,)) converges to a normal distribution with
mean zero and variance, 0> = Po{IC avuc(Po,1)}?. Thus, one can construct an
asymptotically 0.95-confidence interval for R(V, P,) given by R(¥, P,,)£1.96 %,
2 is a consistent estimator of 0. A consistent estimator of 0? is obtained

where o
as

02 = By, Pl {1Cawe (PLy, #(PLs)) ). (44)

Proof. In order to derive influence curve based confidence intervals for cross-
validated AUC, we must first derive the influence curve for AUC and show that
AUC(P,,,) is an asymptotically linear estimator of AUC (Py, ) with influence
curve as specified in the theorem. For that purpose we use the functional delta
method [22, 14]. The asymptotic linearity of AUC(P,, ¥) is an immediate conse-
quence of the compact differentiability of functionals (Fy, F») — [ Fy(z)dFs(x)
for cumulative distribution functions (Fi, F3) in [14] so that the functional delta-
method can be applied here as well. Therefore it only remains to determine the
actual influence curve which is defined in terms of the Gateaux derivative of
P — AUC(P,v) in the direction of the empirical distribution for a single ob-
servation O. We will do that now.

We define F,(c) = Py(¢(X) < ¢ | Y = a) for a € {0,1}. Therefore, we can
alternatively express true AUC as

AUC (P(),?/J) = (I)(FQ,Fl) = /(1 - Fl(C))dFQ(C) (45)

The Gateaux derivative of ®(Fp, F}) in direction (hg, hy) is given by:

d
%Q(FO —+ Eho, F1 + Gh,l)

_ / () dFy(c) + / (1= Fi(c))dho(c)

e=0

Therefore, we have the following linear approximation:
B(Fon,Fin) = B(Fo, 1) = [ ~(Fin = F)dFo+ [(1= F)d(Fon — Fo)

Let Fy,, F1, be the empirical distributions of Fy, F;. Next we derive the linear
approximations of Fy,, — Fy and Fy,, — Fy. Note that for a € {0, 1},

P,(¢(X)<e,Y =a)

Fon(c) = P,(¥(X) <c|Y =a)= Pn(Y:(l)

(4.6)
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Tt follows that F,,(c) — Fy(c) ~

(P — P)(X) <Y =a)  Ry((X)<cY =a)

Po(Y = a) [Po(Y = a)]?
1 " (I((X;) < ¢, Yi=a) ~ Fa(0)I(Yi = a)
_nz;{ R =a) R = a) }

So the influence curve of F,,(c) for a single observation, O; = (X;,Y;), is:

I(W(X;) <ce,Yi=a) Fu(c)I(Y;=a)
Py(Y =a)  PR(Y =a) (47)

We can substitute this for h, in the linear approximation above resulting in
the desired influence curve ICayc(Fo, ¥) as presented in the theorem. For that,
it is helpful to observe that:

[1wex) <evi=nam =10i=1 [ an@ @)

P(Xq)<c
=1(Y; = 1)(1 — Fo(v(X5)) (4.9)

This is the influence curve for AUC(P,, ), and, since the model M for P is
nonparametric, this is also the efficient influence curve of parameter AUC (Py, 1))
on a nonparametric model.

Using the notation that was defined in Section 2, it follows that

EBTLAUC(Pian‘i’(Pr?,Bn)) — Ep, AUC(P, \i/(PS7Bn))

=Eg, (Pﬁ,Bn — Py)ICauc(Po, i’(P'r?,Bn)) + EBnR(Pi,an‘i’(Pg,Bn))

~ Ep, (P,%,Bn — Py)ICauc(Po, @(PS,BW)) +op(1/v/n)

= Ep, (P, , — Po)ICauc(Po, 1)
+ Ep, (Pl g, = o) {ICave (P, ¥(PY ,)) — ICave (Po.én) |
+op(1/vn)

=FEg, (P, g, — Po)ICavc(Po, 1) + op(1/v/n)

= (P, — Po)ICauc(Po, 1) + op(1/v/n).

At the first equality we apply the previously established asymptotic linearity
of AUC(P, p:,v), conditional on the training sample, which proves that each
B,,-specific remainder R(P%,an‘i’(Py?,Bn)) is op(1/4/n). Since there are only
a finite number of possible B, this also proves the next equivalence stat-
ing that the average across the different B,,-splits of the remainder is also
op(1/4/n). In the third equality, we just carry out a simple split of the em-
pirical process in two terms. In the statement of the theorem, we assume that
Po{IC suc(Po, ¥(P,)) — ICayc(Py, 1)} converges to zero in probability as
n — oo for some 1. Using a result from [23] involving the application
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of empirical process theory (specifically Lemma 2.14.1 in [22]), the term,
EBn(P%,Bn - PO){ICAUC(POa\IJ(P;:,Bn)) - ICAUc(Po,l,ZJl)}, is shown to be
op(1/4/n), which results in the fourth equality.

