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estimators have not been explored yet. In this paper, we propose a Bayesian
estimator for matrix completion under general sampling distribution. We
also provide an oracle inequality for this estimator. This inequality proves
that, whatever the rank of the matrix to be estimated, our estimator reaches
the minimax-optimal rate of convergence (up to a logarithmic factor). We
end the paper with a short simulation study.
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1. Introduction

The “Netflix Prize” [5] generated a significant interest in the matriz completion
problem. The Netflix data can be represented as a sparse matrix made up of
ratings given by users (rows) to movies (columns). To infer the missing entries
is thus very helpful to propose sensible advertisement and improve the sales.
However, it is totally impossible to recover an uncomplete matrix without any
assumption. A suitable condition, popular in practice for this problem, is that
the matrix has low-rank or approximately low-rank [1, 3, 7, 8, 9, 15, 16]. For
the Netflix problem, this assumption is sensible as it means that many movies
(or users) have similar profiles.

Let M), ..., be an unknown matrix (expected to be low-rank) and (X1,Y1), ...,
(Xn,Yn) be i.i.d random variables drawn from a joint distribution P. We assume
that

YVi=M%, +&, i=1,....n, (1)

the noise variables &; are independent from X; and E(&;) = 0. We let II denote
the marginal distribution of X when (X,Y) ~ P. Remark that II is a distribu-
tion on the set X = {1,...,m} x {1,...,p}. Then, the problem of estimating
M?° with n < mp is called the noisy matrix completion problem under general
sampling distribution.

A special instance of this problem is that the sampling distribution II is
uniform, this assumption is done for example in [3, 7, 8 9, 16]. Clearly, in
practice, the observed entries are not always uniformly distributed: for example,
some movies are more famous than others, and thus receive much more ratings.
More importantly, the sampling distribution is not known in practice. More
general sampling schemes than uniform distribution had been already studied,
see e.g. [14, 15, 22], but there are still some assumptions on II in these papers.
Here, we do not impose any restriction on II. From now, II;; = P(X = {i,j})
will denote the probability to observe the (i, j)-th entry.

For any matrix A, xp, let ||Al|r denote the Frobenius norm, i.e, ||A]% =
Tr(AT A). We define a “generalized Frobenius norm” as follows

Al = (Aij)°TL;.
ij
Note that when the sampling distribution ITis uniform, then || A[|% ; = || A[|%/mp.
For any matrix M,,x, € R™P, we define the empirical risk as

Z (}/1 - MXi)2

=1

r(M) =

S|
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and the prediction risk
2
ROM) = E(xy)wp |V = Mx)’]

In this paper, the prediction problem is considered, i.e, the objective is to define
an estimator M such that R(M) — R(MPY) is as small as possible. Remark that
R(M) — R(M°) = |M — M°||%; for any M (using Pythagorean Theorem).

When handing with this proBlem, most of the recent methods are often based
on minimizing a criterion of the fit to the observations, such as (M), penalized
by the nuclear-norm or the rank of the matrix. A first result can be found in by
Candes and Recht [8], Candes and Tao [9] for exact matrix completion (noiseless
case, i.e. & = 0). These results were then developed in the noisy case [7, 16].
Some efficient algorithms had also been proposed, for example see [23].

Recently, some authors have studied a more general problem, the so-called
Trace regression problem: [15, 16]. This problem includes matrix completion,
together with other well-known problems (linear regression, reduced rank re-
gression and multitask learning) as special cases. They proposed nuclear-norm
penalized estimators and provided reconstruction errors for their methods. They
also proved that these errors are minimax-optimal (up to a logarithmic factor).
Note that the average quadratic error on the entries of a rank-r matrix size
m x p from n-observations can not be better than: r max(m, p)/n [16].

On the other hand, Bayesian methods have been also considered [3, 18, 19,
24, 28]. Most Bayesian estimators are based on conjugate priors which allow to
use Gibbs sampling [3, 24] or Variational Bayes methods [19]. These priors are
discussed in details in [3]. These algorithms are fast enough to deal with large
datasets like Netflix or MovieLens', and are actually tested on these datasets
in those papers. However, the theoretical understanding of Bayesian algorithms
is not satisfying. Up to our knowledge, the minimax-optimality - and even the
consistency - of the Bayesian estimator under conjugate prior is an open ques-
tion.

