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CRITICAL BEHAVIOUR OF THE PARTNER MODEL

BY ERIC FOXALL1

Arizona State University

We consider a stochastic model of infection spread incorporating monog-
amous partnership dynamics. In [Ann. Appl. Probab. 26 (2016) 1297–1328],
a basic reproduction number R0 is defined with the property that if R0 < 1 the
infection dies out within O(logN) units of time, while if R0 > 1 the infection
survives for at least eγN units of time, for some γ > 0. Here, we consider the
critical case R0 = 1 and show that the infection dies out within O(

√
N) units

of time, and moreover that this estimate is sharp.

1. Introduction. The contact process is a well-studied stochastic model of in-
fection spread, in which an undirected graph G = (V ,E) determines a collection
of sites V and edges E which we can think of as individuals and as links between
individuals along which the infection can be transmitted. Each site is either healthy
or infectious; infectious sites recover at a certain fixed rate which is usually nor-
malized to 1, and transmit the infection to each of their neighbours at rate λ.

The contact process has been studied in a variety of different settings, including
lattices [1, 3, 7, 8] (to cite just a few), infinite trees [10], power law graphs [2]
and complete graphs [11]. In each case, there is a critical value λc below which
the infection quickly vanishes from the graph, and above which the infection has
a positive probability of surviving either for all time (if the graph is infinite), or
for an amount of time that grows quickly (either exponentially or at least faster
than polynomially) with the size of the graph; in the power law case λc = 0, so
long-time survival is possible whenever λ > 0.

In [5], a version of the contact process on the complete graph, called the partner
model, is introduced, in which the edges open and close dynamically, modelling
the formation and breakup of monogamous partnerships. In this case, the edges E

represent possible connections, and we have a process {Et : t ≥ 0} with Et ⊆ E for
each t ≥ 0 that describes the set of open edges as a function of time. It is shown
there exists a sharp phase transition with a critical value λc that depends on the
edge opening and closing rates r+ and r−, with the property that for a population
of N individuals, for large N :

• the infection dies off within C logN units of time when λ < λc for some C that
depends on λ, and
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• starting from a positive fraction of infectious individuals, the infection survives
for at least eγN units of time when λ > λc, for some γ > 0 that depends on λ.

However, the behaviour when λ = λc is left open, and it is this regime that we
consider here. The main result, which is stated more precisely in Theorem 2.1, is
that the infection dies off within about

√
N units of time.

We note that in the present setting our model is a one-sex model of infection
spread. However, it can easily be generalized to a two-sex model, at the cost of
introducing some additional equations, and a study of this model may be of in-
terest in addressing questions of vaccination strategies for sexually transmitted
infections, as in [12].

2. Description and main result. We begin by defining the partner model and
identifying the location of the phase transition. There are N individuals, that we
picture as vertices on the complete graph KN = (V ,E), and we denote the set of
infectious vertices at time t by Vt . Transmission and recovery are possible, as well
as re-infection. At any moment in time, only a subset of the edges are open for
transmission, and the open edges are denoted Et , so the process is {(Vt ,Et ) : t ≥
0}. The transitions are as follows:

• For each x ∈ Vt , Vt → Vt \ {x} at rate 1.
• For each xy ∈ Et such that {x, y} ∩ Vt = y, Vt → Vt ∪ {x} at rate λ.
• For each xy ∈ E such that xz /∈ Et and yz /∈ Et for all z ∈ V , Et → Et ∪ {xy}

at rate r+/N .
• For each xy ∈ Et , Et → Et \ {xy} at rate r−.

Each infectious individual becomes healthy at rate 1, and along each open edge,
an infectious individual infects a healthy individual at rate λ. If x and y have no
partners, they form a partnership at rate r+/N , and if xy are partnered they break
up at rate r−. The normalization r+/N is so that each individual finds a partner at
a bounded rate. A graphical construction of the process in described in [5].

Letting St and It denote the total number of healthy and infectious single-
tons (i.e., unpartnered individuals), respectively, and SSt ,SIt , IIt the number of
partnered pairs of the three possible types, as noted in [5], (St , It ,SSt ,SIt , IIt )

is a continuous time Markov chain, whose transition rates can be easily written
down. Defining st = St/N , it = It/N , sst = SSt /N , sit = Mt/N , iit = IIt /N ,
(st , it , sst , sit , iit ) is a Markov chain as well, and sometimes more convenient to
work with.

Defining Yt = St + It we have the transitions

Yt →
{

Yt + 2, at rate (N − Yt )r−/2,

Yt − 2, at rate Yt (Yt − 1)r+/(2N),
so letting yt = Yt/N denote the proportion of singletons, as shown in [5], yt ap-
proaches and remains close to a stationary value y∗ which is the unique equilib-
rium in (0,1) for the ODE

y′ = r−(1 − y) − r+y2.



2826 E. FOXALL

FIG. 1. Markov chain used to compute R0, with transition rates indicated; shaded sites are infec-
tious.

To decide whether the infection can spread, we use the following heuristic argu-
ment. We consider the effect of one infectious singleton in an otherwise healthy
population, tracking the individual over one partnership cycle, which is the time
interval that ends at the first moment when the individual either:

• recovers without finding a partner, or
• if it finds a partner before recovering, breaks up from that partnership.

Assuming y ≈ y∗, this leads to the continuous time Markov chain (Zt )t≥0
whose transition rates are as shown in Figure 1. Let τ = inf{t : St ∈ {D,E,F,

G}} < ∞ and define the basic reproduction number

R0 = P(Zτ = F |Z0 = A) + 2P(Zτ = G|Z0 = A),(2.1)

which is the expected number of infectious singletons upon absorption of the above
Markov chain, starting from state A. As shown in [5], if R0 < 1 the infection
dies out by time C logN , for some C > 0, with probability tending to 1 as N →
∞, while if R0 > 1 and |V0| ≥ εN the infection survives up to time eγN with
probability ≥ 1 − e−γN for some γ > 0.

If R0 = 1, then in [5] it is shown for each ε > 0, after constant time depending
on ε, |Vt | ≤ εN . However, the extinction time itself is not investigated. Here, we
prove the extinction time is of order

√
N ; the following is the main result.

THEOREM 2.1. If R0 = 1, then:

• there are C,γ > 0 so that for any (V0,E0), with probability ≥ 1 − e−γm,
|VmC

√
N | = 0, and

• if |V0| ≥
√

N and y0 ≥ y∗ − logN/
√

N , there is c > 0 so that |Vc
√

N | �= 0 with

probability ≥ 1 − e−c(logN)2
.

To get some intuition for this result, we suppose y ≈ y∗. There are three types
of interactions involving infectious singletons—in the descriptions below, in order
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to track the change in It , we think of transitions of type 2 and 3 as accounting for
the final state of the two partners, at the moment of breakup.

1. Recovery of infectious singletons, denoted I → S, that occurs at rate It ,
2. Partnering of infectious singletons with healthy singletons, denoted S + I →

SI, that occurs at rate r+It (y
∗N − It )(1 + o(1))/N , and

3. Partnering of two infectious singletons, denoted I + I → II, that occurs at
rate r+I 2

t (1 + o(1))/N and results in an average decrease in It by some constant
a > 0 with each transition.

Since R0 = 1, transitions 1 and 2 together result in zero average change in It . For
simplicity, assume each transition causes a change of ±1 in It—this is not quite
true, but close enough, just to write something down for the variance in (2.2). If
It = O(

√
N), then letting It = N−1/2I√

Nt and noting the change in timescale, in
a time step h = 1/N ,

E[It+h − It |It ] = −(
ar+ + o(1)

)
I2

t /N,
(2.2)

Var(It+h − It |It ) = (
1 + r+

(
It + y∗) + o(1)

)
It /N.

Thus, It behaves like an almost-critical branching process with a slight negative
drift, given by the diffusion equation

dIt = −ar+I2
t dt + (

1 + r+
(
It + y∗))1/2√

It dBt(2.3)

that hits zero within constant time, suggesting the correct time scale for extinction
is

√
N .

Now, we have cut some obvious corners in arriving at (2.3). In particular, we
have assumed that:

(i) yt ≡ y∗ and that
(ii) partnerships have zero duration,

neither of which is true. Due to these complications, we do not actually try to prove
convergence to a limiting diffusion. Instead, we first account for items (i) and (ii),
then break up the problem into four zones, where C > 0 is a large constant and
c > 0 is a small constant:

1. N ≥ It ≥ C
√

N ,
2. C

√
N ≥ It ≥ c

√
N ,

3. c
√

N ≥ It ≥ N1/4−ε , and
4. It ≤ N1/4−ε .

In each case, we will get just enough control on It (actually, on a related variable
TIt , the “total infections”, described below, that plays the role of |Vt |) to show that
it reaches the low end of the scale with positive probability, uniformly in the initial
configuration, within C′√N amount of time, for some C′ > 0. Using the Markov
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property to iterate, then gives the exponential tail. The lower bound then follows
more easily using the estimates we have gathered up to that point.

The proof is laid out as follows. In Section 4, we address item (i). The main
result of that section is Lemma 4.8, in which we control the speed of decay, the
maximum value and the integral over time, of |yt − y∗|. Along the way, we note a
diffusion limit for the process Yt := N1/2(yt − y∗), that we then ignore in favour
of a more bare-hands approach that allows us to account not only for the size of
fluctuations of yt − y∗ within the range N−1/2, but also the rate of approach of
yt − y∗ to the range N−1/2 from outside of that range. In addition, our approach
yields fairly strong quantitative probability estimates on the events of interest, that
are necessary later on, and that may be interesting in their own right in describing
the rate of convergence of Yt to its limiting diffusive behaviour.