Finally, Ep, (P) 5 — Po)ICavuc(Po, 1) = (Py — Po)ICAuc(Po,41), proving
the asymptotic linearity of the cross-validated AUC estimator as stated in the

final equality. In particular,
Vit (s, AUC(PY g, W(PL 5,)) = Ep, AUC(Fo, ¥(PY )

converges to a mnormal distribution with mean zero and variance,
2 . . . .
0% = Py {ICayc(Po,1)}” . A consistent estimator of o2 is obtained as

. 2

UEL = EBnPi,Bn {ICAUC (Pv}b,an‘I’(PS,Bn))} .

For 02, we estimate the unknown conditional probabilities of the influence

curve ICpyc with the empirical distribution of the validation set, so that

Pﬁ,Bn(w(X) > w | Y = 0) will be consistent at ¢ = ‘I’(PS,B”) under no

conditions on the estimator W. This is why we replaced Py in ICapyc(Po,v)

by the empirical distribution of the validation set. However, the probabilities

Py(Y =1) and Py(Y = 0) can be estimated using the whole sample.

Thus, one can construct an asymptotically 0.95-confidence interval for

Ep, AUC (P, \II(PS’BTL)) given by EBHAUC(Péan, \II(PS,BH)) +1.96 7.

NG
O

4.1. A practical implementation for i.i.d. data

For further clarity, we provide a description of the practical construction of
the confidence intervals from an i.i.d. data set, as implemented in our software
package. Consider an i.i.d. sample of size n with a binary outcome Y. For each
observation, O; = (X;,Y;), we have a d-dimensional numeric vector X; (design
matrix) and a binary outcome, Y;. Without loss of generality, let ¥; € {0,1},

for all ¢ = 1,...,n, however, Y can be any ordered two-class variable. In this
example, we will use k-fold cross-validation for £ =V > 1 and define the splits
as BL,....,BY . as defined previously. Calculating the V-fold cross validated

AUC estimate corresponds to:

1. Building or fitting the prediction function on each of V' validation sets.

2. Generating a predicted outcome for each observation in the v** validation
set. The predictions are generated using a fit that was trained on the
{1,...,V}\ v folds.

3. For each validation fold, using these predicted values, together with the
observed outcomes for each observation, to generate an estimate of the
AUC for that validation fold.

4. Average these estimates across the V' validation folds to calculate the
cross-validated AUC.
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Recall that P, p, and P{ 5. are the empirical distributions of the v*" vali-
dation and training set, respectively and P, is the empirical distribution of the
whole data sample. The V-fold cross-validated AUC estimate, denoted R(V, P,,),
is given by + 23:1 AUC(P, p ,4p:). In order to construct influence curve
based confidence intervals for R(\ia P,), we estimate the asymptotic variance
as:

o = EBnPﬁ,Bn {ICAUC (P;,an@(Pr?,Bn)) }2 (4.10)
_ % é {% ﬁ; {1Cave (Phsy 9(P5,)) (oz-)}2 [(BY(i) = 1)} ,
(4.11)

where ¢p. = @(PSVB,J), and for each v € {1,...,V}andi € {1,...,n}, we have

ICAUC(Pi,BgLv\i](Pr?,B;;))(Oi)
Iy;=1) _,
= P, 5. (X)<w|Y =0 ‘
P,(Y = 1) ™Pi (¥5;(X) <wl ) w=ppy (X:)
I(Yi = 0) 1
4+ —r 2 pl_ W(X)>w|Y =1
By =0y e (V5 (X) > w | ) W=ty (X))

IY;=0)  I(Y;=1) 1

AR =0 " A= 1) AV (Bl )

Despite the density of the notation above, each of the components in the
influence curve can be calculated very easily from the data. The terms, P, (Y =
=1 i I(Y;=1)and P, (Y = 0) = . >-j—1 1(Y; = 0), are the proportions
of positive and negative samples, respectively, in the empirical distribution.
Let nj = >37_, I(Y; = 1)I(B;(j) = 1) be the number of positive samples
in the v validation set and let n§ = Y7, I(Y; = 0)I(B}(j) = 1) be the
number of negative samples in the v validation set. Also, recall that 1) By is the
function learned by the v*" training set, which maps a vector, W, of covariates,
to a predicted value, ¥p»(X) € (0,1). For a given sample, O; = (X;,Y;), we
calculate the predicted value, 15+ (X;), and note whether Y; is labeled as positive
(Y; = 1) or negative (Y; = 0). Above, each of the terms in the expression for
the influence curve contains an indicator function, conditional on the value of
Y;. Therefore, given the value of Y;, we need only to evaluate the non-zero part
of the expression.

