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In observational studies, treatment may be adapted to covariates at sev-
eral times without a fixed protocol, in continuous time. Treatment influences
covariates, which influence treatment, which influences covariates and so on.
Then even time-dependent Cox-models cannot be used to estimate the net
treatment effect. Structural nested models have been applied in this setting.
Structural nested models are based on counterfactuals: the outcome a person
would have had had treatment been withheld after a certain time. Previous
work on continuous-time structural nested models assumes that counterfac-
tuals depend deterministically on observed data, while conjecturing that this
assumption can be relaxed. This article proves that one can mimic counter-
factuals by constructing random variables, solutions to a differential equa-
tion, that have the same distribution as the counterfactuals, even given past
observed data. These “mimicking” variables can be used to estimate the pa-
rameters of structural nested models without assuming the treatment effect to
be deterministic.

1. Introduction. Observational studies are no replacement for randomized
clinical trials, but they can be used, for example, where randomization is uneth-
ical or to generate hypotheses for subsequent clinical trials. In an observational
study, treatment may be adapted to patient characteristics which predict the out-
come of interest. This is called confounding by indication. If the confounding by
indication only takes place at baseline, one can condition on initial person char-
acteristics in order to get meaningful estimates of the treatment effect. However,
if the confounding by indication also takes place after baseline, variables used for
treatment decisions may be influenced by past treatment. Thus, they may them-
selves be indications of the treatment effect, and in that case simply conditioning
on them can lead to false conclusions.

With such time-dependent confounding by indication, even the time-dependent
Cox model does not estimate the net effect of treatment (see, e.g., [17, 20] or [21]).

Received November 2013; revised December 2015.
IThis work was sponsored by the Netherlands Organization for Scientific Research (NWO) with
a Talent scholarship, and by the National Institutes of Health, NIAID RO1AI100762. The content
is solely the responsibility of the author and does not necessarily represent the official views of the
National Institutes of Health.
MSC2010 subject classifications. Primary 62P10; secondary 62M99, 62N02.
Key words and phrases. Causality in continuous time, dynamic treatments, longitudinal data, ob-
servational studies, panel data, rank preservation, stochastic differential equations, structural nested
models.

461


http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1433
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html

462 J.J.LOK

With a time-dependent Cox model, the rate of events given past treatment and co-
variate history can be estimated, but the true parameter(s) on treatment may not
reflect the treatment effect. A consistent estimator of the effect of the treatment on
the outcome of interest has to take into account the effect of treatment on inter-
mediate covariates. This is easily understood when considering a treatment which
affects the outcome only because it affects an intermediate variable L. In that sit-
uation, if L and treatment are both included in the time-dependent Cox model for
the event of interest, the true parameter(s) on treatment in this Cox model equal 0.
However, treatment could be beneficial due to its effect on L. On the other hand,
not including L may also result in an inconsistent estimator, if L predicts future
treatment. This follows from the same reasoning as why, in case of nonrandomized
point treatment, one needs to adjust for predictors of both the treatment and the
outcome to consistently estimate the treatment effect: if one does not adjust for L,
and if persons with L indicating a bad prognosis are more likely to be treated, the
treatment may seem to adversely affect the outcome, even if it has no effect on
anyone. To conclude, with time-dependent confounding by indication, one needs
to take confounders into account, but adding the confounders to an outcome model
is not enough.

If all confounders are measured (see Assumption 5 below), structural nested
models, proposed in [18, 19, 22], and marginal structural models, proposed in
[6, 26], can be used to consistently estimate treatment effects in the presence of
time-dependent confounding by indication. Structural nested models and marginal
structural models make a distinction between the effect of the treatment and the
reason why the treatment was given, by separately modeling the treatment deci-
sions and the treatment effect. Robins [23] compares structural nested models and
marginal structural models. The current article focuses on structural nested mod-
els.

Structural nested models model relations between counterfactual outcomes. We
allow for general treatment regimes. Consider a single person, who received a par-
ticular treatment regime with outcome Y. For example, the particular treatment
regime could be as follows: first, no treatment, then after a certain time, initia-
tion of treatment, then the dosage changed some time thereafter, then treatment
stopped, initiated again, et cetera. Had the person’s treatment been stopped (pre-
maturely) at time ¢ and not been re-initiated thereafter (or, had treatment changed
to a “baseline” treatment regime 0 from time ¢ onwards), the person’s outcome,
Y@ might have been different.

Structural nested distribution models compare “treatment as given until time ¢
and then changed to no treatment,” leading to the outcome Y, with “treatment
as given until time ¢ 4+ & and then changed to no treatment,” leading to the out-
come Y1 for h > 0; or, in the case where 0 is taken to be a “baseline treatment
regime” different from “no treatment,” structural nested distribution models com-
pare “treatment as given until time ¢ and then changed to the baseline treatment
regime,” leading to Y*), with “treatment as given until time 7 4 4 and then changed
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to the baseline treatment regime,” leading to ¥ “+") . “Treatment as given” is the
treatment strategy used in the population from which the data are a random sam-
ple, a treatment strategy which depends on the decisions of doctors and patients
and which is generally not the same for all patients. ‘“Treatment as given” does
not need to be “no treatment” followed by “treatment initiated and not discontin-
ued” or “treatment initiated and then permanently stopped.” In addition, O can be
any “baseline treatment regime,” like “no treatment” or “treatment initiated and
not discontinued,” but which can also include starts, stops and dosage changes. In
the applications described in [8, 9, 15, 24], 0 was “no treatment,” and it was as-
sumed that once treatment was initiated, it was never stopped. This article follows
the more general approach of [22]: when treatment effects are estimated, struc-
tural nested distribution models compare “treatment as given” with the “baseline
treatment regime,” 0.

Since Y is generally not observable, it is a counterfactual outcome. In a
discrete-time setting, [5] show that existence of counterfactuals places no restric-
tions on the distribution of the observed variables. No comparable proof exists for
the continuous-time case.

An important controversy in the causal literature is that counterfactuals are of-
ten assumed to depend deterministically on the observed data: given the model and
the parameter values, all counterfactual outcomes ¥ ) for each person can simply
be calculated from the observed data. Robins [22] calls this local rank preservation
(in most cases, this implies global rank preservation), when the counterfactual out-
comes are solutions to the differential equation (9) in Section 4 below. Treatment
is then said noft to affect the outcome of interest if the outcome for any particu-
lar person would have been exactly the same regardless of which treatment was
given. The assumption of deterministic dependence is related to the assumption
of constant treatment effect in [7]: that is, the difference between counterfactual
outcomes belonging to different treatments is a constant identical for all persons.

The assumption of deterministic dependence/ (local) rank preservation has fre-
quently been attacked. This assumption does not hold if, for example, two persons
with the same observed data (e.g., both receiving some prophylactic drug) could
have had a different outcome had they not been treated starting from some time ¢
(e.g., one might have contacted a virus and the other might not). In addition, deter-
ministic dependence can never be tested, with only one outcome observed for each
person. For these two reasons, the assumption of (local) rank preservation should
be avoided if at all possible.

In discrete time, when treatment and covariates change at fixed times which are
the same for all persons, the theory of structural nested models is well developed.
Lok et al. [14] prove that it is not necessary to assume a deterministic treatment
effect. In order to do so, they show that a certain “blipped down” outcome X (¢)
mimics the outcome Y ®) had treatment been withheld from time 7 onwards, in the
sense that X (r) has the same distribution as Y ) given past treatment and covariate
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history. They also indicate why the resulting estimators for treatment effect are
consistent and asymptotically normal.

However, in reality covariates and treatment often change in continuous time.
Moreover, in discrete time the interpretation of the treatment effect (shift- or blip
function) depends on the time scale chosen. In continuous time, the treatment ef-
fect (infinitesimal shift function) can often be interpreted as speed or rate. For these
reasons, [8, 9, 15, 19, 24] have applied continuous-time structural nested distribu-
tion models. However, because of a lack of theory for these models, the applica-
tions have relied on the assumption of (local) rank preservation. The models fitted
in [8, 9, 24] are described in Examples 3.1 and 3.2. Section 5 or, in greater detail,
[13] describes how to use the results in the current article in order to show that
assuming (local) rank preservation is not necessary to estimate treatment effects
with structural nested models (an example can be found in Section 9). Therefore,
the main contribution of the current article is to show that the methods in [8, 9, 15,
19, 22, 24] are robust to violation of the assumption of (local) rank preservation.

Structural nested models in continuous time are meant to estimate the effect of a
continuous treatment, for which the effect of a small duration is small. Robins [22]
conjectures that the appealing large sample properties of discrete-time structural
nested models extend to continuous time; however, his proof requires the assump-
tion of (local) rank preservation. He conjectures that (i) also without (local) rank
preservation, a certain “blipped down” outcome X (¢) has the same distribution as
Y@ given past treatment and covariate history, (ii) the resulting estimators are con-
sistent and asymptotically normal, and (iii) for certain models, estimators and con-
fidence intervals can be calculated with standard software, used in a nonstandard
way. This article proves conjecture (i), which we call mimicking counterfactual
outcomes, and explains why such a subtle result is true. Lok [13] proves conjecture
(ii), using conjecture (i). Lok [12] proves conjecture (iii), using a partial likelihood
approach and conjectures (i) and (ii). Thus, the current article fills the final link in
this methodology to estimate treatment effects of time-varying treatments in lon-
gitudinal observational studies without relying on (local) rank preservation. This
methodology can be applied to longitudinal observational data, to study the effects
of interventions affecting, for example, economic and health outcomes.

This article is organized as follows. Section 2 introduces the setting and notation
of this article. Section 3 introduces the model for treatment effect, and shows some
examples. Section 4 defines the mimicking variables X (¢) as the solution to a dif-
ferential equation with a final condition. Section 4 also states the main result of this
article: X (+) mimics Y@ in the sense that it has the same distribution as ¥, even
given past treatment and covariate history. Section 5 formalizes the assumption of
no unmeasured confounding, which as shown there is needed to use the result of
the current article to estimate the treatment effect. Section 5 also indicates how,
using the mimicking result, tests and estimators can be developed without assum-
ing (local) rank preservation. Section 6 outlines the proof of the main result of this
article: X (f) mimics Y ® in the sense that it has the same distribution as ¥*), even
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given past treatment and covariate history. Section 7 proves the main result of this
article for nonsurvival outcomes Y. Section 8 proves the main result for survival
time outcomes Y. Section 9 describes a simulation study. Section 10 concludes
this article with a discussion.

2. Setting and notation. The setting to which continuous-time structural
nested models apply is as follows. The outcome of interest is a continuous real-
valued variable Y. For example, Y is a person’s survival time, time to clinical
AIDS, the number of white blood cells, or the CD4 count. Our objective is to esti-
mate the effect of treatment on Y. In this article, we consider a fixed time interval
t € [0, ] with finite 7, where ¢ = 0 is the time at which follow-up of interest starts
(e.g., 0 could be the time of enrollment in a study, or a baseline time). During the
time interval [0, t], treatment and person characteristics are observed for each per-
son. Y is measured at or after time 7, or, in the case of a survival time outcome,
Y could be measured before time t if the person dies before time t. We assume
that treatment starts at or after time 0. We suppose that after time 7, treatment is
stopped or switched to some kind of baseline treatment regime. Most of this article
assumes that there is no censoring, and Y is observed for every person in the study.
Section 8.4 incorporates right censoring.