In Section 5, we address item (ii) by changing the variables (It ,SIt , IIt ) to a
new set of variables (It ,SIAt , IIAt ) (the A is for anticipates) that take immediate
account of the final state of partnerships, at the cost of losing the Markov property.
Defining TIt := It + SIAt + 2IIAt that plays the role of |Vt |, and whose transition
rate is directly a function of It , we then make up for this deficiency by producing
a uniform lower bound on the ratio of It to TIt , in Lemma 5.1, which helps us to
ensure that what we want to happen, happens quickly enough.

In Section 6, we decompose transitions in TIt into two parts, the principal part
and the auxiliary part. The principal part assumes that yt ≡ y∗ and the auxiliary
part corrects for that assumption. As shown in Lemma 6.1, the principal part in-
cludes the slight negative drift observed in It , while the auxiliary part includes the
small, but inconvenient effects of fluctuation.

In Section 7, we prove the upper bound in four parts. In each case, we show
the probability of the desired event is bounded away from 0 uniformly in N and
in the particular choice of configuration, although it may depend on c,C. The
greatest difficulty is showing that the estimated fluctuations in yt do not interfere
with things too much.

• In Proposition 7.1, we show that for some C > 0 the time it takes to reach
≤ C

√
N infectious is at most C

√
N .

• In Proposition 7.2, we show that for any c,C > 0 there is C′ > 0 so that the time
it takes to reach ≤ c

√
N from C

√
N infectious is at most C′√N .

• In Proposition 7.3, we show that for some c > 0, the time it takes to reach ≤ Nγ

from ≤ c
√

N infectious, for fixed 0 < γ < 1/4, is O(
√

N).
• In Proposition 7.4, we show the time to go from Nγ to 0 infectious is O(N2γ )

for fixed 0 < γ < 1/4. By comparison with a critical branching process, the
correct order is probably O(Nγ ), since the drift is negligible at this point, but
N2γ suffices and is easy enough to prove.

These are combined in Proposition 7.5 to prove the upper bound. The proof of the
lower bound is simpler and is given in Proposition 7.6.
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Note: After this paper was written, the referee has noted that it may be possi-
ble to prove Theorem 2.1 using the results of [6], that treat models with multiple
timescales. In our case, the fluctuations in yt − y∗ happen on an O(1) timescale,
while It changes on the longer timescale

√
N . Intuitively, the fluctuations in

yt − y∗, occurring on a shorter timescale, can be averaged out. However, we have
not pursued this here.

3. Definitions and preliminaries. We begin with a couple of definitions that
help us describe the likelihood of important events, and the intervals of time over
which they hold.

DEFINITION 3.1. An event A holds:

• with high probability or whp in n if P(A) ≥ 1 − e−γ n for some γ > 0 and n

large enough, and
• for a very long time in n after T (n) if it holds for T (n) ≤ t ≤ eγn for some

γ > 0 and n large enough.

Also, A holds:

• with good probability or wgp in n if P(A) ≥ 1 − e−γ (logn)2
for some γ > 0 and

n large enough, and
• for a long time in n after T (n) if it holds for T (n) ≤ t ≤ eγ (logn)2

for some
γ > 0 and n large enough.

In either case, if T (n) is not mentioned then T (n) ≡ 0.

Note that both high probability and good probability are preserved under fi-
nite intersections. Also, since e−c(logn)2 = n−c logn and logn is increasing and un-
bounded, if an event holds with good probability then for any α > 0 and n large
enough, it holds with probability ≥ 1 −n−α . By the same token, for any α > 0 and
n large enough, if an event holds for a long time in n after T (n) then in particular
it holds for T (n) ≤ t ≤ nα .

REMARK 3.1. A useful trick lets us boost whp over a single time interval to
whp for a very long time, and similar to boost wgp to wgp for a long time. Namely,
E is an event measurable in terms of the state of the process, and has the property
that

P
(
E fails to hold for some t ∈ [0, h]) ≤ e−cn

for some c,h > 0 uniformly in the initial values of the process, then by iterating
on time intervals [kh, (k + 1)h] for k = 0,1, . . . , ecn/2 and taking a union bound
we find that

P
(
E fails to hold for some t ∈ [

0, ecn/2h
]) ≤ e−cn/2.
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REMARK 3.2. In this paper, the ultimate goals are to show that:

1. extinction by time C
√

N has positive probability uniformly in the initial
configuration, and that

2. non-extinction by time c
√

N has positive probability within a certain range
of configurations.

Therefore:

1. We can restrict the process to the intersection of any finite collection of
events E1, . . . ,Ek , if each Ei holds with probability 1 − o(1).

2. We only care about what happens to the process over the time horizon
√

N .

In particular, if E1, . . . ,Ek each hold with good probability for a long time after
Ti(N), with each Ti = o(

√
N), then we can ignore what happens before maxi Ti ,

and so can assume that
⋂k

i=1 Ei always holds, and we do not need to keep track of
its probability.

The following basic large deviations estimate is proved in [5] and is useful
throughout.

LEMMA 3.1. Let X be Poisson distributed with mean μ, then

P
(
X > (1 + δ)μ

) ≤ e−δ2μ/4 for 0 < δ ≤ 1/2,

P
(
X < (1 − δ)μ

) ≤ e−δ2μ/2 for δ > 0.

The following result, proved in [5], is the starting point for our investigations.

LEMMA 3.2. For each ε > 0, there is T > 0 so that with high probability in
N for a very long time after T , |Vt | ≤ εN and |yt − y∗| ≤ ε.

REMARK 3.3. As our first application of Remark 3.2, since T > 0 is constant,
and thus o(

√
N) and since

√
N = o (a very long time), we may always fix ε > 0

and assume that both |Vt | ≤ εN and |yt − y∗| ≤ ε holds for all time.

In [5], for R0 �= 1 we deal with the regime |Vt | ≤ εN using comparison to a
branching process, but for R0 = 1 that approach does not work. Since the value of
yt affects the rate of spread of the infection, our first step is to get better control on
the proportion of singletons.

4. Proportion of singletons. In this section, we consider the proportion of
singletons yt , and control its distance from equilibrium, defined as δy := y − y∗.
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First, we make an observation that guides our choice of spatial rescaling. Letting
Yt = √

N(yt − y∗), Yt has transitions

Yt →
{
Yt + 2/

√
N, at rate r−

(
1 − y∗)

N/2 − r−
√

NYt /2,

Yt − 2/
√

N, at rate r+
(
y∗)2

N/2 + r+
(√

Ny∗Yt +Y2
t /2

)
.

Noting that r−(1 − y∗) − r+(y∗)2 = 0 by definition of y∗, in a time step h = 1/N ,

E[Yt+h −Yt |Yt ] = −(1/N)
(
r−Yt + 2r+y∗Yt + o(1)

)
,

Var(Yt+h −Yt |Yt ) = (2/N)
(
r−

(
1 − y∗) + r+

(
y∗)2 + o(1)

)
so letting

μ(x) = −(
r− + 2r+y∗)

x and σ 2 = r−
(
1 − y∗) + r+

(
y∗)2

we find that Yt approaches the solution to the diffusion equation

dYt = μ(Yt ) dt + σ dBt .

It may seem that making this rigorous would be a more direct way of showing
fluctuations in yt − y∗ are of order N−1/2, as opposed to the somewhat bare hands
approach that we take here. However, as seen in Lemma 4.8, our approach yields
quantitative estimates on the probability that fluctuations in yt −y∗ exceed the pre-
scribed values. This will be useful later on when we need to apply these estimates
a number of times that grows unboundedly with N .

We begin by showing that after a little while, δyt has reached a fairly small
value.

LEMMA 4.1. Let τ = inf{t : |δyt | ≤ logN/
√

N}. Then there is C > 0 so that
τ ≤ C logN wgp in N .

PROOF. In what follows, ε, c,C refer to positive constants such that ε, c,1/C

may get smaller from step to step. Moreover, some inequalities hold only for N

large enough. By Lemma 3.2, for any fixed ε > 0, there are T ,γ > 0 so that

whp |δyt | ≤ ε for all T ≤ t ≤ eγN

so we may assume |δy| ≤ ε. Let

ru(y) = r−(1 − y)/2 and rd(y) = r+y2/2 − r+y/(2N)

so that Nru(yt ),Nrd(yt ) are the respective rates of upward and downward transi-
tions in yt . First, observe that

max
(
ru(y), rd(y)

) ≤ max(r+, r−)/2 for all y ∈ [0,1],(4.1)

which is ≤ C for any C ≥ max(r+, r−)/2, and since y∗ ∈ (0,1), for any 0 < ε ≤
min(y∗,1 − y∗)/2 > 0 and |y − y∗| ≤ ε,

min
(
ru(y), rd(y)

) ≥ min(r+, r−)ε2/2 − r+/(2N),
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which is ≥ min(r+, r−)ε2/4 > 0 for N large enough. By definition of y∗, ru(y∗)−
rd(y∗) = r+y∗/(2N), so writing ru and rd as functions of δy,

ru(δy) − rd(δy) = (
r ′
u

(
y∗) − r ′

d

(
y∗))

δy + o(δy) + r+y∗/(2N)

moreover (r ′
u(y

∗) − r ′
d(y∗)) < 0. If N · |δy| → ∞ as N → ∞ then r+y∗/(2N) =

o(δy)—this is ok for this proof since we may assume |δy| ≥ 1/
√

N . Thus, for
ε > 0 small enough, N large enough and |δy| ≤ ε,

if δy > 0 then rd(δy) − ru(δy) ≥ ε · δy(4.2)

and if δy < 0 then ru(δy) − rd(δy) ≥ ε · |δy|.
Suppose δy0 > 0; a similar argument applies in the opposite case. Define

τ = inf
{
t : δyt ≤ (

1 − ε2)
δy0

}
.

