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In semivarying coefficient modeling of longitudinal/clustered data, of
primary interest is usually the parametric component which involves un-
known constant coefficients. First, we study semiparametric efficiency bound
for estimation of the constant coefficients in a general setup. It can be
achieved by spline regression using the true within-subject covariance ma-
trices, which are often unavailable in reality. Thus, we propose an estima-
tor when the covariance matrices are unknown and depend only on the in-
dex variable. First, we estimate the covariance matrices using residuals ob-
tained from a preliminary estimation based on working independence and
both spline and local linear regression. Then, using the covariance matrix
estimates, we employ spline regression again to obtain our final estimator.
It achieves the semiparametric efficiency bound under normality assumption
and has the smallest asymptotic covariance matrix among a class of estima-
tors even when normality is violated. Our theoretical results hold either when
the number of within-subject observations diverges or when it is uniformly
bounded. In addition, using the local linear estimator of the nonparametric
component is superior to using the spline estimator in terms of numerical
performance. The proposed method is compared with the working indepen-
dence estimator and some existing method via simulations and application to
a real data example.
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1. Introduction. Suppose we have a scalar response Y , and two p-dimen-
sional and q-dimensional covariate vectors X and Z. Longitudinal data consist
of (Yij ,Xij ,Zij , Tij ), i = 1, . . . , n, j = 1, . . . ,mi , where Yij , Xij = (Xij1, . . . ,

Xijp)T and Zij = (Zij1, . . . ,Zijq)
T are, respectively, the values of Y , X and Z

of the ith subject at the j th observation time Tij ∈ [0,1]. Such kind of data are
commonly acquired for various purposes, such as evidence based knowledge dis-
covery and empirical study, in a wide range of subject areas. When the subjects
are changed to clusters and the Tij ’s are observations on some index variable other
than time, they are usually called clustered data. We assume that all the covariates
are uniformly bounded for technical reasons. Besides, we let Zij1 ≡ 1 and suppose
Xij has no constant element for all i and j .

For i = 1, . . . , n, denote

Xi = (Xi1, . . . ,Ximi
)T , Zi = (Zi1, . . . ,Zimi

)T and

T i = (Ti1, . . . , Timi
)T .

A popular model for longitudinal data analysis is the semivarying coefficient
model, which is specified by

E(Yij |Xij ,Zij , Tij ,Xi ,Zi , T i)
(1.1)

= E(Yij |Xij ,Zij , Tij ) ≡ μ
(
XT

ijβ + ZT
ij g(Tij )

)= μij ,

where AT stands for the transpose of a matrix A. In model (1.1), μ(x) is a known
strictly increasing smooth link function, β is an unknown regression coefficient
vector, and g(t) = (g1(t), . . . , gq(t))

T is a vector of unknown smooth functions.
Define

εi = (εi1, . . . , εimi
)T = Y i − μ

i
and �i = Var(εi |Xi ,Zi , T i),(1.2)

where Y i = (Yi1, . . . , Yimi
)T , μ

i
= (μi1, . . . ,μimi

)T , and �i is an mi × mi posi-
tive definite matrix depending on Xi , Zi and T i , i = 1, . . . , n. This is a standard
marginal model in longitudinal data analysis [24].

Model (1.1) consists of a parametric component, which provides information
on the constant impacts of some important covariates, and a nonparametric com-
ponent which captures the dynamic impacts of the other covariates. In this way,
the model is able to reflect unknown nonlinear structures in the data while retain-
ing similar interpretability as the classical linear models at the same time. There
is an extensive literature on the variable selection, structure identification, estima-
tion and inference issues [6, 8, 12, 22, 25]. In particular, often of primary interest
is to have access to the parametric component while the nonparametric compo-
nent is viewed as the nuisance part. In this regard, it is well known that assuming
independence or some misspecified working covariance structure yields less ef-
ficient estimation of the constant coefficients. Therefore, a substantial portion of
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the existing literature aimed at improving the efficiency via modeling and estimat-
ing the within-subject covariance structure [6, 7, 10, 18, 26–28], which is itself a
challenging task.

In this article, we focus on the identity link function and make contributions
to the efficient estimation problem for model (1.1) in three directions. First, we
allow some of the mi’s to tend to infinity. As far as we know, this setup has not
been treated before and the problem is nontrivial. Our results also hold when the
mi ’s are uniformly bounded and εi satisfies the sub-Gaussian property. See the
supplement [5] for the details. When all of the mi ’s are diverging, that is, if we
have densely observed data, it becomes a kind of functional data problem and is
out of the scope of this paper. Second, we study explicit expression of the semi-
parametric efficiency bound for estimation of β and asymptotic normality of the
generalized estimating equations (GEE) spline estimator under general covariance
structures and error distributions. Using the true covariance matrices in the GEE
estimation leads to optimality among all GEE estimators of the parametric com-
ponent. Furthermore, it achieves the semiparametric efficiency bound when the
errors are conditionally normal. Our results are in parallel to that for partially lin-
ear and partially linear additive models given by [13] and [3], respectively. Those
models are among a rich variety of semiparametric ways of modeling longitudinal
data, and they differ from semivarying coefficient models in that their nonparamet-
ric components admit more direct additive expressions. Partially linear (additive)
models were also considered by [14–17, 23], among which [14–16, 23] used kernel
method and [17] used spline estimation.

Our third contribution is to deal with adaptive efficient estimation when the
within-subject covariance matrices are estimated nonparametrically using the data
at hand. Notice that [3] ignored this practical issue and did not consider estimation
of the covariances, and [13] suggested using some parametric specification which
can be estimated

√
n-consistently. We consider the case where the nonparametric

within-subject covariance matrices depend only on the observation times but not
on the other covariates. Such assumptions are reasonable because we do not as-
sume that the observation times are regular across different subjects or they are
dense. Indeed, with irregular and/or sparse observation times, estimating the co-
variances in a completely nonparametric way, by letting them to be dependent on
all of the Tij , Xij and Zij nonparametrically, is particularly problematic and even
unreliable as the curse-of-dimensionality problem arises. Our covariance estimator
is constructed based on residuals yielded by an initial estimation. The final estima-
tor of the true value of β is then given by plugging-in the covariance estimates to
the GEE spline estimation. We show the asymptotic equivalence of our final esti-
mator to the oracle efficient estimator which uses the true covariance matrices in
the GEE spline estimation.

The above result is partly motivated by the study of [14] on efficient estima-
tion in partially linear models under the same nonparametric covariance structure.
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However, the kernel profile method taken by [14] involves only local linear re-
gression; thus, to achieve semiparametric efficiency it requires some complicated
iterative backfitting calculation except for the identity link function [15, 16]. By
comparison, our approach to estimating the parametric and nonparametric compo-
nents in the mean function is different and much simpler. We ingeniously use both
spline approximation and local linear estimation to avoid complicated calculation
while allowing for the asymptotic equivalence property at the same time. In ad-
dition, to the best of our knowledge, there are no existing results for semivarying
coefficient models, especially when some of the mi ’s tend to infinity or when the
�i’s are estimated.

Our final estimator is some kind of feasible generalized least squares (FGLS)
estimator since we replace the within-subject covariance matrices with their non-
parametric estimates. Even if our assumption on the covariance matrices fails to
hold, it still possesses the asymptotic normality under mild conditions and still
makes use of some information of the covariance matrices. For example, if the
covariances depend on some time-dependent covariates, to some extent such ef-
fects are still captured by our method. In this sense, compared with existing meth-
ods which use either parametrically estimated or some ad-hoc covariance matrices
[7, 18, 21], our approach is more adaptive to the unknown covariance matrices.
A promising cluster bootstrap inference method was proposed by [2]; it assumes
some parametric within-cluster covariance structure, however. In the case where
there is one observation for each subject/cluster, our assumption on the covariance
matrices reduces to that specified by [20], which also suggested to improve the
efficiency in a similar manner.

Our simulation study shows that numerically the proposed method outperforms
the working independence approach and the quadratic inference functions (QIF)
method by [18], and it behaves similarly to the oracle estimator which uses the true
covariance matrices. Note that, while the QIF procedure is suitable when there is
some kind of regularity and stationarity in the error process, our procedure adapts
to both nonstationarity and irregularity. We also applied our method to the CD4
count dataset and identified some interesting new effects not detected by the work-
ing independence approach.

After the semiparametric efficient estimation, we can estimate and make infer-
ence on the nonparametric component in the same way as in dealing with varying
coefficient models, using the difference between the response and the estimated
parametric part [25]. When p and q are both diverging and the model is sparse, [6]
suggested a simultaneous variable selection and structure identification procedure
and showed its consistency property. By combining the method with the proposed
estimation procedure and by putting together the corresponding consistency and
efficiency results, we have an efficient estimation procedure in this case.