The covariate process describes the course of the disease of a person, for exam-
ple, the course of the blood pressure and the white blood cell count. The covariates
which must be included are those which both (i) influence a doctor’s treatment de-
cisions and (ii) predict a person’s prognosis with respect to the outcome of interest.
If such covariates are not observed the assumption of no unmeasured confounding
(see Section 5) will not hold.

Denote the probability space by (€2, F, P). For the moment, consider a single
person. Write Z(¢) for the covariate- and treatment values at time ¢. This article
assumes that Z(r) takes values in R, and that Z(¢) : 2 — R is measurable for
eacht € [0, t]. Moreover, we assume that Z, seen as a function on [0, 7], is contin-
uous from the right with limits from the left (cadlag), and that with probability one
this function, or “sample path,” has only finitely many jumps. We also assume that
the probability that the covariate and treatment process Z jumps at time ¢ equals
0 for every fixed time ¢ (except possibly for finitely many fixed times ¢, which
could have point masses). For example, the hazard of the jumps of the treatment
process could be continuous for all ¢, and could follow a continuous parametric
distribution. Z; = (Z(s) : 0 < s <) denotes the covariate and treatment history
until time ¢, and Z; is the space of cadlag functions from [0, ¢] to R” in which Z,
takes its values. Similarly, Z denotes the complete covariate and treatment history
of the person in the interval [0, t], and Z is the space in which Z takes its values. In
this article, the o-algebra on Z; and Z is the projection o -algebra; measurability
of Z(s) for each s <t is then equivalent to measurability of the random variable
Z;.
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Counterfactual outcomes were already mentioned in the Introduction. ¥ is
the final outcome had treatment been stopped (prematurely) at time ¢ and not been
re-initiated thereafter (or changed to some kind of baseline treatment regime 0
from time ¢ onwards). This article supposes that all counterfactual outcomes ¥ @,
for ¢ € [0, ] and for each person, are random variables on the probability space
(2, F, P). We assume that observations and counterfactual outcomes of different
persons are independent and identically distributed, and are a random sample from
a larger infinite population of interest. For notational convenience, we suppress the
subscript i for person.

3. Model for treatment effect. Structural nested models in continuous time
model distributional relations between Y® and Y*+?)_ for h > 0 small, through
a so-called infinitesimal shift-function D. Write F for the cumulative distribu-
tion function and F~1: (0, 1) — R for its generalized inverse F —I( p) = inf{x :
F(x) > p}. Then the infinitesimal shift-function D is defined as

- a
1 Dy, t;Z;,)=—
(D 015 20) = h:O(
the right-hand derivative of the quantile-quantile transform which moves quantiles
of the distribution of ¥ to quantiles of the distribution of ¥ t+h) (h > 0), given
the covariate and treatment history until time #, Z;. In order to define D, no as-
sumptions are necessary about the joint distribution of the counterfactuals ¥,

—1
Fy(f+h)|7[ o Fy(f)|7,)()’),

EXAMPLE 3.1 (Survival of AIDS patients). [24] describe an AIDS clinical
trial to study the effect of AZT treatment on survival in HIV-positive patients.
Time O was the time of enrollment in the study. Embedded within this trial was
an uncontrolled observational study of the effect of prophylaxis therapy for PCP
on survival. Pneumocystis Carinii Pneumonia (PCP) is an opportunistic infection
that affects HIV-positive patients. Robins et al. [24] use continuous-time structural
nested models to study the effect of PCP prophylaxis therapy on survival of HIV-
positive patients. Thus, the outcome of interest, Y, is the survival time, and the
treatment under study is prophylaxis for PCP. Although [24] estimate the effect of
changes in the time the treatment is discontinued, we will consider estimating the
effect of changes in the initiation time of the treatment. This conforms better to the
clinical practice in HIV/AIDS, where PCP prophylaxis is rarely discontinued, and
to the assumption in [24] that once PCP prophylaxis is started, it is never stopped.
Therefore, in this example, Y @) is the counterfactual outcome had PCP prophylaxis
treatment been as given in reality until time ¢, initiated or continued at time ¢,
and continued thereafter. Thus, the baseline treatment regime 0 in this example
is “continuously treat with PCP prophylaxis.” In the context of this example, the
local rank preservation assumption of [24] can be expressed as

Y
(2) Y(t) —t= f ewlm) prophylaxis at s ds.
t
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Assumption (2) is very strong, because it requires that given the model parameter
¥ and the observed outcome Y, all counterfactual outcomes Y ) can be calculated
from the observed data. The current article proves that it suffices to assume that

3) DI// (y, t; 71} = (1 - ev/)l{no prophylaxis at ¢} -

This article shows that under Assumption (3),
Y
(4) Y(t) —t~ / ellflno prophylaxis at s ds
t

conditional on Z; and Y > ¢, where ~ means “has the same distribution as.” Given
Z;, both Y — ¢t and f,Y eV Ino prophylaxis at s /s are random variables, depending on
Y® and Y, respectively. Assumption (3) does not impose that ¥*) — ¢ is equal to
fty eV Ino prophylaxis at s 5 but only that the distribution of these two random variables
is the same conditional on Z; and Y > ¢. Thus, under equation (3), patients who
have the exact same observed history over [0, 7], Z. and Y, do not necessarily
have the same counterfactual outcomes Y¥). This is a substantial relaxation of
the assumptions previously adopted in the literature on continuous-time structural
nested models. Relaxing assumption (2) is empirically relevant because in clinical
practice ¥¥) may differ between two patients with the exact same observed history.
Suppose, for example, that two patients with the exact same observed history were
both on PCP prophylaxis. If one of the patients got in contact with pneumococcal
bacteria (and, therefore, might have caught PCP without the preventive treatment,
PCP prophylaxis), and the other did not get in contact with pneumococcal bacteria
(and, therefore, might not have caught PCP, even without PCP prophylaxis), the
outcomes for the two patients without PCP prophylaxis could be different.

In equation (4), the part of the residual survival time, ¥ —¢, that is untreated gets
multiplied by eV to attain the same distribution as ¥*) — ¢ (the residual survival
time under “continuous treatment from ¢ onwards”), conditional on Z; and Y > ¢.
Therefore, analogous to accelerated failure time models (see, e.g., Cox and Oakes
[3]), the multiplication factor e¥ can be interpreted in a distributional way.

Our results do not depend on adopting the particular specification of the in-
finitesimal shift-function D of equation (3). For example, they also apply to an
alternative specification of D from [24]. In this alternative specification, the effect
of the PCP prophylaxis can depend on the AZT treatment the patient received and
whether or not the patient had a history of PCP prior to the start of PCP prophy-
laxis. Because the data in [24] were from a clinical trial for AZT treatment, AZT
treatment is described by a single variable R indicating the treatment arm the pa-
tient was randomized to (R equals 1 or 2). Let P (¢) be equal to 1 if the patient had
PCP before or at time ¢ and before prophylaxis treatment started; otherwise P (t)
is equal to 0. The model described in [24], but adapted to our choice of baseline
treatment regime (0 is continuous treatment with PCP prophylaxis), is

(5 Dllll,l,/fz,lﬂ3 v, t; 7t) = (1 - e¢1+1//2P(t)+1/f3R) 1{no prophylaxis at ¢} -
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This article shows that if equation (5) holds, then
Y
(6) Y(f) —t~ / el{no prophylaxis at s} (¥1+¥2P(s)+¥3R) ds given Zt,
t
forr <Y.

EXAMPLE 3.2 (Effect of Graft versus Host Disease (GvHD) on time to
leukemic relapse). Keiding [8] and [9] use continuous-time structural nested
models to study the effect of GvHD on time to leukemic relapse in patients
who had Bone Marrow Transplantation (BMT). Infection with Cytomegalovirus
(CMV) is a time-dependent confounder: an independent prognostic factor for re-
lapse that both 1. predicts the subsequent development of the exposure GvHD
and 2. is predicted by past exposure GVHD. Write Y for the time until leukemic
relapse. Assume that Y is observed for every patient. In [8] and [9], Y ) is the
outcome had the patient been exposed (or not) to GvHD as in reality until time ¢,
and not exposed afterwards. Based on biological knowledge, [8] and [9] assume
that

(7) Dy(y,t;Z1) = (1 — e¥)1{GyHD at 1}-

This article shows that then, for # < Y, preventing GVHD from ¢ onwards leads to
Y _
(8) YO — ¢~ / eVlompasigg  given Z,.
t

Keiding [8] and [9] assume that (8) is true even with ~ replaced by = (although
only for t+ = 0), hoping that assumption could be relaxed. This article shows that
indeed (7) is sufficient to estimate the effect of GVHD.

EXAMPLE 3.3 (Incorporating a-priori biological knowledge, following [22]).
Again consider survival as the outcome of interest. Suppose that it is known that
treatment received at time ¢ only affects survival for patients who would die by
time ¢ 4 5 if they would receive no further treatment. An example would be a
setting in which failure is death from an infectious disease, the treatment is a pre-
ventive antibiotic treatment which is of no benefit unless the person is already
infected and, if death occurs, it always does within five weeks from the time of
initial unrecorded subclinical infection. In that case, the natural restriction on D is
that

D(y,t;Z,) =0 ify—t>5.
As can be seen from these examples, the parameters of a continuous-time struc-

tural nested model are often rates. More biostatistical examples of models for D
can be found in, for example, [15, 19, 22, 25, 27].
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FIG. 1. Left: lllustration of the infinitesimal shift-function D. Right: An example of a solution X (1)
to the differential equation dX (t)/dt = D(X (¢t),t; Z;) with final condition X(t) =Y in case the
outcome is survival time.

h-D(y,t; Z;) can be interpreted as the infinitesimal effect on the outcome of
the treatment actually given in the time interval [z, t + &) (relative to the baseline
treatment regime). To be more precise, from the definition of D, it follows that

Dy, 1:Z) = (Fpian 7 © Fyoz,) () =y +o(h).

In Figure 1 (left), this is sketched.

It can be shown that D = 0 if and only if treatment does not affect the outcome
of interest, as was conjectured in [22]. To be more precise, [11] shows that, for ex-
ample, D = 0 if and only if for every 4 > 0 and ¢, Y ") has the same distribution
as Y given Z;. That is, D = 0 if and only if “at any time ¢, whatever person char-
acteristics are selected at that time (Z;), switching ‘treatment as given’ to ‘baseline
treatment regime’ at some fixed time after + would not change the distribution of
the outcome in persons with these person characteristics.” To prove this, one needs
the mimicking result of the current article.

4. Mimicking counterfactual outcomes. Define X (¢) as the continuous so-
lution to the differential equation:

) dX(t)/dt = D(X(t),t; Z;)

with final condition X () =Y, the observed outcome (see Figure 1, right). Then
X (t) mimics Y® in the sense that it has the same distribution as ¥ @), even given
the person’s treatment and covariate history at time ¢, Z,. To prove this main result,
we need the following consistency assumption.

