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SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF
RANDOM MATRICES WITH INDEPENDENT ENTRIES

BY AFONSO S. BANDEIRA1 AND RAMON VAN HANDEL2

Princeton University

We obtain nonasymptotic bounds on the spectral norm of random matri-
ces with independent entries that improve significantly on earlier results. If X

is the n × n symmetric matrix with Xij ∼ N(0, b2
ij ), we show that

E‖X‖ � max
i

√∑
j

b2
ij + max

ij
|bij |

√
logn.

This bound is optimal in the sense that a matching lower bound holds under
mild assumptions, and the constants are sufficiently sharp that we can often
capture the precise edge of the spectrum. Analogous results are obtained for
rectangular matrices and for more general sub-Gaussian or heavy-tailed dis-
tributions of the entries, and we derive tail bounds in addition to bounds on
the expected norm. The proofs are based on a combination of the moment
method and geometric functional analysis techniques. As an application, we
show that our bounds immediately yield the correct phase transition behavior
of the spectral edge of random band matrices and of sparse Wigner matrices.
We also recover a result of Seginer on the norm of Rademacher matrices.

1. Introduction. Understanding the behavior of the spectral norm of random
matrices is a fundamental problem in probability theory, as well as a problem
of considerable importance in many modern applications. If X is a Wigner ma-
trix, that is, a symmetric n × n matrix whose entries are i.i.d. with unit vari-
ance, then a classical result in random matrix theory [1, 3, 9, 23] shows that
‖X‖/√n → 2 under mild moment assumptions (as is expected from the well-
known fact that the empirical spectral density converges to the semicircle law sup-
ported in [−2,2]). The corresponding result for rectangular matrices with i.i.d.
entries is even older [10]. More recently, there has been considerable interest in
structured random matrices where the entries are no longer identically distributed.
As the combinatorial methods that are used for this purpose typically exploit the
specific structure of the entries, precise asymptotic results on the spectral norm of
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structured matrices must generally be obtained on a case-by-case basis; see, for
example, [20, 21].

In order to gain a deeper understanding of the spectral norm of structured ma-
trices, it is natural to ask whether one can find a unifying principle that captures
at least the correct scale of the norm in a general setting, that is, in the absence
of specific structural assumptions. This question is most naturally phrased in a
nonasymptotic setting: can we obtain upper and lower bounds on ‖X‖, in terms
of natural parameters that capture the structure of X, that differ only by univer-
sal constants? Nonasymptotic bounds on the norm of a random matrix have long
been developed in a different area of probability that arises from problems in ge-
ometric functional analysis, and have had a significant impact on various areas of
pure and applied mathematics [8, 18, 25]. Unfortunately, as we will shortly see,
the best known general results along these lines fail to capture the correct scale of
the spectral norm of structured matrices except in extreme cases.

In this paper, we investigate the norm of random matrices with independent en-
tries. Consider for concreteness the case of Gaussian matrices (our main results
will extend to more general distributions of the entries). Let X be the n × n sym-
metric random matrix with entries Xij = gij bij , where {gij : i ≥ j} are independent
standard Gaussian random variables and {bij : i ≥ j} are given scalars.

Perhaps the most useful known nonasymptotic bound on the spectral norm ‖X‖
can be obtained as a consequence of the noncommutative Khintchine inequality of
Lust-Piquard and Pisier [16], or alternatively (in a much more elementary fashion)
from the “matrix concentration” method that has been widely developed in recent
years [15, 24]. This yields the following inequality in our setting:

E‖X‖ � σ
√

logn with σ := max
i

√∑
j

b2
ij .

Unfortunately, this inequality already fails to be sharp in the simplest case of
Wigner matrices: here σ = √

n, so that the resulting bound E‖X‖ � √
n logn falls

short of the correct scaling E‖X‖ ∼ √
n. On the other hand, the logarithmic factor

in this bound is necessary: if X is the diagonal matrix with independent standard
Gaussian entries, then σ = 1 and E‖X‖ ∼ √

logn. We therefore conclude that
while the noncommutative Khintchine bound is sharp in extreme cases, it fails to
capture the structure of the matrix X in a satisfactory manner.

A different bound on ‖X‖ can be obtained by a method due to Gordon (see [8])
that exploits Slepian’s comparison lemma for Gaussian processes, or alternatively
from a simple ε-net argument [23, 25]. This yields the following inequality:

E‖X‖ � σ∗
√

n with σ∗ := max
ij

|bij |.
While the parameter σ∗ that appears in this bound is often much smaller than σ ,
the dimensional scaling of this bound is much worse than in the noncommutative
Khintchine bound. In particular, while this bound captures the correct

√
n rate for
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Wigner matrices, it is vastly suboptimal in almost every other situation (e.g., in the
diagonal matrix example considered above).

Further nonasymptotic bounds on ‖X‖ have been obtained in the present setting
by Latała [12] and by Riemer and Schütt [17]. In most examples, these bounds pro-
vide even worse rates than the noncommutative Khintchine bound. Seginer [19]
obtained a slight improvement on the noncommutative Khintchine bound that is
specific to the special case where the random matrix has uniformly bounded en-
tries; see Section 4.2 below. None of these results provides a sharp understanding
of the scale of the spectral norm for general structured matrices.

The present paper develops a new family of nonasymptotic bounds on the spec-
tral norm of structured random matrices that prove to be optimal in a surprisingly
general setting. Our main bounds are of the form

E‖X‖ � σ + σ∗
√

logn,

which provides a sort of interpolation between the two bounds discussed above.
For example, the following is one of the main results of this paper.

THEOREM 1.1. Let X be the n×n symmetric matrix with Xij = gij bij , where
{gij : i ≥ j} are i.i.d. ∼ N(0,1) and {bij : i ≥ j} are given scalars. Then

E‖X‖ ≤ (1 + ε)

{
2σ + 6√

log(1 + ε)
σ∗
√

logn

}

for any 0 < ε ≤ 1/2, where σ,σ∗ are as defined above.

Let us emphasize two important features of this result:

• It is almost trivial to obtain a matching lower bound of the form

E‖X‖ � σ + σ∗
√

logn

that holds as long as the coefficients bij are not too inhomogeneous (Sec-
tion 3.5). This means that Theorem 1.1 captures the optimal scaling of the ex-
pected norm E‖X‖ under surprisingly minimal structural assumptions.

• In the case of Wigner matrices, Theorem 1.1 yields a bound of the form

E‖X‖ ≤ (1 + ε)2
√

n + o(
√

n)

for arbitrarily small ε > 0. Thus Theorem 1.1 not only captures the correct
scaling of the spectral norm, but even recovers the precise asymptotic behav-
ior ‖X‖/√n → 2 as n → ∞. This feature of Theorem 1.1 makes it possible to
effortlessly prove nontrivial results, such as the precise phase transition behav-
ior of the spectral edge of random band matrices (Section 4.1), that would be
distinctly nontrivial to obtain by classical combinatorial methods.
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In view of these observations, it seems that Theorem 1.1 is essentially the optimal
result of its kind: there is little hope to accurately capture inhomogeneous models
where Theorem 1.1 is not sharp in terms of simple parameters such as σ,σ∗; see
Remarks 3.8 and 3.16. On the other hand, we can now understand the previous
bounds as extreme cases of Theorem 1.1. The noncommutative Khintchine bound
matches Theorem 1.1 when σ/σ∗ � 1: this case is minimal as σ/σ∗ ≥ 1. Gordon’s
bound matches Theorem 1.1 when σ/σ∗ � √

n: this case is maximal as σ/σ∗ ≤√
n. In intermediate regimes, Theorem 1.1 yields a strictly better scaling.
While we have formulated the specific result of Theorem 1.1 for concreteness,

our methods are not restricted to this particular setting. Once a complete proof of
Theorem 1.1 has been given in Section 2, we will develop various extensions and
complements in Section 3. These results are developed both for their independent
interest, and in view of their potential utility in applications to other problems. In
Section 3.1, we prove a sharp analogue of Theorem 1.1 in the setting of rectangular
matrices. In Section 3.2, we develop versions of our main results when the entries
are not necessarily Gaussian: for sub-Gaussian variables we obtain very similar
results to the Gaussian case, while the scaling in our main results must be modified
in the case of heavy-tailed entries. In Section 3.3, we develop variants of our main
results where the explicit-dimensional dependence is replaced by a certain notion
of effective dimension. In Section 3.4, we obtain sharp inequalities for the tail
probabilities of the spectral norm ‖X‖ rather than for its expectation. Finally, we
obtain in Section 3.5 lower bounds on the spectral norm of Gaussian matrices that
match our upper bounds under rather mild assumptions.