Since ru(δy) decreases with δy, if t < τ then

ru(δyt ) ≤ ru
((

1 − ε2)
δy0

)
(4.3)

and since rd(δy) increases with δy, and using (4.2), if t < τ then

rd(δyt ) ≥ rd
((

1 − ε2)
δy0

) ≥ ru
((

1 − ε2)
δy0

) + ε
(
1 − ε2)

δy0.(4.4)

Using Lemma 3.1 with

μu = ru
((

1 − ε2)
δy0

) · N and δuμu = 1
3ε

(
1 − ε2)

δy0 · N
since μu ≤ CN · δy0 by (4.1), it follows that δu ≥ cδy2

0 > 0 uniformly in N for
some c > 0. Using (4.3), with probability ≥ 1 − exp(−cNδy2

0) for some c > 0,
either τ < 1 or there are at most (1 + δu)μu upward transitions before time 1.

Similarly, using Lemma 3.1 with

μd = rd
((

1 − ε2)
δy0

) · N and δdμd = 1
3ε

(
1 − ε2)

δy0 · N
and using the first part of (4.4), with probability ≥ 1 − exp(−cNδy2

0), either τ < 1
or there are at least (1 − δd)μd downward transitions before time 1. Using (4.4),

(1 − δd)μd − (1 + δu)μu = 1
3ε

(
1 − ε2)

δy0

and since each transition moves δy by 2/N , with probability ≥ 1 −
2 exp(−cNδy2

0), either τ < 1 or

δy1 ≤ δy0 − 1
3ε

(
1 − ε2)

δy0

and for ε > 0 small enough this is at most (1 − ε2)δy0, which implies τ ≤ 1.
Summarizing so far, there are constants ε, c > 0 so that if δy0 ≥ 1/

√
N , then

with probability ≥ 1−2 exp(−cNδy2
0) there is t ∈ (0,1] so that δyt ≤ (1− ε2)δy0.

Also, since a similar argument applies when δy0 < 0, the same is true if δyt is
replaced by |δyt |.
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If |δy| ≥ c logN/
√

N, then 1 − 2 exp(−cNδy2
0) is at least

1 − exp
(−cN(c logN/

√
N)2) = 1 − exp

(−c(logN)2)
for some possibly smaller c > 0. Since |δy0| ≤ 1, choosing k so that |δy0|(1 −
c)k ≤ logN/

√
N gives k ≤ C logN with C = 1/(2 log(1/(1−c))). Taking a union

bound, with probability at least

1 − C log(N)e−c(logN)2 ≥ 1 − e−(c/2)(logN)2

for N large enough, and using the strong Markov property at each stopping time,
there is a time t ≤ C logN so that |δyt | ≤ logN/

√
N , as desired. �

The next step is to examine what happens to δyt on the scale 1/
√

N . Before
doing so, we collect some facts about random walk on an interval, absorbed at the
boundary. The first is a restatement of Theorem 6.4.6 in [4].

LEMMA 4.2. Let Xn be a (discrete time) random walk on {0, . . . ,M}, ab-
sorbed at {0,M}, with

Xn+1 =
{

Xn + 1, with probability px,x+1,

Xn − 1, with probability px,x−1 = 1 − px,x+1,

when Xn ∈ {1, . . . ,M − 1}. Let T = inf{n ≥ 0 : Xn ∈ {0,M}} and let b(x) =
px,x−1/px,x+1, then for x = 1, . . . ,M − 1,

P(XT = M|X0 = x) = 1 + ∑x−1
j=1

∏j
i=1 b(i)

1 + ∑M−1
j=1

∏j
i=1 b(i)

with the numerator equal to 1 when x = 1.

LEMMA 4.3. Let M,Xn,T , b be as in Lemma 4.2. There is C > 0 so that if
b(x) ≡ b is constant in x (although it may depend on M) and M is large enough,
then for integer m ≥ 1,

P
(
T ≥ mCM2) ≤ 2−m.

If b = 1, then for each c > 0, there is p(c) > 0 with p(c) → 1− as c → 0+, such
that

P
(
T ≥ cM2) ≥ p(c).

The above two statements remain true if Xt is a continuous time random walk
moving at rate 1.
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PROOF. If b(x) ≡ b is constant, by symmetry it is enough to consider b ≥ 1.
In this case a simple coupling argument shows that Xn is stochastically dominated
by symmetric simple random walk Yn on Z, provided X0 ≤ Y0. Letting Y0 = X0
and T ′ = inf{n : Yn = 0}, T is stochastically dominated by T ′. Letting T± denote
inf{n : Yn = M/2 ± M/2}, the reflection principle plus the local central limit theo-
rem gives, for each a > 0,

lim
M→∞P

(
T+ ≤ aM2/4

) = 2
∫ ∞

1/
√

a
e−x2/2 dx

and the same holds, by symmetry, for T−. Taking a large enough that the right-
hand side is ≥ 3/4, letting C = a/4 and noting that T ′ = min(T+, T−), we find
P(T ′ > CM2) ≤ 1/2 for large enough M , and the same holds for T by comparison.
Using the Markov property to iterate gives P(T > mCM2) ≤ (1/2)m as desired.

To get the second statement, given c > 0 let r(c) = 1 − 2
∫ ∞

1/
√

4c
e−x2/2 dx > 0

and let p(c) = r(c)e−c. Then, limM→∞P(T ′ > cM2) = r(c) > p(c), for large
enough M the value is ≥ p(c), moreover p(c) → 1− as c → 0+.

The result in continuous time follows in the same way after controlling the
number of transitions up to time t with the help of Lemma 3.1; details are omitted.

�

Next, we look at a specific Markov chain that as shown later roughly corre-
sponds to the sequence of visits of δyt to the points {k/

√
N : k = 1, . . .}. The

choice pk,k−1/pk,k+1 = eck is motivated by the upcoming (4.6).

LEMMA 4.4. Let Kn be the Markov chain on {1,2, . . .} with p1,2 = 1 and
pk,k−1 + pk,k+1 = 1 with pk,k−1/pk,k+1 = eck for k > 1, for some fixed c > 0. Let
T = inf{n > 0 : Kn = 1} and for j, k > 1 let ρj,k = P(Kn = k for some 0 < n <

T |K0 = j) and let

G(j, k) =
T −1∑
i=0

1(Ki = k|K0 = j).

Then:

1. ρj,k = 1 if j > k,
2. ρk,k = pkk+1 + pk,k−1ρk−1,k and

3. ρj,k ≤ je−c((k
2)−(j

2)) if j < k

and for d > 0, P(G(j, k) > d) = ρj,kρ
d
k,k .

PROOF. Since Kn moves only step at a time, it visits all of {2, . . . ,K0} before
hitting 1, so if j > k then ρj,k = 1. The formula for ρk,k follows from this fact after
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conditioning on the value of K1. If j < k then letting Tk = inf{n : Kn ∈ {1, k}},
ρj,k = P(KTk

= k|K0 = j) so using Lemma 4.2,

ρj,k = 1 + ∑j−1

=1 ec(
+1)
/2

1 + ∑k−1

=1 ec(
+1)
/2

≤ je(c/2)(j (j−1)−k(k−1))

as desired. The last statement follows from the definition of ρj,k and the Markov
property. �

Using this result, we can control the sum of Kn from the time it starts at level k

until it hits level 1.

LEMMA 4.5. For Kn as in Lemma 4.4 and j > 1, let K0 = j and let G(j) =∑T −1
n=0 Kn = ∑

k>1 kG(j, k), then for d large enough and some C > 0 that depends
on c,

P
(
G(j) ≤ 9j2d + jd2/2 + d3/4

) ≥ 1 − Ce−cd/4.

PROOF. We use the results of Lemma 4.4 without mention. Let dk be a se-
quence of integers, then

P

(
G(j) >

∑
k>1

kdk

)
≤ ∑

k>1

P
(
G(j, k) > dk

)

so given d , we want a sequence dk such that∑
k>1

kdk ≤ j2d + jd2 + d3 and
∑
k>1

P
(
G(j, k) > dk

) ≤ 3e−2cd/3.

By definition pk,k+1 = 1/(1 + eck) ≤ e−ck and since
(k
2

) − (k−1
2

) = k − 1, ρk−1,k ≤
(k − 1)e−c(k−1), and so

ρk,k ≤ ke−ck/3 for all k > 1.

For any k, it follows that P(G(j, k) > dk) ≤ ke−ckdk/3. If k > j then for i = k −
j ≥ 1, since

(i+j
2

) − (j
2

) = (i2 + 2ji − 1)/2 ≥ i2/2,

ρj,k ≤ je−ci2/2

and so

P
(
G(j, k) > dk

) ≤ jke−c(i2/2+kdk/3).

If i ≥ 2k/3, that is, k ≥ 3j , then use dk = d − i so that i2 + kdk/3 ≥ kd/3. If
k < 3j use dk = d . Then∑

k>1

P
(
G(j, k) > dk

) ≤ ∑
2≤k≤3j

ke−ckd/3 + ∑
k>3j

jke−cdk/3,
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which is at most Ce−cd/4 when d is large enough, and

∑
k>1

kdk =
3j∑

k=2

kd +
�d�∑
i=1

(j + i)(d − i) ≤ 9j2d + jd2/2 + d3/4.
�

Before continuing, we collect some large deviations estimates. Since these are
standard facts, their proof is given in the Appendix.

LEMMA 4.6. If X ∼ binomial(n,p) then for x > 0 and letting r = x/np,

P(X > x) ≤ e−x(1/r+log(r/e))

and for 0 < δ < 1,

P
(
X < (1 − δ)np

) ≤ e−npδ2/2.

If Xi, i = 1, . . . ,m are independent and Xi ∼ geometric(p), that is, P(Xi > d) =
pd for i = 1, . . . ,m then letting Sm = X1 + · · · + Xm,

P
(
Sm > (1 + δ)m/(1 − p)

) ≤ e−m(δ−log(1+δ)).

Next, we control the sum of Kn over repeated excursions away from level 1.
The proof consists of repeated application of large deviations estimates, as well as
a truncation/estimation step.