__ ASSUMPTION 4.1 (Consistency). Y (*) has the same distribution as ¥ given
Z;.

Notice that because no treatment was given after time t and the treatment pro-
cess is right continuous, there is no difference in treatment between Y () and Y.
Under this consistency assumption and regularity conditions only, it is proved in



470 J.J.LOK

Sections 7 and 8 that indeed (9) has a unique solution X for every w € €2, and that
this SOEltiOl’l X (t) mimics Y¥ in the sense that it has the same distribution as ¥ )
given Z;:

THEOREM 4.2 (Mimicking counterfactual outcomes). Suppose that regular-
ity conditions 7.1=7.4 from Section 7.2 are satisfied. Then D(y,t; Z;) exists. Fur-
thermore, for every w € Q2 there exists exactly one continuous solution X (t) to
dX(t)/dt = D(X(1),t; Z,) with final condition X (t) =Y. If also consistency As-
sumption 4.1 is satisfied, then this X (t) has the same distribution as Y given Z,
forallt €0, t].

EXAMPLE 4.3 (Survival of AIDS patients (continuation of Example 3.1)). If
equation (3) holds, then

X()y=r1+ / " o pontso 1 1
t
fort <Y,and X(t) =Y fort > Y. Alternatively, if equation (5) holds, then
X(t) =1+ / ¥ L proptytasis a sl (D102 P )+ R) g
t
fort <Y,and X(t) =Y fort >Y.

5. Estimators, tests, and ‘“‘no unmeasured confounding”. This section con-
tains a brief summary of [13], who shows how the result of the current article leads
to testing and estimation. In addition, Lok [10] Section C provides an example of
estimation in our simulation study.

The main assumption underlying structural nested models is that all informa-
tion the doctors used to make treatment decisions, and which is predictive of the
person’s prognosis with respect to the final outcome, is available for analysis. This
assumption of no unmeasured confounding makes it possible to distinguish be-
tween treatment effect and selection bias; see, for example, [14, 22, 24] or [13].

Assume that the treatment process gives rise to a counting process N (¢). For
example, N (¢) is the number of treatment changes until time ¢. The assumption of
no unmeasured confounding is then formalized as the following.

ASSUMPTION 5.1 (No unmeasured confounding). The rate with w_hich N
jumps given Z,_ is the same as the rate with which N (¢) jumps given Z,_ and
(Y : s <1).

Because given the observed Z;_, the (unobserved) prognosis of a person, rep-
resented by Y@ for s < t, should not predict treatment at or after time 7. If it does,
there is no way to distinguish between the effect of the treatment and the reason
why it is initiated.
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Notice that if X () mimics Y*) in the sense that it has the same distribution as
Y® given Z,_, it can be expected that under no unmeasured confounding, the rate
with which N () jumps at time ¢ also does not depend on X (¢), given Z,_. It can
formally be shown that this is indeed true.

First, consider how this leads to testing. If treatment does not affect the outcome
of interest, D = 0 and thus X () = Y. So if treatment does not affect the outcome
of interest, changes of treatment at time ¢ should be independent of Y, given Z,_.
Thus, one can test whether treatment affects the outcome of interest by testing
whether, given Z;_, Y adds to the prediction model for treatment changes.

Also, for estimation of the infinitesimal shift-function D, we assume that there is
no unmeasured confounding. Suppose that one has a correctly specified parametric
model Dy, for D. Then one can calculate “Xy, (¢),” the solution to

(10) dXy (1) /dt = Dy (Xy (), 1; Z;)

with final condition X (t) = Y. If X (¢) mimics Y ®, then X  (¢) has the same dis-
tribution as Y® given Z, for the true v. Since Y does not add to the prediction
model for treatment changes given Z,_, ¥ could then be estimated by picking
the ¥ for which, given Z;_, X v () adds the least to the prediction model for N,
treatment changes. This can be proven to lead to the following theorem.

THEOREM 5.2.  Suppose that the intensity process A is bounded, YV is cadlag,
there is no unmeasured confounding and no instantaneous treatment effect [with
probability 1, N() and YO do not jump at the same time). Suppose also that for
every t € [0, t], X (t) has the same distribution as y® given Z;. Then

E /Or he(X(t), Z;—)(dN(t) — A(t)dt) =0

for each h; satisfying a regularity restriction. Thus, if Dy, and Lg are correctly
specified parametric models for D and M\, respectively,

P, /Or he(Xy (t), Z,—)(dN (1) — rg(r) dt) =0,

with P, the empirical measure P,X = 1/nY""_, X;, is an unbiased estimating
equation for (0o, Vo), for each h; satisfying a regularity restriction. h; here is
allowed to depend on r and 0, as long as it satisfies the regularity restriction for

(6o, Yo)-

In fact, the estimating equations of Theorem 5.2 are often martingales at the true
parameter.

There is an extensive literature on the asymptotic behavior of estimators that
solve unbiased estimating equations of the form P,U () =0, with EU () = 0;
see, for example, [28] Chapter 5 for an overview. Under regularity conditions, es-
timators that solve unbiased estimating equations of the form P,U (y¥) = 0 are
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consistent and asymptotically normal. Theorem 5.2, the main result of [13], pro-
vides such unbiased estimating equations for the parameter of interest i, with
U () equal to fof he(Xy (1), Z; )(dN(t) — rg(t)dt), provided that the main re-
sult of the current article, Theorem 4.2, holds. If 6 is unknown, it can be estimated
using standard methods, and the estimating equations for 6 could be stacked with
the estimating equations for i to estimate both 6 and . The theory from [28]
Chapter 5 could be applied to those stacked estimating equations, implying that,
under regularity conditions, the resulting estimator for i is consistent and asymp-
totically normal. Alternatively, one could first estimate 6 using standard methods,
then plug the estimate of € in the estimating equations for ¥, and then finally
solve those estimating equations for i to obtain an estimator for 1. This leads to
the same estimator for v as stacking the estimating equations for 8 and v, be-
cause the estimating equations for 6 do not involve . Plugging the estimate for 6
in the estimating equations for i is often easier than solving the stacked estimating
equations for € and ¥ in one step.

6. Outline of the proof. Throughout the proof, this article uses fixed versions
of Fya+n)z, satisfying all regularity conditions of Section 7.2. Section 7.3 shows
existence of D. It also derives a different expression for D, which is often used in
the rest of the proof. Section 7.4 shows existence and uniqueness of solutions X (¢)
to the differential equation with D, equation (9), with final condition X (t) =Y

The proof that this X (#) mimics Y @ is based on discretization. Section 7.5
therefore considers the situation where the treatment and covariate process Z can
be fully described by its values at finitely many fixed times0 < 1) < 10 < --- < 1
and 7. In fact, this is the discrete-time situation studied in [14], but instead of using
the shift-function y described there as a model this article uses the infinitesimal
shift-function D. Proposition 7.8 in Section 7.5 states that in this discrete-time
setting with D instead of y, X (r) mimics ¥ ®) in the sense that it has the same dis-
tribution as Y given the discrete-time Z;, under a regularity condition and con-
sistency Assumption 4.1. The proof of Proposition 7.8 is relatively easy, because
in this discrete-time setting the continuous solution to the differential equation can
be written down explicitly, in terms of conditional distribution functions.

Sections 7.6—7.12 consider the situation where the probability that Z jumps at
t equals zero for all . We prove that also in this case, X (#) mimics Y @) under
the conditions of Section 7.2. First, Section 7.6 prepares the discretization by con-

structing a series 7(;1)’ containing more and more information on the covariate and
treatment history Z as n increases. VAR depends deterministically on Z, so that

no extra randomness is necessary to construct 7™ . The discretization does not
change Y ; just the information on the treatment and covariate process considered

is reduced. Z™ is a covariate and treatment history as considered in Section 7.5.
Therefore, D™ can be defined as

0 1 F

(n) VAR
(D DBy, 27) =5, h:o(FY<t+h>|7§")o yoizm)O)
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and we define X as the continuous solution to the differential equation:

(12) %X(”)(t) =DM (XM (1), 1;Z")
with final condition X (1) = Y. Section 7.7 shows existence of D and provides
two expressions for D Section 7.8 shows that the conditions of the discrete-time
result are satisfied for the discretized situation, so that Proposition 7.8 guarantees
that there exists a continuous solution X " (¢) to the differential equation (12), with
final condition X (r) = Y and with the same distribution as Y given 7?’).
Sections 7.9-7.11 then prove that X ™ (1) converges almost surely to X (¢) as
n tends to infinity, using a result from differential equation theory which bounds
the difference between solutions to differential equations. The proof is concluded
in Section 7.12, which shows that X (¢) has the same distribution as ¥ ) given Z,

because X ™ () has the same distribution as ¥ ) given Zin) and X" (1) converges
almost surely to X (¢).

Section 7.13 indicates how the proof can be adapted to include situations where
the probability that Z jumps at time ¢ is zero except for at finitely many times ¢.

7. Proof of main result.

7.1. Introduction. The purpose of the current article is to prove that X (f) mim-
ics Y. This result is proved in this section for nonsurvival outcomes. Section 7.2
states the assumptions and the precise statement of the result, and Sections 7.3—
7.13 provide the proof.

7.2. Mimicking counterfactual nonsurvival outcomes: Assumptions. This sec-
tion provides precise conditions under which X (f) mimics ¥¥). First, consider the
definition of D, equation (1). Notice that D involves an uncountable number of
distribution functions Fy -+, z,. In many cases, conditioning on Z, means condi-
tioning on a null-event, so that these conditional distributions are not unique. Every
single conditional distribution is almost surely unique (see Lok [10] Section D),
but because an uncountable number of them is used (¢ and % are continuous) this is
not sufficient for overall almost sure uniqueness. Therefore, the regularity condi-
tions below should be read as: there exists a collection of conditional distribution
functions Fyu+n 7z, such that all these regularity conditions are satisfied. These
versions of Fy iz, are chosen in the definition of D as well as everywhere else
in this article. We only consider & > 0, so the derivative with respectto 4 at h =0
is always the right-hand derivative.

With the support of a random variable X, this article means those x such that
for every open set U, containing x, P(X € Uy) > 0. Let y; and y, be the lower
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and upper limit of the support of the outcome of interest Y. In this article, these
are assumed to be finite, and moreover, the following is assumed.

ASSUMPTION 7.1 (support).

(a) All FY(H”)\Z for all + > 0 and for 4 > 0 have the same bounded support

[y1, y21.

(b) All FY(’*’“IZ (y) for all + > 0 and for & > 0 have a continuous nonzero
density fyuim z, (¥) ony € [y1, y21.

(¢c) There exists an & > 0 such that fY(’)IZ (y) = e forall y € [y, »], we R
and r € [0, T].

The support condition may be restrictive for certain applications. Nevertheless,
most real-life situations can be approximated this way, since y; and y, are can have
arbitrary (finite) values and € > 0 can be vary small. Although the support condi-
tion may well be stronger than necessary, it simplifies the analysis considerably
and, for that reason, it is adopted here.

The remaining regularity conditions are smoothness conditions. They allow for
nonsmooth-ness where the covariate and treatment process Z() jumps. This is im-
portant since if the covariate and treatment process Z() jumps this can lead to
a different prognosis for the person and thus to nonsmoothness of the functions
concerned.

ASSUMPTION 7.2 (continuous derivatives). For w € 2 fixed,

(@) Fyasnyz,(y) is Clin (h, y) for y € [y1, y2] and i > 0.