When Y; = 1, we need to evaluate:

Pl (Y (X) < w Y:()‘
By (VB (X) | ) oty (X2)

- nlgzj (Xj < UJB;;(Xi)) I(Y;=0)I(B(j)=1)
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This sum counts the number of negative samples in the validation set that have
a predicted value less than 1p. (X;), the predicted value for sample 4. Then, we
divide by the total number of negative samples in the validation set. Similarly,
when Y; = 0, we need to evaluate:

Pi gy (Vg (X) >w Y =1)|

w=y gy (X;)
1 & o
= = D T (X > sy (X)) 1(Y; = ) I(BL(H) = 1)

This sum counts the number of positive samples in the validation set that
have a predicted value greater than v p.(X;), the predicted value for sam-
ple 7. Then, we divide by the total number of positive samples in the vali-
dation set. The remaining term in the expression for the influence curve is
simply AUC (Pﬁ B, »¥Br), given in Section 3, multiplied by inverse probability
of P,(Y =1) or P,(Y =0), depending on the value of the indicator function at
Y;. Thus, for fixed v € {1,...,V} and i € {1,...,n}, we have demonstrated how
to calculate the quantity, ICAUC(P,}th , @(PS,BU))(OZ-), from an i.i.d. data set.
Then we square this term and sum over i.i.d. s%mples, i, and cross-validation
folds, v, to get

= S {% S {10 (Pl 5(P8)) 00} 1(5200) = 1>} :
v=1

i=1

an estimate for the asymptotic variance of R(\if, P,), our V-fold cross-validated
AUC estimator. The target of this estimator is

R(¥, P,) = Ep, AUC (Po, ¥(PY ) ) = % ZV:AUC (P #(P5y))
v=1

the true V-fold cross-validated AUC. Then, as in Theorem 4.1, one can construct

an asymptotically 0.95-confidence interval for R(¥, P,) as R(¥, P,) + 1.96”—\/%.

5. Generalization to pooled repeated measures data

Above, we derived a consistent influence curve based estimator of the asymptotic
variance of cross-validated AUC for the simple setting in which there are n i.i.d.
observations. Each of these observations, O; has a predictor variable, X;, coupled
with a binary outcome variable, Y;, that we wish to predict. Now we consider
the common setting in which there are repeated measures for each observation.
This data structure arises frequently in medical studies, where each patient is
measured at multiple time points. We focus on the case where the order of these
measures is not meaningful, and one simply wishes to obtain a single summary
of classifier performance pooled over all measures. We begin by providing a
formal definition of the target parameter, the pooled cross-validated AUC, for
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such cases. We then extend the results presented in the previous sections to
derive an influence curve based variance estimator for the cross-validated AUC
of a pooled repeated measures data set.

As before, we let Py € M and ¥ : M — ¥. We denote the target parameter
U(Fy) as ¢g. Let O = (X (¢),Y(t) : t € 7) ~ Py for a possibly random index

set 7 C {1,...,T}, where t corresponds to a single time-point observation. Here
Y'(t) is binary for each ¢t. We observe n i.i.d. copies O; = (X;(¢),Y;(t) : ¢t €
7i), 4 =1,...,n of O. Let Mynp denote a nonparametric model that includes

the empirical distribution, P,, of Oq,...,0,, and let U : Myp — R be an
estimator of 1. We assume that \if(Po) = 1. We consider the case where t
is not a meaningful index, and that either ¥ (t,x) = Eo (Y () | X (t) = x) does
not depend on ¢, or that the investigator has no interest in understanding the
dependence on t. Consider the distribution,

—— Y R(teT)R(X(t)=a,Y(t)=y|teT).

This represents the limit distribution of the empirical distribution P, of the
pooled sample:

Py (x,y) =

‘ZZI 2, Yi(t) = ).

1 1|1 i=1ter;

One could define as a measure of interest for evaluation a predictor 1, the area
under the ROC curve one would obtain if one treats the pooled sample as N
i.i.d. observations. That is, we define

1
W(Po,w):/o Py((X) > | Y = 1) By (0(X) =¢| Y =0)de,  (5.1)

where, without loss of generality, we let the positive class be represented by
Y = 1 and the negative class be represented by ¥ = 0. The pooled repeated
measures AUC can be interpreted as the probability that, after pooling over all
independent sampling units and all time points, a randomly sampled positive
outcome will be ranked more highly than a randomly sampled negative outcome.

The AUC for the empirical distribution of the pooled sample can be ex-
pressed explicitly as follows. Let ng = >2;° ) >, I(Yi(t) = 0) and let n; =

ZJ 12367‘ I(Y;(s) =1). Then we have

AUC ( mw)

n n

—> >
0™ 21 ter;

=

ZI > p(Xa() I (Ya(t) = 0,Yj(s) = 1).

j=1:

Now we consider the cross-validated AUC of a pooled repeated measures data
set. Let B,, € {0,1}"™ be a random split of the n independent observations into a
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training and validation set. Let P! B, and Pn B, be the empirical distributions
of the pooled data within the validation set, {z : By, (i) = 1}, and training set,
{i : B,(i) = 0}, respectively. We assume that B,, has only a finite number of
values uniformly in n, as in k-fold cross-validation. Given a random split, B,
we define ¢¥g, = \11(132’3”).

As in the i.i.d. example in the previous section, we will walk through the case
of V-fold cross-validation. Let B!,..., BY be the collection of random splits
that define our cross-validation procedure. In the case of V-fold cross-validation,
each of the BY encodes a single fold; the v*" validation fold is {i : BY(i) = 1},
and the remaining samples belong to the v'" training set, {i : BY(i) = 0}.
Note that since our independent units are collections of pooled time points,
0; = (X;(t),Yi(t) : t € 7;), that all pooled samples from each i.i.d. sample, O;
will be contained within the same validation fold.