LEMMA 4.7. Let T0 = 0 and for n = 1,2, . . . let Tn = inf{m > Tn−1 : Km =
1}. If K0 = 1 then there is C > 0 so that with good probability in n,

Tn−1∑
i=0

Ki ≤ Cn.

PROOF. For k > 1, let Gj(2, k) = ∑Tj−1
i=Tj−1+1 1(Ki = k), then

Tn−1∑
i=0

Ki = n + ∑
1≤j≤n,k>1

kGj (2, k)

and for fixed k, {Gj(2, k) : j ∈ N} are independent and distributed like G(2, k)

from Lemma 4.4. Letting Jn(k) = {j ∈ {1, . . . , n} : Gj(2, k) > 0} be the excur-
sions that reach level k, and letting Vn(k) = |Jn(k)|, since P(Gj (2, k) > 0) = ρ2,k

and by independence of successive excursions, Vn(k) ∼ binomial(n,ρ2,k) and

Tn−1∑
i=0

Ki = n + ∑
k>1

k
∑

j∈Jn(k)

Gj (2, k)
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and for fixed k, {Gj(2, k) : j ∈ Jn(k)} are independent and distributed like
{G(2, k)|G(2, k) > 0}, which has P(G(2, k) > d|G(2, k) > 0) = ρd

k,k , that is, is
geometric with parameter ρk,k . Since by Lemma 4.4,

ρ2,k ≤ e−(c/2)(k(k−1)−2) ≤ e−(c/2)((k/2)2) = e−ck2/8

it follows that Vn(k) is at most binomial(n,p) with p = e−ck2/8. Recalling
Lemma 4.6, to find the values k such that Vn(k) = 0 with good probability set
x = 1/2 so that r = x/(np) ≥ eck2/8/(2n) and then

P
(
Vn(k) > 0

) ≤ e−(1/2)[ck2/8−log(2ne)] = (2ne)1/2e−ck2/16,

which if k = �logn� + k′ is at most

(2ne)1/2e−c(logn+k′)2/16 ≤ (2e)1/2n1/2−(c/16) logne−ck′2/16.

Since (2e)1/2 ∑
k′≥1 e−ck′2/16 < ∞, for C > 0 large enough we find that

P
(
Vn(k) = 0 for all k > �logn�) ≥ 1 − Cn1/2−(c/16) logn,

which is at most Cn−(c/32) logn, for some possibly larger C > 0. For k =
2, . . . , �logn� and C > 0 let x = Cnk−3, then r = x/(np) ≥ Ck−3eck2/8 and

P
(
Vn(k) > Cnk−3) ≤ e−nk−3(ck2/8−3 log k+log(C/e)),

which is at most e−(c/16)n/k for every k ≥ 2 provided C is taken large enough that
3 log k − log(C/e) ≤ ck2/16 uniformly for k ≥ 2. Since k ≤ logn + 1 = log(ne),
e−(c/16)n/k ≤ e−(c/16)n/(log(ne)) and after summing and taking the complement we
find

P
(
Vn(k) ≤ Cnk−3 for k = 2, . . . , �logn�) ≥ 1 − log(n)e−(c/16)n/(log(ne)).

It remains to control the sums ∑
j∈Jn(k)

Gj (2, k).

If j ∈ Jn(k) then Gj(2, k) > 0 and as noted above, {Gj(2, k)|Gj(2, k) > 0}
is geometric with parameter p = ρk,k , that is, P(Gj (2, k) = d|Gj(2, k) > 0) =
pd−1(1 − p). With the notation of Lemma 4.6, and setting δ = 1/2 while noting
1/2 − log(3/2) ≥ 1/16,

P
(
Sm > (3/2)m/(1 − p)

) ≤ e−m/16.

Thus, on the event that V (k) ≤ Cnk−3 for each k ∈ {2, . . . , �logn�}, using the
above estimate for each k with m = Cnk−3 ≥ Cn/(3 logne) and recalling that
p = ρk,k , we find

P

( ∑
j∈J (k)

Gj (2, k) ≤ (3/2)Cnk−3/(1 − ρk,k) for k = 2, . . . , �logn�
)

≥ 1 − log(n)e−Cn/(48 logne).
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If k > 1 then ρk,k < 1, and from the proof of Lemma 4.5 we have ρk,k ≤ 2e−ck/3,
so

∑
k>1 k−2/(1−ρk,k) < ∞. Summarizing, for some C > 0 the events considered

occur together with probability ≥ 1 − Cn−(c/32) logn, and when they occur,

Tn−1∑
i=0

Ki = n + ∑
j∈J,k>1

kGj (2, k) ≤ n

(
1 + (3/2)C

�logn�∑
k=2

k−2
/

(1 − ρk,k)

)
≤ Cn

for some possibly larger C > 0 that does not depend on n. �

Next, we come to the main event of this section. Since the proof is somewhat
lengthy, it is broken up into a few pieces.

LEMMA 4.8. Let δyt = yt − y∗ and let T = inf{t : δyt ≤ 1/
√

N}, then:

1. there is C > 0 so that if N large enough, then with good probability in t , if
|δy0| ≤ 1/

√
N then ∫ t

0
|δys |ds ≤ Ct/

√
N

2. for each c > 0, with good probability in N , if |δy0| ≤ c logN/
√

N then
|δyt | ≤ 2c logN/

√
N for a long time, and

3. there is C ′ > 0 so that for each C > 0, if |δy0| ≤ C logN/
√

N then with
good probability in N , ∫ T

0
|δyt |dt ≤ C′(logN)6/

√
N.

PROOF. As in the proof of Lemma 4.1, we use c and C that may change from
step to step, and we may assume that |δyt | ≤ ε for small ε > 0. Since it is nicer to
work with integer-valued things, we will work with Yt = Nyt instead of yt . Recall
from Section 2 that

Yt →
{

Yt + 2, at rate (N − Yt )r−/2,

Yt − 2, at rate Yt (Yt − 1)r+/(2N).

Defining δYt := Yt − 2�Ny∗/2�, if N is even the range of δYt is then a subset
of {x ∈ 2Z : |x| ≤ N}. We will stick with this convention, but nothing is really
different if N is odd.

Step 1: Upper bound on |δYt |. Our first task is to define a nicer looking chain Xt

that dominates |δYt |. Notice that δy − δY/N = �Ny∗�/N − y∗ = O(1/N), and so
√

Nδy − δY/
√

N = O(1/
√

N).

In other words, δy, on the scale 1/
√

N , is for large N very nearly equal to δY , on
the scale

√
N , so it is enough to prove our results for δY on the scale

√
N .



PARTNER MODEL 2839

Recall ru and rd from the proof of Lemma 4.1, that can be viewed as functions
of δY . From that proof, it follows that for some c > 0 and N large enough, if
|δY | ≥ √

N then

rd(δY ) − ru(δY ) ≥ c · δY/N for δY > 0

and similarly ru − rd ≥ c · |δY |/N for δY < 0. Since max(ru, rd) ≤ C, if δY > 0
and suppressing the argument,

rd/ru = (rd − ru)/ru + 1 ≥ 1 + (c/C) · δY/N

and similarly ru/rd ≥ 1 + (c/C) · |δY |/N when δY < 0. Let

q+(δY ) := Nru(δY ) and q−(δY ) := Nrd(δY )

denote the respective rates of upward and downward transitions in δY . It follows
that

q−/q+ ≥ 1 + c · δY/N when δY > 0

and q+/q− ≥ 1 + c · |δY |/N when δY < 0. Letting M = 2�√N/2�, a simple cou-
pling argument then shows that |δYt | is stochastically dominated by the continuous
time Markov chain Xt on 2N∩ [M,∞) with X0 = max(δY0,M) and

Xt →
{

Xt + 2, at rate q+(Xt),

Xt − 2, at rate q+(Xt)(1 + cXt/N),

with the proviso that if Xt = M then the rate of decrease is zero.
Step 2: Upper bound on Xt . In order to apply earlier lemmas, we make one

more upper bound. Let S = {jM : j ∈ Z} and define a process Zt on 2N∩ [M,∞)

as follows. Let t0 = inf{t > 0 : Zt ∈ S} and define recursively

ti = inf
{
i > ti−1 : Zt ∈ {Zti−1 ± M}}

and let Ki = Zti /M . Then let

r−(x, k) =
⎧⎪⎨
⎪⎩

0, if x = M,

q+(x), if x > M,k = 1,

q+(x)
(
1 + ck/(2

√
N)

)
, if x > M,k > 1,

and for ti−1 ≤ t < ti define Zt by the rates

Zt →
{

Zt + 2, at rate q+(Zt ),

Zt − 2, at rate r−(Zt ,Ki).

Comparing the rates one verifies that Xt is stochastically dominated by Zt , which
in turn means that δYt is dominated by Zt . Notice that Ki is a discrete time Markov
chain on the state space {1,2, . . .} and satisfies p12 = 1 and pk,k−1 + pk,k+1 = 1
for k > 1. Since its transition rates depend on past values several steps back in
time, Zt is not, globally in time, a Markov chain. However, if we define

Z̃
(i)
t = Zti−1+t for t ∈ [0, ti − ti−1)
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then for each i, Z̃(i)
t is a continuous time Markov chain on its interval of definition.