In Section 4, we develop two applications that illustrate the power of our main
results. In Section 4.1, we investigate a phase transition phenomenon for the spec-
tral edge of random band matrices and more general sparse Wigner matrices. Our
main results effortlessly provide a precise understanding of this transition, which
sharpens earlier results that were obtained by much more delicate combinatorial
methods in [4, 11, 21]. In Section 4.2, we investigate the setting of Rademacher
random matrices with entries Xij = εij bij , where εij are independent Rademacher
(symmetric Bernoulli) variables. Here we recover a result of Seginer [19] with a
much simpler proof, and develop insight into how such bounds can be improved.

One of the nice features of Theorem 1.1 is that its proof explains very clearly
why the result is true. Once the idea has been understood, the technical details
prove to be of minimal difficulty, which suggests that the “right” approach has been
found. Let us briefly illustrate the idea behind the proof in the special case where
the coefficients bij take only the values {0,1} (this setting guided our intuition,
though the ultimate proof is no more difficult in the general setting). We can then
interpret the matrix of coefficients (bij ) as the adjacency matrix of a graph G on n

points, and we have σ∗ = 1 and σ = √
k where k is the maximal degree of G.

Following a classical idea in random matrix theory, we use the fact that the spec-
tral norm ‖X‖ is comparable to the quantity Tr[Xp]1/p for p ∼ logn. If one writes



THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES 2483

out the expression for E Tr[Xp] in terms of the coefficients, it is readily seen that
controlling this quantity requires us to count the number of cycles in G for which
every edge is visited an even number of times. One might expect that the graph G

of degree k that possesses the most such cycles is the complete graph on k points.
If this were the case, then one could control E Tr[Xp] by E Tr[Yp] where Y is a
Wigner matrix of dimension k. This intuition is almost, but not entirely correct:
while a k-clique typically possesses more distinct topologies of cycles, each cycle
of a given topology can typically be embedded in more ways in a regular graph
on n points than in a k-clique. Careful bookkeeping shows that the latter can be
accounted for by choosing a slightly larger Wigner matrix of dimension k + p.
We therefore obtain a comparison theorem between the spectral norm of X and
the spectral norm of a (k + p)-dimensional Wigner matrix, which is of the de-
sired order

√
k + p ∼ √

k + √
logn for p ∼ logn. We can now conclude by using

standard ideas from probability in Banach spaces to obtain sharp nonasymptotic
bounds on the norm of the resulting Wigner matrix, avoiding entirely any combi-
natorial complications. (A purely combinatorial approach would be nontrivial as
very high moments of Wigner matrices can appear in this argument.)

We conclude the Introduction by noting that both the noncommutative Khint-
chine inequality and Gordon’s bound can be formulated in a more general context
beyond the case of independent entries. Whether the conclusion of Theorem 1.1
extends to this situation is a natural question of considerable interest.

Notation. Let us clarify a few notational conventions that will be used through-
out the paper. In the sequel, a � b means that a ≤ Cb for a universal constant C.
(If C depends on other quantities, this will be indicated explicitly.) If a � b and
b � a, we write a 
 b. We write a ∧ b := min(a, b) and a ∨ b := max(a, b), and
we denote by [n] := {1, . . . , n}. Finally, we occasionally write ‖ξ‖p := E[ξp]1/p .

2. Proof of Theorem 1.1. The main idea behind the proof of Theorem 1.1 is
the following comparison theorem.

PROPOSITION 2.1. Let Yr be the r ×r symmetric matrix such that {(Yr)ij : i ≥
j} are independent N(0,1) random variables, and suppose that σ∗ ≤ 1. Then

E Tr
[
X2p]≤ n


σ 2� + p
E Tr

[
Y

2p


σ 2�+p

]
for every p ∈ N.

Let us begin by completing the proof of Theorem 1.1 given this result. We need
the following lemma, which is a variation on standard ideas; cf. [8].

LEMMA 2.2. Let Yr be the r × r symmetric matrix such that {(Yr)ij : i ≥ j}
are independent N(0,1) random variables. Then for every p ≥ 2

E
[‖Yr‖2p]1/2p ≤ 2

√
r + 2

√
2p.
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PROOF. We begin by noting that

‖Yr‖ = λ+ ∨ λ−, λ+ := sup
v∈S

〈v,Yrv〉, λ− = − inf
v∈S

〈v,Yrv〉,

where S is the unit sphere in R
r . We are therefore interested in the supremum of

the Gaussian process {〈v,Yrv〉}v∈S , whose natural distance can be estimated as

E
∣∣〈v,Yrv〉 − 〈w,Yrw〉∣∣2 ≤ 2

∑
i,j

{vivj − wiwj }2 ≤ 4‖v − w‖2

[using 1 − x2 ≤ 2(1 − x) for x ≤ 1]. The right-hand side of this expression is
the natural distance of the Gaussian process {2〈v, g〉}v∈S , where g is the standard
Gaussian vector in R

r . Therefore, Slepian’s lemma [7], Theorem 13.3, implies

Eλ+ = E sup
v∈S

〈v,Yrv〉 ≤ 2E sup
v∈S

〈v, g〉 = 2E‖g‖ ≤ 2
√

r.

Moreover, note that λ+ and λ− have the same distribution (as evidently Yr and −Yr

have the same distribution). Therefore, using the triangle inequality for ‖ · ‖2p ,

E
[‖Yr‖2p]1/2p = ‖λ+ ∨ λ−‖2p

≤ Eλ+ + ‖λ+ ∨ λ− − Eλ+‖2p

= Eλ+ + ∥∥(λ+ − Eλ+) ∨ (λ− − Eλ−)
∥∥

2p.

It follows from Gaussian concentration [7], Theorems 5.8 and 2.1, that

E
[
(λ+ − Eλ+)2p ∨ (λ− − Eλ−)2p]≤ p!4p+1 ≤ (2

√
2p)2p

for p ≥ 2. Putting together the above estimates completes the proof. �

PROOF OF THEOREM 1.1. We can clearly assume without loss of generality
that the matrix X is normalized such that σ∗ = 1. For p ≥ 2, we can estimate

E‖X‖ ≤ E
[
Tr
[
X2p]]1/2p

≤ n1/2pE
[‖Y
σ 2�+p‖2p]1/2p

≤ n1/2p{2√⌈σ 2
⌉+ p + 2

√
2p
}

by Proposition 2.1 and Lemma 2.2, where we use Tr[Y 2p
r ] ≤ r‖Yr‖2p . This yields

E‖X‖ ≤ e1/2α{2√⌈σ 2
⌉+ 
α logn� + 2

√
2
α logn�}

≤ e1/2α{2σ + 2
√

α logn + 2 + 2
√

2α logn + 2}
for the choice p = 
α logn�. If n ≥ 2 and α ≥ 1, then 2 ≤ 3 log 2 ≤ 3α logn, so

E‖X‖ ≤ e1/2α{2σ + 6
√

2α logn}.
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Defining e1/2α = 1 + ε and noting that ε ≤ 1/2 implies α ≥ 1 yields the result pro-
vided that n ≥ 2 and p ≥ 2. The remaining cases are easily dealt with separately.
The result holds trivially in the case n = 1. On the other hand, the case p = 1 can
only occur when α logn ≤ 1 and thus n ≤ 2. In this case we can estimate directly

E‖X‖ ≤
√

n(
σ 2� + p) ≤ σ
√

2 + 2 using Proposition 2.1. �

REMARK 2.3. Note that we use the moment method only to prove the com-
parison theorem of Proposition 2.1; as will be seen below, this requires only trivial
combinatorics. All the usual combinatorial difficulties of random matrix theory are
circumvented by Lemma 2.2, which exploits the theory of Gaussian processes. Af-
ter the first version of this paper was posted, we learned from Shahar Mendelson
that a related idea has been used in [2] for a different purpose.

REMARK 2.4. The constant 6 in the second term in Theorem 1.1 arises from
crude rounding in our proof. While this constant can be somewhat improved for
large n, our proof cannot yield a sharp constant here: it can be verified in the
example of the diagonal matrix bij = 1i=j that the constant

√
2 in the precise

asymptotic E‖X‖ ∼ √
2 logn cannot be recovered from our general proof. We

therefore do not insist on optimizing this constant, but rather state the convenient
bound in Theorem 1.1 which holds for any n. In contrast to the constant in the
second term, it was shown in the Introduction that the constant in the first term is
sharp.