(b) If Z does not jump in (¢1,t) then both %|h=0FY<I+’”|Z (y) and
%FY“)IZ (y) are continuous in (y, t) on [y, y2] X [t1, t2) and can be continuously
extended to [y1, y2] X [f1, t2].

Structural nested models in continuous time are meant to estimate the effect
of a continuous treatment, for which the effect of a small duration is small. Then
Assumption 7.3 is a regularity condition.

ASSUMPTION 7.3 (bounded derivatives).

(a) There exists a constant C such that forallw € Q,¢, h > 0and y € [y1, y21,
0

@Fy(ﬂrh)ﬁt (y) =Ci.

(b) There exists a constant C, such that forall w € 2, ¢, h > 0and y € [y{, y2],

d
%Fy(H—h) iz, (M| = Ca.
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ASSUMPTION 7.4 (Lipschitz continuity).

(a) There exists a constant L such that for all w € Q2 and ¢ and y, z € [y1, y2],

<Lily—z|.

0 ad
‘ ay Fyoz,(y) — a—ZFy<r>|z (2)

(b) There exists a constant L, such that forall w € Q and ¢t and y, z € [y1, y21,
an
0h |p=0

0
Fyaimz,(y) — 8_h|h OFy(t+h>|7, ()| < Laly —z|.

Under the regularity conditions in this section and consistency Assumption 4.1,
the main result of this article holds, Theorem 4.2: X () mimics Y given Z;.
Thus, under these regularity conditions, if D has the form of equation (3), Theo-
rem 4.2 shows that X () mimics ¥ ® [or, equation (4) holds], and if D has the form
of equation (5), Theorem 4.2 shows that X (#) mimics Y® or, equation (6) holds].
Thus, for equation (4) to hold, equation (2) is not needed, and similarly, for equa-
tion (6) to hold, equation (6) with ~ replaced by = is not needed; the form of D is
sufficient. This article thus relaxes the assumption of (local) rank preservation.

7.2.1. Simpler regularity conditions. 1 state some more restrictive but simpler
conditions implying all the conditions in Section 7.2.

ASSUMPTION 7.5 (regularity condition).
e (support).

(a) There exist finite numbers y; and y, such that all FY<,+h)|Z have the same
bounded support [y1, y2].

(b) All Fy(+nz (y) have a continuous nonzero density fy+nz (y) ony €
[y1, y2I.

(¢c) There exists an £ > 0 such that fymlz (y)=eforall y € [y, 2], w e Q
and t € [0, 7].

e (smoothness). For every w € Q

(@) (v,t,h) — FY(”’”IZ (y) is differentiable with respect to ¢, y and & with
continuous derivatives on [y, y2] X [t1, 1) X [0,00) if Z does not jump in
(t1, 1), with a continuous extension to [y, y2] X [t1, £2] x [0, 00).

(b) The derivatives of FY<f+h>|Z (y) with respect to y and & are bounded by
constants Cp and Cy, respectively.

(©) %FY(”IZ (y) and %|h=0FY<f+h>|Z (y) have derivatives with respect to y
which are bounded by constants L and L,, respectively.
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7.3. Existence of and a different expression for D. The lemma below can be
used to prove existence of D and to find a useful formula for D (and later two
useful formulas for D™ in Section 7.5).

LEMMA 7.6. Suppose that Fy, is a family of nondecreasing functions. Suppose
that there exists a neighbourhood Uy y, of (0, yo) so that Fy(y) is differentiable
with respect to 'y and h on Uy y, N {h > 0}. For h =0, the right-hand derivative
is meant. Suppose furthermore that these derivatives are continuous in (h, y). If
also Fy(yo) is nonzero, then there exists a neighbourhood Vo, y, of (0, yo) such
that on the restriction of this neighbourhood to h > 0, Fj, is invertible. Moreover,
(%Fh_l)(Fh (v)) exists and satisfies

0 0
S E) + F0) (%F;I)(Fh@)) _o0,

PROOF. Define an extension of F' to
Uo.yo=1{(y,h) :h >0and (y, h) € Uy y,} U{(y,h) :h <0and (y, —h) € Up.y, },
an open neighbourhood of (0, yp), in the following way:

- FG) ith>0
0= {5k~ a0y ith 20

Define ¢ : Uy, y, — R2? as ¢(h,y)=(h, F, (»)). The result follows from the local
inverse function theorem and direct calculation, after noticing that D(¢ o ¢~ ') is
the identity mapping; see Lok [10] Section E for details. [J

Because of Assumptions 7.2(a) and 7.1(c), Lemma 7.6 can be applied to
Fi(y) = Fyu+nz,(y) with yo = y. Thus D as defined in equation (1) exists and

9
_ 2 lh=0Fya+mz, ()
(13) D(y.t;Z;) =2 s

%Fy(z)@ )

7.4. Existence and uniqueness of X (t). This section shows that the differential
equation dX (t)/dt = D(X(t),t; Z;) with final condition X (t) = Y has a unique
continuous solution. Fix w for the rest of Section 7.4. Since D may be discontin-
uous at the jump times of the covariate and treatment process Z, we consider the
intervals between jumps of Z separately. It suffices to prove existence and unique-
ness of X (¢#) with final condition on any interval between jumps of Z, because
with probability one Z only jumps finitely many times.

Hence, suppose that Z does not jump in (¢, t) and that ¢ is either a jump time
of Z or 0 and that #, is either a jump time of Z or 7. From equation (13), I conclude
that D(y, t; Z;) is continuous on [y1, y»] X [1, 12) because of Assumptions 7.2(b)
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and 7.1(c). The differential equation has a final condition at the upper end of the
interval [#1, 7). Therefore, we define D on [y, y2] X [#1, 2] as

D(y,t; Zy) iftelt, )

D(y,t): :hmm,z D(y,t,?t) 1ft=t2.

This limit exists because of Assumption 7.1(c) and the extension-assumption in
Assumption 7.2(b). It makes D continuous on [v1, y2] x [#1, t2]. When calculating
the continuous solution to d X (t)/dt = D(X (t), t; Z;) on [t1, ], one means to use
D on [t1, 2] if D jumps at £;.

To prove existence and uniqueness of X on [t, t2], we apply Theorem A.1 to
the differential equation with D. We check the conditions of Theorem A.1 for D.

Continuity of D was shown in the previous paragraph. FY_(} iz, © Fywz,(31) =y

for all i because of Assumption 7.1(a) and (b), so that D(y, t; Z;) = 0. Similarly,
D(ya,t; Z;) = 0. To show that equation (26) holds, notice that global Lipschitz
continuity of D in y on [y1, y2] X [t1, 2) with Lipschitz constant C = Ly /e +
L1Cy /82 follows from equation (13), since the numerator is bounded by C, and
is Lipschitz with Lipschiz constant L, and also the denominator is Lipschitz with
Lipschitz constant L; and bounded away from 0 by & (Assumptions 7.4, 7.3(b)
and 7.1(c); see Lok [10] Section F). This same constant works on [y, y2] X [#1, 2]
by continuity. By Theorem A.1, the differential equation (9) with D has a unique
solution, and this solution stays in [y1, y2].

7.5. Mimicking counterfactual outcomes: Discrete time. This section consid-
ers the situation where Z, the available information on the treatment and covariate
process, can be fully described by its values at finitely many fixed-time points
O=1m<t1<m)<-<TkK < Tk+1 = T. At these time points, Z(¢) may jump
w%t)h probability greater than zero. We prove that in this situation, X () mimics
YW,

We assume that there exist conditional distribution functions [1, 16] F YO |Zy,
satisfying the following regularity condition.

ASSUMPTION 7.7 (smoothness). Suppose that for k = 0,...,K and t €
[Tk, Tk+1] there exist conditional distribution functions Fy ) Ze, such that:

(a) Forall t € [ty, Tk+1], FY(’)IZk (y) is continuous in y.
(b) For all ¢ € [tk, Tg+1], the support of F YO[Z,, (y) is an interval.
(c) For x € [0, 1] fixed, FY_<f1>|7 (x) is differentiable with respect to ¢ on
Tk
[Tk, Tkt1]-
Throughout Section 7.5, fixed versions of FY(”IZk (y) are used satisfying As-

sumption 7.7. Since Z, contains the same information as 7,,( for t € [tk, Tky1), We
can and will choose the same versions when conditioning on Z;.
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PROPOSITION 7.8 (mimicking counterfactual outcomes in discrete time).
Suppose that the treatment and covariate process Z can be fully described by
its values at finitely many fixed points 0 =179 <171 < Tp < -+ < Tg < TK4]1 =T,
and suppose also that smoothness Assumption 7.7 is satisfied. Then D(y, t; Z;) as
defined in equation (1) exists for all t. Furthermore if also Assumption 4.1 (con-
sistency) is satisfied, then there exists a continuous solution X (t) to dX (t)/dt =
D(X(1),t; Z;) with final condition X(t) =Y for which X (t) has the same distri-
bution as Y9 given Z;.

PROOF. For 1 € [t tet1), D(y, 15 Z;) = a%lh:O(Fy_(Lh)@k ° Fywiz, ) (),

so existence of D(y,t; Z;) on each interval [1x, Tx41) follows from Assump-
tion 7.7(¢c). ~ _
Next, define X as follows. X(t) =Y, and for f € [t, tx+1) (k=0,..., K — 1),

X@t)=F;! o Fyniz, © o F7!

Y(t)|Z YK - ')IZ » OFy(rK)|71

K—1
1 —
OFY(TK)|Z OFY(T)ler(Y)‘

X (#) is well-defined because of Assumption 7.7(a) and (b). First, we show that
X =X:itisa continuous solution to X’ (1) = D(X(t) t; Z,) with X(‘E) =Y. Next,
we show that X (#) has the same distribution as Y ® given Z;.

Continuity of X on [Tk, Tk+1) 1s clear from Assumption 7.7(c). Moreover,

lim X(t)= lim F_ Foanm (X
lerIkIL @ tTlrl;nl (’)|Z ° Y(k“)'ka( (Tk+1))

_ -1 v
- FY(T"“)IZk ° Fy(fk+1>\7rk (X(TIH—I))

because of Assumption 7.7(c), which is equal to X (tk+1) because of Assump-
tion 7.7(b). Thus, X(7) is also continuous from the left at t = 744). For 7 €
[tx, Tk+1), X satisfies the differential equation:

ad —1 v
F - oF(rk+1>|Z (X (tx41))

oD
X(1) = YA ‘h:O YO+ |Z,,

ad -1 -1 %
:(ﬁ‘h—omez°FY<f>|Zz>°Fy<t>|7 ° Fyapan iz, (X (@)

=D(X(1),1; Zy),

where in the second line it is used that conditioning on Z; is the same as condition-

ing on Z,, so that F Yoz, © Fy Y(’)I Z., is the identity because of Assumption 7.7(a)

and (b). Thus, indeed Xisa contlnuous solution to X’ (1) = D(f( (1), t; Z;) with
X(t)=Y

Next, we prove that X (¢) has the same distribution as ¥ ) given Z, by induction,
starting at t = 1, then ¢ € [tg, T), etcetera. For t = 7, X(1) =Y, so that X(7)
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has the same distribution as Y*) given Z, because of Assumption 4.1. For the
induction step, suppose that for 7 € [tx, ] (for k = K + 1 read 7 = 1), X (t) has
the same distribution as Y ® glven Z,. Thus, X (tx) has the same distribution as
y () given Zrk, and hence X (1) also has the same distribution as Y (%) given

7,,{7 .- Therefore, Assumption 7.7(a) implies that FY”’()IZ,H (f( (tx)) is uniformly

distributed on [0, 1] given 77}(—1 (Lemma D.8 has a formal proof). Then X (1) =

FY_(,)| Z | Y@ Z, | (X (1)) has distribution function FY(')‘Zk_l given Zq,_,

(Lemma D.9 has a formal proof), so also given Z;. That finishes the induction
step, so that indeed X () mimics Y@ forallr € [0, 7]. O

7.6. Discretization and choices of conditional distributions. We return to the
continuous-time setting and define a discretization of the covariate and treatment
process Z. Later, we will apply the result of the previous section to this discretized
continuous-time setting. This section also chooses versions of the conditional dis-
tribution functions given this discretized process.