The organization of this paper is as follows. In Section 2, we derive the semi-
parametric efficiency bound for the constant coefficient vector β and asymptotic
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normality of GEE spline estimators. In Section 3, we propose an efficient esti-
mator of β when the errors have some general covariance structure and state its
asymptotic equivalence to the oracle estimator which assumes the covariance ma-
trices are known. Section 4 summarizes and discusses results of our simulation and
empirical studies used to assess numerical performance of the proposed efficient
estimator. Section 5 contains some technical assumptions and proof of the asymp-
totic equivalence. In the supplementary material [5], we give additional simulation
results, proofs of the other theoretical results and some lemmas, and theoretical
results when the mi ’s are uniformly bounded.

2. Semiparametric efficiency bound for β . In this section, Vi is a given
mi × mi inverse weight matrix depending only on Xi , Zi and T i , i = 1, . . . , n.
We use a Kn-dimensional equispaced B-spline basis on [0,1], denoted by B(t), to
approximate the function g(t). See [19] for the definition and properties of B-spline
bases. We set Wij = Zij ⊗ B(Tij ) and Wi = (Wi1, . . . ,Wimi

)T , where ⊗ is the
Kronecker product, and we denote the true values of β and g(t) by β0 and g0(t) =
(g01(t), . . . , g0q(t))

T , respectively. Then we estimate β0 and g0(t) by minimizing
with respect to β and γ simultaneously the following objective function:

n∑
i=1

(
Y i − μ(Xiβ + Wiγ )

)T V−1
i

(
Y i − μ(Xiβ + Wiγ )

)
,(2.1)

where γ ∈ R
qKn and the j th element of μ(Xiβ +Wiγ ) is μ(XT

ijβ +WT
ijγ ). Thus,

the generalized estimating equations are

n∑
i=1

XT
i �iV

−1
i

(
Y i − μ(Xiβ + Wiγ )

)= 0 and

(2.2)
n∑

i=1

WT
i �iV

−1
i

(
Y i − μ(Xiβ + Wiγ )

)= 0,

where �i is an mi × mi diagonal matrix defined by �i = diag(μ′(XT
i1β +

WT
i1γ ), . . . ,μ′(XT

imi
β + WT

imi
γ )). Denote the solution to (2.2) by β̂V and γ̂ V ≡

(γ̂ T
1V , . . . , γ̂ T

qV )T . Then the GEE spline estimator with weight matrices V−1
i , i =

1, . . . , n, for β0 is β̂V and that for g0(t) is (γ̂ T
1V B(t), . . . , γ̂ T

qV B(t))T .
Hereafter, we focus on the identity link function and present the asymptotic

normality of β̂V in Proposition 1 under general error distributions as specified in
Assumption A6 given in Section 5. We allow some of the mi ’s to diverge in a way
like

∑n
i=1 m5

i = O(n) and max1≤i≤n mi = O(n1/8). See Assumptions A1 and A2
for the specific conditions on the mi ’s. We refer to the supplement [5] for the
results for general link functions when the mi ’s are uniformly bounded and the
εi ’s satisfy the sub-Gaussian property.



EFFICIENT ESTIMATION 1993

First, we introduce some function spaces, inner products and projections. Let
L2 denote the space of square integrable functions on [0,1] and recall B(t) is the
equispaced B-spline basis on [0,1]. We define two function spaces:

G = {
(g1, . . . , gq)

T |gj ∈ L2, j = 1, . . . , q
}

and

GB = {(
BT γ 1, . . . ,BT γ q

)T |γ = (
γ T

1 , . . . ,γ T
q

)T ∈ R
qKn

}
.

Note that GB ⊂ G. Next, let v1 and v2 be two stochastic processes each taking
scalar values at Tij , i = 1, . . . , n, j = 1, . . . ,mi . Then we define two inner prod-
ucts of v1 and v2 by 〈v1, v2〉Vn = 1

n

∑n
i=1 vT

1iV
−1
i v2i and 〈v1, v2〉V = E{〈v1, v2〉Vn },

where v1i and v2i are defined in the same way as T i , and we define the asso-
ciated norms by ‖v‖V

n = (〈v, v〉Vn )1/2 and ‖v‖V = (〈v, v〉V )1/2. The projections,
with respect to ‖ · ‖V , of the kth element of X onto ZT G and ZT GB are given by

�VXk = argmin
g∈G

∥∥Xk − ZT g
∥∥V and

(2.3)
�VnXk = argmin

g∈GB

∥∥Xk − ZT g
∥∥V

,

where ‖Xk − ZT g‖V = 1
n

E{∑n
i=1(Xik − (ZT g)

i
)T V−1

i (Xik − (ZT g)
i
)}, with

Xik = (Xi1k, . . . ,Ximik)
T and (ZT g)

i
= (ZT

i1g(Ti1), . . . ,ZT
imi

g(Timi
)). Hereafter,

we write ϕ∗
Vk = �VXk ∈ G and ϕVk = �VnXk ∈ GB .

ASSUMPTION S. (i) The projections ϕ∗
Vk(t), k = 1, . . . , p, and the varying

coefficient function g0 are twice continuously differentiable on [0,1], and they
and their second-order derivatives are uniformly bounded in n.

(ii) We take Kn = 
cKn1/5� for some positive constant cK , where 
x� is the
largest integer no greater than x.

Assumption S(i) is a mild and standard assumption for semiparametric models.
We consider the existence and smoothness properties of ϕ∗

Vk(t) in Section 5. Re-
call that all the covariates are assumed to be uniformly bounded. Since the relevant
functions are assumed to be at least twice continuously differentiable, we recom-
mend quadratic or cubic spline approximation. Then the order of Kn specified in
Assumption S(ii) is optimal. If the smoothness of different functions varies, we
refer to [1] for the convergence rate interfere phenomenon.

The following matrices are necessary in order to present asymptotic normality
of β̂V:

H =

⎛⎜⎜⎜⎜⎝
n∑

i=1

XT
i V−1

i Xi

n∑
i=1

XT
i V−1

i Wi

n∑
i=1

WT
i V−1

i Xi

n∑
i=1

WT
i V−1

i Wi

⎞⎟⎟⎟⎟⎠=
(H11 H12

H21 H22

)
,

(2.4)
H11·2 = H11 − H12H−1

22 H21 and H11 = (H11·2)−1.
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Let �Vn be a p × p matrix whose (k, l)th element is〈
Xk − ZT ϕ∗

Vk,Xl − ZT ϕ∗
Vl

〉V
= 1

n

n∑
i=1

E
{(

Xik − (
ZT ϕ∗

Vk

)
i

)T V−1
i

(
Xil − (

ZT ϕ∗
Vl

)
i

)}
.

Note that n−1H11·2 is an estimate of �Vn. We assume that there exists a p × p

positive definite matrix �V such that

lim
n→∞�Vn = �V.(2.5)

Now we are ready to state the asymptotic normality of β̂V under general error
distributions as specified in Assumption A6 given in Section 5. Its proof is given in
the supplement [5]. We denote the normal distribution with mean η and covariance

� by N(η,�), and by “
d→” we mean convergence in distribution. Let Il be the

l-dimensional identity matrix.

PROPOSITION 1 (Asymptotic normality of β̂V). Under Assumption S, (2.5),
and Assumptions A1–A6 given in Section 5, we have

β̂V = β0 + H11
n∑

i=1

(
Xi − WiH

−1
22 H21

)T V−1
i εi + op

(
1√
n

)
.

We also have

�
−1/2
V (β̂V − β0)

d→ N(0, Ip),

where �V is given by

H11
n∑

i=1

{(
Xi − WiH

−1
22 H21

)T V−1
i �iV

−1
i

(
Xi − WiH

−1
22 H21

)}
H11.(2.6)

Under (2.5), β̂V is
√

n-consistent for β0. We can estimate its asymptotic covari-
ance �V given in (2.6) by replacing the �i’s with some estimates based on β̂V and
γ̂ V. For example, we can replace �i with ε̃i ε̃

T
i where ε̃i = Y i − XT

i β̂V − WT
i γ̂ V.

However, this approach may be too crude and it does not make use of the com-
mon information on the covariance structure contained in different subjects. Al-
ternatively, we can estimate the �i ’s by applying smoothing techniques to some
residuals based on some assumption on the covariance structure. We investigate
this problem in Section 3.

Next, Proposition 2 gives the semiparametric efficiency bound for estimation
of β0. It can be proved in almost the same way as in Section 4.4 of [13] and
Lemma 1 of [3] and the proof is omitted. We denote the semiparametric efficient
score function of β by l∗β = (l∗β1, . . . , l

∗
βp)T . Its expression is given in Proposi-

tion 2. Then we denote ϕ∗
�k(t) by ϕ∗

eff,k(t) when Vi = �i in (2.1).
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PROPOSITION 2 (Semiparametric efficiency bound). Under the same assump-
tions as in Proposition 1, we have

l∗βk =
n∑

i=1

(
Xik − (

ZT ϕ∗
eff,k

)
i

)T
�−1

i

{
Y i − XT

i β0 − (
ZT g0

)
i

}
,

and the semiparametric efficient information matrix for β is given by

lim
n→∞

1

n
E
{
l∗β
(
l∗β
)T }= �� with Vi = �i in (2.5).