We now turn to the proof of Proposition 2.1. Let us begin by recalling some
standard observations. The quantity E Tr[X2p] can be expanded as

E Tr
[
X2p]= ∑

u1,...,u2p∈[n]
bu1u2bu2u3 · · ·bu2pu1E[gu1u2gu2u3 · · ·gu2pu1].

Let Gn = ([n],En) be the complete graph on n points, that is, En = {{u,u′} :
u,u′ ∈ [n]}. (Note that we have included self-loops.) We will identify any u =
(u1, . . . , u2p) ∈ [n]2p with a cycle u1 → u2 → ·· · → u2p → u1 in Gn of
length 2p. If we denote by ni(u) the number of distinct edges that are visited
precisely i times by the cycle u, then we can write [here g ∼ N(0,1)]

E Tr
[
X2p]= ∑

u∈[n]2p

bu1u2bu2u3 · · ·bu2pu1

∏
i≥1

E
[
gi]ni(u)

.

A cycle u is called even if it visits each distinct edge an even number of times,
that is, if ni(u) = 0 whenever i is odd. As E[gi] = 0 when i is odd, it follows
immediately that the sum in the above expression can be restricted to even cycles.

The shape s(u) of a cycle u is obtained by relabeling the vertices in order of
appearance. For example, the cycle 7 → 3 → 5 → 4 → 3 → 5 → 4 → 3 → 7 has
shape 1 → 2 → 3 → 4 → 2 → 3 → 4 → 2 → 1. We denote by

S2p := {
s(u) : u is an even cycle of length 2p

}
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the collection of shapes of even cycles, and we define the collection of even cycles
with given shape s starting (and ending) at a given point u as

�s,u := {
u ∈ [n]2p : s(u) = s, u1 = u

}
for any u ∈ [n] and s ∈ S2p . Clearly the edge counts ni(u) depend only on the
shape s(u) of u, and we can therefore unambiguously write ni(s) for the number
of distinct edges visited i times by any cycle with shape s. We then obtain

E Tr
[
X2p]= ∑

u∈[n]

∑
s∈S2p

∏
i≥1

E
[
gi]ni(s)

∑
u∈�s,u

bu1u2bu2u3 · · ·bu2pu1 .

Finally, given any shape s = (s1, . . . , s2p), we denote by m(s) = maxi si the num-
ber of distinct vertices visited by any cycle with shape s.

Now that we have set up a convenient bookkeeping device, the proof of Propo-
sition 2.1 is surprisingly straightforward. It relies on two basic observations.

LEMMA 2.5. Suppose that σ∗ ≤ 1. Then we have for any u ∈ [n] and s ∈ S2p∑
u∈�s,u

bu1u2bu2u3 · · ·bu2pu1 ≤ σ 2(m(s)−1).

In particular, it follows that

E Tr
[
X2p]≤ n

∑
s∈S2p

σ 2(m(s)−1)
∏
i≥1

E
[
gi]ni(s).

PROOF. Fix an initial point u, and shape s = (s1, . . . , s2p). Let

i(k) = inf{j : sj = k}
for 1 ≤ k ≤ m(s). That is, i(k) is the first time in any cycle of shape s at which its
kth distinct vertex is visited [of course, i(1) = 1 by definition].

Now consider any cycle u ∈ �s,u. As the cycle is even, the edge {ui(k)−1, ui(k)}
must be visited at least twice for every 2 ≤ k ≤ m(s). On the other hand, as the
vertex ui(k) is visited for the first time at time i(k), the edge {ui(k)−1, ui(k)} must
be distinct from the edges {ui(�)−1, ui(�)} for all � < k. We can therefore estimate∑

u∈�s,u

bu1u2bu2u3 · · ·bu2pu1 ≤ ∑
u∈�s,u

b2
uui(2)

b2
ui(3)−1ui(3)

· · ·b2
ui(m(s))−1ui(m(s))

= ∑
v2 �=···�=vm(s)

b2
uv2

b2
vsi(3)−1v3

· · ·b2
vsi(m(s))−1vm(s)

,

where we use that maxij |bij | = σ∗ ≤ 1. As si(k)−1 < k by construction, it is readily
seen that the quantity on the right-hand side is bounded by σ 2(m(s)−1). �
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LEMMA 2.6. Let Yr be defined as in Proposition 2.1. Then for any r > p

E Tr
[
Y 2p

r

]= r
∑

s∈S2p

(r − 1)(r − 2) · · · (r − m(s) + 1
)∏
i≥1

E
[
gi]ni(s).

PROOF. In complete analogy with the identity for E Tr[X2p], we can write

E Tr
[
Y 2p

r

]= ∑
s∈S2p

∣∣{u ∈ [r]2p : s(u) = s
}∣∣∏

i≥1

E
[
gi]ni(s).

Each cycle u ∈ [r]2p with given shape s(u) = s is uniquely defined by specifying
its m(s) distinct vertices. Thus as long as m(s) ≤ r , there are precisely

r(r − 1) · · · (r − m(s) + 1
)

such cycles. However, note that any even cycle of length 2p can visit at most
m(s) ≤ p + 1 distinct vertices, so the assumption p < r implies the result. �

We can now complete the proof.

PROOF OF PROPOSITION 2.1. Fix p ∈N, and let r = 
σ 2� + p. Then

(r − 1)(r − 2) · · · (r − m(s) + 1
)≥ (

σ 2 + p − m(s) + 1
)m(s)−1 ≥ σ 2(m(s)−1)

for any s ∈ S2p , where we have used that any even cycle of length 2p can visit at
most m(s) ≤ p + 1 distinct vertices. It remains to apply Lemmas 2.5 and 2.6. �

3. Extensions and complements.

3.1. Nonsymmetric matrices. Let X be the n × m random rectangular matrix
with Xij = gij bij , where {gij : 1 ≤ i ≤ n,1 ≤ j ≤ m} are independent N(0,1) ran-
dom variables and {bij : 1 ≤ i ≤ n,1 ≤ j ≤ m} are given scalars. While this matrix
is not symmetric, one can immediately obtain a bound on E‖X‖ from Theorem 1.1
by applying the latter to the symmetric matrix

X̃ =
[

0 X

X∗ 0

]
.

Indeed, it is readily seen that ‖X̃‖ = ‖X‖, so we obtain

E‖X‖ ≤ (1 + ε)

{
2(σ1 ∨ σ2) + 6√

log(1 + ε)
σ∗
√

log(n + m)

}

for any 0 < ε ≤ 1/2 with

σ1 := max
i

√∑
j

b2
ij , σ2 := max

j

√∑
i

b2
ij , σ∗ := max

ij
|bij |.
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While this result is largely satisfactory, it does not lead to a sharp constant in the
first term: it is known from asymptotic theory [10] that when bij = 1 for all i, j , we
have E‖X‖ ∼ √

n + √
m as n,m → ∞ with n/m → γ ∈]0,∞[, while the above

bound can only give the weaker inequality E‖X‖ ≤ 2(1 + o(1))(
√

n ∨ √
m). The

latter bound can therefore be off by as much as a factor 2.
We can regain the lost factor and also improve the logarithmic term by exploit-

ing explicitly the bipartite structure of X̃ in the proof of Theorem 1.1. This leads
to the following sharp analogue of Theorem 1.1 for rectangular random matri-
ces.

THEOREM 3.1. Let X be the n × m matrix with Xij = gij bij . Then

E‖X‖ ≤ (1 + ε)

{
σ1 + σ2 + 5√

log(1 + ε)
σ∗
√

log(n ∧ m)

}

for any 0 < ε ≤ 1/2.

As the proof of this result closely follows the proof of Theorem 3.1, we will
only sketch the necessary modifications to the proof in the rectangular setting.

SKETCH OF PROOF. Let Gn,m = ([n] � [m],En,m) be the complete bipartite
graph whose left and right vertices are indexed by [n] and [m], respectively (i.e.,
with edges En,m = {(u, v) :u ∈ [n], v ∈ [m]}). We begin by noting that

E Tr
[(

XX∗)p]
= ∑

u∈[n]p

∑
v∈[m]p

bu1v1bu2v1bu2v2bu3v2 · · ·bupvpbu1vp

∏
i≥1

E
[
gi]ni(u,v)

,

where we denote by ni(u,v) the number of distinct edges in Gn,m that are visited
precisely i times by the cycle u1 → v1 → u2 → v2 → ·· · → up → vp → u1. In
direct analogy with the symmetric case, we can define the collection S2p of shapes
of even cycles of length 2p, and by �s,u the collection of cycles with given shape
s ∈ S2p starting at a given point u ∈ [n]. We denote by ni(s) the number of distinct
edges that are visited precisely i times by s, and by m1(s) and m2(s) the number
of distinct right and left vertices, respectively, that are visited by s (i.e., the number
of distinct vertices that appear in even and odd positions in the cycle).

