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Event-related potentials (ERPs) are recordings of electrical activity along
the scalp time-locked to perceptual, motor and cognitive events. Because ERP
signals are often rare and weak, relative to the large between-subject vari-
ability, establishing significant associations between ERPs and behavioral (or
experimental) variables of interest poses major challenges for statistical anal-
ysis.

Noting that ERP time dependence exhibits a block pattern suggesting
strong local and long-range autocorrelation components, we propose a flexi-
ble factor modeling of dependence. An adaptive factor adjustment procedure
is derived from a joint estimation of the signal and noise processes, given a
prior knowledge of the noise-alone intervals. A simulation study is presented
using known signals embedded in a real dependence structure extracted from
authentic ERP measurements. The proposed procedure performs well com-
pared with existing multiple testing procedures and is more powerful at dis-
covering interesting ERP features.

1. Introduction. High-throughput instrumental data such as event-related po-
tentials [ERPs, see Handy (2004)] and functional magnetic resonance imaging
(fMRI) [Poldrack, Mumford and Nichols (2011)] have become extensively used in
both clinical and research settings. The former provides high temporal resolution
to chart the time course of mental processes, whereas the latter implicates spatial
areas in the brain that might be responsible for experimental effects. With the rou-
tine collection of massive amounts of data from ERP or fMRI studies, researchers
must face the challenge of multiple comparison corrections: in sifting, simultane-
ously, through thousands of comparisons for significant effects, a balance must be
struck between keeping a low false positive error rate while maintaining sufficient
power for correct detection. How to achieve this objective for ERPs exhibiting a
strong and complex dependence pattern over time is the focus of the present paper.

Two papers summarize the current status of mass univariate analysis of ERPs
[Groppe, Urbach and Kutas (2011a, 2011b)]. These papers focused on comparing a
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variety of false discovery rate (FDR) control procedures [Benjamini and Hochberg
(1995)] and permutation tests [e.g., Blair and Karniski (1993)], but they made no
mention of the problem of dependent tests generated by the highly correlated ERPs
over time. However, highly correlated data can severely affect the accuracy of
FDR estimation and the stability of simultaneous testing (i.e., variances of discov-
ery proportions) [Efron (2007)]. Consequently, ignoring dependence among test
statistics also reduces the ability to detect true positives [Leek and Storey (2008)].

The pronounced pattern of temporal dependence observed in ERPs can induce
a long-range regularity in the test statistics, resulting in spuriously low p-values
outside of the support of the signal. Several different approaches can be taken to
address the problem of dependent test statistics. Before the FDR controlling pro-
cedures became popular, Guthrie and Buchwald (1991) had proposed a test which
considers significant only those runs of p-values lower than a preset threshold, for
example, 0.05, whose lengths are unusually long with respect to a reference dis-
tribution for the lengths of such runs assuming an auto-regressive process under
the null. The procedure, however, is not designed to control proportions of false
positives. An alternative approach to dealing with correlation in multiple testing
is to account for dependence by a hidden Markov model [Sun and Cai (2009)]
assuming a latent class structure for the data. Another more general approach is
to account for the multivariate dependence by some data reduction techniques in-
volving latent variables [see SVA, for Surrogate Variable Analysis, by Leek and
Storey (2008), LEAPP, for Latent Effect Adjustment After Primary Projection,
by Sun, Zhang and Owen (2012) and, more recently, Allen, Grosenick and Tay-
lor (2014)]. In genomic data analysis, a notable example of this approach is the
factor analytic multiple testing procedure (FAMT) proposed by Friguet, Kloareg
and Causeur (2009) under the assumption that the conditional covariance of the
responses given the treatment variables can be well approximated by its factor
components [Mardia, Kent and Bibby (1979)]. The FAMT procedure is especially
applicable when accounting for unobserved processes whose effects can linearly
affect responses.

These methods based on latent variables essentially differ in how the covari-
ate’s effect and the latent effects are disentangled in the estimation procedure.
They all assume sparsity of the signal and that signal-free features can be identi-
fied to enable estimation of the factor structure of the noise dependence. In FAMT
[Friguet, Kloareg and Causeur (2009)], a preliminary thresholding method on se-
lection statistics is used to identify the set of null features. SVA [Leek and Storey
(2008)] estimates the covariate’s coefficients without first adjusting for correlation
between the covariate and latent variables and then iteratively isolates the latent
effects by downweighting the features for which the covariate’s effect is nonzero.
LEAPP [Sun, Zhang and Owen (2012)] splits the data in two and introduces a ro-
tation matrix which transforms the data such that the covariate’s effect is removed
for all the rotated features except one. The latent effects are then estimated with
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the former null rotated features using a mixed-effects regression estimation proce-
dure. Finally, the factor structure is plugged into the estimation of the covariate’s
effect which is concentrated in the non-null rotated feature. The FAMT procedure
[Causeur et al. (2011), Friguet, Kloareg and Causeur (2009)] has been modified for
a dynamic factor-adjusted modeling of ERPs arising from the standard analysis of
variance designs in Causeur et al. (2012). The method showed marked improve-
ment over the standard procedures for ERP data analysis in detecting true signals
in simulation studies.

However, none of the decorrelation procedures mentioned above make use of
the highly regular time-dependence structure to disentangle the true signal from
the noise as Guthrie and Buchwald (1991) have done. In the present paper, we il-
lustrate how the regularity of the estimated signal can lead to a misidentification
of support for the signal, which, in turn, produces an erroneous disentanglement
of the covariate’s effect and the latent effects. We therefore propose an estimation
method that alternates between fitting the covariance factor structure and updat-
ing the estimated signal given the covariance between test statistics and a prior
knowledge of signal-free time intervals.