For each B}

v, we define ¢p, = \IJ(Pn py), where PS’BZ is the empirical dis-
tribution of the pooled data contained in the v*" training set. The function
¥p», which is learned from the v*" training set, will be used to generate pre-
dicted values for the observations in the v validation fold. We define n¥ and
ng to be the number of positive and negative samples in the v validation
fold, respectively. Formally, n{ = Y7, >, T(Yi(t)=1)I(By(i)=1) and
ng = 311 > er, L (Yi(t) = 0)I (B} (i) = 1). We note that n{ and nf are ran-
dom variables that depend on the value of both BY and {Y; : BX(i) = 1}.

The AUC for a single validation fold, {i : B%(i) = 1}, for pooled repeated

measures data, is

AUO( nBvM/JB;;) =

4,1,7 .
pr 1 J>5) (5.2)
i=1t€ET; j=1 s€T;

where h(n,v,i,t,7,8) =
1 (3 (X(5)) > i, (X)) TO(0) = 0,%3(5) = D T (B3) = By() = 1).

In other words, it is the probability that, after pooling over units and time, a
randomly drawn positive sample will be assigned a higher predicted value than
a randomly drawn negative sample in the same validation fold by the prediction
model fit using the corresponding training set.

Then the V-fold cross-validated AUC estimator, for pooled repeated measures
data, is defined as

Ep,AUC (P ,v5,) = AUC (P;,Bg,z/}Bx) (5.3)

Z Z Z Z h(n,ui,t,j, 3)} (54)

l1ter; j=1s€Ty

/—H
>—-c?
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We also define the target, g, of the V-fold cross-validated AUC estimate as

Ep,AUC (Py, s, ) C (Py,vBy) (5.5)

< |

14
- AT
;
ZP Vpy (X1) > gy (Xo) | Y1 =1,Y2 =0), (5.6)

< |

where (X1,Y1) = (X1(¢),Y1(t)) and (Xo,Ys) = (Xa(t),Y2(t)) are single time-
point observations. The following theorem is the pooled repeated measures ana-
logue to Theorem 4.1.

Analogous to i.i.d. data version, this target represents the average across
validation folds of the true probability (under Pp) that a randomly sampled
positive observation would be ranked higher than a randomly sampled negative
observation in the same validation fold by the prediction function fit in the cor-
responding training set. Again, the true value of this target parameter is random
— it depends on the random split of the sample into V folds and corresponding
fits of the prediction function. However, it nonetheless provides a meaningful
measure of the performance of the prediction function on independent data.

Theorem 5.1. The efficient influence curve of AUC (I:’o, w), evaluated at O; =
(X:(t),Yi(t)) : t € 1), for a nonparametric model for Py is given by:

IC5¢ (Po,v) (05) = ZICAUC (Po, ) (Xi(t), Yi(t)),

‘ ter

where

_I(Yi(t) =1) _
= iy PEX) <wlY(H =0 .
I(Yi(t) = 0) _
g 0 > e Y =1) .
I =0) | I(Yi(t) =1)
{ P =0) | By(Y = 1) }AUO(PO’W’

Directly above, (W,Y) = (W(s),Y(s)) represents a single time-point obser-
vation. For each v, the estimator AUC’( n,w) obtained by plugging in the
pooled empirical distribution Py, is asymptotically linear with influence curve
I CAUC (P 0> w)

Let B, € {0,1}" be a random splzt and let P, B and P, B be the empirical
distributions of the validation {i : B,(i) = 1} and tmmmg set {i : B(i) = 0},
respectively. Let 13,}’ B, be the empirical distribution of the pooled data within the
validation set. We assume that By, has only a finite number of values uniformly
in n, as in k-fold cross-validation. We assume that p =), B, (i)/n is bounded
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away from a 6 > 0, with probability 1. Define the cross-validated area under the
ROC curve as

R(¥,P,) = Ep, AUC (]55,3”7 @(PS,BHD : (5.7)
We also define the target of this cross-validated area under the ROC curve as
R(W, P,) = Bp, ATC (P, 9(P)) (5.8)

We assume that there exists a 11 € W so that

_ _ 2
Py {Icm (Poa ‘I’(Pn)) —ICpe (Poﬂ/h)}
converges to zero in probability as n — oco. We also assume that

sup sup [ICqpe (Po, ¥) (0)] < oo,
Yew O

where the supremum over O is over a support of Py. Then,

RO, P) — ROD, Py) = = 3" 1050 (o) (0) + op(1/Vi). (59)

i=1

In particular, /n(R(¥, P, ) R(W, P,)) converges to a normal distribution with

mean zero and variance, o2 = PO{IC’AUC(PQ, 1/11)}2 Thus, one can construct an
asymptotically 0.95-confidence interval for R(W, P,) given by R(¥, P,)+1. 96\”/%
where a,% 18 a consistent estimator of o?. A consistent estimator ofa 1s obtained
as

— Ep, Py, {ICAUC( A ,\if(Pan))}Q. (5.10)

Proof. This is the pooled repeated measures analogue of Theorem 4.1, so the
proof follows the exact same format and arguments as the proof of Theorem 4.1.
O

6. Software

We implemented the influence curve based confidence intervals for cross-validated
AUC for i.i.d. data as well as for pooled repeated measures data, as an R pack-
age. The package, called cvAUC [16], has the same function interface as the
popular ROCR package [5].