Proposition 3 gives the asymptotic normality of β̂� , the so called oracle esti-
mator, which uses the true covariance structure in the GEE spline regression. It
also asserts that β̂� achieves the semiparametric efficiency bound derived from
Proposition 2. The proof is given in the supplement [5].

PROPOSITION 3 (Oracle efficient estimator). If we take Vi = �i in (2.2) then,
under the same assumptions as in Proposition 1, we have

√
n�

1/2
� (β̂� − β0)

d→ N(0, Ip).

In practice, usually the �i ’s are unknown and we have no direct access to the
semiparametric efficient score function or the oracle estimator. In the next sec-
tion, we study nonparametric estimation of the covariances so as to improve the
efficiency.

3. Efficient estimation. The semiparametric efficiency bound of β given in
Proposition 2 indicates that knowledge, or at least estimation, of the �i’s is neces-
sary in order to construct a semiparametric efficient estimator. On the other hand,
as discussed in the Introduction, when the �i ’s are unknown it is almost impossi-
ble to estimate them in a fully nonparametric way. Fortunately, for longitudinal or
clustered data sets, it is reasonable to make some assumptions such as

�i = �(T i), i = 1, . . . , n,(3.1)

where the (j, j)th element of �i is given by σ 2(Tij ) and the (j, j ′)th element is
given by σ(Tij , Tij ′) when j �= j ′, for some smooth functions σ 2(t) and σ(s, t).
Based on (3.1), in Section 3.1 we construct nonparametric estimates of the covari-
ances and then use them to derive an FGLS procedure to improve the efficiency,
and we show in Section 3.2 its asymptotic equivalence to the oracle estimator β̂� .
We also discuss estimation of the nonparametric component.
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3.1. Methodology. A preliminary estimation of β0 and g0 is necessary before
we can estimate the covariances. For simplicity and robustness, we utilize working
independence in the GEE spline estimation. As noted following Proposition 1, we
could then use the resultant residuals to estimate the covariance matrices directly.
However, it is intuitively better to further make use of the covariance structure
(3.1) by applying some nonparametric smoothing techniques to the residuals. In
addition, alternative to the spline estimator, we could apply smoothing techniques
to the pseudo responses Y i −XT

i β̂V to obtain another estimator of g0. We take this
latter approach for technical and numerical reasons given in Remark 1. After the
preliminary estimation, for each i = 1, . . . , n, we estimate �i by applying local
linear regression and denote the resultant estimate by �̂i . Our final estimator of
β0 is then obtained by taking Vi = �̂i , i = 1, . . . , n, in the GEE spline estimation.
Note that in the trivial case where mi is fixed for all i and the Tij ’s are equi-spaced,
we can estimate �i without using any smoothing techniques.

Let K be a given kernel function. Our estimation procedure is formally specified
as follows:

Step 1. Estimate β0 by the GEE spline method given in Section 2 with Vi =
Imi

, i = 1, . . . , n, and denote the resultant working independence estimate by β̂I .
Step 2. Estimate g0(t) by applying local linear regression to {Yij − XT

ij β̂I , i =
1, . . . , n, j = 1, . . . ,mi}, using bandwidth h1. We denote the resultant estimate by
ĝ(t), which is written as

ĝ(t) = Dq

(
A1n(t)

)−1

(3.2)

× 1

N1h1

n∑
i=1

mi∑
j=1

Zij ⊗
⎛⎝ 1

Tij − t

h1

⎞⎠K

(
Tij − t

h1

)(
Yij − XT

ij β̂I

)
,

where N1 =∑n
i=1 mi , Dq = Iq ⊗ (1 0), and

A1n(t) = 1

N1h1

n∑
i=1

mi∑
j=1

(
Zij ZT

ij

)⊗

⎛⎜⎜⎝
1

Tij − t

h1

Tij − t

h1

(
Tij − t

h1

)2

⎞⎟⎟⎠K

(
Tij − t

h1

)
.

Step 3. Calculate the residuals, denoted as ε̂ij , given by

ε̂ij = Yij − XT
ij β̂I − ZT

ij ĝ(Tij ), i = 1, . . . , n, j = 1, . . . ,mi.

Step 4. Estimate the variance function σ 2(t) by applying to the squared resid-
uals local linear regression with bandwidth h2. Denote the resultant estimate by
σ̂ 2(t); it can be expressed as

σ̂ 2(t) = (1 0)
(
A2n(t)

)−1 1

N1h2

n∑
i=1

mi∑
j=1

⎛⎝ 1
Tij − t

h2

⎞⎠K

(
Tij − t

h2

)
(̂εij )

2,(3.3)
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where

A2n(t) = 1

N1h2

n∑
i=1

mi∑
j=1

⎛⎜⎜⎝
1

Tij − t

h2

Tij − t

h2

(
Tij − t

h2

)2

⎞⎟⎟⎠K

(
Tij − t

h2

)
.

Step 5. Estimate the covariance function σ(s, t) by applying to {̂εij ε̂ij ′, j �=
j ′, i = 1, . . . , n} local linear regression with bandwidth h3. We denote the resultant
estimate by σ̂ (s, t); it has the following expression:

σ̂ (s, t) = (1 0 0 )
(
A3n(s, t)

)−1

(3.4)

× 1

N2h
2
3

n∑
i=1

∑
j �=j ′

⎛⎜⎜⎜⎜⎝
1

Tij − s

h3
Tij ′ − t

h3

⎞⎟⎟⎟⎟⎠K

(
Tij − s

h3

)
K

(
Tij ′ − t

h3

)̂
εij ε̂ij ′,

where N2 =∑n
i=1 mi(mi − 1) and

A3n(s, t) = 1

N2h
2
3

n∑
i

∑
j �=j ′

⎛⎜⎜⎜⎜⎝
1

Tij − s

h3
Tij ′ − t

h3

⎞⎟⎟⎟⎟⎠
(

1
Tij − s

h3

Tij ′ − t

h3

)

× K

(
Tij − s

h3

)
K

(
Tij ′ − t

h3

)
.

Step 6. Calculate �̂i by combining the results from steps 4 and 5 by letting

�̂i

(
j, j ′)= σ̂ (Tij , Tij ′)I

(
j �= j ′)+ σ̂ 2(Tij )I

(
j = j ′),

and then estimate β0 with Vi = �̂i in the GEE (2.2). Denote the resultant estimate
of β0 by β̂�̂ .

Step 7. Update the nonparametric estimator of g0(t) given in step 2 by replacing
Yij − XT

ij β̂I with Yij − XT
ij β̂�̂ , i = 1, . . . , n, j = 1, . . . ,mi . Denote the resultant

estimator by ĝU(t). Alternatively, we can estimate g0(t) with splines, by replacing
β with β̂�̂ and taking Vi = �̂i in the GEE (2.2). Denote the resultant estimator
by ĝS(t).

In general, the covariance function estimate σ̂ (s, t) given by step 5 may not
be positive semidefinite. We can modify it by truncating the eigenfunctions in
its spectral decomposition that have eigenvalues not exceeding some nonnegative
constant λL. Then we have positive definite covariance estimates if we replace
σ̂ (s, t) with this modified version in step 6.
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REMARK 1. When we calculate β̂I in step 1, we also have γ̂ I and get the set
of residuals {̃εij = Yij − XT

ij β̂I − WT
ij γ̂ I }. Then we could omit steps 2 and 3 of

our procedure by exploiting this set of residuals when we estimate �i in steps 4–6.
However, our simulation results summarized in Section 4 indicate that this sim-
plified approach is inferior to the proposed one. Intuitively speaking, to achieve
the semiparametric efficiency in the GEE spline estimation of β0, to some extent
the accompanying estimation of g0(t) requires undersmoothing, and thus it often
exhibits spurious wiggling patterns. Besides, it is difficult to justify theoretically
this simplified approach as the local property of spline estimators seems to be in-
tractable.

3.2. Asymptotic results. First, we establish the asymptotic equivalence be-
tween the data-driven estimator β̂�̂ and the oracle estimator β̂� by exploiting
some desirable properties of �̂i . First, we specify our assumptions on the smooth-
ness of g0(t), σ 2(t) and σ(s, t). We need Assumption B given below, which
is more restrictive than usual, in order to evaluate the difference between �̂

−1
i

and �−1
i .

ASSUMPTION B. (i) Assumption (3.1) holds.
(ii) The true varying coefficient function g0(t) is three times continuously dif-

ferentiable on [0,1].
(iii) The variance function σ 2(t) is three times continuously differentiable on

[0,1].
(iv) The covariance function σ(s, t) is three times continuously differentiable

on [0,1]2.