Step 3: Item 1. Since Zt dominates δYt , it is enough to show
∫ t

0 Zs ds ≤ Ct
√

N

with good probability in t . To tackle this integral, we break it up as follows: if
tn−1 ≤ t < tn then

1

t

∫ t

0
Zs ds ≤ 1

tn−1

n∑
i=1

(ti − ti−1)(Ki−1 + 1)M.(4.5)

Transition probabilities of Ki . We examine what happens on time intervals
[ti−1, ti), where Ki−1 is fixed. For i > 0, letting s0 = 0 and

sj = inf
{
t > sj−1 : Z̃(i)

t �= Z̃(i)
sj−1

}
be the jump times of Z̃

(i)
t and defining Z̃

(i)
j = Z̃

(i)
sj , as shown in [9], Z̃

(i)
j is a

discrete time Markov chain with

Z̃
(i)
j =

⎧⎨
⎩

Z̃
(i)
j + 2, w.p. p+ = q+/(q− + q+),

Z̃
(i)
j − 2, w.p. p− = q−/(q− + q+),

and the random variables {sj − sj−1 : n ≥ 0} are independent and exponentially
distributed with exponential rate q+ +q−. Note that p−/p+ = q−/q+. In our case,
cN ≤ q+ + q− ≤ CN and p−/p+ = 1 if Ki−1 = 1 and = 1 + cKi−1/(2

√
N) if

Ki−1 > 1, and in particular is constant. If k > 1, using the transition probabilities
for Z̃

(i)
j and Lemma 4.2, the transition probability pk,k+1 for Ki satisfies

pk,k+1 = 1 + ∑M−1
n=1 (1 + ck/(2

√
N))n

1 + ∑2M−1
n=1 (1 + ck/(2

√
N))n

= (1 + ck/(2
√

N))M − 1

(1 + ck/(2
√

N))2M − 1
(4.6)

= ((
1 + ck/(2

√
N)

)M + 1
)−1

since the denominator is a difference of squares. Letting x = (1 + ck/(2
√

N))M ,
pk,k+1 = 1/(x + 1) so pk,k−1 = x/(x + 1) and pk,k−1/pk,k+1 = x, and since M =
�√N�, x ≥ eck for some c > 0 uniformly for k ∈ {2, . . . ,

√
N}. Therefore, Ki is

stochastically dominated by the Markov chain with pk,k−1/pk,k+1 = eck defined
in Lemma 4.4, and so are the quantities Tj − Tj−1 and

Gj(2, k) =
Tj−1∑

i=Tj−1

1(Ki = k)

from the proof of Lemma 4.7. Rewriting (4.5) in terms of the times Tj and empha-
sizing the different levels k, for tTn−1 ≤ t < tTn we have

1

t

∫ t

0
Zs ds ≤ 1

tTn−1

∑
k≥1

(k + 1)

Tn∑
i=1

(ti − ti−1)1(Ki−1 = k)M.(4.7)
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Controlling ti − ti−1. Let j0 be such that sj0 = ti − ti−1.

Case 1: Ki−1 = 1. In this case, the process Z̃
(i)
t is a symmetric simple random

walk on {0,2, . . . ,2M} reflected to remain above M . Using Lemma 4.3 with b = 1,
for some c > 0 and M large enough we have

P
(
j0 ≥ cM2) ≥ 1/2.

Since the rate of transitions in Z̃
(i)
t is at most CN , using Lemma 3.1 with

μ = cM2/2 and δ = 1/2, with probability ≥ 1−e−cM2/32, at most 3cM2/4 transi-
tions have occurred by time cM2/(2CN) ≥ c/(2C), so combining with the above
estimate on j0,

P
(
ti − ti−1 ≥ c/(2C)

) ≥ 1/2 − e−cM2/32,

which is at least 1/4 for M large enough. Since KTi
= 1 for each i, for some c > 0,

the cardinality of the set {i ≤ n : tTi+1 − tTi
≥ c} is at least binomial(n,1/4). Then,

using Lemma 4.6 with δ = 1/2 and the fact that tTn = ∑n−1
i=0 tTi+1 − tTi

,

P(tTn ≥ cn/8) ≥ 1 − e−n/32.

Case 2: Ki−1 is any value. In this case, Z̃
(i)
t has the form described in Lemma 4.3

for some1 b, so for integer m ≥ 1 and any value of Ki−1,

P
(
j0 ≥ CmM2) ≤ 2−m.

Since the rate of transitions in Z̃
(i)
t is at least cN , using Lemma 3.1 with μ =

mCM2 and δ = 1/2, with probability ≥ 1 − e−mCM2/16, at least mCM2/2 transi-
tions have occurred by time mCM2/(cN) ≤ mC for some possibly larger C > 0,
so for some c > 0,

P(ti − ti−1 ≥ mC) ≤ 2−m + e−mCM2/16 ≤ e−cm,

which implies that ti − ti−1 is at most C(1 + geometric(e−c)).
Controlling (4.7). As shown in the proof of Lemma 4.7, for i = 1, . . . , Tn, with

good probability in n there are no visits to levels k > logn + 1, and there are at
most Cnk−3 visits to levels k ∈ {2, . . . , �logn�}. Using Lemma 4.6 and the above
estimate on ti − ti−1, for k ∈ {2, . . . , �logn�} and noting Cnk−3 ≥ Cn/(3 logn),
with good probability in n,

Tn∑
i=1

(ti − ti−1)1(Ki−1 = k) ≤ C2(
1 + (3/2)/

(
1 − e−c))nk−3,

which is at most Cnk−3 for some possibly larger C > 0, and since Ki = 1 exactly
when i = Tj for some j , with good probability in n,

∑Tn

i=1(ti − ti−1)1(Ki−1 =
1) ≤ Cn. Summing on k, with good probability in n,

∑
k≥1

(k + 1)

Tn∑
i=1

(ti − ti−1)1(Ki−1 = k) ≤ Cn
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for some possibly larger C > 0 not depending on n. Combining this with the above
estimate on tTn and using (4.7) shows that with good probability in n, for tTn−1 ≤
t < tTn ,

1

t

∫ t

0
Zs ds ≤ 8CnM

c(n − 1)
≤ C

√
N(4.8)

for some possibly larger C > 0; this is nearly enough to prove item 1 since we still
need to show (4.8) holds with good probability in t . To do so, first note the random
variables {Tn − Tn−1 : n ≥ 1} are independent and identically distributed, and that
Kn is stochastically dominated by the Markov chain Ln on {1,2, . . .} with p12 = 1,
pk,k−1 + pk,k+1 = 1 for k > 1 and pk,k−1/pk,k+1 = e2c, k ≥ 2, so defining

T = inf{i > 0 : Li = 1|L0 = 1},
Tn − Tn−1 is dominated by T . If T > i then Li > 1 and Li = 1 + (2X − i) where
X ∼ binomial(i,p) with p = 1/(1 + e2c) < 1/2, which implies X > i/2. Using
Lemma 4.6 with x = i/2 gives r = x/(ip) = 1/(2p) > 1, so letting c = 1/r +
log(r/e), since 1/r + log(r/e) is positive when r > 1, c0 > 0 so for d ≥ 1, if i0 is
taken larger than 1,

P(T > i) ≤ e−ci/2

so T is at most 1+Y where Y ∼ geometric(e−c/2). Writing Tn = ∑n
j=1 Tj −Tj−1,

taking C ≥ n[1 + (1 + δ)/(1 − e−ci/2)] and using again Lemma 4.6 with δ = 1/2
while noting 1/2 − log(3/2) ≥ 1/16,

P(Tn ≤ Cn) ≥ 1 − e−n/16.

Using the fact that tn − tn−1 is at most C(1 + geometric(e−c)), a similar estimate
as for Tn shows that for N large enough, with high probability in n, tn ≤ Cn, and
combining these, with good probability in n, tTn ≤ tCn ≤ Cn, so if tTn−1 ≤ t <

tTn then n ≥ tTn/C > t/C and since x �→ e−c(logx)2
is decreasing, e−c(logn)2 ≤

e−c(log t−logC)2
which for t large enough is at most e−(c/2)(log t)2

, so that if an event
holds with good probability in n, then it holds with good probability in t .

Step 4: Item 2. By Lemma 4.4, the probability of visiting level 2c logN on any
excursion starting from level c logN , is at most e−c′(logN)2

for some c′ > 0, so with
good probability in N , after ec′(logN)2/2 excursions, level 2c logN has still not been
visited. By the above estimate on tTn , with high probability in ec′(logN)2/2 ≥ N for

N large enough, this many excursions requires time at least cec′(logN)2/2/8, that is,
a long time with respect to N .

Step 5: Item 3. If Z0 = �C logN�M , we have

∫ tT1

0
Zs ds ≤

T1−1∑
i=0

(ti − ti−1)(Ki−1 + 1)M.



PARTNER MODEL 2843

From the proof of Lemma 4.5, it follows that with probability ≥ 1 − e−cd for
some c > 0 there are at most d visits each to levels 2, . . . ,C logN + d/3, and no
visits to higher levels before hitting level 1, in which case T1 ≤ d(C logN + d/3).
Letting d = (logN)2, C logN +d/3 is at most (logN)2 for N large enough which
gives T1 ≤ (logN)4, and e−cd = e−c(logN)2

. Using a similar estimate as above
for

∑T1−1
i=0 ti − ti−1 and using Ki + 1 ≤ logN + d/3 + 1 ≤ (logN)2, with good

probability in N , and recalling M = �√N�,

T1−1∑
i=0

(ti − ti−1)(Ki−1 + 1)M ≤ C′M(logN)6 ≤ C′(logN)6(
√

N + 1).
�

5. Change of variables. We return to the partner model and make a slight
modification to the way we record its progress. First, define the three types
SSAt ,SIAt and IIAt , where the A stands for anticipated, as follows. If a partner-
ship xy is formed at time t , let s > t be the first time of breakup of xy after t , and
record, in advance, the state of x and y at time s, and the duration s − t of the
partnership. Then SSAt is the number of partnerships at time t that upon breakup
will consist of two healthy individuals, and similarly for SIAt and IIAt .