For n fixed define r( m _ =0, r(") zln T, Tz(”) 2,, T, tz(,'f) 2,, "7 =1. Con-
sider the grid at stage n con31st1ng of these points. Th1s way the interval [0, T] is
split up into 2" intervals of equal length, and when n increases points are added

in the middle of these intervals. For ease of notatlon the superscript ) in ‘L'( g

dropped if it is clear which n is meant. Define Z, =(Z (r,gn)) :0< ‘Ek 5 t) if

Z takes values in a discrete space, Zt(n) = (I[L ﬁ)(Z(t,f"))) :0< t,f") <t,i €Z)
o on

if Z takes values in R and Z(n) = (I[L ,-+1)(Z(r,§”))j) :0< rk(") <tie€eZ,j=
2}17 27[
1,...,m) if Z takes values in R™,

With this discretization, the information about Z; contained in Zz(") increases
with n: once a grid point is added it stays on the grid for n larger, and the informa-

tion about Z in a fixed grid point also increases with n. Note also that Z(") depends
deterministically on Z;, so that no extra randomness is necessary to construct 7;”)

Thus, ZW has the properties promised in the outline of the proof, Section 6.
Next, versions of conditional distributions are chosen. Recall Z;, takes values
in the space of cadlag functions on [0, ;] with the projection o -algebra, which
is the same as the Skorohod-o -algebra ([2] Theorem 14.5). This space is Polish
([2] Chapter 3). Therefore, there exists a conditional distribution PZrk| Z(n) ([1]

Section 10.3 or [16]). Moreover,

( )
P(YUth <y|Z} /FY(r+h>|zk:Z(Y)dP7klf(m ()  as.
T '[k

This is a conditional distribution function: it is nondecreasing in y since all
Fy(t+h)|7rk _,(y) are nondecreasing because they are conditional distribution func-

tions, and because of Lebesgue’s dominated convergence theorem the limit for
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y — —o0 equals 0 and the limit for y — oo equals 1. Therefore, the following
choices can be made.

NOTATION 7.9. We choose fixed conditional distributions PZ Zm- I also
LT3kt 7t

choose
FY(:)|7§';) )= f Fywz,=() dPZk ze ),

with F' Y0)[Zy, = 8 in Section 7.2, to be the version of the conditional distribution

function of Y given 752) which is used in the rest of the proof. If s € (%, Tk+1),
the same version for F_ . _u is chosen; this is possible since for s € (tx, Tk+1),

Y®) P
n) _ =(n)
ZS = Z‘L’k °

Notice that Z™ has been constructed with values in a discrete space. This will
assure that the two different expressions for D™ in Section 7.7 below are equal
except for at a null set which does not depend on y and .

7.7. Existence of and two expressions for D™ . This section proves existence
of D™ as defined in equation (11), Section 6. Moreover, two useful formulas for
D™ are proven. One is used to prove smoothness of D™, the other formula is
used to prove that D™ converges to D.

First, existence of D™ is shown. Fix n and 7, and choose rk(") such that ¢ €

[z, 7). Define

Fr(y) = Fy(z+h)|7(Tz) )= / Fy(t+h)|ZTk:Z()’)dpfrklf(rz) (2).

To apply Lemma 7.6 on Fj(y), in (hg, yo) = (0, y), we check the conditions.

Clearly, Fj(y) is nondecreasing. We show that F},(y) is differentiable with respect
. . . P . .

to y with derivative [ WFYOWH sz=z(y) d PZk |75’,? (2). For w fixed, sz Izz) is

a probability measure on Z,. Moreover, %FY('H’”Z%:Z (y) is bounded by Cj,
which is integrable with respect to Pf iz
Tk %

grable with respect to P7 iz since bounded by 1. Therefore, Fj(y) is differ-
T 1Ly

and also FY(’*’”IZ,(:z(Y) is inte-

entiable with respect to y with derivative [ %FY“”)IZk —.(» de iz (z). With
Tk %

the same reasoning [but with Assumption 7.3(b) instead of 7.3(a)], Fy(y) is differ-

entiable with respect to & with derivative [ %F Y+ Zy =2 (y)d PZ iz (z). That
Tk T%

these derivatives of Fj(y) with respect to y and & are continuous in (y, k) fol-
lows from Lebesgue’s dominated convergence theorem applied on the expressions
we just derived [the conditions are satisfied because of Assumptions 7.2(a) and
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7.3]. Furthermore, Fé(y) =/ %FY(”IZ,{:z(y)dPZ iz (z) is nonzero [Assump-
14,

tion 7.1(b)]. Thus, the conditions of Lemma 7.6 are satisfied for Fj(y), and there-

0 ! (y) exists, and D(”)(y, t; 7t(n)) exists and satisfies

fore e FYUM) ‘722)

(n) . =) _i -1
DM (v, 1:2,7) = o h:o(FY“W??,? oFY(t)lf(r:))()’)

=0 [ Fyusniz, (N dPy 70 ()

(14) -
ay S Frojz, —0)dPg 17n()

J Zln=0 Fywinz, = () dPZk VAl (2)

0 _
f B_yFY(’)Isz =z(y) dPZk |7$/? (2)

Next, the second expression for D™ is derived. We show that there exists an
Q' C Q with probability one such that

¢ —(n)
El g Ih=0Fyanz, WIZ,"]

—(n)
Elg5 Fyoz,DIZ"]

—(n)

(150 D"(y,1;Z,") = Yo € QVyVivn.

First, we choose this ', in such a way that on €’ conditional probabilities given

75:) are unique, for all n and 7¢. Fix n and 7 for a moment. It is known from

general theory about conditioning that conditional probabilities given 75’:) =z
can be written as a measurable function of z. It is also known that conditional
probabilities given 75:) = z are almost surely unique. Combining these two facts,

it follows that conditional probabilities given 75:) = z are unique except for at w’s

for which 75:) (w) has probability zero, that is, except for @’s in

U {a)eQ:fg:)(a)):z}.
z:P(f(TZ)zz)ZO

Since, by construction, 75:) takes only countably many values, this is a countable
union of null sets and thus a null set. Define

(16) g=o\J U U fewe2:Z" @) =2z}

This set has probability one since its complement is a countable union of null sets:
N is countable and for each n there are only finitely many k. On this " conditional

probabilities given 75:) are unique, for all n and 7.
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Next, it is shown that equation (15) holds for " as defined in equation (16).

As shown in Section 7.6, there exists a conditional distribution P7 iz Fort > t;
1&g
—(n)

and & > 0, Fh(y) = P(Y(H—h) < y|Z ) = fFY(f+”)|Z:z(y)dPZ

. 752) (z) a.s. On

|
Q' this version is the same as the one used in the definition of D of equation (11),

since conditional probabilities given ?E’Z) are unique on . Verifying the condi-
tions of Lemma 7.6 can be done in exactly the same way as for the first expression
for D™ Therefore, Lemma 7.6 implies that for w € Q' and 7 € [, Tk+1),

m(y 7MWy 9 -1
DW(y,1Z") =~ h:o(FY(’+h>\7iZ> oFY(,)ﬁ;Z))(Y)

a
9 lh=0 / Fy(t+h)|Z:Z ) dPZIZ%Z) (2)

v J Fyonz— Py 70 ()

—(n)
E[% lh=0Fyatmz, (y)IZE',f ]

—(n)
El3 Fyoiz, DI Zy ]

Equation (15) follows.
7.8. Applying the discrete-time result.

LEMMA 7.10. Suppose that regularity conditions 7.1-7.4 and consistency As-
sumption 4.1 are satisfied. Then for every n there exists a continuous solution
X®™ (1) to the differential equation with D™ with final condition X" (1) =Y.
X" (1) is unique on Q' of equation (16). Furthermore, X" (t) has the same con-
ditional distribution as YV given 71(”).

PROOF. Fix n. First, we show that there exists a continuous solution X

for which X (¢) has the same conditional distribution as Y given 75"), using

Proposition 7.8. Thus, we check that the conditional distributions F yZ™ of YO
Tk

given 75::) chosen in Notation 7.9 satisfy Assumption 7.7. In the second para-
graph of Section 7.7, we showed that FY(”\Z(”) (y) is strictly increasing and dif-
Tk

ferentiable with respect to y on [y1, y2], which accounts for Assumption 7.7(a)
and (b). Just before equation (14), it was concluded that for x € [0, 1] fixed,

FY_”I)@(") (x) is differentiable with respect to ¢ on [k, Tx+1], which accounts for

Assumption 7.7(c). Hence, Proposition 7.8 guarantees existence of a continuous
solution X to X (r) = D™ (X ™ (t), 1) with final condition X" () =Y and
with X (£) ~ YO given Z\".
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Proposition 7.8 does not imply that X is unique. Almost sure uniqueness of
X ™ follows with Theorem A.1 in the Appendix along the same lines as unique-
ness of X (see Section 7.4), but using equations (14) and (15) for D™ instead
of equation (13) for D, as follows. Fix n and suppose that ¢ € [k, Tx41). First, it
is proven that D™ is continuous on [v1, 2] X [Tk, Tk+1) With a continuous ex-
tension to [y, y2] X [Tk, rk+1] using equation (14). Expression (14) for D™ has
an obvious extension D™ to [k, Tre+1]- We prove that this D™ is continuous

on [y, y2] X [Tk, Tx41]. To show that [ h|h =0Fyan|z, —.(ndP; |Z<n>(z) and

f@ Y<’)|Zk=z(y)dp |Z(n) (z) are continuous in (y,t) Lebesgue’s dominated
convergence theorem can be used, as follows:

d

o 0 Fy YU Z,, .=

F T, 7o —
oh h=t—7 Y(Hh)'ka—Z(y)

and

9
a FY(I)|ZT —Z(y) y y(fk+(t Tk))|Z _Z(y)
are continuous in (y, t) because of Assumption 7.2(a). Both these derivatives are
bounded because of Assumption 7.3. Therefore, Lebesgue’s dominated conver-
gence theorem implies that the integrals of these derivatives with respect to the

measure [ = PZ | Z(n) are continuous in (y, t). Because of Assumption 7.1(b) the
Tk

denominator of D(”) is nonzero for y € [y, y2], so that indeed D™ is continuous
in (y, ) on [y1, y2] X [Tk, Tk+1]-

Next, it is shown that D™ is Lipschitz continuous in y on [y1, y2] X [Tk, Tk+1]
with Lipschitz constant Ly/e + C2L1/ g2 for all w € €/, with Q' as in equation
(16). Expression (14) for D™ on Q' has an obvious extension D™ to [Tk, Th+1].
That this D™ is LlpSChltZ continuous in y on [y, ¥2] X [Tk, Tk+1] with Lipschitz
constant Ly /e + C2L1/8 on Q' follows the same way as for D in Section 7.4.
Because of Assumption 7.1(c), the denominator is bounded away from O for y €
[¥1, y2], and because of Assumption 7.1(a), the numerator is equal to zero for
y = y; and for y = y;. Hence, on €', D(”)(yl, t) = l~)(”)(y2, t) = 0. Therefore,
Theorem A.1 implies that, on ', there exists a unique solution to the differential
equation with D™ on [Tk, Tk+1], and this solution stays in [y1, y2]. Since for n
fixed there are only finitely many 7, the same is true on [0, t]. [

7.9. Bounding the difference between X and X" in terms of D and D™ . To
bound the difference between X and X™ in terms of D and D™, Theorem A.1
is applied on y = X (¢) and z = X (). Since we need that both D and D™ are
continuous, we apply Theorem A.1 on the intervals between the jumps of Z and
the grid points 7, ™ Fix n and restrict  to » € Q', with Q' the set of probability
one as defined in equation (16), so that the expression for D™ of equation (15)
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can be used. The bound will thus hold almost surely. To focus attention on the
differential equations, the Z,’s and Z(n)’s in D and D™ are skipped below.