In the following, we collect our assumptions on the kernel function K and the
three bandwidths used in the construction of the proposed estimator. Assump-
tion H(i) on K is a standard one. When Assumption B holds, our assumptions
on the bandwidths h1, h2 and h3 are not restrictive. For example, the optimal order
of h1 and h2 is n−1/5 which falls into the specified range. A larger order is rec-
ommended only for h3 due to the two-dimensional smoothing in step 5. However,
since the effective number of observations used in step 5 of the procedure is N2 we
anticipate that bandwidth choice will not seriously affect the performance of our
final estimator.

ASSUMPTION H. (i) The kernel function K is some continuously differen-
tiable symmetric density function with a compact support.

(ii) The bandwidths h1, h2 and h3 satisfy h1 = c1n
−ah for some 1/6 < ah ≤ 1/4,

h2 = c2n
−bh for some 1/6 < bh ≤ 1/4 and h3 = c3n

−ch for some 1/6 < ch < 1/4,
where c1, c2 and c3 are some positive constants.
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The asymptotic expression of �̂i is given in Proposition 4, which is verified
in the supplementary material [5]. Note that we need more elaborate representa-
tions than those used by [14] since we deal with a (p + qKn)-dimensional linear
regression model. Note also that the functions Bj , j = 1, . . . ,4, that appear in
Proposition 4 are implicitly defined in the proof of the proposition and only their
boundedness property is needed in the proof of Theorem 1.

PROPOSITION 4 (Representations of the covariance estimators). Under the
assumptions in Proposition 1 with Vi = Imi

, and Assumptions B and H, we have
the following representations of σ̂ 2(t) and σ̂ (s, t). Uniformly in t ,

σ̂ 2(t) − σ 2(t) = B1(t)h
2
2 + B2(t)E1(t) + Op

(
h3

1 + h3
2
)+ Op

(
logn

nh1
+ logn

nh2

)
,

where uniformly in t

E1(t) = 1

N1h2

n∑
i=1

mi∑
j=1

⎛⎝ 1
Tij − t

h2

⎞⎠K

(
Tij − t

h2

)(
ε2
ij − σ 2(Tij )

)= Op

(√
logn

nh2

)
,

and B1(t) and B2(t) are bounded functions. Uniformly in s and t (s �= t),

σ̂ (s, t) − σ(s, t)

= B3(s, t)h
2
2 + B4(s, t)E2(s, t) + Op

(
h3

1 + h3
3
)+ Op

(
logn

nh1
+ logn

nh2
3

)
,

where

E2(s, t) = 1

N2h
2
3

n∑
i=1

∑
j �=j ′

⎛⎜⎜⎜⎜⎝
1

Tij − s

h3
Tij ′ − t

h3

⎞⎟⎟⎟⎟⎠K

(
Tij − s

h3

)

× K

(
Tij ′ − t

h3

)(
εij εij ′ − σ(Tij , Tij ′)

)
= Op

(√
logn

nh2
3

)
uniformly in s and t,

and B3(s, t) and B4(s, t) are bounded functions.

We state in Theorem 1 the desirable equivalence property of β̂�̂ to the oracle
estimator. The proof uses Proposition 4; it is tedious and technical and thus is
postponed to Section 5.4. We have not yet obtained a similar result for general link
functions even when the mi ’s are uniformly bounded, and that is a future research
topic.
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THEOREM 1. Under the assumptions in Proposition 4, we have

β̂�̂ = β̂� + op

(
n−1/2).

Suppose (3.1) fails to hold, but Var(εi |T i) is still represented by σ 2(t)

and σ(s, t). Then Proposition 1 and Theorem 1 continue to hold if �i =
Var(εi |Xi ,Zi , T i) is replaced by Var(εi |T i). We are still exploiting the informa-
tion on Var(εi |T i).

Besides, we can replace the three times continuously differentiability with the
twice continuously differentiability and the Hölder continuity of the second deriva-
tives of order α1, α2 and α3 in Assumption B(ii), B(iii) and B(iv), respectively. In
this case, the bandwidths in steps 2, 4 and 5 of our method have to satisfy the con-

dition
√

n(h
2+α1
1 + h

2+α2
2 + h

2+α3
3 ) → 0. Note that α3 must be positive because

step 5 of our procedure requires two-dimensional smoothing. Then we can prove
similar results when 0 ≤ α1 < 1, 0 ≤ α2 < 1, and 0 < α3 < 1. Specifically, the

Op(h3
j ) terms in Proposition 4 will be replaced by Op(h

2+αj

j ), j = 1,2,3.

REMARK 2. In Proposition 2, no assumptions on the structure of the �i’s or
the conditional normality of the εi ’s is imposed. However, as mentioned before it
is difficult to estimate the �i’s in a fully nonparametric way, and thus we impose
assumption (3.1). On the other hand, when (3.1) holds, we should use this infor-
mation in calculating the semiparametric efficient score function. Unfortunately,
under general errors this task seems intractable and we have no results in this re-
gard. Nevertheless, when (3.1) and some regularity conditions hold, we come up
with some remedies to improve the efficiency, as compared to using some working
covariance structure. Indeed, β̂�̂ has the smallest asymptotic variance among all
β̂V in this case, based on Propositions 1–3, Theorem 1 and the fact that it is an
FGLS estimator. Furthermore, it is semiparametric efficient when εi is normally
distributed conditionally on Xi , Zi and T i , as discussed in A.1 of [23].

Suppose we use cubic splines in the final spline estimator given in step 7.
Then, under the assumptions in Proposition 4 and assume the minimum eigen-
value of H22.1 = H22 − H21H−1

11 H21 is bounded below by Cn/Kn for some posi-
tive constant C, we can show the following asymptotic normality, conditionally on
{{Xij }, {Zij }, {Tij }}:√

n/Kn�(t)−1/2(̂gS(t) − g0(t)
) d→ N(0, Iq),

where �(t) = nK−1
n (Iq ⊗ B(t)T )H−1

22.1(Iq ⊗ B(t)). As for the updated local linear
estimator given in step 7, let μ2 = ∫

u2K(u)du and ν0 = ∫
K(u)2 du, and sup-

pose the assumptions in Proposition 4 hold and h1 = Cn−1/5, then we have the
following asymptotic normality:√

N1h1

(
ĝU(t) − g0(t) − h2

1

2
μ2g′′

0(t)

)
d→ N

(
0, ν0�U(t)

)
,
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where �U(t) = �−1
1 �2�

−1
1 , �1 = limn→∞ 1

N1

∑n
i=1

∑mi

j=1 E(Zij ZT
ij |

Tij = t)fij (t), �2 = limn→∞ 1
N1

∑n
i=1

∑mi

j=1 E(Zij ZT
ij |Tij = t)fij (t)E(ε2

ij |Tij =
t), and fij (t) denotes the density of Tij .

4. Numerical studies.

4.1. Simulation study. In our simulation study summarized in this section, the
data were generated from the following model:

Yij = XT
ijβ0 + ZT

ij g0(Tij ) + εi(Tij ), j = 1, . . . ,mi, i = 1, . . . , n,

with the first component of Zij being taken as 1. The number of observation time
points in the ith subject was set as mi = m0 + binomial(mr,0.65). Then the obser-
vation time points Tij were uniformly distributed over the interval [(j − 1)/(m0 +
mr), j/(m0 +mr)], j = 1, . . . ,mi . We note that when mi = m0 +mr , the subject is
observed at all follow-up time points; when mi < m0 +mr , the subject may be lost
to follow up. This setup is intended to model real and more complicated scenarios
that often happen in practice. We set m0 = 6 and mr = 6. We generated the other
(p + q − 1)-dimensional covariates from a multivariate Gaussian distribution, and
we considered the following coefficients settings:

p = 4, q = 4, β0 = (5,5,−5,−5)T and g0(t) = (3.5 sin(2πt),
5(1 − t)2, 3.5(exp(−(3t − 1)2) + exp(−(4t − 3)2)) −
1.5,3.5t1/2)T .

The random error process εi(t) was simulated from an ARMA(1,1) Gaussian pro-
cess with mean zero and covariance function cov(εi(s), εi(t)) = ωρ|s−t |. We set
ω = 4.95 and considered ρ = 0.4 or 0.8.

We considered two types of working covariance structure: working indepen-
dence covariances and the proposed covariance estimates. For the sake of com-
parison, we also considered using the true covariances and using the covariance
estimator with the crude raw residuals obtained from step 1.