The choice of variables SSAt ,SIAt , IIAt may seem unusual as they are not
adapted to the natural filtration of the Poisson point processes that determine the
transitions in the model. However, consider the following modification. Attach an
independent uniform random variable at each partnering event, then use this vari-
able to sample the joint distribution of the final state and duration of the partnership
conditioned on its initial state. This modification preserves the sample path distri-
bution of (St , It ,SSAt ,SIAt , IIAt ), and the modified process is adapted. Although
we do not make use of this fact, we note the process can be made Markov by in-
troducing “countdown” variables for the time of breakup of each partnership, that
are incremented at formation, and decrease linearly in time with slope one until
breakup occurs.

Let TIt = It + SIAt + 2IIAt (the TI stands for “total infectious”), which is the
analogue of |Vt | for these new variables. Since the SIA → S + I and IIA → I + I

transitions leave TIt unchanged, the only transitions affecting TIt are the ones
affecting infectious singletons. Also, since the final state of a partnership is
decided at the moment of partnership formation and recorded in the variables
SSAt ,SIAt , IIAt , the corresponding change in TIt is felt immediately.

There are three types of transition affecting infectious singletons:

(i) I → S at rate I ,
(ii) S + I → SI at rate r+(y − i)I and

(iii) I + I → II at rate (r+i/2)I .

The second and third type of transition are followed by an immediate transition
SI → SSA,SIA or IIA, and II → SSA,SIA or IIA, with a probability determined by
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the Markov chain from Figure 1. At each transition, TIt can increase by 1, stay the
same, or decrease by 1 or 2.

Since the rate of transitions in TI is a multiple of I , to get TI to decrease quickly
enough it would help to know the ratio I/TI is not too small. As shown in the next
lemma, this can be achieved with good probability in N provided TI ≥ (logN)2.

LEMMA 5.1. There are c,h > 0 so that, so long as TIt ≥ (logN)2, with good
probability in N , It ≥ c · TIt for a long time after h.

PROOF. For any t ≥ 0, since St and It are identical in the partner model and
the modified partner model, it follows that SSt + SIt + IIt = SSAt + SIAt + IIAt .
Moreover, SSAt ≥ SSt since an SS partnership cannot become an SI or an II part-
nership, which implies that SIAt + IIAt ≤ SIt + IIt . Define

IPt = SIt + IIt ,

which is so named because it counts infectious partnerships. Then

TIt = It + SIAt + 2IIAt ≤ It + 2(SIAt + IIAt ) ≤ It + 2IPt .(5.1)

If It ≥ c · IPt , then It + 2IPt ≤ It + (2/c)It and so It ≥ TIt /(1 + (2/c)), so it is
enough to show It ≥ c · IPt for some c > 0. Along the way, we will show also that
IPt ≥ c · It .

Since TIt ≥ (logN)2 by assumption, then using (5.1), max(It , IPt ) ≥ (1/3) ×
(logN)2, and by definition of whp and wgp,

whp in (logN)2 ⇔ wgp in N.

There are two main steps. Step 1 is to show that for some c > 0, small enough
h > 0 and all t ≥ 0,

whp in max(It , IPt ), min(It+h, IPt+h) ≥ chmax(It , IPt ).(5.2)

Step 2 is to show that for some c′ > 0, small enough h > 0 and all t ≥ 0, if
min(It , IPt ) ≥ chmax(It , IPt ) then

whp in min(It , IPt ), inf
s∈[0,h] It+s ≥ c′h sup

s∈[0,h]
IPt+s(5.3)

and to show also that the same holds after switching the roles of I and IP. Applying
step 1 at t = 0, then applying both steps at times t = nh, n = 1, . . . , (long time)
and making use of the trick mentioned in Remark 3.2 establishes the result.

Step 1. If It ≥ IPt , then to establish step 1 it is enough to show that whp in It ,

It+h ≥ chIt and IPt+h ≥ chIt .

We will show this much is true. A similar argument works, switching the roles of
I and IP, and together this establishes step 1. By Remark 3.3, we may assume
y ≥ y∗/2 so that S + I ≥ y∗N/2. By including the partnering of only half of
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the infectious singletons with other (infectious or healthy) singletons, we find the
rate of increase of IPt is at least r+(I/2)(y∗/4) and the rate of transition of each
infectious partnership to a healthy partnership or a breakup is at most 1 + r−, then
by counting the number of new (over the interval [t, t +h]) infectious partnerships
still present at time t +h and using a pair of large deviations estimates we find that
whp in It ,

IPt+h ≥ (
r+y∗h/16

)(
1 − (3/2)h(1 + r−)

)
It ≥ chIt(5.4)

for some c > 0 not depending on h, if h > 0 is small enough. On the other hand,
the rate of transition of each infectious single is at most 1 + r+. Using Lemma 3.1
with μ = (1+ r+)hIt and δ = 1/2, from among the It infectious singletons present
at time t , whp in It at least (1 − (3/2)h(1 + r+))It of them remain infectious
singletons over the time interval [t, t + h], and in particular,

inf
0≤s≤h

It+s ≥ (
1 − (3/2)h(1 + r+)

)
It ≥ (1 − Ch)It(5.5)

for some C > 0 not depending on h. Taking h > 0 small enough, 1 − Ch ≥ ch.
Step 2. The rate of increase of IPt is at most r+It . Using again Lemma 3.1 with

μ = r+hIt and δ = 1/2, whp in It ,

sup
0≤s≤h

IPt+s ≤ IPt + (3/2)r+h sup
0≤s≤h

It+s .(5.6)

Since the rate of increase of It is at most 2r−IPt , whp in IPt ,

sup
0≤s≤h

It+s ≤ It + 3r−h sup
0≤s≤h

IPt+s .(5.7)

Combining (5.6) and (5.7), whp in min(IPt , It ),

sup
0≤s≤h

IPt+s ≤ IPt + (3/2)r+hIt

1 − (9/2)r+r−h2 ≤ IPt (1 + Ch) + ChIt(5.8)

for some C > 0 not depending on h, if h > 0 is small enough. Choosing h >

0 small enough that Ch ≤ 1/2, if It ≥ chIPt then using (5.8) and (5.5), whp in
min(It , IPt ),

IPt (1 + Ch) ≥ sup
0≤s≤h

IPt+s − It/2 ≥ sup
0≤s≤h

IPt+s − inf
0≤s≤h

It+s

moreover

inf
0≤s≤h

It+s ≥ It/2 ≥ chIPt /2 ≥ (ch/3) sup
0≤s≤h

IPt+s − (ch/2) inf
0≤s≤h

It+s

so combining these two expressions,

It+s ≥ (ch/3)/(1 + ch/2)IPt+s for all s ∈ [0, h].
A similar argument shows that for some c, c′ > 0 if IPt ≥ chIt then whp in
min(It , IPt ), IPt+s ≥ c′hIt+s for all s ∈ [0, h]. �
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6. Principal and auxiliary parts. Recall the three types of transitions affect-
ing TIt described above in Section 5. Notice that only the S + I → SI transition
depends on y. We split TIt − TI0 into two pieces:

1. the principal part Xt with
(a) transitions of type I → S at rate It ,
(b) transitions of type S + I → SI at rate It r+(y∗ − it ) and
(c) transitions of type I + I → II at rate It r+(it /2), and

2. the auxiliary part At with transitions of type S + I → SI at rate r+I |δyt |.
When TIt ,Xt and At are coupled in the natural way we have

TIt = TI0 + Xt + sgn(δyt )At for all t ≥ 0,

where sgn(x) is equal to 1,0 or −1 respectively as x is > 0,= 0 or < 0. When
defined in this way, Xt has a slight negative drift, as shown in the upcoming
Lemma 6.1. We now consider the principal part. Let

z = 1 + r+
(
y∗ − i

) + r+i/2(6.1)

so that the principal part is Iz and define

pS = 1/z, pSI = r+
(
y∗ − i

)
/z, pII = r+i/(2z).

As in the Introduction, let (Zt )t≥0 denote the Markov chain whose transition rates
are depicted in Figure 1. Recall τ = inf{t |Zt ∈ {D,E,F,G}}, and use {B → E}
to denote the event {Zτ = F |Z0 = A} and similarly for other states. Then Xt has
the following transitions:

Xt → · at rate

Xt + 1 qx,x+1 = Iz · pSIP(B → G)

Xt − 1 qx,x−1 = Iz · (pS + pSIP(B → E) + pIIP(C → F) + O(1/N))

Xt − 2 qx,x−2 = Iz · (pIIP(C → E) + O(1/N))

Similarly, At has the following transitions:

At →
{

At + 1, at rate rx,x+1 = r+It |δyt |P(B → G),

At − 1, at rate rx,x−1 = r+It |δyt |P(B → E).

We now show why the principal part is useful. Equation (6.2) shows it has a nega-
tive drift, while equation (6.3) is a consequence of (6.2) that will allow us to define
a useful supermartingale.

LEMMA 6.1. There are ε, c > 0 and α > 1 so that if logN/N ≤ i ≤ ε then
for N large enough,

qx,x+1 − qx,x−1 − 2qx,x−2 ≤ −cNi2(6.2)

and

(α − 1)qx,x+1 + (
α−1 − 1

)
qx,x−1 + (

α−2 − 1
)
qx,x−2 ≤ −cNi2.(6.3)
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PROOF. Define

�(i) = pSIP(B → G)

− (
pS + pSIP(B → E) + pIIP(C → F)

)
(6.4)

− 2pIIP(C → E).

Then, recalling the definition of z in (6.1), it follows that

qx,x+1 − qx,x−1 − 2qx,x−2 = Iz
(
�(i) + O(1/N)

)
.(6.5)

If i = 0, then pII = 0 so pS + pSI = 1, and pSI = r+y∗/(1 + r+y∗) = P(A → B),
and since 1 = pS + pSI = pS + pSI(P(B → E ∪ F ∪ G),

�(0) + 1 = 2pSIP(B → G) + pSIP(B → F)

= 2P(A → G) + P(A → F) = R0

so if R0 = 1 then �(0) = 0. Moreover, it is not hard to check that ∂i� is well-
defined.