This paper is organized as follows. Section 2 presents the linear model setting
for significance analysis of ERP data. It also introduces two ERP studies: a com-
parison of mean ERP curves observed in two experimental conditions in a standard
auditory oddball paradigm and a more complex directed forgetting experiment in
which ERP time points are to be correlated with recognition memory performance
which is the behavioral measure of interest. The strong time dependence among
test statistics for the association between ERPs and the recognition performance is
investigated. Section 3 proposes a factor regression model as a general framework
to handle time dependence in large-scale significance analysis of ERP data. Sec-
tion 4 proposes an adaptive factor-adjustment procedure, which iteratively captures
the dependence of residual ERPs by a factor-analytic model and simultaneously
corrects the estimation of the signal for the regularity induced by highly correlated
responses. Section 5 presents the results of simulations comparing the proposed
method against the classical procedures introduced in Section 2. Also included for
comparison are two factor regression models: the surrogate variable analysis by
Leek and Storey (2008) and the latent effect adjustment after primary projection
method by Sun, Zhang and Owen (2012). In the final section, the ERP data arising
from the auditory and the memory experiments are analyzed, respectively, using
the proposed method. While the usual FDR-controlling procedures are unable to
detect any meaningful difference between mean curves in the auditory experiment,
the proposed method identifies significant intervals associated with the expected
ERP component called mismatch negativity (MMN) [Näätänen (2003)] that has
been well documented in the research literature. Similarly, in the memory experi-
ment, no meaningful association between ERP time intervals and recognition per-
formance is located by the standard procedures. Interestingly, the proposed method
discovers a significant waveform correlation signal around 400 milliseconds (ms),
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which could be explained by the FN400 component reported in the literature of
ERPs and recognition memory [Rugg and Curran (2007)].

2. A general linear model framework for ERP data analysis. Event-related
potentials (ERP) are voltage changes along the scalp time-locked to some physi-
cal or mental occurrence in the ongoing electrical brain activity recorded as an
electroencephalogram (EEG). In the present section, a general framework is intro-
duced for the significance analysis of ERP data, illustrated by two studies: the first
one uses a standard paradigm, whereas the second one has a more sophisticated
design involving a behavioral response as covariate.

Auditory oddball paradigm. In ERP studies, perhaps the most commonly used
experimental task is the oddball paradigm. In this paradigm, typically two classes
of stimuli (visual or auditory) are presented, one occurring frequently and the other
occurring infrequently (odd). The subject is instructed to respond to the stimuli
either actively (by pressing a button, say) or passively (by simply attending to
them).

An auditory ERP study was performed at Kaohsiung Medical University in Tai-
wan to provide a test case data for the present investigation. College students with
normal hearing are recruited for the study. The stimuli are two pure tones of 500 Hz
and 1000 Hz. The former is presented 120 out of 150 trials, whereas the latter (odd)
is presented only for 30 trials. The order of tone presentation is random. Partici-
pants were asked to fixate on a cross in the center of the screen and pay attention
to the stimuli throughout the duration of the passive listening task. At each of four
electrode locations (FZ, C3, C4 and O1), ERP waveform was obtained from each
of the two tone conditions for each of the 13 participants.

Each curve comprises a total of 1000 ERP measurements, beginning at 100 ms
before stimulus onset and terminating at 399 ms afterward with one record per
0.5 ms. For subsequent analysis, only the ERPs from the electrode FZ at the frontal
medial scalp location will be used because maximal responses have typically been
observed in this region [Näätänen (2003)]. Figure 1 displays the 26 ERP curves
(two for each participant) obtained at electrode FZ.

The classical multivariate two-way analysis of variance model is used for the
above significance analysis. For the ERP measurement Yjkt for participant j , j =
1, . . . , n, at time t in condition k (k = 1 for “500 Hz” and k = 2 for “1000 Hz”),

Yjkt = μt + αjt + βkt + εjkt ,(2.1)

where αt = (α1t , . . . , αnt ) stands for the participant effect with
∑

j αjt = 0 and
βt = (β1t , β2t ) for the condition effect with β1t + β2t = 0. At each time point t ,
the significance analysis of the difference curve is equivalent to testing the null
hypothesis H

(t)
0 : β2t = 0, t = 1, . . . , T .
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FIG. 1. ERP amplitude over time recorded at each half-ms after the onset at the frontal medial
electrode location FZ in the auditory oddball experiment.

Directed forgetting paradigm. People may be motivated to forget unpleasant
events that have happened to them and their ability to do so successfully could be
linked to emotional well-being [Weiner (1968)]. The directed forgetting paradigm
refers to experimental procedures by which participants can be instructed to inten-
tionally forget previously studied information [Johnson (1994)].

The study used the item method similar to that described by Lee, Lee and
Fawcett (2013) to investigate the time course of directed forgetting. The experi-
ment consists of two phases. In the study phase, twenty participants were instructed
(with a “+” or “X” cue, respectively) to either remember or forget a stimulus
word that had been displayed briefly on a computer screen. ERPs were recorded
throughout each of 90 trials—half for to-be-remembered (TBR) and half for to-be-
forgotten (TBF)—each lasting for one thousand milliseconds. Subsequently, par-
ticipant’s ability to recognize whether or not the word had been presented before
was tested (old or new). In the test phase, 90 new words were mixed with 90 old
words. The proportion of hits (a correct “old” response to a word that had indeed
been presented) minus that of false alarms (an “old” response to a “new” word that
had not been presented before) was used as a measure of recognition performance.
ERP amplitudes recorded once per ms from nine electrode positions—3 each from
frontal, central and posterior regions—during the study phase were analyzed. The
ERPs were first averaged over trials by condition for each participant.

It is conjectured that brain activations would be different depending on whether
people were cued to remember or to forget and that the difference could be inferred
from over which time intervals ERPs for a condition are found to be significantly
correlated with the recognition performance. At each electrode position (channel)
on the scalp, the research question can be cast as a large-scale significance analysis
of the statistical relationships between ERPs and the recognition performance x,
for each instruction condition: for the ERP measurement Yjkt for participant j ,
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FIG. 2. t-tests for the significance of βt at channel CZ for the TBR (solid curve) and TBF (dashed)
condition, respectively. The top and bottom horizontal lines give, respectively, the 2.5th and 97.5th
quantiles of the null distribution.

j = 1, . . . , n, at time t in condition k (k = 1 for TBR and k = 2 for TBF),

Yjkt = μt + αjt + γkt + βktxjk + εjkt ,(2.2)

where αt = (α1t , . . . , αnt ) stands for the participant effect with
∑

j αjt = 0 and
γt = (γ1t , γ2t ) for the instruction condition effect with γ1t + γ2t = 0. At each time
point t in a condition k, the analysis of the relationship between ERP measurement
Ykt and the recognition performance x is equivalent to testing the null hypothesis
H