In this paper, we design a new prior and prove an minimax-optimal oracle
bound for the corresponding Bayesian estimator. This is presented in Section 2.
In Section 3, we discuss the implementation of our Bayesian estimator. Some
experiments comparing our estimator to the one based on conjugate priors are
done on simulated datasets. The proof of the main result is provided in the
appendix.

2. Main result

Before we introduce our estimator, let us formulate some assumptions.

Assumption 1. There is a known constant L such that

|M]| oo = sup | M| < L < +o0.
]

Ihttp://grouplens.org/datasets/movielens/
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This is a mild assumption. In the Netflix and MovieLens datasets, the ratings
belong to the set {1,2,3,4,5}, so we can take L = 5.

Assumption 2. The noise variables &1, ...,E, are independent and indepen-
dent of X1,...,X,. There exist two known constants o > 0 and & > 0 such
that

E(£?) < o?

VE >3, E(&F) < o’kleh2,

Assumption 2 states that the noise is sub-exponential, it includes the cases
where the noise is bounded or sub-Gaussian (and of course Gaussian), see e.g.
Chapter 2 in [6].

We now describe a prior m on matrices My, x, as follows. Let K = min(m, p)
and I" be a random variables taking value in the set {I'1,...,T'x} with P(T" =

k times K —Fk times

k—1 1—7
Ty)=r1 (ﬁ) where 'y, = (1,...,1, 0,...,0 ) for some constant 7 € (0,1)
and k € {1,..., K}. Now, assuming that I' = I';, and a matrix M,,y, is drawn

as M = Ui (Vs )T where

U v, it JU=0,0]) when T =1, )
LSS U([—~,k]) when Ty, =0, o

with § = /2L/K and 0 < k < (1/n)y/L/(10K). Note that, in this case, the
entries of M satisfy: sup; ; [M;;| < 2L. Moreover, when a matrix M is drawn
from this prior, as x is small, most columns of U and V are almost null. So the
matrix M = UVT is very close to a rank-k matrix. Actually, the choice k = 0
leads to rank(M) < k.

We are now ready to define our estimator. For any A > 0, we consider the
conditional probability measure py given by its density w.r.t. the probability
measure 7:

d[))\ ef)\r(M)

—_ = ==Y 2

dm (M) JeArdm (2)
The aggregate M.  is defined as follows

M, = / M px(dM). (3)

Note that, for A = n/(202), this corresponds exactly to the Bayesian estimator
that would be obtained for a Gaussian noise & ~ N(0,0?). However, a slightly
different choice for A\, denoted by A\* below, will allow to obtain the optimality
of the estimator under a wider class of noises. For any x > 0, define

M(z) = {M_ UvT, with |Uy| < ,/%,Wm < /% }

and C = [12L(26+3L)]V [80% 4 2(3L)?| . Hereafter, the main result is presented.

We provide an oracle bound for our estimator M.
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Theorem 1. Let Assumption 1 and 2 be satisfied and take X = \* := 5. Then,

for any € € (0,1), with probability at least 1 — € and as soon as n > max(m,p),
one has

My — MOY2 < inf {3|M — MO|2
[| M |F,H_M61§\14(L){ I ||FH

+ CgL,f,U,T

(m + p)rank(M) log(K) N 8Clog (2) }

where €1.¢.0.+ is a (known) numerical constant depending on L,&, o and T only.

The proof of this theorem is given in the appendix. It follows an argument
called “PAC-Bayesian inequality”. PAC-Bayesian inequalities were introduced
in [25, 21] in order to provide empirical bounds on the prevision risk of Bayesian-
type estimators. However, our proof is closer to Catoni’s works [10, 11, 12],
where it is shown how to derive powerful oracle inequalities from PAC-Bayesian
bounds. This approach has been used many times since then to prove oracle
inequalities in many dimension-reduction problems like sparse regression esti-
mation [13, 4, 2] or reduced-rank regression [1].