It is now straightforward to adapt the proofs of Lemmas 2.5 and 2.6 to the
present setting. Assuming that σ∗ ≤ 1, the analogue of Lemma 2.5 yields

E Tr
[(

XX∗)p]≤ n
∑

s∈S2p

σ
2m1(s)
1 σ

2(m2(s)−1)
2

∏
i≥1

E
[
gi]ni(s).
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On the other hand, let Yr,r ′ be the r × r ′ matrix whose entries are independent
N(0,1) random variables. Then the analogue of Lemma 2.6 yields

E Tr
[(

Yr,r ′Y ∗
r,r ′
)p]

= r
∑

s∈S2p

(r − 1) · · · (r − m2(s) + 1
)
r ′(r ′ − 1

) · · · (r ′ − m1(s) + 1
)

×∏
i≥1

E
[
gi]ni(s)

when r > p/2 and r ′ > p/2. Choosing r = 
σ 2
2 +p/2� and r ′ = 
σ 2

1 +p/2� yields

E Tr
[(

XX∗)p]≤ n

r
E Tr

[(
Yr,r ′Y ∗

r,r ′
)p]

in analogy with Proposition 2.1. To complete the proof, we note that adapting the
argument of Lemma 2.2 to the rectangular case (cf. [8]) yields

E
[‖Yr,r ′‖2p]1/2p ≤ √

r + √
r ′ + 2

√
p.

We can therefore estimate (assuming without loss of generality that σ∗ = 1)

E‖X‖ ≤ E Tr
[(

XX∗)p]1/2p ≤ n1/2p
{√⌈

σ 2
1 + p/2

⌉+
√⌈

σ 2
2 + p/2

⌉+ 2
√

p
}
.

Choosing p = 
α logn� and proceeding as in the proof of Theorem 1.1 yields the
result with a dimensional factor of

√
logn rather than

√
log(n ∧ m). However, as

‖X‖ = ‖X∗‖, the latter bound follows by exchanging the roles of n and m. �

3.2. Non-Gaussian variables. We have phrased our main results in terms of
Gaussian random matrices for concreteness. However, note that the core argu-
ment of the proof of Theorem 1.1, the comparison principle of Proposition 2.1,
did not depend at all on the Gaussian nature of the entries: it is only subsequently
in Lemma 2.2 that we exploited the theory of Gaussian processes. The same ob-
servation applies to the proof of Theorem 3.1. As a consequence, we can develop
various extensions of our main results to more general distributions of the entries.

Let us begin by considering the case of sub-Gaussian random variables.

COROLLARY 3.2. Theorems 1.1 and 3.1 remain valid if the independent
Gaussian random variables gij are replaced by independent symmetric random

variables ξij such that E[ξ2p
ij ] ≤ E[g2p] for every p ∈N and i, j [g ∼ N(0,1)].

PROOF. As ξij are assumed to be symmetric, E[ξp
ij ] = 0 when p is odd. It

therefore follows readily by inspection of the proof that Proposition 2.1 (and its
rectangular counterpart) remains valid under the present assumptions. �
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Corollary 3.2 implies, for example, that the conclusions of Theorems 1.1 and 3.1
hold verbatim when gij are replaced by independent Rademacher variables εij ,
that is, P[εij = ±1] = 1/2; see Section 4.2 below for more on such matrices. The

moment assumption E[ξ2p
ij ] ≤ E[g2p] is somewhat unwieldy, however. We can

obtain a similar result under standard sub-Gaussian tail assumptions.

COROLLARY 3.3. If the independent Gaussian variables gij are replaced by
independent random variables ξij that are centered and sub-Gaussian in the sense

E[ξij ] = 0, P
[|ξij | ≥ t

]≤ Ce−t2/2c for all t ≥ 0 and i, j,

then Theorems 1.1 and 3.1 remain valid up to a universal constant that depends on
C and c only. That is, we have E‖X‖ � σ + σ∗

√
logn in the case of Theorem 1.1,

and E‖X‖ � σ1 + σ2 + σ∗
√

log(n ∧ m) in the case of Theorem 3.1.

PROOF. Let X′ be an independent copy of X. As EX′ = 0, we obtain by
Jensen’s inequality E‖X‖ = E‖X − EX′‖ ≤ E‖X − X′‖. The entries of the ma-
trix X − X′ are still sub-Gaussian (with the constants C,c increasing by at most a
constant factor), but are now symmetric as well. We can therefore assume without
loss of generality that ξij are symmetric sub-Gaussian random variables. Using the
integration formula E[ξ2p] = ∫∞

0 P[|ξ | ≥ t1/2p]dt , it is readily shown that the ran-

dom variables ξij /K satisfy E[ξ2p
ij ] ≤ E[g2p] for all p ∈ N, where K is a constant

that depends on C,c only. The result follows from Corollary 3.2. �

REMARK 3.4. The main difference between Corollaries 3.2 and 3.3 is that the
bound of Corollary 3.3 is multiplied by an additional constant factor as compared
to Corollary 3.2. Thus the constant in front of the leading term in Corollary 3.3 is
no longer sharp. This is of little consequence in many applications (particularly in
nonasymptotic problems), but implies that we no longer capture the exact asymp-
totics of Wigner matrices. The latter can sometimes be recovered at the expense of
increasing the logarithmic term in the estimate; see Corollary 3.6 below.

The sub-Gaussian assumption of Corollary 3.2 requires that the random vari-
ables ξij have at worst Gaussian tails. For random variables with heavier tails, the
conclusion of Theorem 1.1 cannot hold as stated. Consider, for example, the diag-
onal case where bij = 1i=j , so that σ = σ∗ = 1; then ‖X‖ = maxi≤n |ξii |, which
must grow faster in the heavy-tailed setting than the ∼ √

logn bound that would
be obtained if the conclusion of Theorem 1.1 were valid. It seems reasonable to
expect that in the case of heavy-tailed entries, the

√
logn rate must be changed to

a quantity that controls the maximum of the heavy-tailed random variables under
consideration. This is, roughly speaking, the content of the following result. (We
will work in the setting of Theorem 1.1 for simplicity, though an entirely analogous
result can be proved in the setting of Theorem 3.1.)
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COROLLARY 3.5. Let X be the n × n symmetric matrix with Xij = ξij bij ,
where {ξij : i ≥ j} are independent centered random variables and {bij : i ≥ j} are

given scalars. If E[ξ2p
ij ]1/2p ≤ Kpβ/2 for some K,β > 0 and all p, i, j , then

E‖X‖ � σ + σ∗ log(β∨1)/2 n.

The universal constant in the above inequality depends on K,β only.

Let us note that as E[ξ2p]1/2p � √
p for sub-Gaussian random variables ξ ,

Corollary 3.5 reduces to Corollary 3.3 in the sub-Gaussian setting. If we con-
sider subexponential random variables, for example, then E[ξ2p]1/2p � p, and
thus

√
logn must be replaced by logn in the conclusion of Theorem 1.1. These

scalings are precisely as expected, as the maximum of n independent random vari-
ables ξi with E[ξ2p

i ]1/2p ∼ pβ/2 is of order logβ/2 n. Note, however, that the loga-
rithmic factor only changes when the tails of the entries are heavier than Gaussian.
The

√
logn factor cannot be reduced, in general, when the entries have lighter

tails than Gaussian, as the universality property of many random matrix models
leads to essentially Gaussian behavior; see Remark 4.8 for further discussion and
examples.

PROOF OF COROLLARY 3.5. Symmetrizing as in the proof of Corollary 3.3,
we can assume without loss of generality that ξij are symmetric random variables.
We will also assume without loss of generality that β ≥ 1, as the case β < 1 is
covered by Corollary 3.3.

Let gij and g̃ij be i.i.d. N(0,1) random variables, and define ηij = gij |g̃ij |β−1.
Then ηij are symmetric random variables, and by Stirling’s formula

E
[
η

2p
ij

]1/2p =
[

2pβ

π
�

(
p + 1

2

)
�

(
p(β − 1) + 1

2

)]1/2p

� pβ/2.