(kt)
0 : βkt = 0, k = 1,2, t = 1, . . . , T . The observed values of the corresponding

t-statistics at channel CZ are displayed in Figure 2.
For each condition and especially for TBF, significant time points are rare, as in-

dicated by the t-statistics in Figure 2. More importantly, the curves show a strong
regularity inconsistent with the expected profile of a sequence of independently
distributed Student’s t-variables. The strong dependence among tests is known to
affect the joint null distribution of test statistics. This strong temporal regularity is
also confirmed by Figure 3: The histogram, on the top of the left panel, shows that a
large portion of the residual correlations of model (2.2) at channel CZ are strongly
positive; the image plot of the residual correlation matrix, on the top right, shows
an apparent autocorrelation component generating a larger number of correlations
near one along the diagonal as well as blocks of strong positive correlations—with
intervals of highly inter-correlated time points and an increasing lag-1 autocorrela-
tion over time. Similar patterns of dependence are observed at other channels. As
a reference, 40 trajectories are generated according to a first-order autoregressive
process. The autocorrelation parameter is set to 0.99, as estimated on ERP data at
channel CZ. The bottom panels of Figure 3 show a histogram and an image plot of
estimated correlations among variables for this dataset. The pattern of dependence
observed on ERP data appears more complex than what could be produced by a
first-order autoregressive structure.
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FIG. 3. Top of the left panel: histogram of correlations among residuals of model (2.2) at chan-
nel CZ over time. Top of the right panel: image plot of the correlations among residuals over time
frames. Bottom of the left panel: histogram of correlations among variables generated according to
a first-order autoregressive process. Bottom of the right panel: image plot of the correlations among
variables generated according to a first-order autoregressive process.

Multivariate Analysis of Variance modeling of ERPs. The following general
framework for the significance analysis of ERPs explicitly accounts for the time
dependence. Let Yit be the measured ERP for subject i = 1, . . . , n, at time t , with
t = 1, . . . , T , where T is the number of frames. For example, a trial lasting for
1000 ms with an ERP recording per 10 ms yields 100 frames. A multivariate
linear model is assumed for the relationship between the ERPs and covariates
xi = (xi1, . . . , xip)′, adjusted for the effect of other covariates zi = (zi1, . . . , zir )
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when necessary:

Yit = μt + β ′
t xi + b′

t zi + εit ,(2.3)

where μt is the intercept at time t , βt and bt are the p- and r-vectors of regression
coefficients associating the ERP at time t with x and z, respectively, and εit is the
random error term, normally distributed with mean 0 and standard deviation σt .
Typically, independence is assumed among the errors εit : for each participant i,
the random vector εi = (εi,1, εi,2, . . . , εi,T )′ is assumed to be normally distributed
with mean 0 and variance Dσ = diag(σ 2

1 , σ 2
2 , . . . , σ 2

T ), where diag(·) stands for
the matrix operator transforming a vector into a diagonal matrix whose diagonal
entries are given by elements of the vector. To account for time dependence in ERP
data, the independence assumption for ε in model (2.3) is relaxed by assuming
Var(ε) = � = D

1/2
σ RD

1/2
σ , where R is a T × T residual correlation matrix.

Model (2.3) explicitly introduces two kinds of covariates: x, whose effects on
ERPs are of primary interest, and z, which can be viewed as auxiliary covariates.
In the directed forgetting experiment, z contains the subject effect and the main
effect of the instruction condition (TBR or TBF). The recognition performance
is the only covariate of interest x. In fact, this special case p = 1 covers a wide
range of situations in which x is a numeric covariate (such as a behavior score)
or a categorical variable for representing two-group comparisons, which are the
most frequently used experimental designs for ERP studies [Handy (2004)] (the
situation in which p > 1 occurs, for example, when the covariate of interest is a
k-group variable, with k > 2). For ease of discussion, we will refer to the T × p

matrix β , whose rows are the p-vectors βt , as the signal.
For ERP data, the signal is usually both rare and weak: rare because for most

time points t , the null hypothesis H0,t : βt = 0 is true (i.e., signal is absent for most
of the observation duration), and weak because, with respect to the moderate num-
ber of subjects in a typical ERP experiment and the amount of residual variability
in ERP curves, the odds are not in favor of successful detection of time points for
which H0,t = 0 does not hold. According to the general linear model theory, the
selection of significant time points is based on the T ×p observed signal, β̂ , whose
rows β̂t are obtained by the ordinary least squares estimation of model (2.3):

β̂t = (
x′Pzx

)−1
x′PzYt ,(2.4)

where Pz = In −Z(Z′Z)−1Z′, Z is the n× (r +1) matrix whose ith row is (1, z′
i ),

Yt = (Y1t , . . . , Ynt )
′ and x is the n × p matrix whose ith row is xi . The vector

T = (Tt )t=1,...,T of test statistics for the set of null hypotheses H0,t is given by the
following expression of F -statistics:

Tt = 1

p

β̂ ′
t x

′Pzxβ̂t

σ̂ 2
t

,(2.5)

where σ̂ 2
t is the standard degree-of-freedom corrected estimate of the residual vari-

ance in model (2.3).



MULTIPLE TESTING OF ERP DATA 227

Under the null hypothesis H0,t , each component Tt of T is distributed accord-
ing to an F-distribution with p and d = n − p − r − 1 degrees of freedom. For
the directed forgetting experiment, p = 1. It explains the use of Student’s t-tests
there, as they are obtained as the signed square root of the test statistics Tt . In the
following, pt stands for the p-value associated with Tt .

It is important to note that, in the present multivariate linear model framework,
the dependence structure of the test statistics is directly inherited from that in
the residual correlation R of model (2.3): under the family-wise null hypothesis
H0 = ⋂

t H0,t , the components of T are indeed F -statistics with the following
correlation structure:

Cor(Tt ,Tt ′) = r2
t t ′

(
1

p
+ 1

d

)
p(d − 4)

p + d − 2
≈d→+∞ r2

t t ′,

where rtt ′ is the generic term of the matrix R.

Multiple testing. The collection of p-values (pt )t=1,...,T is generally the only
input for multiple testing procedures. Among them, the method proposed by
Guthrie and Buchwald (1991) is the first to address the issues of the time depen-
dence in ERPs by assuming a first-order autoregressive correlation structure for
t-tests. The method is designed to prevent erroneous detections of short significant
intervals rather than to control for any Type I error rate.