Suppose that (t1, 2) is such an interval including no jumps of Z and no grid
points at stage n. We check the conditions of Theorem A.1 for y = X (¢) and
z=XW (t). Section 7.4 already showed that D : [y1, y2] X [f1,2) — R has a
continuous extension D : [v1, y2] x [t1, 2] — R which satisfies the conditions of
Theorem A.1, with C the constant function Ly/e + CoL1/ €2, and in the proof of
Lemma 7.10 in Section 7.8, it was shown that on Q' the same is true for D™,
Therefore, Theorem A.1 implies that for t € [#1, 2], with C = L» /e + C2L1/82 as
above,

X () — X ()] < e €O | XD (1) — X (1)

L s
+/2efr‘ Cdnip(x™(s),s) — DM (X" (s), )| ds
(17) '
=S XM (1) — X (1)

15}
+/ ec'(s_t)‘D(X(n)(s), S) _ D(n)(x(n)(s), S)| ds.
t

If Z does not jump in [(1 — 1/2")7, t], (17) can be applied on [(1 — 1/2")7, 7],
and since X ™ (1) = X (r) =Y it follows that on [(1 — 1/2")7, 7],

(18) ’X(n)(l) _ X(Z)‘ < /T ec‘(s_t)’D(X(")(s), s) _ D(")(X(”)(s), s)‘ ds.
t

If Z does not jump after (1 —2/2")t, one can also apply (17) on [(1 —2/2")z, (1 —
1/2™")t], and using equation (18) for t = (1 — 1/2")7, it follows that equation (18)
also holds on [(1 —2/2")t, (1 — 1/2")7]:

1XW @) — X (1)
< S [T SOt )
(I=zm)7

— DM(XM(s),s)|ds
(I—gr)t
—I—/ ? ec'(s_’)}D(X(")(s),s) — D(”)(X(")(s),s)|ds
t

T
:/ eCEDID(XM (s),5) = D™ (XM (s), )| ds.
t

If Z does not jump in ((1 —m/2")t, 7] and t € ((1 — m/2")7, t] then, with the
same reasoning, equation (18) holds on ¢ € ((1 —m/2")t, t]. Suppose now that Z
jumps in ((1 — (m +1)/2")t, (1 —m/2")7]. Then this interval can be split up into
the part before and the part after the jump, so that, again with the same reasoning
as before and since both X and X are continuous in ¢, equation (18) still holds.
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With probability one, there are at most finitely many jump times of Z, so that
equation (18) holds almost surely for all 7, and even

sup [ X (1) — X (1)
t€l0,7]

T
(19) < sup [ eCEDID(XW(s),5) — DD (XM (s),5)|ds

tel0,7] Y1

= /OT eCF|D(X ™ (s), s) — D™ (X (s), s)| ds a.s.

7.10. Convergence of D™ to D. This section proves that D(”)(y,t;fgn))
converges almost surely to D(y, t; Z;), for fixed (y,t) € [y1, y2] x [0, t]. From
equations (13) and (15), it follows that

9
3 lh=0Fyam 7, (¥)
D(y,t;Zx)——ah iz,

% Fy(t) \Z, )
and

—(n)
El;h=0Fyusnz, WIZ,"]

—(n)
El Fyoz,DIZ"]

D™ (y,1; 7?")) =

Lévy’s upward theorem (see, e.g., [29] p. 134) can be applied to the denominator
and the numerator of D™, since both %lh:OFy(t+h)|7[ (y) and %FY(’)IZ (y) are
bounded (Assumption 7.3). Lévy’s upward theorem leads to

! Zm 0 | =)
E[a—h hZOFy<r+h>|7, (y)‘Zt } — E[ﬁ’h:OFY(H—h)lZI (y)‘o(U Z, ] as.

n=1
and

0 — 0 © _
E[gFYwZ, (y)‘zr(n)} - E[awazt (y)‘a (U Zgn))} a.s.

n=1

as n — 0o. The conditioning on o (52 ; Zt(n)) can be replaced by conditioning on
Z, in both expressions, because of Lemma A.2 in the Appendix. Since moreover
the denominators are bounded away from 0 [Assumption 7.1(c)], the continuous
mapping theorem implies that, for fixed (v, t) € [y1, y2] x [0, 7],

(20) DW(y,;Z") > D(y.1;Z))  as.
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7.11. X®™ (1) converges to X (t) and X (t) is measurable. 'To show that XM (1)
converges almost surely to X (¢) and that X (¢) is measurable, the bound of equa-
tion (19) and almost sure convergence of D(”)(y, t) to D(y,t) for (y, t) fixed of
equation (20) are the starting point.

First, it is proven that for s fixed, D™ (X ™ (s), s) — D(X™(s), s) converges
almost surely to 0. Recall from Section 7.4 that D : [y1, y2] X [t1,%2) — R has
a continuous extension D : [y1, ¥2] x [t1, 2] = R which is Lipschitz continuous
in y with Lipschitz constant L/e + C2L1/¢?. Recall also that in the proof of
Lemma 7.10 in Section 7.8 it was shown that on €/, the set of probability one of
equation (16), the same is true for D™ Therefore, the pointwise almost sure con-
vergence of D(”)(y, t) to D(y,t) of equation (20) implies that for fixed s indeed

(21) |IDW (XM (s),s) — D(X™(s),5)| >0  as.

(for details, see Lok [10] Section H).
To show that equation (21) implies that the bound of (19) converges almost
surely to O, define

A=|(s,») €[0,7] x Q:| DM (X" (s),s) — D(X"(s),s)| — 0},
with Ay its section at s and A, its section at w. Then
Ay ={we Q: DM (XM (s),s) — D(X"(s),s)| — 0}

has probability one because equation (21). Therefore, using Fubini’s theorem, with
A the Lebesgue-measure on [0, 7],

(. x P)(A) = f(o AN

= ld}\,(s) =T.
0,7)

Also, by Fubini’s theorem,

(. x P)(A) = j M(Aw)dP (),

so that since A(Ay) < 1, A(A,) = T P-almost everywhere. This shows that for
P-almost all w, A, has measure 7. So for P-almost all @, |D(X"™(s),s) —
DM (X (")(s),s)| converges to 0 for A-almost all s. Moreover, because of ex-
pression (13) for D and expression (15) for D™ and Assumptions 7.3(b)
and 7.1(c), e€*|D(-,5) — D" (., s)| is bounded by 2¢¢TC>/e on . There-
fore, for almost all w Lebesgue’s dominated convergence theorem can be ap-
plied on the integral of eCIID(XM (s), ) — DM (XM (s), s)| with respect to A,
f[o,r] eCs |D(X(")(s), s) — DW(X® (s), s)|ds, implying that for almost all  this
integral converges to 0 as n — oo. With equation (19), this implies that

(22) sup [ X™ (@) —X@)| =0  as.
tel0,7]
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Since the almost sure limit of a sequence of random variables is measurable if
the o-algebra is complete, measurability of X (¢) follows immediately from mea-
surability of the X .

7.12. Conclusion. This section shows that since X" (t) ~ Y® given 7;'1)
(see Section 7.8) and X™ (1) — X (¢) a.s. (see Section 7.11), X (¢) ~ Y® given
Z,. This completes the proof.

It is well known (see, e.g., [28]; Lemma D.10 provides a formal proof for this
conditional version) that X (t) ~Y ® given Z, if

E[f(X()Z,] - E[f(Y)Z,]=0 as.

for every bounded Lipschitz continuous function f : R — R. Suppose without loss
of generality that f is bounded by 1 and has Lipschitz constant L. Then, using the
triangle inequality,

|E[f(X)IZ]— E[f(Y?)|Z/]]
< |E[f(XO)|Z/] - EL£ (X)) Z"]]
+EF(X0)1Z"] - ELF (X ™)1 Z"]

+ELF (X 0)Z"] - E[f(rO)IZ/]].
Because of Jensen s inequality, the second term is bounded by ET[|f(X(¢)) —
f(X(”)(t))HZ, 1, which is bounded by E[L|X(1) — X™(t)] A 2[Z\"] since
f is Lipschitz continuous Wlth Lipschitz constant L and bounded by 1. Be-

cause X™ (1) ~ Y® given Z, , the third term is equal to |E[f(Y(t))|Z(n)
E[f(Y®)|Z,]|. Therefore,

[E[f(X)IZ] - E[f(Y?)|Z/]]
<|E[f(X®)|Z] - E[f(X0)|Z}"]|

(23) =
+ E[LIX (1) — XD 1) A21Z"]

HIE[FYONZ - E[f (YD) Z]|  as.

We show that the right-hand side converges in probability to zero. On the first and
the last term, Lévy’s upward theorem (see, e.g., [29] p. 134) can be applied, since
the integrands are bounded by 1. Lévy’s upward theorem leads to

E[f(X0)Z,"] > E f(X(t>)“’<G 7§")>}

n=1

and

vt i (G
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as n — 00. Thus, with Lemma A.2 in the Appendix, both the first and the last term
of equation (23) converge to 0 almost surely. The second term converges to O in
probability since it is almost surely nonnegative and its expectation converges to 0:

E(E[L|X(t) = XM ®)| A20Z™]) = E(L|X (1) — XM (1)| A2) > 0
because of Lebesgue’s dominated convergence theorem and the fact that X ™ (¢)
converges almost surely to X (¢).

Thus, |E[f (X ()| Z:]1— E[f(Y)|Z,]] is bounded by a random variable which
converges in probability to 0. Hence, this first random variable is almost surely
equal to 0. Therefore, indeed X () mimics Y @) in the sense that X (¢) has the same
distribution as Y given Z;.