If we denote by X̃ the matrix with entries X̃ij = ηij bij , then it follows readily from
the trace identities in the proof of Theorem 1.1 that

E Tr
[
X2p]≤ C2pE Tr

[
X̃2p]≤ C2pnE‖X̃‖2p

for all p and a universal constant C (depending on K,β). We therefore have

E‖X‖ � E
[‖X̃‖2
logn�]1/2
logn�

.

Applying Theorem 1.1 conditionally on the variables g̃ = {g̃ij } yields

E
[‖X̃‖2
logn�|g̃]≤ [

C max
i

√∑
j

b2
ij |g̃ij |2β−2 + Cσ∗ max

ij
|g̃ij |β−1

√
logn

]2
logn�

for another universal constant C. (While the statement of Theorem 1.1 only gives
a bound on E‖X‖, an inspection of the proof shows that what is in fact being
bounded is the quantity E[‖X‖2
α logn�]1/2
α logn� with α = 1/2 log(1 + ε).)
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We must now estimate the expectation of the right-hand side of this equation.
Note that ‖maxi≤n |Zi |‖p ≤ E[∑n

i=1 |Zi |p]1/p ≤ n1/p maxi≤n ‖Zi‖p for any ran-
dom variables Z1, . . . ,Zn. Using ‖g̃ij‖p � √

p, a simple computation yields∥∥∥max
ij

|g̃ij |β−1
∥∥∥

2
logn� � log(β−1)/2 n.

Similarly, using the Rosenthal-type inequality of [6], Theorem 8, we obtain∥∥∥∥max
i

∑
j

b2
ij |g̃ij |2β−2

∥∥∥∥
logn�
� σ 2 + σ 2∗

∥∥∥max
ij

|g̃ij |β−1
∥∥∥2

2
logn� logn.

Substituting these estimates into the above expression completes the proof. �

As was discussed above, the drawback of Corollary 3.3 and 3.5 is that an ad-
ditional universal constant is introduced as compared to Theorem 1.1. In the fol-
lowing result, we have retained the sharp constant at the expense of a suboptimal
scaling of the logarithmic term: for example, when applied to Gaussian entries,
Corollary 3.6 yields logn instead of

√
logn in Theorem 1.1. Nonetheless, Corol-

lary 3.6 can be useful in that it captures the sharp asymptotics of the edge of the
spectrum of Wigner-type matrices as long as σ dominates the logarithmic term.
Moreover, when the random variables ξij are uniformly bounded, Corollary 3.6 is
sharper than Corollary 3.2 in that the leading term depends on the variance rather
than the uniform size of the entries; this will be exploited in Section 3.4 below.

COROLLARY 3.6. Let X be the n × n symmetric random matrix with Xij =
ξij bij , where {ξij : i ≥ j} are independent symmetric random variables with unit
variance and {bij : i ≥ j} are given scalars. Then we have for any α ≥ 3

E‖X‖ ≤ e2/α
{
2σ + 14α max

ij
‖ξij bij‖2
α logn�

√
logn

}
.

PROOF. Let εij be i.i.d. Rademacher random variables independent of X, and
denote by X̃ the matrix with entries X̃ij = εijXij . As we assumed that ξij are
symmetric random variables, evidently X and X̃ have the same distribution. We
now apply Corollary 3.2 to X̃ conditionally on the matrix X. This yields

E‖X‖ ≤ (1 + δ)E
[
2
√

max
i

∑
j

X2
ij + 6√

log(1 + δ)
max

ij
|Xij |

√
logn

]

for any 0 < δ ≤ 1/2. We can estimate

E max
ij

|Xij | ≤
[∑

ij

E|Xij |2
α logn�
]1/2
α logn�

≤ e1/α max
ij

‖ξij bij‖2
α logn�.
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On the other hand, by the Rosenthal-type inequality of [6], Theorem 8, we have∥∥∥∥∑
j

X2
ij

∥∥∥∥
α logn�
≤ (1 + δ)

∑
j

b2
ij + 2

δ

∥∥∥max
j

X2
ij

∥∥∥
α logn�
α logn�,

so that

E
[
max

i

∑
j

X2
ij

]
≤ e1/α

{
(1 + δ)σ 2 + 2e1/α

δ
max

ij
‖ξij bij‖2

2
α logn�
α logn�
}
.

Choosing α such that e1/α = 1 + δ and using δ ≥ log(1 + δ), the result follows by
combining the above estimates and straightforward manipulations. �

3.3. Dimension-free bounds. A drawback of the results obtained so far is that
they depend explicitly on the dimension n of the random matrix. This dependence
is sharp in many natural situations; see Section 3.5 below. On the other hand,
the results of Latała [12] and of Riemer and Schütt [17] have shown that it is
possible to obtain dimension-free estimates, where n is replaced by an “effective
dimension” that is defined in terms of a norm of the matrix of coefficients of the
form

∣∣(bij )
∣∣
p :=

[∑
ij

|bij |p
]1/p

.

While the bounds of [12, 17] yield suboptimal results in many cases, a dimension-
free formulation has at least two advantages. First, a low-dimensional matrix can
be embedded in a high-dimensional space without changing its norm: for example,
if all bij = 0 except b11 = 1, then E‖X‖ ∼ 1, but Theorem 1.1 yields a bound of
order

√
logn. The advantage of a dimension-free bound is that it automatically

adapts to high-dimensional matrices that possess approximate low-dimensional
structure. Second, dimension-free results can be used to study infinite-dimensional
matrices, while Theorem 1.1 is not directly applicable in this setting.

The following result provides a dimension-free analogue of Theorems 1.1
and 3.1. To prove it, we apply the stratification technique developed in [17].

COROLLARY 3.7. Let X be the n × n symmetric matrix with Xij = gij bij ,
where {gij : i ≥ j} are i.i.d. ∼ N(0,1) and {bij : i ≥ j} are given scalars. Then

E‖X‖ � σ + σ∗

√
log

|(bij )|p
σ∗

for any 1 ≤ p < 2, where the universal constant depends on p only. Similarly, if X

is the n × m random rectangular matrix Xij = gij bij , then for any 1 ≤ p < 2

E‖X‖ � σ1 + σ2 + σ∗

√
log

|(bij )|p
σ∗

.
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PROOF. We will prove the result in the symmetric case; the proof in the rect-
angular case is identical. We also assume without loss of generality that σ∗ = 1.

Define the matrices X(k) for k ≥ 1 as X
(k)
ij = gij bij 12−k<|bij |≤2−k+1 , so that

E‖X‖ = E
∥∥∥∥∑
k≥1

X(k)

∥∥∥∥≤ E
∥∥∥∥∑
k<k0

X(k)

∥∥∥∥+ ∑
k≥k0

E
∥∥X(k)

∥∥
for a constant k0 to be chosen appropriately in the sequel.

Denote by c(k) the number of nonzero entries of X(k). Then

c(k) := ∣∣{ij : 2−k < |bij | ≤ 2−k+1}∣∣≤ 2kp
∣∣(bij )

∣∣p
p.

Therefore, the nonzero entries of X(k) must be contained in a submatrix of size
c(k) × c(k). Applying Theorem 1.1 to this submatrix yields

E
∥∥X(k)

∥∥� 2−k+1{√c(k) +
√

log c(k)
}
� 2−k(1−p/2)

∣∣(bij )
∣∣p/2
p .

As p < 2, the right-hand side decays geometrically. Let k0 be the smallest integer
k such that 2−k(1−p/2)|(bij )|p/2

p ≤ 1. Then we can estimate∑
k≥k0

E
∥∥X(k)

∥∥�
∑
k≥k0

2−k(1−p/2)
∣∣(bij )

∣∣p/2
p ≤∑

k≥0

2−k(1−p/2) � σ,

where we use σ ≥ σ∗ = 1. On the other hand, the matrix
∑

k<k0
X(k) has at most

∑
k<k0

c(k) ≤ ∑
k<k0

2kp
∣∣(bij )

∣∣p
p � 2k0p

∣∣(bij )
∣∣p
p �

∣∣(bij )
∣∣p+p2/(2−p)
p

entries by the definition of k0. Applying Theorem 1.1 completes the proof. �

Note that the scaling in Corollary 3.7 improves as we increase p. Unfortunately,
the constant blows up as p → 2, so we need p < 2 to obtain a nontrivial result.

REMARK 3.8. Up to universal constants, the result of Corollary 3.7 is strictly
better than that of Theorems 1.1 and 3.1 as |(bij )|p ≤ n2/pσ∗. It greatly improves
the bounds of [17]. The bound of [12] is of a somewhat different nature: Latała
proves the inequality E‖X‖ � σ1 + σ2 + |(bij )|4. The latter bound is significantly
worse than Corollary 3.7 in most cases, but they are not strictly comparable.