The choice A = \* comes from the proof of this theorem when optimizing an
upper bound on the risk R, see (15) page 838. However, in practice, this choice
may not be the best one. For example, in the experiments done in Section 3
with Gaussian noise & ~ N(0,0?), we take A = 2 that was shown in [13] to
behave very well in regression problems. Also, in practice, to take K smaller
than min(m,p) improves significantly the speed of the algorithm with little
consequence on the performance of the estimator [3].

Remark 1. When M° € M(L), we can take M = M?, one gets

(m + p)rank(M?) log(K) N 8Clog (2) '

[Mye — MO\ En < CLeor

The rate (m + p)rank(M?)log(K)/n is minimax-optimal, or at least almost
minimax-optimal: a lower bound in this problem is provided by Theorems 5
and 7 in [16], it is (m + p)rank(M?)/n. The optimality of the log term is, to
our knowledge, an open question. Note however that the upper bound in [16] is
(m + p)rank(MY) log(m + p)/n. So, our bound represents a slight improvement
in the case min(m, p) < max(m, p).

Remark 2. When the sampling distribution II is uniform in Theorem 1, we
obtain the following oracle bound for the Frobenius norm

1 —~ )
p e = MOl < | ind —|M — MY
mp” A ||F_M€1§\1/[(L){mp” ||F

o, ) SOV (2) )



828 T. T. Mai and P. Alquier

Finally, we want to mention that the rate of [16] is also reached, in a work
parallel to ours, by Suzuki [26], in a Bayesian framework. The main difference
is that, while [26] provides a rate of convergence in a more general low-rank
tensor estimation problem, his works do not bring an oracle inequality like
Theorem 1 that can be used when M is not exactly low-rank, but can be
well approximated by a low-rank matrix. Moreover, our result holds under any
sampling distribution II.

3. Experiments and comparison with conjugate priors for simulated
datasets

3.1. A Gibbs algorithm for ]TI\A

As it has been shown in Section 2, our estimator M. A+ satisfies a powerful oracle
inequality. However, as mentioned in the introduction, the Bayesian estimator
using conjugate priors is popular in practice as it leads to a fast algorithm. The
reason is that there is an explicit form for the conditional posterior distribution
of the i-th row of U, U; ., given the other rowss of U, U_; ., and given V (it is a
multivariate normal distribution which parameters are known). This allows to
use a Gibbs sampler, with very good convergence properties. This is described
for example in [3] and the references therein.
Here, straighforward but tedious computations lead to

Ui |k, U_; 0, V. =TY%)

k K
2
x| Ui =% D0 YV S| [[1won<n T Tovinze
k:l=i =1 l=k+1

where we use the notation X1 = (I, J1), ..., X,y = (In, Jn),

02X
(25) 12? Z Vi Vi,
ktlk:i

and ¢(-;m, V) is the density of the multivariate normal distribution with mean
vector m and variance-covariance matrix V. So, the conditional posterior dis-
tribution of U;. is a truncated multivariate normal. To sample from such a
disitrubition is known as a very hard problem in general, see for example [17].
However, using the R package tmvtnorm [27], it is possible to sample from
a truncated multivariate normal fast enough to compute our estimator on rea-
sonnably large datasets. Finally, instead of including the hyperparameter k €
{1,..., K} in the simulations, we simulated K chains simultaneously, one for
every k € {1,..., K}, and selected the realization of one of the chains at each
round using the probabilities given by (2).

Also, note that the truncation procedure proposed by Suzuki in [26] cannot
be implemented, to our understanding, using this procedure, as the truncation
is done directly on the product UV” rather than on U and V individually.
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3.2. Experiments

We use the notation ]\/4: for our estimator, let us denote Meoningate the esti-
mator based on the Gaussian prior for U and V with inverse Gamma variance,
described in [3] and in the aforementionned references. In order to compare both
estimators, a series of experiments were done with simulated data:

e In the first series of simulations, the data are simulated as in [7, 3]. More
precisely, a rank-2 matrix M2 . (so m = p) has been created as the
product of two rank-2 matrices, M° = U2 (V.0 )T, where the entries of
UY and VO are i.i.d N'(0,20/y/m). Only 20% entries of the matrix M? are
observed (using a uniform sampling). This sampled set is then corrupted
by noise as in (1), where the &; are i.i.d N(0,1). We consider the cases
m = 100, m = 200, m = 500 and m = 1000.