In the proof of Lemma 4.2 in [5], it is shown for R0 ≥ 1 that �(i) decreases
with i and ∂i�(0) < 0, so �(i) = −ci + o(i) for some c > 0 and small i > 0. If
i ≥ (logN)/N , then O(1/N) = o(i), also, z ≥ 1, so for some c > 0 and N large
enough, using (6.5) and the fact that I = Ni, it follows that

qx,x+1 − qx,x−1 − 2qx,x−2 ≤ −cNi2,

which proves the first part. If α = 1 + β with 0 < β < 1, then α − 1 = β and using
a series expansion, one easily finds that α−1 − 1 ≤ −β and α−2 − 1 ≤ −2β . For
such α, we then have

(α − 1)qx,x+1 + (
α−1 − 1

)
qx,x−1 + (

α−2 − 1
)
qx,x−2

≤ β(qx,x+1 − qx,x−1 − 2qx,x−2)

and the second part follows after combining the last two expressions, and taking
c > 0 smaller if necessary. �

7. Extinction time. We begin with a couple of simple lemmas that will even-
tually be used to control the principal part.

LEMMA 7.1. Let Xt be a continuous-time Markov chain on {−1,0, . . . ,M}
absorbed at {−1,0,M} with adapted and bounded jump rates

qx,x+1(t), qx,x−1(t), qx,x−2(t)

and let τ = inf{t : Xt ∈ {−1,0,M}}. Suppose that for some α > 1, almost surely
for all t ≥ 0,

(α − 1)qx,x+1 + (
α−1 − 1

)
qx,x−1 + (

α−2 − 1
)
qx,x−2 ≤ 0.(7.1)

Then P(Xτ = M|X0 = x) ≤ αx−M .
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PROOF. First let

Qt = (α − 1)qx,x+1(t) + (
α−1 − 1

)
qx,x−1(t) + (

α−2 − 1
)
qx,x−2(t).

Consider the random variable αXt . From the definition of the rates, and using (7.1),
we have

E
[
αXt+h |Xt

] = αXt

(
1 + E

[∫ t+h

t
Qs ds

∣∣∣Xt

]
+ O

(
h2)) ≤ αXt

(
1 + O

(
h2))

.

Since the rates are bounded, O(h2) is uniform in t and αXt , so is at most Ch2 for
some C > 0. Taking expectations on both sides and using the inequality 1+x ≤ ex

then gives

E
[
αXt+h |Xt

] ≤ αXt eCh2
.

Fixing s, t and n and letting h = s/n, then iterating the above, gives

E
[
αXt+s |Xt

] ≤ eCh2nαXt = eChαXt .

Letting h → 0+ shows that αXt is a supermartingale. Using the optional stopping
theorem,

E
[
αXτ |X0

] ≤ αX0

so the result follows from the fact that

αx ≥ E
[
αXτ |X0 = x

] ≥ αMP(Xτ = M|X0 = x). �

LEMMA 7.2. Let Xt be as in Lemma 7.2 except on {−1,0, . . .} with X0 ∈
{0, . . . ,M − 1}, and let τ = inf{t : Xt ∈ {−1,0}}. Suppose that for some α > 1,
b > 0 that almost surely for all t ≥ 0,

(α − 1)qx,x+1 + (
α−1 − 1

)
qx,x−1 + (

α−2 − 1
)
qx,x−2 ≤ −b.

Then

P(τ > t) ≤ αM−1e−bt .(7.2)

PROOF. Proceeding as in the proof of Lemma 7.1 and using (7.2), for some
C > 0 we find that

E
[
αXt+h |Xt

] ≤ αXt
(
1 − bh + Ch2)

.

As before, fixing s, t and n and letting h = s/n, then iterating, gives

E
[
αXt+s |Xt

] ≤ αXt
(
1 + (−bs + Cs2/n

)
/n

)n ≤ αXt e−bs+Cs2/n

and since n is arbitrary,

E
[
αXt+s |Xt

] ≤ αXt e−bs .
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Let θ > 0 be such that α = eθ . Multiplying both sides of the above equation by
eb(t+s) then gives

E
[
eθXt+s+b(t+s)|Xt

] ≤ eθXt+bt .

In other words, eθXt+bt is a supermartingale. Using this fact together with
Markov’s inequality and the fact that Xt is integer-valued,

P(Xt > 0|X0) = P
(
eθXt > 1|x0

)
≤ E

[
eθXt |X0

] = e−btE
[
eθXt+bt |X0

] ≤ e−bt eθX0

and since X0 ≤ M − 1 by assumption, this is at most αM−1e−bt . �

First, we show that TIt can be brought down to C
√

N by time C
√

N , and with
good control on δyt , with positive probability. The approach is to use the drift in
the principal part while controlling the contribution from the auxiliary part. To
facilitate this, we break up the movement of TIt into levels—a new level begins
when TIt either dips below half, or rises above twice, of its previous value. This is
also used in Proposition 7.3.

PROPOSITION 7.1. There is C > 0 so that with probability ≥ 1/2, for some
t ≤ C

√
N , TIt ≤ C

√
N and |δyt | ≤ 2 logN/

√
N .

PROOF. Using Lemma 4.1, with good probability in N , for some t ≤ C logN ,
|δyt | ≤ logN/

√
N . By Lemma 4.8, with good probability in N for a long time in

N , |δyt | ≤ 2 logN/
√

N , which establishes the easy part of the above statement.
Note that since C logN = o(

√
N), by Remark (3.2) we may assume that |δyt | ≤

2 logN/
√

N holds for all time, and in particular at t = 0. Let t0 = 0 and L0 =
TI0/

√
N then define recursively

tj = inf
{
t > tj−1 : TIt /TItj−1 /∈ [1/2,2]} and Lj = TItj /

√
N.

Since it only remains to bring TIt below C
√

N for some C > 0, we may assume
that Lj ≥ C for all j under consideration, and for some fixed C > 0 that can be
chosen as large as needed.

Step 1: Fixed j . Given j ≥ 1 let Xt and At denote the contribution from the
principal and auxiliary parts, not from t = 0 but starting from tj−1. That is, X0 =
A0 = 0 and

TIt = TItj−1 + Xt−tj−1 + sgn(δyt )At−tj−1 for t ≥ tj−1.

We use the following fact to estimate tj as well as the value of TItj . Let w be a
fixed small number and let t∗ > 0. Then

sup
t≤t∗

|At | ≤ w
√

NLj−1, inf
t≤t∗

Xt ≤ −(1/2 + w)Lj−1
√

N

(7.3)
implies t∗ > tj − tj−1.
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Also, if the two conditions in (7.3) hold then

sup
t≤t∗

Xt < (1 − w)Lj−1
√

N implies Lj ≤ Lj−1/2.(7.4)

Controlling Xt . For integer m to be chosen, let t∗ = m
√

N/Lj−1, and for now
assume the first condition in (7.3) holds. By Lemma 5.1, we may assume It ≥
c
√

NLj−1/2 for all t ∈ [tj−1, tj ], so using Lemma 6.1, Xt satisfies the conditions
of Lemma 7.2 with b = cL2

j−1, for some c > 0. Using (7.3) and Lemma 7.2 with

M = ((3/2)+2w)
√

NLj−1 which is at most 2
√

NLj−1 if w > 0 is small enough,
and letting α = eθ ,

P(tj − tj−1 ≤ m
√

N/Lj−1) ≥ 1 − α2
√

NLj−1e
−(cL2

j−1)(m
√

N/Lj−1)

≥ 1 − e
√

NLj−1(2θ−cm).

If m is taken large enough that 2θ − cm < 0 the above is at least 1 − e−c
√

NLj−1

for some possibly smaller c > 0. To estimate the probability that Lj ≤ Lj−1/2,
use Lemma 7.1 with x = (1/2 + w)

√
NLj−1 and M = (3/2)

√
NLj−1 to find that

for some α > 1,

P(Lj = Lj−1/2) ≥ 1 − α−(1+w)
√

NLj−1,

which is at least 1 −α−(1/2)
√

NLj−1 , if w ≤ 1/2. Before moving onto the next step,
fix w small enough and m large enough that the above is valid.

Controlling At . We now show the first condition in (7.3) holds. Recall that At

has transitions at rate r+It |δytj−1+t |). Let t∗ be as above and note that |δytj−1 | ≤
2 logN/

√
N . Using items 3 and 1 of Lemma 4.8, we find that with good probabil-

ity in min(N,m
√

N/Lj−1) ≥ m
√

N/Lj−1, for some C′ > 0,

sup
t≤t∗

|At | ≤ C′√NLj−1
(
(logN)6 + m

√
N/Lj−1

)
/
√

N

≤ C′√NLj−1
(
(logN)6/

√
N + m/Lj−1

)
.

Recall that Lj−1 ≥ C, by assumption, for some fixed C > 0 that can be chosen, if
C and N are taken large enough that (logN)6/

√
N + m/Lj−1 ≤ w/C′, then

sup
t≤t∗

|At | ≤ w
√

NLj−1.

Step 2: Several j . We now estimate the probability that starting from TI0 ≤ εN ,
TItj ≤ TIj−1/2 repeatedly until TIt ≤ C

√
N , as well as the amount of time for this

to happen. Looking to the estimates we have made up to this point, for fixed j the
desired event has good probability in

√
N/Lj , so the complementary event has

probability at most e−c(log(
√

N/Lj ))2
for some c > 0 that does not depend on j .
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Since TIt ≤ 2|Vt |, we may assume TIt ≤ ε for t ≥ 0, which gives L0 ≤ ε
√

N .
Let ε = 1/C where C is as above. Given j , if the desired event holds for every
i ≤ j then Lj ≤ 2−jL0. Using a union bound, the probability the good event holds
until TI ≤ C

√
N is at least

1 −
∞∑

j=0

e−c(log(2jC))2 ≥ 1 −
∞∑

j=0

e−c(j log 2+logC)2
,

which is at least 1/2 if C is taken large enough. At each step, the time required is
at most m

√
N/Lj−1, where m is fixed, so the total amount of time is at most

(mc
√

N/C)

∞∑
j=0

2−j ≤ 2mc
√

N/C.
�

Next, we show that for fixed C > c > 0, TIt can be brought down from C
√

N

to c
√

N with positive probability within time C′√N for some C′ > 0.