Let us emphasize, however, that all the notions of effective dimension used here
or in [12, 17] are essentially ad-hoc constructions. As will be shown in Section 3.5
below, the bounds of Theorems 1.1 and 3.1 are tight in situations where the coef-
ficients bij exhibit a sufficient degree of homogeneity. The improvement provided
by the dimension-free bounds is therefore of interest only in those cases where
there is significant inhomogeneity in the magnitude of the coefficients, that is, in
the presence of many scales. It is, however, unreasonable to expect that such inho-
mogeneity can be captured in a sharp manner by a norm of the form |(bij )|p .
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This is already illustrated by the simplest Gaussian examples: for example, if
bii = 1/

√
log i and bij = 0 for i �= j , then a standard Gaussian computation shows

that E‖X‖ � 1, while all dimension-free bounds we have discussed grow at least
as

√
logn.

3.4. Tail bounds. Given explicit bounds on the expectation E‖X‖, we can
readily obtain nonasymptotic tail inequalities for ‖X‖ by applying standard con-
centration techniques. In view of the significant utility of such tail inequalities in
applications, we record some useful results along these lines here.

COROLLARY 3.9. Under the assumptions of Theorem 1.1, we have

P
[
‖X‖ ≥ (1 + ε)

{
2σ + 6√

log(1 + ε)
σ∗
√

logn

}
+ t

]
≤ e−t2/4σ 2∗

for any 0 < ε ≤ 1/2 and t ≥ 0. In particular, for every 0 < ε ≤ 1/2 there exists a
universal constant cε such that for every t ≥ 0

P
[‖X‖ ≥ (1 + ε)2σ + t

]≤ ne−t2/cεσ
2∗ .

PROOF. As ‖X‖ = supv |〈v,Xv〉| (the supremum is over the unit ball) and

E
[〈v,Xv〉2]=∑

i

b2
iiv

4
i + 2

∑
i �=j

b2
ij v

2
i v

2
j ≤ 2σ 2∗ ,

the first inequality follows from Gaussian concentration [7], Theorem 5.8, and
Theorem 1.1. For the second inequality, note that we can estimate

P
[‖X‖ ≥ (1 + ε)2σ + cεσ∗t

]≤ P
[‖X‖ ≥ (1 + ε)2σ + c′

εσ∗
√

logn + σ∗t
]

≤ e−t2/4

for t ≥ 2
√

logn (with cε, c
′
ε chosen in the obvious manner), while

P
[‖X‖ ≥ (1 + ε)2σ + cεσ∗t

]≤ 1 ≤ ne−t2/4

for t ≤ 2
√

logn. Combining these bounds completes the proof. �

Tail bounds on ‖X‖ have appeared widely in the recent literature under the
name “matrix concentration inequalities”; see [15, 24]. In the present setting, the
corresponding result of this kind implies that for all t ≥ 0

P
[‖X‖ ≥ t

]≤ ne−t2/8σ 2
.

The second inequality of Corollary 3.9 was stated for comparison with this matrix
concentration bound. Unlike the matrix concentration bound, Corollary 3.9 is es-
sentially optimal in that it captures not only the correct mean, but also the correct
tail behavior of ‖X‖ [13], Corollary 3.2 (Note that due to the factor 1 + ε in the
leading term, we do not expect to see Tracy–Widom fluctuations at this scale.)
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REMARK 3.10. Integrating the tail bound obtained by the matrix concentra-
tion method yields the estimate E‖X‖ � σ

√
logn. This method therefore yields

an alternative proof of the noncommutative Khintchine bound that was discussed
in the Introduction. Combining this bound with concentration as in the proof of
Corollary 3.9 already yields a better tail bound than the one obtained directly from
the matrix concentration method. Nonetheless, it should be emphasized that the
suboptimality of the above bound on the expected norm stems from the subop-
timal tail behavior obtained by the matrix concentration method. Our sharp tail
bounds help clarify the source of this inefficiency: the parameter σ should only
control the mean of ‖X‖, while the fluctuations are controlled entirely by σ∗.

An entirely analogous result can be obtained in the rectangular setting of Theo-
rem 3.1. As the proof is identical, we simply state the result.

COROLLARY 3.11. Under the assumptions of Theorem 3.1, we have

P
[
‖X‖ ≥ (1 + ε)

{
σ1 + σ2 + 5√

log(1 + ε)
σ∗
√

log(n ∧ m)

}
+ t

]
≤ e−t2/2σ 2∗

for any 0 < ε ≤ 1/2 and t ≥ 0. In particular, for every 0 < ε ≤ 1/2 there exists a
universal constant c′

ε such that for every t ≥ 0

P
[‖X‖ ≥ (1 + ε)(σ1 + σ2) + t

]≤ (n ∧ m)e−t2/c′
εσ

2∗ .

The Gaussian concentration property used above is specific to Gaussian vari-
ables. However, there are many other situations where strong concentration re-
sults are available [7], and where similar results can be obtained. For example, if
the Gaussian variables gij are replaced by symmetric random variables ξij with
‖ξij‖∞ ≤ 1 (this captures in particular the case of Rademacher variables), Corol-
laries 3.9 and 3.11 remain valid with slightly larger universal constants cε, c

′
ε . This

follows from the identical proof, up to the replacement of Gaussian concentration
by a form of Talagrand’s concentration inequality [7], Theorem 6.10.

In the case of bounded entries, however, a more interesting question is whether
it is possible to obtain tail bounds that capture the variance of the entries rather
than their uniform norm (which is often much bigger than the variance), akin to
the classical Bernstein inequality for sums of independent random variables. We
presently develop a very useful result along these lines.

COROLLARY 3.12. Let X be an n×n symmetric matrix whose entries Xij are
independent symmetric random variables. Then there exists for any 0 < ε ≤ 1/2 a
universal constant c̃ε such that for every t ≥ 0

P
[‖X‖ ≥ (1 + ε)2σ̃ + t

]≤ ne−t2/c̃εσ̃
2∗ ,



THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES 2497

where we have defined

σ̃ := max
i

√∑
j

E
[
X2

ij

]
, σ̃∗ := max

ij
‖Xij‖∞.

PROOF. Let Xij = X̃ij E[X2
ij ]1/2, so that X̃ij have unit variance. Then

E‖X‖ ≤ (1 + ε)2σ̃ + Cεσ̃∗
√

logn

for a suitable constant Cε by Corollary 3.6. On the other hand, a form of Tala-
grand’s concentration inequality [7], Theorem 6.10, yields

P
[‖X‖ ≥ E‖X‖ + t

]≤ e−t2/cσ̃ 2∗

for all t ≥ 0, where c is a universal constant. The proof is completed by combining
these bounds as in the proof of Corollary 3.9. �

Corollary 3.12 should be compared with the matrix Bernstein inequality in [24],
which reads as follows in our setting (we omit the explicit constants):

P
[‖X‖ ≥ t

]≤ ne−t2/c(σ̃ 2+σ̃∗t).

While this result looks quite different at first sight than Corollary 3.12, the latter
yields strictly better tail behavior up to universal constants: indeed, note that

e−t2/c2σ̃ 2∗ ≤ e1−2t/cσ̃∗ ≤ 3e−2t2/c(σ̃ 2+σ̃∗t)

using 2x − 1 ≤ x2. The discrepancy between these results is readily explained. In
our sharp bounds, the variance term σ̃ only appears in the mean of ‖X‖ and not
in the fluctuations: the latter only depend on the uniform parameter σ̃∗ and do not
capture the variance. A tail bound in terms of σ̃ and σ̃∗ should therefore indeed be
of Hoeffding type, as in Corollary 3.12, rather than of Bernstein type as might be
expected from the “matrix concentration” approach. Using a Bernstein form of Ta-
lagrand’s concentration inequality [14], Theorem 3, in the proof of Corollary 3.12
does not lead to any further improvement in the present setting.

REMARK 3.13. If Xij in Corollary 3.12 are only assumed to centered (rather
than symmetric), we can symmetrize as in the proof of Corollary 3.3 to obtain

P
[‖X‖ ≥ (1 + ε)2

√
2σ̃ + t

]≤ ne−t2/c̃εσ̃
2∗ .

Unfortunately, this results in an additional factor
√

2 in the leading term, which is
suboptimal for Wigner matrices. We do not know whether it is possible, in general,
to improve the constant when the entries are not symmetrically distributed.