e The second series of simulations is similar to the first one, except that the
matrix M? is no longer rank 2, but it can be well approximated by a rank
2 matrix:

M =Up o (Viny2)" + 1—(1)0(Z21><50)(W7?1><50)T
where the entries of Z° and W? are i.i.d N(0,20//m).

e The third series of experiments is similar to the first one, but the noise
variables &; are now i.i.d from a uniform distribution on [—1, 1]. Note that,
from a purely Bayesian point of view, this corresponds to a mispecified
model. However, the bound in Theorem 1 is still valid in this case.

e Finally, the fourth series of experiments is similar to the first one, noise
variables & are now i.i.d from a heavy-tailed distribution (Student, with
parameter 5). This is another misspecified model, but in this case, Theo-
rem 1 cannot be used.

The behavior of our estimator M- A is computed through the root-mean-squared
error (RMSE) per entry,

RMSE = [(1/mp)[| My — M°|1]'/2 = (1/m) | My — M| .

The parameters are given as follows: for both M y and M conjugate the param-
eter A is set to n/4, following [13]. Following [3] we use for the parameters of
the inverse Gamma prior in Nconiugate the values a = 1, b=1/100. Finally, for
M\A, we used Kk = 0, K =5, L = 50 and 7 = 1/2 on all the simulations apart
from the heavy-tailed noise case, where we used 7 = 1/4. Note that a proper
optimization with respect to the parameters 7 and A could lead to better results,
for example through cross-validation.

The first conclusion is that the results of both methods are very close. In many
situations, however, the variance of the estimator with uniform prior is larger
than the variance of the estimator with Gaussian prior. The evidence is that
this is due to the fact that the MCMC algorithm used to compute the estimator
with Gaussian prior, M conjugate, converges faster than the algorithm used to
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TABLE 1
RMSEs in the first series of experiments (low-rank matriz, Gaussian noise)
prior m = 100 m = 200 m = 500 m = 1000
Uniform 0.535 (+0.003) | 0.348 (+0.003) | 0.207 (+0.0001) | 0.141 (£0.0006)
Gaussian | 0.538 (£0.001) | 0.345 (£0.001) | 0.210 (£0.0001) 0.146 (£0.001)
TABLE 2
RMSEs in the second series of experiments (approx. low-rank, Gaussian noise)
prior m = 100 m = 200 m = 500 m = 1000
Uniform 0.640 (4+0.008) | 0.387 (+0.001) | 0.214 (+0.0008) | 0.145 (£0.0002)
Gaussian | 0.620 (£0.003) | 0.385 (£0.001) | 0.216 (£0.0003) 0.145 (£0.001)

TABLE 3
RMSEs in the third series of experiments (low-rank matriz, uniform noise)

prior m = 100 m = 200 m = 500 m = 1000
Uniform 0.328 (40.002) | 0.205 (40.001) | 0.120 (£+0.001) | 0.084 (+0.002)
Gaussian | 0.334 (£0.003) | 0.208 (+0.001) | 0.126 (£0.003) | 0.086 (£0.001)

TABLE 4
RMSE:s in the fourth series of experiments (low-rank matriz, heavy-tailed noise)

prior m = 100 m = 200 m = 500 m = 1000
Uniform 0.745 (£0.039) | 0.567 (£0.005) | 0.340 (+0.004) | 0.237 (£0.003)
Gaussian | 0.659 (£0.003) | 0.439 (+0.001) | 0.268 (+£0.002) | 0.186 (£0.002)

compute the estimator with uniform prior, j/[: This is supported by Figure 1
page 831. However, it seems that this difference is less and less significant when
the dimension m grows.

According to our main oracle inequality, our estimator is robust to misspec-
ification in the low-rank assumption, see Table 2, and in the noise, at least in
the sub-Gaussian case, see Table 3. More importantly: despite the fact that the
theoretical properties of M coningate are not known, this estimator is more robust
than ours to heavy-tailed noise, as shown in Table 4.