Throughout the numerical studies, following [9], we used cubic splines and
took the spline dimension Kn as Kn = 
2n1/5�. For the efficient estimator, h1 and
h2 were selected via the commonly used leave-one-subject-out cross-validation,
and the bandwidth h3 was set as h3 = 2h1. We report in Table 1 the average esti-
mation bias and estimated standard error (SE) obtained from 200 repetitions. The
empirical standard errors are very close to the estimated standard errors, and thus
are omitted. In general, the efficient estimator could yield smaller estimation bias
and variance, compared to the naive estimator assuming working independence.
In particular, the standard error for the efficient estimator is only 20–50% of that
of the working independence estimator, indicating a remarkable reduction. In ad-
dition, we note that the efficient estimator has very similar performance to that of
the oracle estimator. Regarding the crude estimator, as it is based on a simplified
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TABLE 1
Estimation results of 200 simulations. “Independent” corresponds to Vi = Imi ; “Efficient” refers to using Vi = �̂i ; “Oracle” refers to using the true �i

as Vi ; “Crude” refers to using residuals directly from step 1 to estimate the covariances

Independent Efficient Oracle Crude Quadratic

n ρ Bias SE Bias SE Bias SE Bias SE Bias SE

100 0.4 β1 0.0214 0.0726 0.0128 0.0366 0.0133 0.0245 0.0165 0.0425 0.0154 0.0421
β2 −0.0218 0.0727 −0.0186 0.0362 −0.0146 0.0251 −0.0165 0.0442 0.0102 0.0425
β3 −0.0309 0.0718 −0.0126 0.0364 −0.0147 0.0245 −0.0127 0.0435 0.0095 0.0455
β4 0.0199 0.0736 0.0145 0.0369 0.0132 0.0246 0.0210 0.0438 −0.0113 0.0398

200 0.4 β1 −0.0072 0.0525 −0.0082 0.0247 −0.0028 0.0176 −0.0122 0.0337 0.0049 0.0302
β2 0.0088 0.0528 0.0136 0.0226 0.0034 0.0174 0.0115 0.0356 0.0089 0.0345
β3 −0.0071 0.0526 0.0075 0.0256 0.0112 0.0174 −0.0146 0.0354 −0.0076 0.0312
β4 0.0094 0.0525 0.0124 0.0272 0.0132 0.0178 −0.0204 0.0355 −0.0075 0.0305

100 0.8 β1 0.0257 0.0723 0.0245 0.0334 −0.0070 0.0109 0.0347 0.033 0.0112 0.0378
β2 −0.0179 0.0731 −0.0122 0.0328 −0.0112 0.0106 0.0436 0.0332 −0.0109 0.0344
β3 0.0388 0.0729 −0.0257 0.0335 0.0214 0.0107 0.0279 0.0332 −0.0179 0.0394
β4 −0.0193 0.0735 0.0447 0.0334 −0.0122 0.0108 −0.0345 0.0326 0.0184 0.0404

200 0.8 β1 0.0173 0.0497 0.0149 0.0194 0.0057 0.0089 0.0144 0.0248 0.0089 0.0250
β2 0.0169 0.0512 −0.0146 0.0196 −0.0010 0.0092 −0.0167 0.0242 −0.0064 0.0248
β3 −0.0364 0.0499 0.0145 0.0190 0.0058 0.0090 0.0135 0.0232 −0.0053 0.0212
β4 0.0289 0.0496 −0.0139 0.0182 −0.0035 0.0089 −0.0222 0.0238 0.0083 0.0196
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residual construction it produces relatively less accurate covariance estimation.
Thus, its estimation bias and standard error are, respectively, larger than that for
the efficient estimator.

There are also other existing methods based on estimating equations. We specifi-
cally considered the one based on quadratic inference function (QIF) [18] in which,
to incorporate the longitudinal dependence, the correlation matrix is approximated
using a matrix expansion. We used the same basis matrices as recommended by
[18], that is, the first-order basis matrix with 0 on the diagonal and 1 off-diagonal,
which is suitable for unequal cluster sizes and irregular time points. Any negative
eigenvalue was set to zero whenever it occurred. From Table 1, we notice that this
approach is more efficient than the estimator assuming working independence but
is less efficient than our proposed method. The QIF approach indirectly models
the correlations using some matrix approximation while our method directly mod-
els the covariances. The actual covariance dependence may differ from the pat-
tern suggested by the basis matrices in the quadratic inference function. When that
happens, the estimation results using QIF method may be less satisfactory than our
nonparametric approach. Therefore, our method may incorporate a more accurate
covariance structure in the estimation, and thus achieve better efficiency. Besides,
the covariance of the estimating function depends on the unknown parameters, and
is estimated and integrated in the QIF. This may decrease the stability in solving
the optimization problem.

We next considered the situation where mi might diverge for some subjects i.
We randomly selected n0 = Cn3/8 subjects such that their observation points are
Bn1/8mi equally spaced on [0,1] and we let the remaining n − n0 subjects to have
mi observations, where mi was generated in the same way as described above. All
the other model settings are identical to that in the previous simulation studies. For
different values of B and C, we obtained the results given in Table 2. We notice that
all the considered estimators improve with relatively smaller biases and smaller
standard errors as compared with the respective bounded mi case. The efficient
estimator still performs much better than the independent estimator in all cases.
We do not report results for the QIF method by [18] here, as it is not tailored for
the case of diverging mi and becomes relatively unstable in this case.

We also conducted additional simulations to examine performance of estima-
tion of the nonparametric coefficients and estimation accuracy of parametric coef-
ficients using modified approaches. For space consideration, we report the results
in the supplement [5].

4.2. Real data example. We now present an application of our method to the
CD4 count data from the AIDS Clinical Trial Group 193A Study [11]. The data
came from a randomized, double-blind study of AIDS patients with CD4 counts
of ≤50 cells/mm3. The patients were randomized to one of four treatments with
roughly equal group sizes; each consisted of a daily regimen of 600 mg of zi-
dovudine. Treatment 1 is zidovudine alternating monthly with 400 mg didanosine;
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TABLE 2
Estimation results of 200 simulations. “Independent” corresponds to Vi = Imi ; “Efficient” refers to

using Vi = �̂i ; “Oracle” refers to using the true �i as Vi . B adjusts the diverging mi and C
controls the proportion of cases with diverging mi

B = 1.5, C = 4 Independent Efficient Oracle

n ρ Bias SE Bias SE bias SE

100 0.4 β1 0.0182 0.0707 0.0087 0.0361 −0.0017 0.0204
β2 −0.0186 0.0717 −0.0172 0.0329 −0.0055 0.0205
β3 −0.0236 0.0702 0.0041 0.0336 −0.0056 0.0205
β4 0.0100 0.0702 −0.0034 0.0346 0.0008 0.0205

200 0.4 β1 −0.0130 0.0517 −0.0157 0.0228 −0.0037 0.0153
β2 0.0146 0.0516 0.0177 0.0227 0.0028 0.0151
β3 −0.0151 0.0512 0.0041 0.0224 0.0011 0.0152
β4 −0.0076 0.0517 0.0065 0.0229 0.0038 0.0153

100 0.8 β1 0.0181 0.0683 −0.0175 0.0213 0.0028 0.0102
β2 −0.0111 0.0682 −0.0147 0.0203 0.0028 0.0102
β3 −0.0030 0.0674 −0.0105 0.0199 −0.0015 0.0100
β4 0.0260 0.0675 0.0125 0.0208 0.0028 0.0101

200 0.8 β1 −0.0017 0.0499 −0.0024 0.0132 0.0014 0.0076
β2 −0.0005 0.0496 0.0006 0.0129 −0.0001 0.0076
β3 0.0045 0.0499 0.0041 0.0133 0.0004 0.0076
β4 −0.0052 0.0496 −0.0059 0.0130 −0.0009 0.0075

100 0.4 β1 0.0105 0.0710 0.0039 0.0315 −0.0026 0.0174
β2 −0.0180 0.0715 −0.0095 0.0313 −0.0046 0.0174
β3 −0.0122 0.0730 −0.0104 0.0323 0.0010 0.0176
β4 0.0141 0.0707 0.0105 0.0317 0.0034 0.0174

200 0.4 β1 −0.0085 0.0510 −0.0060 0.0223 −0.0036 0.0134
β2 −0.0066 0.0513 −0.0062 0.0225 −0.0018 0.0135
β3 0.0094 0.0510 −0.0015 0.0225 −0.0016 0.0136
β4 0.0062 0.0514 0.0001 0.0224 0.0006 0.0137

100 0.8 β1 −0.0154 0.0703 0.0042 0.0212 −0.0040 0.0087
β2 −0.0152 0.0690 0.0028 0.0215 0.0001 0.0087
β3 0.0129 0.0677 0.0044 0.0208 −0.0002 0.0092
β4 −0.0076 0.0699 −0.0032 0.0215 0.0008 0.0088

200 0.8 β1 −0.0141 0.0489 0.0111 0.0157 −0.0001 0.0067
β2 −0.0136 0.0490 −0.0145 0.0147 −0.0003 0.0069
β3 0.0058 0.0491 0.0016 0.0142 −0.0001 0.0069
β4 0.0071 0.0483 0.0041 0.0150 −0.0001 0.0072

Treatment 2 is zidovudine plus 225 mg of zalcitabine; Treatment 3 is zidovudine
plus 400 mg of didanosine; Treatment 4 is a triple therapy consisting of zidovu-
dine plus 400 mg of didanosine plus 400 mg of nevirapine. Measurements of CD4
counts were scheduled to be collected at baseline and at eight-week intervals dur-
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ing the 40 weeks of follow-up. However, the real observation times were unbal-
anced due to mistimed measurements, skipped visits and dropouts. The number
of measurements of CD4 counts during the 40 weeks of follow-up varied from 1
to 9, with a median of 4. The response variable was taken as the log-transformed
CD4 counts, Y = log(CD4 counts + 1). There was also gender and baseline age
information about each patient. A total of 1309 patients were enrolled in the study.
We eliminated the 122 patients who dropped out immediately after the baseline
measurement.