Corollary 3.12 (and Corollary 3.6 which is used in its proof) also admit direct
analogues in the setting of rectangular matrices. As the proofs are essentially iden-
tical to the ones given above, we leave such extensions to the reader.
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3.5. Lower bounds. The main results of this paper provide upper bounds on
E‖X‖. However, a trivial lower bound already suffices to establish the sharpness
of our upper bounds in many cases of interest, at least for Gaussian variables.

LEMMA 3.14. In the setting of Theorem 1.1, we have

E‖X‖ � σ + E max
ij

|bijgij |.

Similarly, in the setting of Theorem 3.1

E‖X‖ � σ1 + σ2 + E max
ij

|bijgij |.

PROOF. Let us prove the second inequality; the first inequality follows in a
completely analogous manner. As ‖X‖ ≥ maxij |Xij |, it is trivial that

E‖X‖ ≥ E max
ij

|Xij | = E max
ij

|bijgij |.

On the other hand, as ‖X‖ ≥ maxi ‖Xei‖ ({ei} is the canonical basis in R
n),

E‖X‖ ≥ max
i

E‖Xei‖ � max
i

E
[‖Xei‖2]1/2 = σ2.

Here we use the estimate

E
[‖Xei‖2]= (

E‖Xei‖)2 + Var‖Xei‖ �
(
E‖Xei‖)2,

where Var‖Xei‖ ≤ maxj b2
ji � maxj E[bji |gji |]2 ≤ (E‖Xei‖)2 by the Gaussian

Poincaré inequality [7], Theorem 3.20. Analogously, we obtain

E‖X‖ ≥ max
i

E
∥∥X∗ei

∥∥� σ1.

Averaging these three lower bounds yields the conclusion. �

This simple bound shows that our main results are sharp as long there are
enough large coefficients bij . This is the content of the following easy bound.

COROLLARY 3.15. In the setting of Theorem 1.1, suppose that∣∣{ij : |bij | ≥ cσ∗
}∣∣≥ nα

for some constants c,α > 0. Then

E‖X‖ 
 σ + σ∗
√

logn,

where the universal constant in the lower bound depends on c,α only. The analo-
gous result holds in the setting of Theorem 3.1.
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PROOF. Denote by I the set of indices in the statement of the corollary. Then

E max
ij

|bijgij | ≥ E max
ij∈I

|bij gij | ≥ cσ∗E max
ij∈I

|gij | � σ∗
√

log |I | � σ∗
√

logn,

where we use a standard lower bound on the maximum of independent N(0,1)

random variables. The proof is completed by applying Lemma 3.14. �

For example, it follows that our main results are sharp as soon as every row
of the matrix contains at least one large coefficient, that is, with magnitude of
the same order as σ∗. This is the case is many natural examples of interest, and
in these cases our results are optimal (up to the values of universal constants).
Of course, it quite possible that our bound is sharp even when the assumption
of Corollary 3.15 fails: for example, in view of Lemma 3.14, our bound is sharp
whenever σ∗

√
logn � σ regardless of any other feature of the problem.

Corollary 3.15 suggests that our main results can fail to be sharp when the sizes
of the coefficients bij are very heterogeneous. If the matrix contains a few large
entries and many small entries, one could still obtain good bounds by splitting
the matrix into two parts and applying Theorem 1.1 to each part; this is the idea
behind the dimension-free bounds of Corollary 3.7. However, when there are many
different scales with few coefficients at each scale, such an approach cannot be
expected to yield sharp results in general; see Remark 3.8 for a simple example.

REMARK 3.16. An intriguing observation that was made in [17] is that the
trivial lower bound E‖X‖ ≥ E maxi ‖Xei‖ appears to be surprisingly sharp: we do
not know of any example where the corresponding upper bound

E‖X‖ ?
� E max

i
‖Xei‖

fails. If such an inequality were to hold, the conclusion of Theorem 1.1 would fol-
low easily using Gaussian concentration and a simple union bound. In fact, if this
were the case, we could obtain an improvement of Theorem 1.1 in the following
manner; cf. [22], Proposition 2.4.16. Note that, by Gaussian concentration,

P
[
max

i

{‖Xei‖ − E‖Xei‖}> t
]
≤∑

k

e
−t2/2 maxj b2

kj =∑
k

k
−t2/2 maxij b2

ij log i
.

Integrating this bound therefore gives

E‖X‖ ?
� E max

i
‖Xei‖

≤ max
i

E‖Xei‖ + E max
i

{‖Xei‖ − E‖Xei‖}
� σ + max

ij
|bij |

√
log i
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which would yield a strict improvement on Theorem 1.1. [Note that there is no loss
of generality in sorting the rows of (bij ) to minimize the term maxij |bij |√log i.]
We do not know of any mechanism, however, that would give rise to such inequal-
ities, and it is possible that the apparent sharpness of the quantity E maxi ‖Xei‖
is simply due to the fact that it is of the same order as the bound of Theorem 1.1
in most natural examples. Regardless, it does not appear that our method of proof
could be adapted to give rise to inequalities of this form.

REMARK 3.17. The conclusion of Corollary 3.15 relies heavily on the Gaus-
sian nature of the entries. When the distributions of the entries are bounded, for
example, it is possible that our bounds are no longer sharp. This issue will be
discussed further in Section 4.2 below in the context of Rademacher matrices.

4. Examples.

4.1. Sparse random matrices. In the section, we consider the special case of
Theorem 1.1 where the coefficients bij can take the values zero or one only. This
is in essence a sparse counterpart of Wigner matrices in which a subset of the
entries has been set to zero. This rather general model covers many interesting
random matrix ensembles, including the case of random band matrices where bij =
1|i−j |≤k that has been of significant recent interest [4, 11, 21].

Let us fix a matrix (bij ) of {0,1}-valued coefficients. We immediately compute

σ 2 = k, σ∗ = 1,

where k is the maximal number of nonzero entries in any row of the matrix of co-
efficients (bij ). If we interpret (bij ) as the adjacency matrix of a graph on n points,
then k is simply the maximal degree of this graph. The following conclusion fol-
lows effortlessly from our main results.

COROLLARY 4.1. Let X be the n × n symmetric random matrix with Xij =
gij bij , where {gij } are independent N(0,1) variables and bij ∈ {0,1}. Let k be the
maximal number of nonzero entries in a row of (bij ). Then

E‖X‖ 
 √
k +

√
logn,

provided that every row of (bij ) has at least one nonzero entry.

PROOF. This is immediate from Theorem 1.1 and Lemma 3.14. �

REMARK 4.2. If a row of (bij ) is zero, then the corresponding column is zero
as well by symmetry. We therefore lose nothing by removing this row and column,
and we can apply Corollary 4.1 to the resulting lower-dimensional matrix. The
assumption that every row of (bij ) is nonzero is therefore completely innocuous.
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Our bound evidently captures precisely the correct order of magnitude of the
spectral norm of sparse random matrices. It is possible to obtain much sharper
conclusions, however, from our main results. To motivate this, let us first quote a
result that is stated in [4], Theorem 2.3, under weaker assumptions. (For simplicity,
we adopt in the remainder of this section the setting and notation of Corollary 4.1.)

THEOREM 4.3. Suppose each row of (bij ) has exactly k nonzero entries. Then
the empirical spectral distribution of X/

√
k converges to the semicircle law

1

n

n∑
i=1

δλi(X/
√

k)

k→∞�⇒ 1

2π

√
4 − x21x∈[−2,2] dx,

provided that k = o(n). [Here λ1(X) ≥ · · · ≥ λn(X) are the eigenvalues of X.]

Theorem 4.3 shows that the bulk of the spectrum of X behaves precisely like that
of a Wigner matrix under minimal assumptions. As the semicircle distribution has
support [−2,2], one might assume that edge of the spectrum will converge to 2.
That this is the case for Wigner matrices is a textbook result [1]. In the present
case, however, we obtain a phase transition phenomenon.

COROLLARY 4.4. Suppose that each row of (bij ) has exactly k nonzero en-
tries. Then the following phase transition occurs as n → ∞:

• If k/ logn → ∞, then ‖X‖/√k → 2 in probability.
• If k/ logn → 0, then ‖X‖/√k → ∞ in probability.
• If k ∼ logn, then {‖X‖/√k} is bounded but may not converge to 2.

PROOF. If k/ logn → 0, then ‖X‖/√k ≥ maxij |gij bij |/
√

k. As each row has
a nonzero entry, the maximum is taken over at least n/2 independent N(0,1) ran-
dom variables which is of order

√
2 log(n/2) as n → ∞. Thus ‖X‖/√k diverges.