4. Conclusion

This paper proposes a Bayesian estimator for the noisy matrix completion prob-
lem under general sampling distribution. This estimator satisfies an optimal
oracle inequality under any sampling scheme. Based on simulations, it is also
clear that this estimator performs well in practice, however, a faster algorithm
for very large datasets is still an open issue. Another important open question
is the minimax-optimality of the estimator based on Gaussian priors.
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Fic 1. ACF of four randomly selected entries during a simulation. These are taken from the
first series of experiments. The ACF of the Gibbs sampler for the Bayesian estimator with

uniform priors, My, is in red while the ACF of the Gibbs sampler for the Bayesian estimator
with Gaussian priors, MSCMUgate s in plue.

Appendix: Proof of Theorem 1

First, we state a version of Bernstein’s inequality useful in the proof of Theo-
rem 1. This version is taken from [20] (Inequality 2.21 in the proof of Proposition
2.9 page 24).
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Lemma 2. Let T, ..., T, be independent real valued random variables. Let us
assume that there are two constants v and w such that

n

Z E[Tiz] Sw

i=1

and for all integers k > 3,

- Klwk—2
Y E[T)] <wv wz
=1
Then, for any ¢ € (0,1/w),
Eexp C; [Ti — E(T})]| <exp (m) :

Now, we are ready to present the proof of Theorem 1.

Proof of Theorem 1. the proof is divided in two steps. In the first step, we
establish a general PAC-Bayesian inequality for matrix completion, in the style
of [11, 13]. In the second step, we derive the oracle inequality from the first step.

Step 1:

Let’s define, for any matrix M € M(2L), the following random variables
T = (}/Z B M%Z)Q - (}/Z - MXi)2'

Note that these variables are independent. We first check that the variables T;
satisfy the assumptions of Lemma 2, in order to apply this lemma. We have
n

> E[T]

i=1

I

s
Il
-

E[(2¥: - M, - Mx,)” (M, - Mx,)’]

|

N
Il
-

:(251 + Mgﬂ - MX%’)Q (M)O(z - MX%’)2}

-

s
Il
-

E [[s€2 +2(L +20)%) [M, - My,)’]

E 867 +2(3L)?| E [M%, — Mx,]?

[
NE

<n[80%+2(3L)*] [R(M) — R(M")] =: v(M,M°) = v.

-
Il

Next we have, for any integer k£ > 3, that

SCE[T)Y) < YE[[2¥i - MY, - M| M, - Mx,
=1 =1

i
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]
3

< Y E [2%7! <|51-|’“ + (—L)k> (8L)F7% | M, — Mx,

< STE 25 I8 + (L/2 + D] [ MY, - M,

2

]
(BL)F2 > B |M%, — Mx,
i=1

2k—1 | 27.1¢k—2 3 g 2

[02k1gR =2 + (3L)¥] [4(3L)]"* 2
- 02+ (3L)?
< [k!§k2+<gL)k2 [4(3L)]F2v

with w := 12L(2¢ + 3L).
Next, for any A € (0,n/w), applying Lemma 2 with { = A\/n gives

Eexp [)\(R(M) — R(M®) —r(M) + T(MO))] < exp lﬁ)\jw_)\)] .

Set Co,, = 2 [402 + (3L)?]. For the sake of simplicity let us put

N2Cy 1,
a=[(A—-———]. 4
( (1 - ) W
In order to understand what follows, keep in mind that w is a constant and that
our optimal estimator comes with A = A* = 5, so a is of order n.

For any € > 0, the last display yields
0 0 2
Eexp {a (R(M) ~R(M )) + /\(—T(M) (M )) “log g] <
Integrating w.r.t. the probability distribution 7(.), we get
0 0 2
/Eexp [a (R(M) — R(M )) + )\(—T(M) +r(M )) ~log g} r(dM) <

Next, Fubini’s theorem gives

E/exp
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Jensen’s inequality yields

Eexp|a (/ Rdjy — R(M0)>+)\ (— /rdﬁ,\ + r(MO)) —K(p, m)—log %1 <z,

where K(p, q) is the Kullback-Leibler divergence of p from ¢. Now, using the
basic inequality exp(x) > 1g, (), we get

]P’{ [a(/ deAA—R(MO))+/\(—/rdﬁA+T(MO))—IC(ﬁA,w)—log ;] > o} <

Using Jensen’s inequality again gives

N ™

/ Rdjpy > R ( / MMdM)) — R(W).