For each observation, the user provides a cross-validated predicted value, as
generated by a binary prediction algorithm, and a corresponding binary class
label. If the user has pooled repeated measures data instead of i.i.d. data, then
the user must also provide an id for each observation. The user must also indicate
which observations belong to each cross-validation fold. To be clear, the user
must provide for each observation, i:
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1. The value of the outcome, Y;.

The validation fold, v € {1,...,V}, that observation, i, is associated with.

3. The predicted probability of the outcome, ¥(X;), based on plugging in
that observation’s covariates, X;, into a fit trained on the observations
associated with folds: {1,...,V}\v.

N

The main functions of the package calculate the confidence intervals (confi-
dence level supplied by the user; defaults to 95%) for cross-validated AUC and
AUC estimates calculated using i.i.d. and pooled repeated measures training
data. The package also includes utility functions to compute AUC and cross-
validated AUC from a set of predicted values and associated true labels.

To provide some context to the computational efficiency of our methods, the
influence curve based CV AUC variance calculation for i.i.d. data takes less than
half a second to execute for a sample of 100,000 observations on a 2.3 GHz Intel
Core i7 processor (package version 1.0.3). For 1 million observations, it currently
takes 13 seconds. More information and code examples can be found in the user
manual for the package, and we provide a simple code example in Appendix A.
The cvAUC R package is available on CRAN and GitHub. More information
and code examples can be found in the user manual for the package.

7. Coverage probability of the confidence intervals

In this section, we describe and present results from a simulation which demon-
strates the coverage probability of our influence curve based confidence intervals
as implemented in our R package, cvAUC [16]. The coverage probability of a
confidence interval is the proportion of the time, over repetitions of the identical
experiment, that the interval contains the true value of interest. Our true value
of interest is true cross-validated AUC, defined in equation 2.4. In the simula-
tion below, we consider a variety of training set sizes. We show that when n is
small, the coverage probability of the influence curve based confidence interval
may drop below the specified rate. Therefore, if you have a small sample size,
bootstrapping may serve as a computationally-reasonable alternative variance
estimation technique. To quantify the computational advantage of the influ-
ence curve approach, we calculate the number of bootstrap replicates that are
required in order to achieve 95% coverage.

7.1. Simulation to evaluate coverage probability

Let n x p represent the dimensions of our training set design matrix, X. We
considered training sets where n = {500, 1000, 5000, 10000, 20000} and p =
{10,50,100,200}. The number of covariates that are correlated with the out-
come is fixed at 10. The remaining p— 10 covariates are random noise. For the 10
informative covariates, we generate 100,000 points from A (u,3), and for each
these observations, we let Y = 0. Similarly, we generate 100,000 observations
from N (v,X) and let Y =1 for all these observations. For this simulation, we
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Fic 1. Plots of the coverage probabilities for 95% confidence intervals generated by our sim-
ulation for training sets of 1,000 (left) and 5,000 (right) observations. In the case of a 95%
confidence interval, the coverage probability should be close to 0.95. For the smaller dataset
of n = 1,000 observations, we see that the coverage is slightly lower (92-93%) than specified,
whereas for n = 5,000, the coverage is closer to 95%.

let u; = 0 and v; = 0.3, for ¢« € {1,...,10} and we let X represent the iden-
tity covariance matrix. These combined 200,000 observations represent our true
data distribution, Py. We note that our target parameter, true cross-validated
AUC, is itself random, but that it represents a true target. We are interested in
the confidence interval that contains this random target 95% of the time. The
samples were generated using the mvrnorm function of the R package, MASS
[6].

To calculate the coverage probability of our influence curve based confidence
intervals, we generate the CV AUC and corresponding confidence intervals 5,000
times and report the proportion of times that the confidence interval contains the
true CV AUC. For each iteration, we sample n points from the same distribution
as our population data and use that as a training set.

We perform 10-fold cross-validation by splitting these n observations into 10
validation folds, stratifying by outcome, Y. For each validation fold, we train a
Lasso-regularized logistic regression fit using the glmnet R package [13] using
the observations from the remaining 9 folds. Using the fit model, we then gen-
erate predictions for each of the samples in the validation fold and calculate the
empirical AUC. We will call this the “fold AUC.” We also calculate the “true
AUC” by generating predicted values for all of the 200,000 data points in our
population data and calculating the empirical AUC among this population.

This process is repeated for each of the 10 validation folds, at which point
we average the fold AUCs to get the estimate for cross-validated AUC. We
also average the 10 true AUCs to get the true cross-validated AUC. We then
calculate a 95% confidence interval for our CV AUC estimate and note whether
or not the true CV AUC falls within the confidence interval.