We considered the following available covariates: treatments 2, 3 and 4 (coded
by three indicator variables for treatment groups 2, 3 and 4, resp.), age (years), sex
(coded as 1 for male and 0 for female) and interaction effects between these co-
variates. Using the group SCAD structure identification procedure of Cheng et al.
[6], we found that the coefficients for treatment 3, treatment 4 and the interaction
between treatment 2 and sex are varying, and the coefficients given in Table 3 are
constants. The group SCAD procedure also suggested that we remove all the other
interaction effects. The estimated varying intercept (i.e., effect of treatment 1) and
the varying coefficients are displayed in Figure 1 along with 95% confidence inter-
vals. The curves in the figures are updated local linear estimates without using the
covariance function estimates. We used cross-validation to select the bandwidth.
The constant coefficient estimates and their estimated standard errors are provided
in Table 3. To facilitate a comparison, we reported the results using the estimators
assuming working independence and the efficient estimator proposed in this paper.
Let θ = (βT ,γ T )T and Ui = (Xi ,Wi ). In practice, the variances for the efficient
parameter estimates were obtained from the first p diagonal elements of the fol-
lowing matrix: (

∑n
i=1 UT

i �̂
−1
i Ui )

−1, and for the working independence parameter
estimates the variances were obtained from the first p diagonal elements of the
following matrix: (

∑n
i=1 UT

i Ui )
−1∑n

i=1 UT
i �̂iUi (

∑n
i=1 UT

i Ui )
−1.

From Table 3, we note that the estimated constant coefficients for treatment 2,
age and the interaction between treatment 4 and sex are all quite significant. The
constant coefficient estimates for sex are not significant but are still kept in the

TABLE 3
Estimation results for CD4 count data. “Independent” corresponds to using Vi = Imi ; “Efficient”

refers to using Vi = �̂i ; “Quadratic” refers to the QIF based method

Independent Efficient Quadratic

Covariates Coefficients SE Coefficients SE Coefficients SE

Treatment 2 0.3614 0.2257 0.4038 0.2027 0.3532 0.1318
Age 0.0946 0.0274 0.0818 0.0245 0.0882 0.0171
Sex 0.1704 0.1768 0.2246 0.1587 0.1187 0.1034
Treatment 3: sex −0.2922 0.2472 −0.2908 0.2209 −0.2625 0.2485
Treatment 4: sex −0.5321 0.2416 −0.5653 0.2146 −0.5580 0.1574
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FIG. 1. Estimated varying-coefficients along with 95% confidence intervals for the intercept (upper
left), treatment 3 (upper right), treatment 4 (lower left), and interaction between treatment 2 and sex
(lower right). The red curves are efficient estimators while the green curves are estimators obtained
under working independence.

model since we include the interactions between treatments and sex. The efficient
estimates for all the constant and varying coefficients have smaller standard errors
than the respective estimates assuming working independence. In fact, the Wald
test statistic for the coefficient of treatment 2 is 0.3614/0.2257 = 1.60 < 1.96 un-
der the working independence, failing to declare a significant difference. On the
other hand, the Wald test statistic for the same coefficient is 0.4038/0.2027 =
1.99 > 1.96 from the efficient estimation, leading to a significant treatment dif-
ference. Other than these, because the sample size in this study was rather large,
the two types of estimates for all the constant and varying coefficients appear to
be very similar. For the sake of comparison, we also present the estimation results
for these regression coefficients from the estimating equation methods based on
the QIF method [18]. The conclusions on the estimation significance and effect di-
rection remain the same as for the efficient estimation while the magnitude of the
estimated coefficients slightly differs. For this particular dataset, sometimes the
QIF estimator seems to have smaller standard error than the efficient estimator. An
explanation is that it chooses a covariance structure like compound symmetry in
the matrix basis; thus, it will be more efficient than our estimator when this struc-
ture is plausible (which is possibly the case here). Otherwise, it is generally not as
good when the covariance structure is misspecified.

In general, the CD4 count tends to increase with age in the fitted model. Our
estimation results suggest that there exist interaction effects between treatment and
sex. Specifically, for the females (sex = 0), subjects receiving treatments 2, 3 and
4 tend to have increasingly higher CD4 counts than those under treatment 1. The
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effect for treatment 2 (as compared with treatment 1) is estimated as a constant and
is significant, while those for the other two treatment groups are varying (the upper
right and the lower left panels in Figure 1) with even greater positive differences
from treatment 1. For the males (sex = 1), subjects receiving treatments 2, 3 and
4 also tend to have higher mean CD4 counts than those receiving treatment 1.
The interaction between treatment 2 and sex is varying over time (the lower right
panel in Figure 1) while those for treatments 3 and 4 are constant. The effects of
treatments 3 and 4 are significantly different from that of treatment 1, judging from
Table 3. Also, we notice that the differences between treatments seem to be greater
between the females than between the males.

The estimated effects of the four treatment groups are plotted in Figure 2 for
the efficient estimator, the working independence estimator and the QIF estimator.
Note that treatment effects given by the efficient estimator rarely cross each other,
giving nice interpretation and ordering of the different treatments, whereas this is

FIG. 2. Estimated treatment effects for the four treatment groups. The panels in the top, middle and
bottom rows are, respectively, the proposed efficient estimates, the estimates assuming independence
and the estimates based on the QIF method. The panels in the left and right columns are, respectively,
for the females and the males. Red, green, blue and yellow curves are for treatment groups 1, 2, 3
and 4, respectively.
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not the case for those given by the QIF or the working independence estimator.
Previous authors identified a similar pattern on the order of magnitude of the time-
varying treatment effects [14]. However, they ignored the interactions between the
treatments and sex. Our findings suggest the treatment effect curves might be rather
different between the males and the females.

5. Proofs of the main results.

5.1. Additional assumptions and definitions. We denote the Euclidean norm
of a vector a by |a|. Let λmin(A) and λmax(A) stand for the minimum and max-
imum eigenvalues of a symmetric matrix A, respectively. Besides, C, C1, C2, . . .

are generic positive constants whose values may vary from line to line. Recall that
the density function of Tij is denoted by fij (t), i = 1, . . . , n and j = 1, . . . ,mi .
Also, we denote the joint density function of Tij and Tij ′ (j �= j ′) by fijj ′(s, t).
In Assumptions A1 and A2, we consider sparse and irregular observation times.
Note that we carry out two-dimensional smoothing in step 5 and there are three
bandwidths involved in our method. Therefore, we impose these restrictive as-
sumptions to avoid complicated assumptions involving mi , mmax, and the band-
widths simultaneously. Roughly speaking, these assumptions imply we should
have

∑n
i=1 m5

i = O(n).

ASSUMPTION A1. For some positive constant CA1, we have mmax ≡
max1≤i≤n mi = O(n1/8) and

∑n
i=1 mi < CA1n.

ASSUMPTION A2. The joint density functions fij (t) and fijj ′(s, t) are uni-
formly bounded and we have for some positive constant CA2,

1

CA2
<

1

n

n∑
i=1

1

mi

mi∑
j=1

fij (t) ≤ 1

n

n∑
i=1

m4
i

mi∑
j=1

fij (t) < CA2 on [0,1] and

1

CA2
<

1

n

n∑
i=1

∑
j �=j ′

fijj ′(s, t) ≤ 1

n

n∑
i=1

m3
i

∑
j �=j ′

fijj ′(s, t) < CA2 on [0,1]2.

ASSUMPTION A3. For some positive constants CA3 and CA4, we have

CA3Ip+q ≤ E

{(
Xij XT

ij Xij ZT
ij

Zij XT
ij Zij ZT

ij

) ∣∣∣∣Tij

}
≤ CA4Ip+q uniformly in i and j.

ASSUMPTION A4. For some positive constants CA5 and CA6, we have CA5 ≤
λmin(�i ) ≤ λmax(�i ) ≤ CA6mi, uniformly in i.

ASSUMPTION A5. For some positive constants CA7 and CA8, we have CA7 ≤
λmin(Vi ) ≤ λmax(Vi ) ≤ CA8mi, uniformly in i.