In contrast, most multiple testing methods consist in rejecting the null H0,t if
pt ≤ p∗, where the threshold p∗ is chosen to guarantee that the corresponding
number V of erroneous rejections of the null is controlled. The most common
methods, which are designed for a moderate number of simultaneous tests, such
as for post-hoc comparisons in analysis of variance, aim at controlling the family-
wise error rate defined as FWER = P(V ≥ 1) to guarantee that FWER ≤ α for a
preset level α. However, FWER-controlling procedures are usually far too conser-
vative when the number of tests, T , becomes large. In the last two decades, the
questions raised by large-scale significance analysis have generated a plethora of
simultaneous testing procedures and thresholding methods for high-dimensional
data [see Efron (2010), van der Laan and Dudoit (2007) for a review of the pop-
ular procedures and Groppe, Urbach and Kutas (2011a, 2011b), Lage-Castellanos
et al. (2010), specifically, for ERP data analysis]. A new family of methods aims
to control, instead of FWER, the false discovery rate (FDR), defined as the ex-
pected proportion of erroneous rejections of the null among the positive tests:
FDR = E(FDP), where the false discovery proportion FDP is 0 if the number
R of rejections is itself 0 and FDP = V/R if R > 0 [Benjamini and Hochberg
(1995)]. More relevant for the current work are methods that control the FDR
by the Benjamini–Hochberg (BH) procedure for correlated tests. The best known
among these is the Benjamini and Yekutieli (2001) (BY) procedure, which mod-
ifies the BH procedure to control the FDR under some specific assumptions of
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positive dependence among tests. We note that testing ERPs from the directed for-
getting experiment by controlling the FDR at the 0.05 level using the original BH
procedure, no significant time points are found at channel CZ, where t-statistics
are displayed in Figure 2.

The negative impact of dependence on the accuracy of multiple testing proce-
dures, especially due to the instability of ranking, has generated a great deal of
research interest. A direct approach to handle the dependence among test statistics
is through modeling dependence structures in the data. In genomic data analysis,
many researchers [Friguet, Kloareg and Causeur (2009), Leek and Storey (2008),
Sun, Zhang and Owen (2012)] proposed modeling the dependence among tests
using a latent factor model to decorrelate the test statistics so as to restore the
consistent ranking in p-values.

3. Time dependence among test statistics. First, we propose a flexible factor
modeling of the residual correlations in model (2.3) to account for the complex
dependence pattern of the ERPs over time. Then, we proceed to model jointly
signals and dependence so as to obtain sharper test statistics after eliminating, as
much as possible, the impact of dependence.

We assume there exist q latent factors, f = (f1, . . . , fq)
′, normally distributed

with mean 0 and variance, Iq , such that, conditional on zi , xi and fi , the ERP
measurement Yit for subject i at time t :

Yit = μt + b′
t zi + β ′

t xi + λ′
t fi + eit ,(3.1)

where λt is the q-vector of factor loadings for Yt and eit is the specific random
error term, normally distributed with mean 0 and variance ψ2

t . Moreover, it is
assumed that the specific errors eit are mutually independent, which induces the
following decomposition of the residual covariance matrix �:

� = 

′ + �,(3.2)

where 
 is the T × q matrix whose t th row is λ′
t and � is the diagonal matrix

whose t th diagonal element is ψ2
t . In other words, latent factors are introduced

to capture linearly the time dependence among residuals of model (2.3) [Causeur
et al. (2012)].

To illustrate the ability of model (3.1) to fit the complex dependence pattern
observed in Figure 3, models with 1, 5 and 10 factors, respectively, are estimated
for the residual correlations of model (2.2) at channel CZ using the EM algorithm
described in Friguet, Kloareg and Causeur (2009). The results are compared in
Figure 4, showing that the general dependence structure can be well approximated
with a moderate number of factors (with respect to the number of time points in
the data). A variety of methods can be used to choose the number of factors for
latent variable models. We discuss this issue further in Section 5.

In the supplementary material [Sheu et al. (2016)], a simulation study based on
model (3.1) is conducted to demonstrate the impact of time dependence on the
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FIG. 4. Image plots of the fitted correlation matrix of the residuals of model (2.2) at channel CZ
using factor models with 1, 5 and 10 factors, top and bottom left panels, respectively. The bottom
right panel reproduces the right panel of Figure 3.

ability of multiple testing procedures to identify a predetermined true signal. The
instability of significant findings discovered by procedures ignoring dependence is
highlighted. Indeed, for highly dependent test statistics, the chance of declaring at
least one time point as significant is much lower than that for independent statistics;
moreover, when positives are found, the expected false discovery proportion is
much larger.

4. Joint modeling of signal and dependence. The method proposed here
employs an iterative scheme to update estimates of signals and estimates of model
parameters for dependence structure in turn. At each step, based on the known
signal-free time points T0, the process of estimation errors outside of T0 is up-
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graded by making use of its correlation with the counterpart in T0. This method
improves over the previous factor modeling approach in detecting ERP signals
[Causeur et al. (2012)].

First, let � = β̂ − β denote the T × p matrix of estimation errors whose t th
row is δt = (x′Pzx)−1x′Pzεt , and εt = (ε1t , . . . , εnT )′ is the n-vector of residual
errors in model (2.3). Let vec(·) be the matrix operator transforming a matrix into a
vector by concatenating its rows. The pT -vector, vec(�), is distributed according
to a normal distribution with mean 0 and covariance Vδ = � ⊗ (x′Pzx)

−1, where
⊗ is the Kronecker matrix product.

Correction of the signal estimation based on a prior knowledge. From cumu-
lative empirical experience with ERP studies, researchers are likely to have gained
some notion for when a signal should begin and how long it should last for an ex-
perimental condition. Lacking such a prior knowledge, one can use the preliminary
results of a multiple testing procedure to screen for time points at which the signal
is unlikely to be present, that is, βt = 0 for t belonging to the collection of mea-
surement occasions T0. Thus, the estimation error δt , for t ∈ T0, is not confounded
with the true signal βt : �0 = β̂0, where �0 (resp. β̂0) is the submatrix of � (resp.
β̂) restricted to t ∈ T0. This allows us to partition � into two submatrices:

�̃ =
(

�0

�−0

)
,(4.1)

where �−0 is the submatrix of � with rows δt , t �= T0, and rearrange Vδ corre-
spondingly:

Ṽδ =
(

�0,0 �′−0,0
�−0,0 �−0,−0

)
⊗ (

x′Pzx
)−1

,

where �0,0 (resp. �−0,−0) is the submatrix of � restricted to rows and columns
corresponding to time points t in T0 (resp. t /∈ T0) and �−0,0 is the submatrix of �

restricted to rows corresponding to t /∈ T0 and columns corresponding to t ∈ T0.
For each t /∈ T0, we predict δt from �0 by its best linear predictor:

vec(�̂−0) = [
�̂−0,0 ⊗ (

x′Pzx
)−1][

�̂0,0 ⊗ (
x′Pzx

)−1]−1 vec(�0)

= [
�̂−0,0 ⊗ (

x′Pzx
)−1][

�̂−1
0,0 ⊗ (

x′Pzx
)]

vec(�0)

= [
�̂−0,0�̂

−1
0,0

] ⊗ Ip vec(�0),

where Ip is the p × p identity matrix and �̂−0,0 and �̂0,0 are estimators of �−0,0
and �0,0, respectively.