7.13. Mimicking counterfactual outcomes: Discrete-continuous time. In cer-
tain situations, there are specific times ¢ with P (¢ is a jump time of Z) > 0. For
finitely many such times ¢, the proof in Section 7 can be adapted by adding these
finitely many times to the grid, for each n.

8. Mimicking counterfactual survival outcomes.

8.1. Introduction. This section indicates how to prove that X (1) mimics ¥ ®)
in the sense that X (¢) has the same distribution as ¥®) given the covariate and
treatment history Z,, under conditions aimed at survival. The conditions are similar
to the ones in Section 7, but adapted to survival as the outcome of interest. The
proof also follows roughly the same lines as the one for other outcomes, but some
changes are necessary. A full proof can be found in Lok [10] Section B.

If covariates and treatment were measured at time ¢, it cannot be avoided to
include in Z; whether or not a person was alive at time ¢: what are a person’s
covariates if he or she is dead? Therefore, we include in Z(¢) an indicator for
whether or not a person is alive at time ¢. Thus, if a person died at or before time ¢,
the survival time can be read from Z,.

The conditions in Section 7 usually exclude survival as the outcome of interest,
since if the outcome is survival the support condition 7.1, saying that all Fy )z,

have the same bounded support [y, y2], will not hold: Z, includes the covariate-
measurements and treatment until time #, and given that a person is dead at time ¢
and given his or her survival time, the distribution of this survival time cannot
have the fixed support [y, y2], independent of ¢. Also given that a person is alive
at time ¢, the survival time often does not have the fixed support [y, y2]: one often
expects that ¢ is the left limit of the support, and obviously the left limit of the
support should be greater than or equal to 7.

I make two extra assumptions. The first is a straightforward consistency as-
sumption, stating that stopping treatment after death does not change the survival
time. The second extra assumption states that there is no instantaneous effect of
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treatment at the time the person died (notice that the difference between YY) the
outcome with treatment stopped at the survival time Y, and Y is in treatment at
time Y).

ASSUMPTION 8.1 (consistency). Y =Y on{w:Y <t}U{w:Y" <1}

ASSUMPTION 8.2 (no instantaneous effect of treatment at the time the person
died). YO =Yon{w:Y=1}U{w:Y® =1).

As can be expected, these assumptions imply that treatment in the future does
not cause or prevent death at present, see Lok [10] Section B.

For survival outcomes, this article uses the following minor adaptation of the
definition of D,

0 if Z; indicates the person is dead at 7 or y < ¢
72 ad -1 .
(24) D(y,t;Z;) = Wlh:O(FyoM)@ o Fywz,)(y) otherwise, fory >t
limy, D(y,t; Z;) otherwise, for y =1,

as we explain now. First, remark that considering the interpretation of D(y, t; Z,)
as the infinitesimal effect of a short duration of treatment directly after ¢ on sur-
vival, D(y, t; Z,) should be zero if Z, indicates the person is dead at time ¢. Al-
though in that case indeed Fyaimz, and Fywz, are almost surely the same for
every h > 0, since withholding treatment after death does not change the sur-

vival time, FY_(,1 iz will often not exist. Therefore, if Z, indicates the person
t

is dead at time ¢, this article just formally defines D(y,t; Z;) to be zero. Next,
consider y < t. Notice that considering the interpretation of D(y,t; Z;) as the
infinitesimal effect of treatment directly after time ¢ on the survival-quantile y,
D(y, t; Z;) should be zero for y < t since treatment at or after time ¢ should not
cause or prevent death at or before time ¢, so it should not affect quantiles of
the survival curve before time 7. Indeed if Z, indicates that the person is alive at
time ¢, FY@M)@ (y) = FYIZ (y) =0 for y <t for all 2 > 0, but also for these y,

Fy_(,1 |z, (y) often does not exist. Therefore, this article defines D(y,t; Z;) = 0
for y < t. In order to make D continuous on y > ¢ in between the jump times of Z,
we define D(¢,t; Z;) = limy, D(y,t; Z;). This limit exists under the conditions
in Section 8.2. It is not necessarily equal to zero.

Notice that the area where D is possibly nonzero is (y,t) € [0,00) X
[0, min{Y, t}] : y > ¢. Therefore, if Y < 7, the solution to the differential equation
X(t) is equal to Y for ¢ € [Y, t]. An example of such X (¢) is shown in Figure 1
(right).

In the case of a survival outcome, right censoring is common. For right cen-
soring, [22] proposed the artificial censoring estimator. A slight adaptation of this
estimator is presented in Section 8.4.
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8.2. Mimicking counterfactual survival outcomes: Assumptions and result.
This section presents precise conditions under which X () mimics ¥, for sur-
vival outcomes, following Section 7.2.1 (Lok [10] Section B provides conditions
similar to Section 7.2). We choose versions of Fy ¢+n) Z, that (a) are consistent with
the fact that treatment after death is irrelevant, and (b) satisfy all regularity condi-
tions below. These versions are used in the definition of D for survival outcomes,
and everywhere in the proof.

ASSUMPTION 8.3 (Regularity conditions).
e (support). There exists a finite number y, > t such that:

(@) fY >1t,all Fyaimz,» for h > 0 and ¢ € [0, 7], have support [z, y-].

(b) If Y > ¢, all F! YU+ (Z,» for h > 0and ¢ € [0, 7], have a continuous nonzero
density fyimz,(y) ony €[t +h, y2].

(c) There exists an & > 0 such that for all w € @2 and ¢t with Y > ¢,
fywz,(y) > e foryelt, y2.

e (smoothness). For every w € Q

(a) If Z does not jump in (#1, #2) and Y > t1, the restriction of (y, ¢, h) —
Fy(Hrh)‘Zt(y) to {(y» f, h) € [tla )’2] X [tlat2) XREO 2y = t+h} iS Cl in ()’» t9h)

(b) The derivatives of FY<I+’1>|Z (y) (y >t + h) with respect to y and h are
bounded by constants C; and Cy, respectively.

(©) %FY(”IZ (v) and ad—h|h:0FY(t+h)|7[ (y) (y > t) have derivatives with re-
spect to y which are bounded by constants L and L, respectively.

(d) For all w € Q2 and ¢ with ¥ > 1, FYIZ (y) is continuous and strictly in-
creasing on its support [f, y2].

THEOREM 8.4. Suppose that Regularity Condition 8.3 is satisfied. Then
D(y,t; Z;) as defined in equation (24) exists. Furthermore, for every w € Q there
exists exactly one continuous solution X (t) to dX (t)/dt = D(X (t),t; Z;) with fi-
nal condition X (v) =Y. If also Assumptions 4.1, 8.1 and 8.2 (consistency and no
instantaneous treatment effect at time of death) are satisfied then this X (t) has the
same distribution as Y© given Z; forall t € [0, 7).

8.3. Outline of the proof. The proof of Theorem 8.4 follows the same lines as
the proof of Theorem 4.2. The one essential difference between survival outcomes
and nonsurvival outcomes is: if Z, indicates the person is alive at time ¢, X (1)
should be greater than ¢, since we want X (¢) to have the same distribution as Y ®
given Z; (Y > ¢ in that case because of consistency Assumption 8.1). This leads
to an additional problem in the proof for the continuous-time case, namely: how
to prove that the solution stays above the line y = ¢ for ¢ € [0, Y]? I solve this
additional problem in Lok [10] Section B by showing that, under the assumptions
of Section 8.2, D(t, t; Z;) < 1. In addition, extra technical problems arise because
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the smoothness conditions have to be adapted to the survival setting; see Lok [10]
Section B for details.

8.4. Survival outcomes and right censoring. In the case of a survival outcome,
right censoring is common. Robins [22] proposed the artificial censoring estimator
for administrative censoring. That is censoring due to end-of-follow-up because
the study ends. The idea behind artificial censoring is that, instead of adding X (¢)
or X (0) to the model for predicting treatment changes (see Theorem 5.2), one
could add a function X (0) of X(0) and the censoring time C, which is observed
for all patients. The artificial censoring estimator treats the censoring time C as a
baseline covariate. This is justified in the case of censoring due to study closure,
because in this case C only depends on the date a patient enrolled in the study.
Conditional on the value of Z,_, functions of X (¢) and Z,_ are not predictive
of treatment changes (Theorem 5.2). Therefore, conditional on Z,_, X (0) is not
predictive of treatment changes either. This produces an estimation procedure for
Y analogous to that in Theorem 5.2, but that allows for right censoring.

We slightly adapt this procedure, and propose to add a function of X (¢) and
C to the model for the prediction of treatment changes. In particular, for D as in
equation (3) and for min(Y, C) > ¢, we propose to add to the prediction model of
treatment changes the function X (t,¥) =min(Xy (), C(t,V)), with

C ify >0

COD =V 4 evc—1) ify <0

As required, X (¢, ¥) is a function of Xy (t) and C. In addition, we will show that
both for the case that i > 0 and for the case that ¥ < 0, X@, Yr) is observed for
all patients. This follows from the fact that

X(t, ) =min(X*(t, ¥), C(t, ¥)),

(25) |
Wlth X*(l‘, 1[/) =1+ j;mln(Y,C) e‘/flno prophylaxis at s dS,

which is observed for all patients. For i > 0, equation (25) follows from
~ Y
X(ty 'S//) = min<t + / elp]no prophylaxis at s dS, C)
t
Y
= min (t + f ewlno prophylaxis at s ds,
t

C
-+ / ellflno prophylaxis at s dS C)
t

= min(X*(z, ¥), C(t, ¥)),



492 J.J.LOK

where for the second equality we used that for v >0, # + ftc ¥ Ino prophylaxis at s of g >
C. For ¢ < 0, equation (25) follows from

~ Y
X, ¥) = min([ + f ewlno prophylaxis at s oJ ¢ ¢ 4 ew (C — l))
t
Y
= min <l + / ewlno prophylaxis at s f g
t

C
-+ / el//lno prophylaxis at s ds’ -+ elp (C _ l»))
t

= min(X*(t’ 1[’)’ C(t’ w))’

where for the second equality we used that for ¢ <0, r + ftc eV Ino prophylaxis at s f g >
t+eV(C—1).

For the case that ¢ < 0, some patients are “artificially” censored, since if
C>t Cit,y)=t+ e¥(C —1) < C. Attificial censoring produces a sub-
class of the estimators considered in Theorem 5.2 allowing h; to depend on
Vi hey (Xy(0), Zi—) = lminr,c)>ch(min(Xy (1), C(¢,V¥)), Z,—) (notice that
Imin(y,c)>/ 18 a function of Z;_). In general, one could add to the prediction model
for treatment changes any function of Xy (¢) and C that is observed for all pa-
tients. Robins [22] suggests to also consider adding A(z, ¥) = 1 Rt =<Cleyp) ©

the model for the prediction of treatment changes. Since both X (t,¥)and C(t, V)
are observed for all patients, so is A(t, ¥). Thus, the above reasoning shows that
this procedure leads to consistent estimation of the treatment effect as well.