For each value of p € {10, 50, 100, 200}, this process is repeated 5,000 times to
obtain an estimate of the coverage probability of our confidence intervals. The
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TABLE 1
Coverage probability for influence curve based confidence intervals for CV AUC using
training sets of various dimension

n=500 n=1,000 n=5,000 n=10,000 n = 20,000
p=10 0.909 0.928 0.946 0.943 0.943
p =50 0.891 0.931 0.946 0.950 0.941
p =100 0.885 0.925 0.946 0.946 0.949
p =200 0.878 0.923 0.947 0.937 0.940
TABLE 2

Influence curve based standard errors for CV AUC for training sets of various dimensions

n=500 n=1,000 n=5,000 n=10,000 n = 20,000
p=10 0.023 0.015 0.007 0.005 0.003
p =50 0.023 0.016 0.007 0.005 0.003
p = 100 0.024 0.016 0.007 0.005 0.003
p = 200 0.024 0.016 0.007 0.005 0.003
TABLE 3

Standard deviation of 5,000 CV AUC estimates for training sets of various dimensions

n=>500 n=1,000 n=5,000 n=10,000 n =20,000
p=10 0.028 0.017 0.007 0.005 0.003
p =250 0.033 0.018 0.007 0.005 0.003
p = 100 0.034 0.019 0.007 0.005 0.003
p = 200 0.038 0.019 0.007 0.005 0.003

coverage probability is the proportion times that the true CV AUC fell within
our confidence interval. For 95% confidence intervals, we expect the coverage
probability to be close to 0.95. The coverage probabilities for each training set
is shown in Table 1.

The results of the simulation indicate that for a relatively small sample size
(e.g. n =1,000), the coverage probability of the confidence intervals are slightly
lower (92-93%) than specified (95%). However, when n > 5,000, we have cover-
age between 94-95%. These simulations use just one particular data generating
distribution, but the results can serve as a rough benchmark of coverage prob-
ability rates over various n.

In Table 2, we summarize the standard errors estimated using the influ-
ence curve based variance estimation technique, as implemented in the cvAUC
package. For comparison, in Table 3 we report the standard deviation of the
CV AUC estimates across the 5,000 iterations of the simulation. We see that for
n > 5,000, the standard errors and standard deviations are identical, however,
for smaller n, the influence curve based standard errors are slightly conservative
compared to the standard deviation across the 5,000 iterations. This is expected,
based on the coverage probabilities reported in Table 1.

For reference, we provide the average CV AUC estimate across 5,000 itera-
tions for training sets of various dimensions in Table 4. A total of 20 x 5,000 =
500,000 cross validated AUC estimates were generated for the entire simula-
tion. The number of individual models that were trained across all 10 folds was
500,000 x 10 = 5 million.
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TABLE 4
Average CV AUC across 5,000 iterations for training sets of various dimensions

n=500 n=1,000 n=>5000 n=10,000 n = 20,000
p=10 0.720 0.737 0.747 0.748 0.748
p =50 0.706 0.733 0.747 0.748 0.748
p =100 0.699 0.731 0.747 0.748 0.748
p = 200 0.689 0.728 0.747 0.748 0.748
TABLE 5

Bootstrap confidence interval coverage probability using B bootstrapped replicates of a
training set of n = 1,000 observations

B=100 B=200 B=300 B =400

p=10 0.906 0.930 0.929 0.958

7.2. Comparison to bootstrapped confidence intervals

We implemented quantile (or percent) bootstrapped confidence intervals in Ju-
lia [8] (version 0.0.3) to compare the coverage probability of bootstrap derived
confidence intervals to influence curve derived confidence intervals. The same
data generating distributions [18] as the influence curve based simulations were
used, and again we used Lasso-regularized logistic regression [15]. For each itera-
tion of the experiment, we generate an original training set and B bootstrapped
replicates of the this training set. Using the B training sets, we generate B
cross-validated AUC estimates [17]. We use the 0.025 and 0.975 quantiles of
the B cross-validated AUCs to estimate the 95% confidence intervals. In this
simulation, the computation time for bootstrapped confidence intervals is O(B)
times greater than the runtime of the influence curve based confidence intervals
since each bootstrap replicate requires a complete re-calculation of CV AUC.
Some methods of bootstrapping (e.g. m of out n bootstrap [9] and “Bag of
Little Bootstraps” [4]) make computational improvements on o(B), however all
bootstrapping methods require you to make repeated estimations of CV AUC.

On a training set of n = 1,000 observations, we evaluated how many boot-
strapped replicates, B, are required to obtain 95% coverage. In this simulation,
we found that at least 400 bootstrap replicates were required to obtain a cov-
erage probability of 0.95. The coverage probabilities for increasing values of B
are shown in Table 5.

Since the bootstrap confidence interval coverage probability estimate con-
verged after approximately 1,000 iterations of the experiment, the coverage
probability estimates in Table 5 are averaged over 1,000 iterations instead of
5,000.