Equivalently, in matrix form,

�̂−0 = �̂−0,0�̂
−1
0,0�0.(4.2)

Because a matrix inversion is involved, the choice of an estimator of �0,0 is critical
for numerical computation. Here, we can use the factor model (3.1) to estimate the
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whole matrix � by �̂ = 
̂
̂′ + �̂ , where �̂ is the diagonal matrix of estimated
specific variances �̂2

t and 
̂ is the T × q matrix of estimated loadings (q � T ).
The partition (4.1) of � results in corresponding partitions of � and 
:


̃ =
(


0


−0,

)
, �̃ =

(
�0 0
0 �−0

)
.

Estimators of �0,0 and �−0,−0 are derived as

�̂−0,0 = 
̂−0
̂
′
0, �̂0,0 = �̂0 + 
̂0
̂

′
0.

Note that computing �̂−1
0,0 in expression (4.2) involves only the inversion of a q ×q

matrix according to Woodbury’s identity [Press et al. (2007)]:

�̂−1
0,0 = �̂−1

0 − �̂−1
0 
̂0

(
Iq + 
̂′

0�̂
−1
0 
̂0

)−1

̂′

0�̂
−1
0 .

An estimate �̂(1) for � can be obtained by substituting �̂−0, given by expres-
sion (4.2), for �−0 in (4.1). A new estimate for β is then obtained by correcting
the current estimate β̂ for the predicted estimation error:

β̂(1) = β̂ − �̂(1).

The new estimate is used to update the calculation of the residual errors ε̂:

ε̂(1) = Pz

(
Y − xβ̂(1)′).

A new factor decomposition of the covariance of the updated residual errors is
again derived, producing a new estimate for � and, in turn, a new estimate β̂(k)

of the signal, where the superscript k indicates the step in the iteration. The cal-
culation continues until a predetermined convergence criterion is reached for the
estimation of β .

Decorrelation of test statistics by adaptive factor adjustment (AFA). The litera-
ture on the estimation of factor models, particularly for psychometric applications,
is extensive [see Mardia, Kent and Bibby (1979) for a review]. The maximum
likelihood estimation introduced by Jöreskog (1967) is especially suitable for the
linear model framework of the present approach. Unfortunately, the direct maxi-
mization of the multivariate normal likelihood is intractable. A fast and efficient
Expectation–Maximization (EM) algorithm [Rubin and Thayer (1982)], presented
in detail in Friguet, Kloareg and Causeur (2009), is adapted for the present set-
ting. Once estimates of the factor model parameters are obtained, estimates of the
factors F are given by Thompson’s scores [Thomson (1951)].

A critical issue for factor modeling of ERPs is choosing the optimal number
of factors to retain. Extracting too many factors could render the estimates of the
residual specific variances �̂2

t artificially smaller than expected, inflating false pos-
itives as a result. Observing that the variance of the number of false positives is an
increasing function of the amount of dependence among the test statistics, Friguet,
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Kloareg and Causeur (2009) derive a closed-form expression for the variance infla-
tion Vk of the k-factor model for this dependence. These authors assess the number
of factors by estimating the variance Vk of the number of false positives when the
tests are calculated with the k-factor-adjusted residuals: ε̂− F̂k
̂k for each k-factor
model (
k,�k). Finally, the retained number of factors is k̂ = arg mink Vk . In con-
trast, the number of factors is determined via parallel analysis [Buja and Eyuboglu
(1992)] in surrogate variable analysis [Leek and Storey (2008)] and latent effect
adjustment after primary projection [Sun, Zhang and Owen (2012)].

Once a factor regression model (3.1) [Causeur et al. (2012), Friguet, Kloareg
and Causeur (2009), Leek and Storey (2008), Sun, Zhang and Owen (2012)] is
fitted to a set of dependent data for multiple testing, the new test statistics T̃ (pre-
sumably independent) for testing the collection of nulls H0,t , t = 1, . . . , T , will be
referred to as factor-adjusted test statistics.

In summary, the adaptive factor-adjusted multiple testing procedure we propose
alternates between the estimation of the signal corrected for the predicted estima-
tion error (by factor modeling the dependence structure), and the calculation of
factor-adjusted test statistics, which are then used to update the current knowledge
of T0. Starting from a given T k

0 at the kth step of the procedure with the current
estimate (�̂k, 
̂k; F̂k) of the factor parameters, the (k + 1)th step consists of two
parts:

• Calculate the predicted estimation error �̂(k+1) and update the estimate of the
signal by β̂(k+1) = β̂ − �̂(k+1). Consequently, the residual error is also updated:
ε̂(k+1) = Pz(Y − xβ̂(k+1)′);

• Estimate (�̂k+1, 
̂k+1; F̂k+1) of the factor model based on ε̂(k+1). Factor-
adjusted tests statistics are derived and T0 is, in turn, updated. The update of
T k

0 should favor the selection of time points for which no-signal is expected
with a high confidence, yielding potentially a large number of false positives,
rather than a more stringent rule, which would cover more accurately the true
T0, but also with a higher chance of including the support of the signal. We sug-
gest adopting the following rule: T k+1

0 = {t = 1, . . . , T , p̃
(k+1)
t ≥ 0.2}, where

p̃
(k+1)
t is the current factor-adjusted p-value at time t .