The procedure above can easily be adapted to for example model (5), by replac-
ing C(t, ¥) accordingly. To be more specific, for that case one could use

C(t, ,‘//) =t + emin(l//l,0)+min(1//2,0)+min(1//3,0)(C _ [)

9. Simulation study. In the simulation study, we calibrated the distributions
of the variables and the parameter values to HIV/AIDS data, perhaps the most
salient example of application of structural nested models in the empirical litera-
ture. We focus on the first two years since HIV diagnosis. Time zero is the time of
HIV diagnosis. The outcome variable is the CD4 count, a commonly used marker
of the state of the immune system of HIV-positive patients. The usual treatment
for HIV-positive patients is ART, antiretroviral treatment. ART is not always ini-
tiated immediately after diagnosis. ART initiation time often depends on the last
measured CD4 count. When the CD4 count is at or below 350 copies/ml, HIV-
positive patients are much more likely to initiate ART than when the CD4 count is
above 350 copies/ml. Lok [10] Section C describes how we generated the data for
the simulation study in detail, including distributions and parameter values. This
section provides an overview.

In this simulation study, no one is treated at time zero, and once treatment is
initiated, it is never stopped. ¥ ") is the counterfactual outcome had treatment been
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as given in reality until time ¢, and continued or initiated after that. For example,
if treatment was initiated by time ¢ for a particular patient, ¥ ) is the observed
outcome for that patient, since he or she was already treated at time ¢ and treatment
is never stopped. On the other hand, if treatment was not initiated by time , ¥ ®) is
the outcome had treatment been initiated at time 7. Thus, in the definition of ¥ in
Section 2, the switch at time 7 to “some kind of baseline treatment regime 0 is, in
this case, “treat continuously” from time ¢ onwards. In the simulations, we study
a setting with ¢ € [0, 2]. The subscript ; indicates the treatment initiation time, so
for example L, indicates (counterfactual) covariates at time 1 under “treatment
started at time ¢.” Similarly, the subscript  indicates (counterfactual) variables
under no treatment. For example, Ly ~ indicates (counterfactual) covariates at
time 2 under no treatment. In the simulation design, the counterfactual covariates
L are as follows:

Lo = Lo+ eo,
Li,co = Lo — Bo + €100,
Looo=Lo—2B0+e200
Li,=Lo—Bo+60(—1)+e, fortel0,1],and L o otherwise
Lys=Lo—2fo+¥(2—1)+exs,

where io and the e, are random variables with values in R. Notice that (1 — 1)
and (2 — t) are simply the durations of treatment until the respective covariate
measurements. We assume that the e;; (j =0, 1, 2) are independent of io, and
that the e ; have a distribution function which does not depend on 7. We also
assume that the e; ; are independent of all previous variables (and of the treatment
initiation time, T, described below). In the simulations, ¥ > 0 (a similar study
could have been done for ¢ < 0). We define ¥; = L; ;, the counterfactual outcome
with treatment initiated at time ¢, which could potentially be observed at time 2.

We show in Lok [10] Section C that the outcome processes adopted in our sim-
ulation study are not rank preserving. This is easily seen because with probability
one, two patients with the same observed data do not have the same value of L.

Suppose that the hazard of the treatment initiation time, 7, given the covari-
ate history at time ¢ and given that treatment was not initiated before time ¢, is
piecewise constant as follows:

W if Lo >coandt €0,1]
() = WO ifLg<coand€[0,1]
! WD ALy >crand e (1,2]

MW i Ly o <erandte(l,2],

for constants ¢y and ¢ in R. Notice that T depends on Lo, €0,00 and e o, if
A9 £ 30 or 200 20,
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In the simulation study, treatment can be initiated in continuous time, but the
covariates are only measured at times 0, 1 and 2, so that the treatment and covari-
ate history up to time ¢, Z,, consists of the treatment information up to time ¢ and
Lo, (Lo, L1) or (Lo, L1, L2), depending on whether t € [0, 1), t € [1,2) or t = 2.
In the simulations, treatment affects later outcomes, and time-dependent covari-
ates (L1) which depend on previous treatment also predict future treatment and
the outcome of interest. This is the type of setting structural nested models were
developed for.

Lok [10] Section C shows that for this data generating mechanism,

D(y,t; Zr) = — Y Luntreated at ¢-
Then it follows from the definition of X, that

Xy (@)=Y + ¢ (min(7,2) —t)17>,

where (min(7',2) — t)17~; is the duration of the patient not being on treatment
between time ¢ and time 2.

As shown in Lok [10] Section C, a consistent estimator of iy can be defined
as follows. In the first step, the nuisance parameters (k(()o), )Lgo), A(()l), )\gl)) are es-

timated using maximum likelihood theory. In the second step, i is estimated as
U=—>7_1 A1/ ;= Az, where

A1 = =Y,(Zi O + (1 = Zi ()" min(T;. 1)
— Y(Zi(DA) + (1 = Zi0) ") (1 = 87) (min(T;,2) - 1)
+ Y89 + v;50",

Az = —(Z;(3” + (1 = Z:(©)3Y) min(T;, 1) min(7;, 2)
—(ZiWA" + (1 = Zi)A") (1 = 8 (min(T;, 2) — 1)?
+6 min(7;, 2) + 6 (min(7;,2) — 1),

80 =17<1,8" = licr.<2, Zi(0) = 1 15<ce> and Zi (1) = 11, <,

We ran a simulation study with » = 500, 1000, 2000, 5000 and 10,000, with
5000 repetitions each. The results are presented in Table 1. As detailed in Lok [10]
Section C, setting 1 has the least noise around the signals, and setting 3 the most.

In this simulation study, both for small and large samples, the bias of the esti-
mators is small. In all three settings and for all sample sizes considered (including
the small sample size n = 100), the MSE of the estimators arises mostly from the
variance, not from the bias. Also, if the true parameter i equals 300 as in this
simulation study, for n = 500, v M SE /vy = 0.04 in setting 1 and 0.08 in setting 3.
Thus, the estimates are already precise in relatively small samples. Because, as
shown in Lok [10] the MSE in this simulation study does not depend on the true
parameter, ¥, a larger sample size would be required to obtain precise estima-
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TABLE 1
Simulations. Mean Squared Errors (MSE) and bias. 5000 repetitions each

Setting 1 Setting 2 Setting 3

n MSE MSExn  pias  MSE MSPxnm  pias  MSE  MBExn o pigg
100 747 75 —028 1907 191  —0.040 2875 287  —0.39
500 146 73 022 356 178  —0.29 542 271 —0.61
1000 72 72 -010 176 176 —0.068 268 268  —0.23
2000 35 70 —0.11 8 179 0051 138 275 —0.08
5000 14 69  —0067 35 175  —0.0040 54 268  —0.05
10000 6.6 66  —0.066 18 178  —0.022 27 270 —0.06

tors of small true parameter values ¥. We conclude that in this simulation study,
continuous-time structural nested models perform extremely well.

10. Discussion. Structural nested models have become a major part of sta-
tistical tools for estimation of the effect of time varying treatments, in the pres-
ence of time-dependent confounding by indication; see, for example, [30] for a
discrete-time application and, for example, [15, 19, 22, 24, 25, 27] and [8, 9] for
continuous-time applications. Structural nested models in continuous time are use-
ful to estimate the effect of a treatment that can be initiated at any point in time, and
for which a short duration of treatment has a small effect on the outcome of inter-
est. In contrast with discrete-time structural nested models, in the case of survival
outcomes, the resulting parameter estimates can often be interpreted as rates. So
far, continuous-time analyses relied on (local) rank preservation. The main result
of the current article is to prove that for continuous-time structural nested models,
assumptions about the joint distributions of counterfactuals or deterministic treat-
ment effects/ (local) rank preservation are not necessary to “mimic counterfactual
outcomes,” and, based on that, to consistently estimate treatment effects. This arti-
cle provides a proof for outcomes that are measured at the end of the study as well
as a proof for survival outcomes. Important public health decisions are based on
analyses with continuous-time structural nested models, so it is important to relax
unverifiable and disputable assumptions underlying these analyses.

An interesting topic for future research is to investigate whether the support
conditions 7.1 or 8.3 can be weakened, for example, to an assumption about the
support varying in a differentiable way between the jump times of the covariate
and treatment process Z. We expect that in that case one has to assume that where
Z jumps, the support of Y ) given Z, gets smaller or stays the same as ¢ increases
(see Figure 2). Otherwise, X (f) may move out of the support of Y given Z,
(recall that X is the solution to a differential equation with final condition). It is
reasonable to assume that the support of ¥ ) given Z, gets smaller or stays the
same( .;:15 t increases, since more information about Z should not enlarge the range
of Y\,
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support —m—o — 00000

of Y® —
. -2 \
given Z, [ —
B
jump time of Z t

F1G. 2. Example of support of Y® given Zy.

A problem which may occur without a support condition is that the denominator
in equation (13) (the quotient expression for D) or in equations (14) or (15) (the
quotient expression for D) may tend to 0, which may “blow up” D or D™ In
that case, it might help to assume that there exists a constant C such that (a) for all
we R, tandy, FY_<f1+h>|Z o FY(”IZ (y) —y<C-h,and (b)forall¢, yand B C Z;

with P(Z;, € B) > 0, FY_<fl+h>|ZeB o Fy(,)lzeB(y) — y < C - h. This assumption
does not look unreasonable if there is no “instantaneous treatment effect.” It is to
be expected that under this assumption both D and D™ are bounded by C.

Based on the results of the current article, [11] shows that also if a semiparamet-
ric Cox model is used to predict treatment changes in Theorem 5.2, the resulting
estimating equations for the treatment effect are unbiased. However, the estimating
equations are no longer of the form of an average of terms that are independent for
the different persons. Thus, consistency and asymptotic normality for this situation
constitute interesting topics for future research.

APPENDIX A

This Appendix contains results that are frequently used in the main article. Lok
[10] is more elaborate. The first theorem is a corollary of a theorem in [4] Chap-
ter 2, see Lok [10] Section G.

THEOREM A.l. Suppose that I is a closed interval in R, f: I x [y1, y2] > R
is continuous with for all t € I, f(t,y1) = f(t,y2) =0and C : I — [0,00) is
continuous, and suppose that

(26) f.y) = f@, D] <COly -zl

forall t € I and v,z € [y1, y21. Then, for every tog € I and yg € [y1, y2], there
exists a unique solution y(t) of y'(t) = f(t, y(t)) with y(ty) = yo, and this solution
is defined for all t € 1. Furthermore, y(t) € [y1, y2] for all t € 1. Suppose that
g : I x [y1,y2] = R is continuous and z : I — [y1, y2] is a solution of 7'(t) =
g(t,z(t)). Then

() = 2] < e €Oy 10) — z(1p)|

+ / " el €O 1 2(1)) — g5, 25))| ds
t

forallt, tgel witht <ty.
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The proof of the following lemma can be found in Lok [10] Section D.

LEMMA A.2. Let X be a random variable with E|X| < 0o, and let Z; be a
random variable with values in Z;, the space of cadlag functions on [0, t] pro-
vided with the projection o -algebra, with P(Z jumps at t) = 0. Then any version
of E[X|o (U Z™), with Z\”
E[X|Z;].

as defined in Section 7.6, is also a version of
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SUPPLEMENTARY MATERIAL

Web-Appendix with “Mimicking counterfactual outcomes to estimate
causal effects” (DOI: 10.1214/15-A0S1433SUPP; .pdf). This Web-Appendix
provides mathematical details about mimicking counterfactual survival outcomes,
additional information on the simulation study, and theorems used in the main text.
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