8. Conclusion

Cross-validated AUC represents an attractive and commonly used measure of
performance in binary classification problems. However, resampling based ap-
proaches to constructing confidence intervals for this quantity can be compu-
tationally expensive. In this paper, we established the asymptotical linearity of
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the cross-validated AUC estimator and derived its influence curve for both the
i.i.d. and pooled repeated measures cases. We then presented a computationally
efficient approach to constructing confidence intervals based on estimating this
influence curve, which is implemented as a publicly available R package called
cvAUC. A simulation demonstrated that we were able to achieve the expected
coverage probability for our confidence intervals, however, for small sample sizes,
the coverage probability can dip below the desired rate. We have demonstrated
a computationally efficient alternative to bootstrapping for estimating the vari-
ance of cross-validated AUC estimates. This technique for generating computa-
tionally efficient confidence intervals can be replicated for another estimator by
following the same procedure.

Appendix A: Appendix
A.1. Code example

Below is a simple example of how to use the cvAUC R package. This i.i.d. data
example does the following;:

1. Load a data set with a binary outcome. For the i.i.d. case we use a simu-
lated data set of 500 observations, included with the package, of graduate
admissions data.

2. Divide the indices randomly into 10 folds, stratifying by outcome. Strat-
ification is not necessary, but is commonly performed in order to create
validation folds with similar distributions. Store this information in a list
called folds.

3. Define a function to fit a model on the training data and to generate
predicted values for the observations in the validation fold, for a single
iteration of the cross-validation procedure. We use a logistic regression fit.

4. Apply this function across all folds to generate predicted values for each
validation fold. The concatenated version of these predicted values is
stored in vector called predictions. The outcome vector, Y, is the labels
argument.

A code example is given on the following page.
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# Create CV folds (stratify by outcome)
.cvFolds <- function(Y, V){
YO <- split(sample(which(Y == 0)),
rep(1:V, length = length(which(Y == 0))))
Y1 <- split(sample(which(Y == 1)),
rep(1:V, length = length(which(Y == 1))))
folds <- vector("list", length = V)
for (v in seq(V)) {folds[[vl] <- c(YO[[vI1], Y1[[vI])}
return(folds)

# Train/test glm for each fold

.doFit <- function(v, folds, data){
fit <- glm(Y~"., data = datal[-folds[[v]],], family = binomial)
pred <- predict(fit, newdata = data[folds[[v]],], type = "response")
return(pred)

}
iid_example <- function(data, V = 10){

# Create folds
folds <- .cvFolds(Y = data$Y, V = V)

# CV train/predict
predictions <- unlist(sapply(seq(V), .doFit,
folds = folds, data = data))
# Re-order pred values
predictions[unlist(folds)] <- predictions

# Get CV AUC and confidence interval

out <- ci.cvAUC(predictions = predictions, labels = data$y,
folds = folds, confidence = 0.95)

return(out)

# Run example

library(cvAUC)

data(admissions)

set.seed(1)

out <- iid_example(data = admissions, V = 10)
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The output is given as follows:

# > out

H O H H H HHEHHHHR

$cvAUC
[1] 0.9046473

$se
[1] 0.01620238

$ci
[1] 0.8728913 0.9364034

$confidence
[1] 0.95

In the i.i.d. example above, we provided cross-validated predicted values, fold
indices, and class labels (0/1) to the ci.cvAUC function while using a default
confidence level of 95%. The cross-validated AUC is shown to be approximately
0.905, with an estimated standard error of 0.016. The corresponding 0.95%
confidence interval for the CV AUC is approximately [0.873, 0.936].

Acknowledgements

We would like to thank the developers of the ROCR R package [5].

References

[1]

LiNng, C., HUANG, J., and ZHANG, H. (2003). AUC: a statistically consis-
tent and more discriminating measure than accuracy. Proceedings of IJCAI
2003.

BRADLEY, A. P. (1997). The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition 30, 1145—
1159.

GEISSER, S. (1975). The predictive sample reuse method with applications.
Amer. Statist. Assoc. 70, 320-328.

KLEINER, A., TALWALKAR, A., SARKAR, P., and JORDAN, M. (2013). A
scalable bootstrap for massive data. Journal of the Royal Statistical Society,
Series B.

SING, T., SANDER, O., BEERENWINKEL, N., and LENGAUER, T. (2005).
ROCR: Visualizing classifier performance in R. Bioinformatics 21, 20,
3940-3941.

VENABLES, W. N. and RIPLEY, B. D. (2002). Modern Applied Statistics
with S, Fourth ed. Springer, New York.

ALLEN, D. M. (1974). The relationship between variable selection and
data augmentation and a method for prediction. Technometrics 16, 125—
127. MR0343481 (49 #8222)


http://www.ams.org/mathscinet-getitem?mr=0343481

1606

8]

[9]

[17]

[18]

[19]

E. LeDell et al.

BEzANsON, J., KARPINSKI, S., SHAH, V. B., and EDELMAN, A.
(2012). Julia: A fast dynamic language for technical computing.
CoRR abs/1209.5145. http://arxiv.org/abs/1209.5145.