The iteration terminates at step k such that T k+1
0 = T k

0 .
Our experience with the method suggests that different choices of the threshold

(here 0.2 for the rule above) on the p-values to update T0 do not alter the final
result, provided that the choice is not too extreme: a very small value tends to
erase the signal and over-control the FDR, whereas a value near 1 tends to produce
the same results as the estimation method chosen to initialize the method, that is,
ordinary least-squares.

In a multiple testing setting for ERP data analysis, estimating jointly the signal
and the residual covariance model to decorrelate the test statistics can be asso-
ciated with any thresholding procedure depending on whether the overall Type I
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error, FDR or FWER, is to be controlled. Because the BH procedure [Benjamini
and Hochberg (1995)] is widely considered as the gold standard under indepen-
dence, we choose it to correct the p-values produced by the AFA method. This
combination of adaptive factor adjustment estimation with the BH procedure is
hereafter referred to as the AFA multiple testing procedure.

An illustration. A single run of the simulation study presented in supplemen-
tary material [Sheu et al. (2016)], with true nonzero signal on the time interval
[450,550] and peak amplitude maxt βt = 5 at t = 500, is selected to demonstrate
how the regular pattern of the estimated signal induced by the strong time depen-
dence in Vδ can generate confusion between the true signal β and the estimation
error �. The solid curve in the upper panel of Figure 5 represents the values of t-
statistics based on the Ordinary Least Squares estimation (OLS) of the signal. The

FIG. 5. t-statistics for a single simulation run. Top panel: the OLS estimation of the signal (solid
curve) and t-statistics after Adaptive Factor Adjustment, based on T0 = [1,100] ∪ [901,1000] (dot-
ted) and T0 = [450,550] (dashed). Bottom panel: t-statistics after SVA (solid) and LEAPP (dashed)
adjustment. The gray dots above the x-axis indicate significant time points identified by the BH
method controlling the FDR at 0.05 level.
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BH procedure based on the raw p-values not only fails to locate the true signal
but also incorrectly detects significant intervals outside of the support of β . This
is an example of the inconsistent ranking of unadjusted p-values resulting from
applying multiple testing procedures while ignoring dependence.

The bottom panel of Figure 5 shows that neither the surrogate variable analy-
sis (SVA) [Leek and Storey (2008)] nor the latent effect after primary projection
(LEAPP) [Sun, Zhang and Owen (2012)] succeeds in properly disentangling the
signal from the time dependent noise, resulting in erroneous identifications of sig-
nificant intervals.

To illustrate the impact of the prior knowledge of T0 on the proposed estimation
procedure, assume first that no signal is expected in T0 = [1,100] ∪ [901,1000],
which is a proper prior knowledge. The dot-dashed curve of the top panel in Fig-
ure 5 represents the values of t-statistics obtained by the AFA method based on the
former prior knowledge. The significant interval detected after BH correction for
the final factor-adjusted statistics with a control of the FDR at level 0.05 indicates
that the support of the signal is here consistently estimated. The dashed curve in
the same plot displays the values of t-statistics obtained by the AFA method based
on the incorrect prior knowledge of signal-free interval T0 = [450,550], that is,
exactly where the true signal lies. With such a misguided prior for input, AFA
clearly fails by locating significant intervals where the true signal is absent.

To investigate the sensitivity of the significance analysis to the choice of T0, we
have implemented the AFA method on the 1000 datasets in the simulation study
of supplementary material [Sheu et al. (2016)], with true nonzero signal on the
time interval [450,550] and peak amplitude maxt βt = 5 at t = 500, with a fixed
length of 200 ms for T0 = [t0 − 100; t0 + 100] and a center t0 moving from 100
to 900 ms. For each choice of T0, the AFA significance analysis is assessed by
the Positive Predictive Value (PPV), also called precision, defined as the expected
proportion of correct rejections of the null among the positives. Figure 6 displays
the PPV curve along with t0. It confirms that, as soon as the prior knowledge of T0
does not intersect too much of the interval of nonzero signal, the precision of the
method is very good. In the present situation, when more than 50% of T0 is in the
support of the true signal, then the method fails to detect the peak.

5. A comparative study. The performance of the AFA procedure is compared
against that of existing multiple testing procedures chosen either because they are
widely used or because they are specifically designed to account for dependence.
The BY procedure [Benjamini and Yekutieli (2001)] guarantees the control of the
FDR under specific dependence assumptions, although it does not correct for the
impact of correlation by adjusting the raw p-values. The SVA [Leek and Storey
(2008)] and LEAPP [Sun, Zhang and Owen (2012)] procedures are representatives
of recently developed approaches based on a factor regression model similar to
model (3.1) to decorrelate test statistics. The method by Causeur et al. (2012) has
been superseded by the present AFA and is, therefore, not included for comparison.
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FIG. 6. Positive Predictive Value (PPV) of the AFA procedure for different choices of the prior
knowledge of T0 = [t0 − 100; t0 + 100] along t0. The PPV are calculated using 1000 simulated ERP
datasets with true nonzero signal on the time interval [450,550] and true peak amplitude maxt βt = 5
[see supplementary material Sheu et al. (2016)].

To summarize, we compare the performance of the following six different meth-
ods for multiple testing of ERP data (the level of FDR control is set at 0.05 for all
comparisons):

1. BH: the Benjamini–Hochberg procedure [Benjamini and Hochberg (1995)]
applied to the raw p-values.

2. BY: the Benjamini–Yekutieli procedure [Benjamini and Yekutieli (2001)]
applied to the raw p-values.

3. GB: the Guthrie–Buchwald procedure [Guthrie and Buchwald (1991)] ap-
plied to the raw p-values with a graphical threshold equal to 0.05.

4. LEAPP: the latent effect adjustment after primary projection [Sun, Zhang
and Owen (2012)] with control of the FDR using BH. The default options of the
R package leapp [Sun, Zhang and Owen (2014)] are used for the model and the
number of factors.

5. SVA: the surrogate variable analysis procedure [Leek and Storey (2008)]
with control of the FDR using BH. The model and the number of factors are set to
the default options of the R package sva [Leek et al. (2014)].

6. AFA: the proposed adaptive factor adjustment method with a control of the
FDR. The prior input for T0 is the set of time points for which the p-value of the
usual t-test is greater than or equal to 0.2. The number of factors is determined,
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individually for each simulated dataset, by minimizing the variance inflation crite-
rion [Friguet, Kloareg and Causeur (2009)] as implemented in the R package ERP
[Causeur and Sheu (2014)].