EFFICIENT ESTIMATION 2009

ASSUMPTION A6. For some positive constants CA9 and CA10, we have
E{exp(CA9|εij |)|Xi ,Zi , T i} < CA10, uniformly in i and j .

Assumption A3 is a standard one and is necessary for identification of the con-
stant coefficients and the varying coefficient functions. When εi consists of some
stochastic process and i.i.d. errors, we have �i = �(T i) + η2Imi

, where �(T i) is
positive definite. Hence, we impose Assumptions A4 and A5 on Vi and �i , re-
spectively. In [3], it is assumed that εi has the sub-Gaussian property in order to
deal with general link functions. The sub-Gaussian assumption prevents mi from
tending to infinity. Assumption A6, which is less restrictive, is enough for the iden-
tity link function since we do not need to employ any results from the empirical
process theory in this case.

For g = (g1, . . . , gq)
T ∈ G, we define the sup and L2 norms by ‖g‖G,∞ =∑q

j=1 supt∈[0,1] |gj (t)| and ‖g‖2
G,2 = ∑q

j=1

∫ 1
0 g2

j (t) dt. Assumptions A2 and A3
imply there are positive constants C1 and C2 such that

C1‖g‖G,2 ≤ ∥∥ZT g
∥∥V ≤ C2‖g‖G,2(5.1)

for any g ∈ G. The details are given in Lemma 1. In (2.3), we define two kinds of
projections of Xk . We define another one here:

ϕ̂Vk = �̂VnXk = argmin
g∈GB

∥∥Xk − ZT g
∥∥V
n .(5.2)

5.2. Spline approximation and projections. Recall we assume all the relevant
functions are at least twice continuously differentiable and they and their second
order derivatives are uniformly bounded. Hence, the sup norm of approximation
errors by spline functions is bounded from above by CapproxK

−2
n , where Capprox

depends on the relevant functions. See Corollary 6.26 of [19].
Note that 〈·, ·〉V and ‖ · ‖V are defined on {v|∑i,j E(v2

ij ) < ∞} and that

{ZT g} is a closed linear subspace due to (5.1). Therefore, the projections ϕ∗
Vk =

(ϕ∗
Vk1, . . . , ϕ

∗
Vkq)

T , k = 1, . . . , p, exist uniquely. Next, we set V−1
i = (v

j1j2
i ). Note

that ϕ∗
Vk = �VXk defined in (2.3) satisfies that 〈Xk − ZT �VXk,ZT g〉V = 0

∀g ∈ G. By representing the above equality explicitly, we can derive the following
integral equations for ϕ∗

Vk(t). For d1 = 1, . . . , q ,

q∑
d2=1

a
(d1)
d2

(t)ϕ∗
Vkd2

(t) = b(d1)(t) +
∫ 1

0

q∑
d2=1

c
(d1)
d2

(s, t)ϕ∗
Vkd2

(s) ds,(5.3)

where

a
(d1)
d2

(t) = 1

n

n∑
i=1

mi∑
j=1

E
{
Zijd2v

jj
i Zijd1 |Tij = t

}
fij (t),
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b(d1)(t) = 1

n

n∑
i=1

∑
1≤j1,j2≤mi

E
{
Xij1kv

j1j2
i Zij2d1 |Tij2 = t

}
fij2(t),

c
(d1)
d2

(s, t) = −1

n

n∑
i=1

∑
j1 �=j2

E
{
Zij1d2v

j1j2
i Zij2d1 |Tij1 = s, Tij2 = t

}
fij1j2(s, t).

Let A(t) be the q × q matrix whose (d1, d2)th element is a
(d1)
d2

(t). Assump-
tions A2 and A3 imply that |A(t)| �= 0 on [0,1] and we set ψ∗

Vkd1
(t) =∑q

d2=1 a
(d1)
d2

(t)ϕ∗
Vkd2

(t). Then (5.3) reduces to (S.2) of [4] and the same argument
there applies. Therefore, ϕ∗

Vk(t) has the required smoothness properties under sim-
ilar regularity conditions.

5.3. Remarks on the proofs of Propositions 1–3. We can proceed as in [13]
(and [4]) by replacing Zij , Zi and ϕ∗

k (t) in [13] (and Zij , Zi and ϕ∗
k (t) in [4]) with

Wij , Wi and ZT ϕ∗
Vk(t), respectively. They used several lemmas in their proofs.

We reorganize the corresponding lemmas in our setup into Lemma 1 given in the
following. Its proof and outlines of the proofs of Propositions 1–3 are given in the
supplement [5].

LEMMA 1. Assume that Assumptions A1–A5 hold:

(i) There are positive constants C1 and C2 such that for any g ∈ G,
C1‖g‖G,2 ≤ ‖ZT g‖V ≤ C2‖g‖G,2.

(ii) There are positive constants C3 and C4 such that for any g ∈ GB ,
‖g‖2

G,∞ ≤ C3Kn‖g‖2
G,2 ≤ C4Kn(‖ZT g‖V )2.

(iii) There is a positive constant C5 such that for any β ∈ R
p and g ∈ GB ,

‖XT β + ZT g‖∞ ≤ C5K
1/2
n ‖XT β + ZT g‖V , where ‖v‖∞ = maxi,j |vij |. Besides,

for some positive constant C6, ‖v‖V ≤ C6‖v‖∞.
(iv)

sup
g1,g2∈GB

∣∣∣∣〈ZT g1,ZT g2〉Vn − 〈ZT g1,ZT g2〉V
‖ZT g1‖V ‖ZT g2‖V

∣∣∣∣
= Op(Kn

√
logn/n).

(v) For any positive constant M , we have 〈Xj − ZT gj ,Xk − ZT gk〉Vn −
〈Xj − ZT gj ,Xk − ZT gk〉V = op(1) uniformly in gj ∈ GB and gk ∈ GB satisfy-
ing ‖gj‖G,2 ≤ M and ‖gk‖G,2 ≤ M .

(vi) For any process δn taking scalar values at Tij such that ‖δn‖∞ is uniformly
bounded in n and {δn,ij }mi

j=1 are mutually independent in i,

sup
g∈GB

∣∣∣∣〈δn,ZT g〉Vn − 〈δn,ZT g〉V
‖ZT g‖V

∣∣∣∣= Op(
√

Kn/n)‖δn‖∞.
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(vii) We also suppose Assumption S holds. Then for k = 1, . . . , p, ‖ϕ̂Vk‖∞ =
Op(1), ‖ZT (ϕ∗

Vk − ϕ̂Vk)‖V
n = op(1), and ‖ZT (ϕ∗

Vk − ϕ̂Vk)‖V = op(1).

5.4. Proof of Theorem 1. Since we consider the identity link function, we have
explicit expressions of β̂� − β0 and β̂�̂ − β0:

β̂� − β0 = H11
n∑

i=1

(
Xi − WiH

−1
22 H21

)T
�−1

i εi

− H11
n∑

i=1

(
Xi − WiH

−1
22 H21

)T
�−1

i

(
Wiγ

∗ − (
ZT g0

)
i

)
(5.4)

= I1 − I2 (say),

β̂�̂ − β0 = Ĥ11
n∑

i=1

(
Xi − WiĤ

−1
22 Ĥ21

)T
�̂

−1
i εi

− Ĥ11
n∑

i=1

(
Xi − WiĤ

−1
22 Ĥ21

)T
�̂

−1
i

(
Wiγ

∗ − (
ZT g0

)
i

)
(5.5)

= Î1 − Î2 (say),

where Ĥ11, Ĥ22 and Ĥ21 are defined as in (2.4) with Vi = �̂i , i = 1, . . . , n, and
γ ∗ = (γ ∗T

1 , . . . ,γ ∗T
q )T satisfies |BT (t)γ ∗

j − g0j (t)| ≤ CgK
−2
n , j = 1, . . . , q , for

some positive constant Cg depending on g0(t). Proposition 4 and Assumption A4
imply that with probability tending to 1, C1Imi

≤ �̂i ≤ C2miImi
uniformly in i for

some positive constants C1 and C2. As for �̂
−1
i ,

�̂
−1
i − �−1

i = �̂
−1
i (�i − �̂i )�

−1
i

= �−1
i (�i − �̂i )�

−1
i + �̂

−1
i (�i − �̂i)�

−1
i (�i − �̂i )�

−1
i .