BickeL, P. J., GOTZE, F., and vaAN ZwWET, W. R. (1997). Resam-
pling fewer than n observations: gains, losses, and remedies for losses.
Statist. Sinica 7, 1, 1-31. Empirical Bayes, sequential analysis and re-
lated topics in statistics and probability (New Brunswick, NJ, 1995).
MR1441142 (98g:62079)

BickeL, P. J., KrLaassen, C. A. J., Ritov, Y., and WELLNER, J. A.
(1993). Efficient and adaptive estimation for semiparametric models. Johns
Hopkins Series in the Mathematical Sciences. Johns Hopkins University
Press, Baltimore, MD. MR1245941 (94m:62007)

EFRrRON, B. (1979). Bootstrap methods: another look at the jackknife. Ann.
Statist. 7, 1, 1-26. MR515681 (80b:62021)

EFRON, B. and TIBSHIRANI, R. J. (1993). An introduction to the bootstrap.
Monographs on Statistics and Applied Probability, Vol. 57. Chapman and
Hall, New York. MR1270903 (95h:62077)

FRrRIEDMAN, J., HasTIE, T., and TIBSHIRANI, R. (2010). Regularization
paths for generalized linear models via coordinate descent. Journal of Sta-
tistical Software 33, 1, 1-22. http://www jstatsoft.org/v33/i01/.

GiLL, R. D. (1989). Non- and semi-parametric maximum likelihood esti-
mators and the von Mises method. I. Scand. J. Statist. 16, 2, 97-128. With
a discussion by J. A. Wellner and J. Praestgaard and a reply by the author.
MR1028971 (91d:62042)

KORNBLITH, S. (2014). GLMNet.jl: Julia wrapper for fitting Lasso/Elastic-
Net GLM models using glmnet. Commit version 0526df8455, https://
github.com/simonster/GLMNet.jl.

LEDELL, E., PETERSEN, M., and VAN DER LAAN, M. (2013). cvAUC:
Cross-Validated Area Under the ROC Curve Confidence Intervals. R pack-
age version 1.0-0, http://CRAN.R-project.org/package=cvAUC.

LiN, D. (2014). A set of functions to support the development of machine
learning algorithms. v0.4.2, https://github.com/JuliaStats/MLBase.jl.
LiN, D. and WHITE, J. M. (2014). A Julia package for probabil-
ity distributions and associated functions. v0.5.4, https://github.com/
JuliaStats/Distributions.jl.

Poritis, D. N., Romano, J. P., and WoLr, M. (1999). Subsampling.
Springer Series in Statistics. Springer-Verlag, New York. http://dx.doi.org/
10.1007/978-1-4612-1554-7. MR1707286 (2001d:62047)

SHAO, J. (1993). Linear model selection by cross-validation. J. Amer.
Statist. Assoc. 88, 422, 486-494. MR1224373 (94k:62107)

STONE, M. (1974). Cross-validatory choice and assessment of statistical
predictions. J. Roy. Statist. Soc. Ser. B 36, 111-147. With discussion by
G. A. Barnard, A. C. Atkinson, L. K. Chan, A. P. Dawid, F. Downton,
J. Dickey, A. G. Baker, O. Barndorff-Nielsen, D. R. Cox, S. Giesser, D.
Hinkley, R. R. Hocking, and A. S. Young, and with a reply by the authors.
MRO0356377 (50 #8847)


http://arxiv.org/abs/1209.5145
http://www.ams.org/mathscinet-getitem?mr=1441142
http://www.ams.org/mathscinet-getitem?mr=1245941
http://www.ams.org/mathscinet-getitem?mr=515681
http://www.ams.org/mathscinet-getitem?mr=1270903
http://www.jstatsoft.org/v33/i01/
http://www.ams.org/mathscinet-getitem?mr=1028971
https://github.com/simonster/GLMNet.jl
https://github.com/simonster/GLMNet.jl
http://CRAN.R-project.org/package=cvAUC
https://github.com/JuliaStats/MLBase.jl
https://github.com/JuliaStats/Distributions.jl
https://github.com/JuliaStats/Distributions.jl
http://dx.doi.org/10.1007/978-1-4612-1554-7
http://dx.doi.org/10.1007/978-1-4612-1554-7
http://www.ams.org/mathscinet-getitem?mr=1707286
http://www.ams.org/mathscinet-getitem?mr=1224373
http://www.ams.org/mathscinet-getitem?mr=0356377

Computationally efficient confidence intervals for CV AUC 1607

[22] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak convergence
and empirical processes. Springer Series in Statistics. Springer-Verlag, New
York. With applications to statistics. MR1385671 (97g:60035)

[23] ZHENG, W. and VAN DER LaAN, M. J. (2011). Targeted maximum like-
lihood estimation of natural direct effect. Tech. Rep. 288, U.C. Berkeley
Division of Biostatistics Working Paper Series.


http://www.ams.org/mathscinet-getitem?mr=1385671

	Introduction
	Cross-validated AUC as a target parameter
	Influence curves for variance estimation
	Confidence intervals for cross-validated AUC
	A practical implementation for i.i.d. data

	Generalization to pooled repeated measures data
	Software
	Coverage probability of the confidence intervals
	Simulation to evaluate coverage probability
	Comparison to bootstrapped confidence intervals

	Conclusion
	Appendix
	Code example

	Acknowledgements
	References