For k/ logn → ∞, we note that Corollary 3.9 yields

P
[‖X‖/√k ≥ 2 + ε

]≤ ne−Cεk = n1−Cεk/ logn

for a suitable constant Cε . Thus ‖X‖/√k ≤ 2 + ε + o(1) for any ε > 0. On the
other hand, Theorem 4.3 implies that ‖X‖/√k ≥ 2 − ε − o(1) for any ε > 0.

If k = a logn, Corollary 3.9 similarly yields that P[‖X‖/√k > C] → 0 for a
sufficiently large constant C, so {‖X‖/√k} is bounded. However, Lemma 3.14
shows that E‖X‖/√k � a−1/2 > 3 when a is sufficiently small. �

REMARK 4.5. We have not investigated the precise behavior of ‖X‖/√k for
the boundary case k = a logn. The proof of Corollary 4.4 shows that if a is cho-
sen sufficiently small, the rescaled norm remains bounded but strictly separated
from the bulk as n → ∞. We do not know whether this is the case for all a, or
whether the norm does in fact converge to 2 when a is sufficiently large. A precise
investigation of this question is beyond the scope of this paper.
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In the special case of band matrices, Corollary 4.4 was proved by Sodin [21]
following an earlier suboptimal result of Khorunzhiy [11]. However, his com-
binatorial proof relies on the specific positions of the nonzero entries of (bij ).
In a recent paper, Benaych-Georges and Péché [4] showed in the general setting
(i.e., without assuming specific positions of the entries) that ‖X‖/√k → 2 when
k/ log9 n → ∞. To the best of our knowledge, however, the result of Corollary 4.4
is new. While this result is of independent interest, we particularly emphasize how
effortlessly a sharp conclusion could be derived from the main results of this paper.

Beyond the Gaussian case, Corollaries 3.5 and 3.6 can be used to obtain similar
results in the presence of heavy-tailed entries. Using Corollary 3.5, it can be shown
that ‖X‖/√k remains bounded if and only if logβ/2 n = O(k) when the entries ξij

have moments of order E[ξ2p
ij ]1/2p ∼ pβ/2 with β ≥ 1. This establishes the ap-

propriate phase transition point in the heavy-tailed setting; however, we cannot
conclude convergence to the edge of the semicircle due to the additional universal
constant in Corollary 3.5. On the other hand, using Corollary 3.6 we can estab-
lish convergence to the edge of the semicircle under an assumption on the rate of
growth of k that is suboptimal by a logarithmic factor; this is comparable to the
results in [4], though we obtain a somewhat better scaling. The details are omitted.

4.2. Rademacher matrices. We have seen that our main results provide sharp
bounds in many cases on the norm of matrices with independent Gaussian entries.
While our upper bounds continue to hold for sub-Gaussian variables, this is not
the case for the lower bounds in Section 3.5, and in this case we cannot expect our
results to be sharp at the same level of generality. As a simple example, consider
the case where X is the diagonal matrix with i.i.d. entries on the diagonal. If the
entries are Gaussian, then ‖X‖ � √

logn, so that Theorem 1.1 is sharp. If the
entries are bounded, however, then ‖X‖ � 1. On the other hand, the universality
property of Wigner matrices shows that Theorem 1.1 is sharp in this case even
when adapted to bounded random variables (Corollary 3.3).

In view of these observations, it is natural to ask whether it is possible to obtain
systematic improvement of our main results that captures the size of the norm of
random matrices with bounded entries. For concreteness, let us consider the case
of Rademacher matrices Xij = εij bij , where {εij } are independent Rademacher
(symmetric Bernoulli) random variables. In this setting, we can immediately obtain
a trivial but useful improvement on Corollary 3.3. (In the rest of this section, we
will consider symmetric matrices and universal constants for simplicity; analogous
results for rectangular matrices or with explicit constants are easily obtained.)

COROLLARY 4.6. Let X be the n × n symmetric random matrix with Xij =
εij bij , where {εij } are independent Rademacher variables. Then

E‖X‖ � (σ + σ∗
√

logn) ∧ ‖B‖,
where B := (|bij |) is the matrix of absolute values of the coefficients.
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PROOF. In view of Corollary 3.2, it suffices to show that E‖X‖ ≤ ‖B‖. Note,
however, that this inequality even holds pointwise: indeed,

‖X‖ = sup
v

∑
ij

εij bij vivj ≤ sup
v

∑
ij

|bij vivj | = ‖B‖,

where the supremum is taken over the unit ball in R
n. �

Corollary 4.6 captures two reasons why a Rademacher matrix can have small
norm: either it behaves like a Gaussian matrix with small norm, or its norm is
uniformly bounded due to the boundedness of the matrix entries. This idea mirrors
the basic ingredients in the general theory of Bernoulli processes [22], Chapter 5.
While simple, Corollary 4.6 captures at least the Wigner and diagonal examples
considered above, albeit in a somewhat ad-hoc manner. We will presently show
that a less trivial result can be easily derived from Corollary 4.6 as well.

The norm of Rademacher matrices was first investigated in a general setting by
Seginer [19]. Using a delicate combinatorial method, he proves in this case that
E‖X‖ � σ log1/4 n. The assumption of Rademacher entries is essential: that such
a bound cannot hold in the Gaussian case is immediate from the diagonal matrix
example. Let us show that this result is an easy consequence of Corollary 4.6.

COROLLARY 4.7. Let X be the n × n symmetric random matrix with Xij =
εij bij , where {εij } are independent Rademacher variables. Then

E‖X‖ � σ log1/4 n.

PROOF. Fix u > 0. Let us split the matrix into two parts X = X+ +X−, where
X+

ij = εij bij 1|bij |>u and X−
ij = εij bij 1|bij |≤u. For X−, we can estimate

E
∥∥X−∥∥� σ + u

√
logn.

On the other hand, we estimate for X+ by the Gershgorin circle theorem

E
∥∥X+∥∥≤ ∥∥(|bij |1|bij |>u

)∥∥≤ max
i

∑
j

|bij |1|bij |>u ≤ σ 2

u
.

We therefore obtain for any u > 0

E‖X‖ � σ + u
√

logn + σ 2

u
.

The proof is completed by optimizing over u > 0. �

Corollary 4.7 not only recovers Seginer’s result with a much simpler proof,
but also effectively explains why the mysterious term log1/4 n arises. More gener-
ally, the method of proof suggests how Corollary 4.6 can be used efficiently: we
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should attempt to split the matrix X into two parts, such that one part is small by
Theorem 1.1, and the other part is small uniformly. This idea also arises in a fun-
damental manner in the general theory of Bernoulli processes [22]. Unfortunately,
it is generally not clear for a given matrix how to choose the best decomposition.

REMARK 4.8. In view of Corollary 4.1, one might hope that Corollary 4.6 (or
a suitable adaptation of this bound) could yield sharp results in the general setting
of sparse random matrices. The situation for Rademacher matrices turns out to be
more delicate, however. To see this, let us consider two illuminating examples. In
the following, let k = 
√logn�, and assume for simplicity that n/k is integer.

First, consider the block-diagonal matrix X of the form

X =

⎡
⎢⎢⎢⎢⎣

X1
X2 0

·
0 ·

Xn/k

⎤
⎥⎥⎥⎥⎦ ,

where each Xi is a k × k symmetric matrix with independent Rademacher entries.
Such matrices are considered by Seginer in [19], who shows by an elementary
argument that E‖X‖ ∼ √

logn. Thus Theorem 1.1 already yields a sharp result
(and, in particular, the logarithmic term in Theorem 1.1 cannot be eliminated).

On the other hand, Sodin [20] shows that if X is the Rademacher matrix where
the coefficient matrix B is chosen to be a realization of the adjacency matrix of a
random k-regular graph, then E‖X‖ ∼ √

k ≤ log1/4 n with high probability. Thus
in this case E‖X‖ ∼ σ , and it appears that the logarithmic term in Theorem 1.1 is
missing (evidently none of our bounds are sharp in this case).

Note, however, that in both these examples the parameters σ,σ∗,‖B‖ are iden-
tical: we have σ = √

k, σ∗ = 1, and ‖B‖ = k (by the Perron–Frobenius theorem).
In particular, there is no hope that the norm of sparse Rademacher matrices can be
controlled using only the degree of the graph: the structure of the graph must come
into play. It is an interesting open problem to understand precisely what aspect of
this structure controls the norm of sparse Rademacher matrices. This question is
closely connected to the study of random 2-lifts of graphs in combinatorics [5].
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