It follows from Proposition 4, Assumption A4, and the above identity that

�̂
−1
i − �−1

i = �−1
i (�i − �̂i )�

−1
i + m2

i Op

(
h4

2 + h4
3 + logn

nh2
+ logn

nh2
3

)
.(5.6)

The last term in the right-hand side of (5.6) is in the sense of eigenvalue evalu-
ation. By using Assumption A4 and Proposition 4, we get an expression of each
element of �−1

i (�i − �̂i )�
−1
i . This expression, along with the assumptions for

Theorem 1 and the local property of the B-spline basis, will be employed in the
proofs of the following lemmas. These lemmas, assuming the same assumptions
as in Theorem 1, are needed in order to evaluate Î1 − I1 and their proofs are given
in the supplement [5].
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LEMMA 2. Let h12,kl and ĥ12,kl be the (k, l) element of H12 and Ĥ12, respec-
tively. Then we have uniformly in k and l,

1

n
h12,kl = Op

(
K−1

n

)
,

1

n
(h12,kl − ĥ12,kl) = K−1

n Op

(
h2

2 + h2
3 +

√
logn

nh2
+
√

logn

nh2
3

)
,

{qKn∑
l=1

(
n−1h12,kl

)2}1/2

= Op

(
K−1/2

n

)
,

[qKn∑
l=1

{
n−1(h12,kl − ĥ12,kl)

}2
]1/2

= K−1/2
n Op

(
h2

2 + h2
3 +

√
logn

nh2
+
√

logn

nh2
3

)
.

LEMMA 3. With probability tending to 1, C1K
−1
n ≤ λmin(n

−1H22) ≤
λmax(n

−1H22) ≤ C2K
−1
n for some positive constants C1 and C2. We also have

max
{∣∣λmin

(
n−1(Ĥ22 − H22)

)∣∣, ∣∣λmax
(
n−1(Ĥ22 − H22)

)∣∣}
= K−1

n Op

(
h2

2 + h2
3 +

√
logn/(nh2) +

√
logn/

(
nh2

3

))
.

Hence, we have max{|λmin(n
−1Ĥ22)|, |λmax(n

−1Ĥ22)|} = Op(K−1
n ) and

max{|λmin((n
−1Ĥ22)

−1 − (n−1H22)
−1)|, |λmax((n

−1Ĥ22)
−1 − (n−1H22)

−1)|} is

also bounded from above by KnOp(h2
2 + h2

3 + √
logn/(nh2) +

√
logn/(nh2

3)).

LEMMA 4. We have 1
n

Ĥ11 = 1
n

H11 + op(1) and 1
n

Ĥ12(
1
n

Ĥ22)
−1 1

n
Ĥ21 =

1
n

H12(
1
n

H22)
−1 1

n
H21 + op(1), where op(1) means both componentwise and in the

meaning of eigenvalue evaluation. Hence, we have nĤ11 = nH11 + op(1).

LEMMA 5. We have, for some positive constants C1 and C2, C1
Kn

IqKn ≤
cov( 1√

n

∑n
i=1 WT

i �−1
i εi) ≤ C2

Kn
IqKn . In addition, we have∣∣∣∣∣ 1√

n

n∑
i=1

WT
i

(
�̂

−1
i − �−1

i

)
εi

∣∣∣∣∣
=
√

n

Kn

Op

(
logn

nh1
+ logn

nh2
+ logn

nh2
3

)
+
√

n

Kn

Op

(
h3

1 + h3
2 + h3

3
)

+ Op

(
h2

2 + h2
3
)+ Op

(
1√
nh2

+ 1√
nh2

3

+ 1√
nKnh2

+ 1√
nKnh

2
3

)
.
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LEMMA 6. We have for some positive constants C1 and C2, C1Ip ≤
cov( 1√

n

∑n
i=1 XT

i �−1
i εi) ≤ C2Ip . In addition, we have∣∣∣∣∣ 1√

n

n∑
i=1

XT
i

(
�̂

−1
i − �−1

i

)
εi

∣∣∣∣∣
= √

nOp

(
logn

nh1
+ logn

nh2
+ logn

nh2
3

)
+ √

nOp

(
h3

1 + h3
2 + h3

3
)

+ Op

(
h2

2 + h2
3
)+ Op

(
1/(

√
nh2) + 1/

(√
nh2

3
))

.

Now we prove that Î1 − I1 = op(n−1/2). Write

I1 = H11
n∑

i=1

XT
i �−1

i εi − H11H12H−1
22

n∑
i=1

WT
i �−1

i εi = H11(I11 − I12) (say).

We define Î11 and Î12 similarly. From Proposition 1 and Lemma 4, we have only
to prove

1√
n
(Î11 − I11) = op(1) and

1√
n
(Î12 − I12) = op(1).(5.7)

The former result in (5.7) can be handled in the same way as the latter and we
consider only the latter. Write

1√
n
(Î12 − I12) = 1

n
Ĥ12

(
1

n
Ĥ22

)−1 1√
n

n∑
i=1

WT
i

(
�̂

−1
i − �−1

i

)
εi

+ 1

n
Ĥ12

{(
1

n
Ĥ22

)−1

−
(

1

n
H22

)−1} 1√
n

n∑
i=1

WT
i �−1

i εi

+
(

1

n
Ĥ12 − 1

n
H12

)(
1

n
H22

)−1 1√
n

n∑
i=1

WT
i �−1

i εi

= DI
(1)
12 + DI

(2)
12 + DI

(3)
12 (say).

Lemmas 2, 3, and 5 imply

DI
(1)
12 = √

nOp

(
logn

nh1
+ logn

nh2
+ logn

nh2
3

)
+ √

nOp

(
h3

1 + h3
2 + h3

3
)

+√
KnOp

(
1√
nh2

+ 1√
nh2

3

+ 1√
nKnh2

+ 1√
nKnh

2
3

)

+√
KnOp

(
h2

2 + h2
3
)= op(1),

DI
(j)
12 =√

KnOp

(
h2

2 + h2
3 +

√
logn/(nh2) +

√
logn/

(
nh2

3

))
= op(1), j = 2,3.
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Hence, we have established

Î1 − I1 = op

(
n−1/2).(5.8)

Next, we deal with Î2 − I2 and two more lemmas are necessary.

LEMMA 7.∣∣∣∣∣ 1√
n

n∑
i=1

WT
i �−1

i

(
Wiγ

∗ − (
ZT g0

)
i

)∣∣∣∣∣= Op

(√
nK−5/2

n

)
and

∣∣∣∣∣ 1√
n

n∑
i=1

WT
i

(
�̂

−1
i − �−1

i

)(
Wiγ

∗ − (
ZT g0

)
i

)∣∣∣∣∣
= √

nK−5/2
n Op

(
h2

2 + h2
3 +

√
logn/(nh2) +

√
logn/

(
nh2

3

))
.

LEMMA 8.∣∣∣∣∣ 1√
n

n∑
i=1

XT
i �−1

i

(
Wiγ

∗ − (
ZT g0

)
i

)∣∣∣∣∣= Op

(√
nK−2

n

)
and

∣∣∣∣∣ 1√
n

n∑
i=1

XT
i

(
�̂

−1
i − �−1

i

)(
Wiγ

∗ − (
ZT g0

)
i

)∣∣∣∣∣
= √

nK−2
n Op

(
h2

2 + h2
3 +

√
logn/(nh2) +

√
logn/

(
nh2

3

))
.

Now we can show that Î2 − I2 = op(n−1/2). Write

I2 = H11
n∑

i=1

XT
i �−1

i

(
Wiγ

∗ − (
ZT g0

)
i

)

− H11H12H−1
22

n∑
i=1

WT
i �−1

i

(
Wiγ

∗ − (
ZT g0

)
i

)
= H11(I21 − I22) (say).

We define Î21 and Î22 similarly and write Î2 = Ĥ11(Î21 − Î22). From Proposition 1
and Lemma 4, we have only to prove 1√

n
(Î21 − I21) = op(1) and 1√

n
(Î22 − I22) =

op(1). The former result in the above can be handled in the same way as the latter
and we consider only the latter. Write

1√
n
(Î22 − I22)

= 1

n
Ĥ12

(
1

n
Ĥ22

)−1 1√
n

n∑
i=1

WT
i

(
�̂

−1
i − �−1

i

)(
Wiγ

∗ − (
ZT g0

)
i

)
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+ 1

n
Ĥ12

{(
1

n
Ĥ22

)−1

−
(

1

n
H22

)−1} 1√
n

n∑
i=1

WT
i �−1

i

(
Wiγ

∗ − (
ZT g0

)
i

)

+
(

1

n
Ĥ12 − 1

n
H12

)(
1

n
H22

)−1 1√
n

n∑
i=1

WT
i �−1

i

(
Wiγ

∗ − (
ZT g0

)
i

)
= DI

(1)
22 + DI

(2)
22 + DI

(3)
22 (say).

Lemmas 2, 3, and 7 imply, for j = 1,2,3,

DI
(j)
22 = √

nK−2
n Op

(
h2

2 + h2
3 +

√
logn/(nh2) +

√
logn/

(
nh2

3

))= op(1).

Hence, we have established Î2 − I2 = op(n−1/2). The desired result follows from
(5.4), (5.5), (5.8) and the above result.
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SUPPLEMENTARY MATERIAL

Additional simulation results and technical material (DOI: 10.1214/15-
AOS1385SUPP; .pdf). Additional simulation results, proofs of the propositions
and lemmas, and theory for the case of uniformly bounded cluster size and general
link function.
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