Combining the last two displays we obtain

)

s 0
Jrdpy —r(M°) + S1_C.

P{R(M\/\) — R(M") < [K(px, ) + log 2] }

> ||
[N}

Using Donsker and Varadhan’s variational inequality (Lemma 1.1.3 in
Catoni [12]), we get

P{ R(M))—R(M°) < inf Jrdp—r(M) + % [Klpm) +log 2] | | e
S ) I
(5)

where DJT}|r (M) is the set of all positive probability measures over the set of m x p
matrices equiped with the Borel g-algebra.

We now want to bound from above (M) — r(M°) by R(M) — R(M"). We
can use Lemma 2 again, to T;(0) = —T;(0) and similar computations yield
successively

2n2(1 — wd)

n

2
E exp [)\(R(MO) —R(M)+r(M)— T(Mo))] < exp [L] ,
and so for any (data-dependent) p,

Eexp

3 <— /de + R(M°)> +A (/ rdp — T(MO)) — K(p,7) — log ;] < %

where

B \2C, 1
B—<)\+72n(1_%)>. (6)
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Here again, with the same spirit with a in (4), 8 is of order n also. So:

]P{/rdp—r(MO) < § [/ Rdp — R(MO)}% [/C(p, 7) + log ﬂ} > 1-%. (7)

Combining (7) and (5) with a union bound argument gives the general PAC-
Bayesian bound

P{R(%)—R(MO) < gt PUTde= ROD 4 20K, m) + log g]} >1-e.
pEMY (M) «a

(8)
Step 2:

In the second step, we derive an explicit form for the upper bound in (8). The
idea is that, if we restrict the infimum in the upper bound in (8) to a small set
of measures p, we are able to provide an explicit bound for this infimum. This
trick was introduced in [11].

Let M € M(L), it means that M = UVT with |Uy| < /L/K,|Vje| <
V/L/K. Let us take, for any ¢ such that x < ¢ < (vV2—1)/L/K, the probability
distribution

pu.v.e(dp, dv) < 1([[p = Ulloo < ¢, [V = Voo < ¢) 7(dp, dv).
Note that, as ¢ < (V2 — 1)y/L/K, we have supp(py.v..) C supp(n) and so

’C(pva_’C,Tr) < Q.
Thus, (8) becomes

P{R(%) RO < it P Bpove = ROAL)] + 2 [K(py e, m) + log S]}

U,V,c «

>1—ec.

(9)

Let us fix ¢,U,V. The end the proof consists in calculations to derive an
upper bound for the two terms in (9). Firstly

| Rapuye— rar®)
= [l = MO puy.l )
— [l = U U UV UV - MO e )

-/ (WT UV o+ UV — UV B
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+|UVT = MO 3 + 2 (™ — UV, Uv" — UVT>RH

+2<;WT—UVT,UVT—MO>F)H

+2(v’ —ovt uvt - MO>F1H>pU7V,C(du, dv).

(note that we use the notation (A, B) py = 3, Ay BijTlij). As [ ppuv.e(dp) =
U and [ vpy,v,c(dv) =V, it can be seen that integral of the three scalar products
in the previous equation vanish. Moreover,

2
0= 00 ey = 3 [0 = U7 T3 10y < (sup [Gu— 07, ) S0,

ij K

K 2 2
< | supd lu—=Ulielvlje | < | Ksuplp—Ulic sup|v|;e
i j il ¥

Yop=1
| L
Ke (c—i— E)

similarly [|[Uv” — UVT||%,; < K Lc?. Therefore, from (9), we have

2

= KA(VKe+ VL),

<

/ ™ — M3y purve(dpss dv)
< K [(\/Ec + VI + L] + [UVT = MO% . (10)

So, we have an upper bound for the first term in (9). We now deal with the
Kullback-Leibler term:

1
K cs =1
(pov.e:m) =log Ul <.l = Viim <))
=log ! + log L
AUl <) 2 v Vim <)
1
=log

J7{lln = Ulloo < c}T)m(I)dl
1
Ja{llv = Ve < }D)m(T)dl

+ log (11)