In the following simulation study, n × T ERP data are generated according to
model (3.1), with n = 20 and T = 1000 matching the number of participants and
time frames of the directed forgetting experiment. For each simulation run, the
only covariate x is the centered recognition performance as observed in the TBR
condition of the experiment. We set μt = 0, bt = 0, for all t = 1, . . . , T , and use the
sample estimates from the observed ERP curves at electrode CZ for the residual
standard deviations σt , t = 1, . . . , T . The residual correlation R is derived from the
5-factor model displayed in the top right panel of Figure 4. The true signals t �→ βt

have the same bell shape on the same support from 450 to 550 ms with varying
peak heights starting at zero, and then from 1.5 to 12.5 in equal step sizes of 0.1.
Figure 1 in supplementary material [Sheu et al. (2016)] of this paper shows the
corresponding powers of the individual t-tests of H0,t : βt = 0 for a Type-I error
rate α = 0.05. For each signal amplitude, 1000 ERP datasets are generated.

For each simulation run, the procedures are assessed by the FDR, the Positive
Predictive Value (PPV) defined as the expected proportion of correct rejections of
the null among the positives, and the probability of no rejection PNR = P(R = 0),
defined as the expected proportion of datasets for which no null is rejected, where
R is the number of rejections of the null. Figure 7 summarizes the results. The top
left panel of Figure 7 shows that AFA method inherits from the BH procedure good
properties in terms of FDR control, which is far from true for either GB, LEAPP or
SVA, especially when the true signal is weak or moderate. In addition, this control
of the FDR is not affected by the instability caused by dependence as reported in
Section 2. The bottom panel of Figure 7 shows that the probability of no rejection
of AFA is among the lowest, provided that the signal is moderate to high, which
guarantees the positive FDR, namely, the expected False Discovery Proportion
given at least one positive time point has been found, is close to the FDR. In the
top right panel of the same figure, the PPV curve confirms the superiority of AFA
for detecting moderate to high peaks.

Moreover, a multiple testing procedure may be considered as a tool to detect
time points at which a signal is above the threshold from the biomedical signal
processing perspective. In this context, sensitivity refers to the lowest signal am-
plitude at which detection becomes possible for the method under consideration.
We define the sensitivity of a multiple testing procedure as the minimum peak
height for which 1 − PNR exceeds 0.1:

Sensitivity = min
{
max

t
βt ,1 − PNR ≥ 0.10

}
.(5.1)

Similarly, the resolution of a multiple testing procedure is the extent to which it
can detect the time points for nonzero signal. We define the resolution of a method
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FIG. 7. False Discovery Rate (top left), Positive Predictive Value (top right) and Probability of No
Rejection (bottom) for comparing 6 multiple testing procedures using 1000 simulated ERP data set
at each peak amplitude. FDR is expected to be near and below 0.05, PPV large and PNR small.

as the minimum peak height for which PPV exceeds 0.9:

Resolution = min
{
max

t
βt ,PPV ≥ 0.90

}
.(5.2)

The sensitivity and resolution measures of the 6 methods are calculated from
the simulated data sets and presented in Table 1. Overall, the AFA procedure out-
performs the other methods according to the assessment measures considered in
this comparison. Table 1 shows that all three decorrelation methods, SVA, LEAPP
and AFA, are quite sensitive, especially LEAPP, which is consistent with the dis-
play in the top left panel of Figure 7 that, for low to moderate signal amplitudes,
it fails control the FDR at the required level. In terms of the resolution, the AFA
method has the lowest level and GB, the second lowest level, confirming that an
explicit modeling of the residual time dependence is useful to disentangle the sig-
nal from the noise. The same conclusion is also evident from Figure 8, in which
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TABLE 1
Sensitivity and resolution of 6 multiple testing procedures from the simulation study

Multiple testing methods

BH BY GB SVA LEAPP AFA

Sensitivity 3.6 4.9 0.0 1.5 0.0 1.9
Resolution 9.1 10.4 7.9 8.9 >12.5 3.7

the Root Mean Squared Error (RMSE) for β estimation by Ordinary Least Squares
(OLS) fitting, SVA, LEAPP and AFA, are computed from the simulation datasets
and presented as box plots. As expected, OLS, which ignores dependence, per-
forms the worst on average. All three decorrelation methods have markedly lower
RMSE than that of OLS, with the AFA method achieving the smallest error, on av-
erage, at any level of the signal amplitude compared. The increasing difficulty of
the LEAPP method to extract signal from noise as the signal amplitude increases
is again confirmed by the box plots elevating from left to right in the bottom left
panel in Figure 8.

6. Analysis of ERP data.

Auditory oddball experiment. The auditory oddball paradigm introduced in
Section 2 is commonly used to calibrate newly acquired ERP instruments against
that of standard ones which have been in use in the laboratory. From the audi-
tory ERP curves collected in a passive listening task, experimenters can expect

FIG. 8. Root Mean Squared Error for the estimation of β is computed from 1000 datasets at each
signal amplitude, respectively, using each of four methods: OLS, SVA, LEAPP and AFA.
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FIG. 9. Significance analysis of the difference curve (1000 Hz–500 Hz) in the auditory oddball
experiment. Significant time points identified by four multiple testing procedures are indicated by
gray dots above the x-axis: BH, LEAPP, SVA, AFA using the same notation as in Section 5.

to find two signature components: (1) the auditory evoked potential (AEP) peak-
ing between 80 and 120 ms after stimulus onset and maximal over fronto-central
scalp locations in either tone conditions and (2) a mismatch negativity (MNN) for
the difference curves (ERPs for odd tone trials minus that for frequent tone tri-
als) peaking between 100 and 200 ms from onset. The AEP [Rosberg, Butrous
and Ford (2008)] is primarily an exogenous component which can be elicited by
any discernible auditory stimulus without any task demand. The MNN [Näätänen
(2003)] is elicited by any discriminable change (“odd”) in some repetitive aspect
of auditory stimulation (“frequent”).