Note that, up to a reordering of the columns of U and V', we can assume that U =
(Up]...|Uk,|0]...|0]) and V = (V4] ...|Vi,|0]...]0]), where ko = rank(UVT) <
K. Then

[ 70l = Ul < HDYREIAR = 77 (55 (e - Ul < P =T,)
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and, as k < ¢,

m({lln = Ulleo < ¢}l =T,)

m ko K
> TTT] #lmie — Uiel < eHU = Do) [r({ il < }T =T,

i=10=1 L=ko+1

mko
. | K
c\l — .
- 2L
So,
1
log

[7({llu — Ul < c}T)m(T)dT

K
< (ko — 1) log(1/7) + log <11 — ) + mkq log (%g)
< (kg — 1)log(1/7) + log (1 i 7') + mko log (%\/%) . (12)

By symmetry,

1
Jm{llv = Vs < c}D)m(I)dl’

< (ko — 1)log(1/7) + log <i)

+ pko log (%\/%) . (13)

Plugging (12) and (13) into (11), we obtain finally our upper bound for the
Kullback-Leibler term:

K(pv,v,e,m) < 2(ko — 1)log(1/7) + 21log (é) + (m + p)ko log <%\/%>

< 2kglog(1/7) + 2log (i) + (m + p)ko log (%\/%) . (14)

Finally, substituting (10) and (14) into (9),

log

P{ R(M) — R(M°) < inf ! ﬂ(Kc2 [(VEKe+VL)? + L]
U V,c @
U;,V; =0 when j > kg

1 /2L
T_ 012 - =
+|UV M |\F7H) +2(m—|—p)kolog<c K)

2
+4kolog(1/7) + 4log (%) + 2log 21 } >1—e
-7
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Let us put ¢ = /(m+p)L/(18nK). Note that as n > max(m,p) then

(m+p)/(3n) < 1 and thus the condition ¢ < (v2 — 1)\/L/K is satisfied.
So we have the following inequality with probability at least 1 — &:

R(My) — R(M")
< inf — (1 - /\67“)
U, v I- 2(71—0'15)\) 2(n —w))
U;,V; =0 when j > ko

m-+p m+p
+ L3 (2L T +3L>

UV = M|

L2
A

36n
kol
(m + pitos (12 )

2
+ 2kolog(1/7) + 2log (i) + log gl },

where o and /3 have been replaced by their definitions, see (4) and (6). Taking
now A = \* =n/(2C) with C = C,,1, V w in the last above display, gives

—~ . +p /m+p
P R(My) — R(OM®) < inf  {3|122 MTP L 3) 4 = M2
{ (M) ( )_Melf\l/l(L){ [ 18n ( In + )+” ”FH

8C |1 36 2
+ WC 3 (m + p)rank(M) log <m——:bp> + log B

+ 2rank(M) log(1/7) + 2log <%) ] }} >1—c¢,

(15)
ACo, ACo,
where we have used that 1 — m >1/2and 1+ m <3/2. As
36 36 36 mi
log 36n < log _36mp 1\ log min(m, p) max(m, p) — log(36K),
m-+p max(m, p) max(m, p)
we have
P R() = ROM®) < inf 4 3|p22 (EP 3 g — 02
T MeM(L) 18n In Bl
8C |1 2
+ & §(m + p)rank(M) log(36K) + log B
n
1
+ 2rank(M ) log(1/7) + 2log (1—) 1 }} >1—e.
-7
(16)
Moreover,

3

[2mtp (m P 3) <#(L) (m + p)rank(M) log(K)

6n In n
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for some constant ¢ (L) > 0 depending on L only. Remind that 7 is a constant
in (0,1), we have

2rank(M)log(1/7) + 2log (i) <) (m + p)rank(M) 1og(K)7

n

for some constant € (7) > 0 depending on 7 only. Finally, from (16), we obtain

}21_57

for some constant ¢ (L,C,7) > 0 depending only on L, 7 and C. However, as the
constant C also depends on L,&, o then €(L,C,T) can be rewritten as €7,¢,0,r
as in the statement of the theorem.

P{ R(My-) — R(M®) < inf  |3[|[M — MO|2
{( a+) — R( )—Mé?m)[' % m

(m + p)rank(M) log(K) N 8Clog (2)

n n

+9%(L,C,71)
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