In biological psychiatry, a reduced AEP and a decrease in the amplitude of
MMN have both been reported in patients with schizophrenia. Therefore, whether
statistical tests can achieve reliable verification of the above two signature ERP
components in the test case data need to be carefully assessed and compared. This
verification is of fundamental importance if these components are to be considered
as electrophysiological markers for further assessment of psychiatric and neuro-
logical disorders [Williams et al. (2005)]. Figure 9 shows the results of signifi-
cance analyses of the difference curve, using the data introduced in Section 2, by
four methods presented in Section 5: BH, LEAPP, SVA and AFA. Note that the
determination of the number of factors by minimization of the variance inflation
criterion in AFA gives 2 factors, whereas the parallel analysis used by LEAPP and
SVA gives 3 factors. The comparison of the four methods shows that MMN is only
identified as significant by AFA. The three other methods point out a late peak
around 300 ms and SVA is noticeably too liberal here.

Directed forgetting experiment. Our ability to recognize words that we have
been told to forget evidently relies more on familiarity than does recognition of
words we were told to remember [see, e.g., Gardiner, Gawlik and Richardson-
Klavehn (1994)]. Empirical studies of recognition memory using ERPs have in-
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dicated that the early phase of recognition involving familiarity is associated with
modulations of the ERP component FN400, an enhanced positivity for old items
relative to new items observed from approximately 400 to 600 ms after stimulus
onset. The finding that the FN400 component increases gradually with recogni-
tion confidence [Rugg and Curran (2007)] also suggests that this component is
an index of familiarity. Although the directed forgetting experiment introduced in
Section 2 is exploratory in nature, previous research indicates that one would ex-
pect significant time intervals around 400 to 600 ms. Qualitatively, one would also
expect late significant time intervals for the TBF condition for electrodes in the
posterior locations. Confirmation of these predictions is an important step forward
in understanding the neurophysiological mechanism regarding intentional control
of remember and forgetting.

However, a naive application of the BH method to the ERP and behavioral
data from the directed forgetting experiment failed to identify any significant time
points at any of the 9 electrode locations. To apply the AFA method, we se-
lected, for frontal and central electrodes, a prior knowledge of T0 = [1,200] ∪
[901,1000] ms, and, for the posterior locations, T0 = [1,200] ms [e.g., Paz-
Caballero and Menor (1999)]. After examining the variance inflation criterion for
each channel, the number of factors was set to 2. The top and bottom panels of
Figure 10 display the correlation curves at channel CZ of the two instruction con-
ditions based on the OLS and the AFA estimations of the signal, respectively. Note
that the AFA method reveals a positive significant waveform, with a large peak in
both conditions in the interval [400,700] ms, which is preceded by a negative sig-
nificant peak only in the TBF condition.

Figure 11 displays a spatial representation on the scalp of the correlation curves
based on the AFA estimation of the signal. Significant positive peaks mainly oc-
curred from 400 to 700 ms for both conditions at each of 9 locations. In addition,
the analysis by the AFA method confirms significant negative peaks appearing in
most locations but only in the TBF condition. This inflexion of the correlation
curves around 400 ms, clearer in the TBF condition, implicates the relationship
between instruction and the modulation of the FN400 component.

7. Conclusions. Mass univariate analysis of event-related brain potentials
[Groppe, Urbach and Kutas (2011a)] has long been recognized as a challenging
problem because ERP signals are often rare, occurring only in brief moments dur-
ing trials, and weak, relative to the large between-subject variability [see Donoho
and Jin (2008), Jin (2009) for the rare and weak terminology]. When testing si-
multaneously for significance over a large number of measurements over time
[Woolrich et al. (2009)], the need to control for the probability of false positive
errors is pitted against that for maintaining reasonable power for correct detection.
Controversies have erupted when researchers appeared to favor one need over an-
other in their statistical methodology [Vul et al. (2009)].
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FIG. 10. Correlations between the ERPs and the recognition performance for the two conditions
(solid curve for TBR, dashed for TBF) based on the OLS (top panel) and the AFA (bottom panel)
estimations of the signal. Significant time points are indicated by gray dots above the x-axis.

Compounding the challenge, ERPs are highly dependent over time, not only
causing the performance of multiple testing procedures under the independence as-
sumption to be unstable but also masking the location as well as the size of the true
signal even after tests are corrected for dependence. The adaptive factor adjusted
method meets the challenge posed by mass univariate ERP analysis within a multi-
variate linear model framework by a factor modeling of the time dependence and a
joint modeling of signal and noise processes, given a prior input on the intervals in
which the signal is absent. An iterative scheme is devised to estimate model param-
eters and the methodology is implemented in an R package available from Com-
prehensive R Archive Network (CRAN) at cran.r-project.org/web/packages/ERP.

Although permutation tests [Blair and Karniski (1993), Westfall and Young
(1993)] have also been widely used in ERP data analysis, we have not reviewed
them here because a recent study [Lage-Castellanos et al. (2010)] reported that the
BH method [Benjamini and Hochberg (1995)] and the local FDR method [Efron
(2007)] provided the best balance (compared against the permutation test) between
Type I and Type II error in situations when there is no a priori information about
when and where ERP differences occur. In light of their conclusion, the results of
our comparative study reported in Section 6 are particularly encouraging: the pro-
posed adaptive factor-adjusted method surpassed all other five methods in keeping

http://cran.r-project.org/web/packages/ERP
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FIG. 11. Correlation curves (solid for TBR, dashed for TBF) based on the AFA estimation of the
signal with corresponding significant intervals for 9 channels.

the FDR under control and maintaining power of correct detection. Furthermore,
the exploratory data analysis of the directed forgetting experiment demonstrated
that the AFA method is ideally suited for detecting weak ERP signals embedded
in a complex and highly dependent noise process.

It is expected that the same estimation procedure can be applied to many mul-
tiple testing situations with strong dependence: either along wavelength in Near
InfraRed Spectroscopy (NIRS) or spatially distributed in function Magnetic Reso-
nance Imaging (fMRI).
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SUPPLEMENTARY MATERIAL

Accounting for time dependence in large-scale multiple testing of event-
related potential data: Online supplement. The impact of ERP time depen-
dence on multiple testing results (DOI: 10.1214/15-AOAS888SUPP; .pdf). To
demonstrate the impact of time dependence on the ability of multiple testing
procedures to identify a predetermined true signal, a simulation study is con-
ducted in which ERP data are generated according to model (3.1). This simulation
study compares the GB procedure [Guthrie and Buchwald (1991)] and two FDR-
controlling procedures: BH [Benjamini and Hochberg (1995)] and BY [Benjamini
and Yekutieli (2001)]. The results highlight the instability of multiple testing re-
sults when using methods ignoring dependence among tests.
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