PROPOSITION 7.2. For any C > c > 0, there are C′,p > 0 so that with prob-
ability ≥ p > 0 uniformly in N , if TI0 ≤ C

√
N and |δy0| ≤ 2 logN/

√
N then for

some t ≤ C ′√N , TIt ≤ c
√

N and |δyt | ≤ 4 logN/
√

N .

PROOF. The estimate on |δyt | is the same as in Proposition 7.1. Here, let Xt

and At denote the contributions due to the principal and auxiliary parts starting
from t = 0, so that TIt = TI0 + Xt + sgn(δyt )At for all t ≥ 0.

From (6.2), it follows that Xt is dominated by a symmetric simple random walk
X̃t moving at rate Iz. Since TIt ≥ c

√
N on the region of interest, using Lemma 5.1

we may assume It ≥ cc′√N for some c′ > 0, which, since z ≥ 1, implies Iz ≥
c′√N for some possibly smaller c′ > 0.

Let T = inf{n : X̃n = ±M/2}. Using Lemma 4.3, for any a > 0 and large
enough (even) M ,

P
(
T ≤ aM2/

(
c′√N

)) ≥ p(a) > 0

and by symmetry,

P
(
T ≤ aM2/

(
c′√N

)
, X̃T = −M/2

) ≥ p(a)/2.

Setting M/2 = �C√
N� and comparing to X̃n, with probability at least p(a)/2,

there exists t ≤ aC2N/(c′√N) = aC′√N such that either TIt ≤ c
√

N or Xt ≤
−C

√
N .

Following the proof of Proposition 7.1, with good probability in
√

N , for t∗ =
aC′√N and some C′′ > 0 not depending on a,

sup
t≤t∗

|At | ≤ C′′√N
(
(logN)6/

√
N + aC′),
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which if a is taken small enough, is at most c
√

N when N is large. Since

Xt ≤ −C
√

N and |At | ≤ c
√

N implies TIt ≤ c
√

N

the proof is complete. �

Now, we start from TI0 ≤ c
√

N for small c > 0 and show that TIt can be brought
down to Nγ for some γ < 1/4 within time C

√
N . The proof is similar to that of

Proposition 7.1 except that here, the drift is not strong enough to jump straight
down a whole bunch of levels all at once. Instead, there is a constant amount of
drift from level to level, so we treat it like a biased random walk. In the proof, we
will make use of the following fact, that we record now.

LEMMA 7.3. If x0, . . . , x2k are positive integers such that

xi+1 = inf{x : x > 2xi}
for exactly k of the numbers {0, . . . ,2k − 1} and

xi+1 = sup{x : x < xi/2}
for the remaining k numbers in {0, . . . ,2k − 1}, then x2k ≤ x0.

PROOF. Define

f+(x) = inf{x : x > 2xi} and f−(x) = sup{x : x < xi/2}
so that x2k = fa2k−1 ◦ fa2k−2 ◦ · · · ◦ fa0(x0) for some string a0 · · ·a2k−1 satisfying
|{i : ai = +}| = |{i : ai = −}| = k. Since f+ and f− are non-decreasing functions
it suffices to show that if y = f+(f−(x)) or y = f−(f+(x)), then y ≤ x. Clearly,
f+(x) = 2x + 1, and

f−(x) =
{

x/2 − 1, if xis even,

x/2 − 1/2, if xis odd.

Since 2x + 1 is odd, f−(f+(x)) = (2x + 1)/2 − 1/2 = x, and we compute

f+
(
f−(x)

) =
{

2(x/2 − 1) + 1 = x − 1, if xis even,

2(x/2 − 1/2) + 1 = x, if xis odd. �

PROPOSITION 7.3. There are c,C > 0 so that if TI0 ≤ c
√

N and |δy0| ≤
4 logN/

√
N then with probability ≥ 1/4 there is t ≤ C

√
N so that TIt ≤ Nγ for

some γ < 1/4.

PROOF. Define tj ,Lj , and for fixed j define Xt and At , all as in the proof of
Proposition 7.1. As noted in the proof of Proposition 7.3, Xt is dominated by a
symmetric simple random walk X̃t moving at rate Itz ≥ It . Since TIt ≥ Nγ on the
region of interest, using Lemma 5.1 we may assume It ≥ c′TIt for some c′ > 0.
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Since TIt ≥ √
NLj−1/2 for all t ∈ [tj−1, tj ), it follows that X̃t has transition rate

at least c′√NLj−1/2, for t ∈ [0, tj − tj−1).
Step 1: Fixed j . Recall from (7.3) that |At | ≤ w

√
NLj−1 and Xt ≤ −(1/2 +

w)
√

NLj−1 implies t ≥ tj − tj−1. Later we will need to force exit from the low
end of [TItj−1/2,2TItj−1], starting from any value in that interval, so we will re-

quire Xt ≤ −(3/2 + w)
√

NLj−1 instead. Using Lemma 4.3 and dividing by the
transition rate, for N large enough and w ≤ 1/2, with probability ≥ 1 − 2−m,

inf
{
t : t = tj − tj−1 or Xt ≤ −(3/2 + w)

√
NLj−1

}
(7.5)

≤ 2mCNL2
j−1/

(
c′√NLj−1/2

) = mC
√

NLj−1

for some possibly larger C > 0. Letting t∗ = mC
√

NLj−1, with good probability
in min(N,mC

√
NLj−1), which, since TIt ≥ Nγ is at least good probability in N ,

sup
t≤t∗

|At | ≤ (
√

NLj−1)C
′((logN)6 + m

√
NLj−1

)
/
√

N

(7.6)
≤ 2mC′√NL2

j−1

for N large enough, which is at most w
√

NLj−1 provided Lj−1 ≤ (w/2mC′). We
will force this inequality in the next step by choosing a small enough c > 0 and by
restricting to Lj ≤ c. On the event in (7.6), and on the event that

inf
{
t : Xt ≤ −(1/2 + w)

√
NLj−1

}
(7.7)

< min
(
inf

{
t : Xt ≥ (1 − w)

√
NLj−1

}
,mC

√
NLj−1

)
it holds that TItj ≤ TItj−1/2. Gathering estimates and noting Xt is dominated by
symmetric simple random walk, the intersection of (7.5), (7.6), (7.7) has, for some
c′ > 0, probability at least

(1 − w)/
(
(1/2 + w) + (1 − w)

) − 2−m − e−c′(logN)2

= 2(1 − w)/3 − 2−m − e−c′(logN)2
.

For w > 0 small enough and m large enough, for large N the above is at least 3/5.
Moreover, on the intersection of (7.5), (7.6), (7.7),

tj − tj−1 ≤ mC
√

NLj−1 and TItj ≤ TItj−1/2.(7.8)

Step 2: Several j . Note that Lj−1 ≤ w/(2mC′) for all j if both TI0 ≤ c
√

N

for small enough c > 0, and Lj ≤ L0 for all j under consideration. In this case,
the values kj defined by k0 = 0 and recursively by kj = kj−1 ± 1, according as
Lj ≥ 2Lj−1 or Lj ≤ Lj−1/2, are dominated by a random walk with px,x−1 = 3/5
and px,x+1 = 2/5, which we now consider.
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Define the absorbing states K+ = 1 and K− = sup{k : 2k ≤ Nγ /c
√

N}, then let
J = min{j : kj ∈ {K−,K+}} and let τ = inf{t : TIt ≤ Nγ }. On the event that kJ =
K−, it follows that τ ≤ ∑J

j=1(tj − tj−1). Using Lemma 4.2 with M = K+ − K−,
b = 3/2 and x = M − 1,

P(kJ = K−) = 1 − 1 + (3/2) + · · · + (3/2)x−1

1 + (3/2) + · · · + (3/2)x
(7.9)

= 1 − 2

3
· 1 − (2/3)x

1 − (2/3)x+1 ≥ 1/3.

Fix k ∈ {K− +1, . . . ,K+−1} and let G(k) = ∑J−1
j=0 1(kj = k|k0 = K+−1). Using

Lemma 4.4, P(G(k) > d) ≤ ρd
k,k . Repeating the above calculation with x = k − 1

and M = k shows that ρ(k − 1, k) ≤ 2/3 and so

ρ(k, k) ≤ p(k, k + 1) + p(k, k − 1)ρ(k − 1, k) ≤ 2/5 + (3/5)(2/3) = 4/5

for any value of k ∈ {K− + 1, . . . ,K+ − 1}, so it follows that P(G(k) > d) ≤
(4/5)d . Summing, we find

P
(
G(K+ − 
) ≤ 
d for 
 ∈ {1, . . . ,K+ − K− − 1})

(7.10)

≥ 1 −
∞∑


=1

(4/5)
d = 1 − (4/5)d

1 − (4/5)d
.

On the event in (7.10), and on the event the time spent at each visit to level K+ − 


is at most 
dmC
√

Nc2−
+1,

τ ≤ mcC
√

N

K+−K−−1∑

=1

(
d)22−
+1 ≤ mC′d2
√

N(7.11)

for some C′ > 0 not depending on N or d . On each visit to level K+ − 
, using
Lemma 7.3 and the assumption TI0 ≤ c

√
N , we have

Lj ≤ 2−
+1L0 ≤ c2−
+1.

Using (7.5) and the Markov property, with probability ≥ 1 − 2−m
d the time spent
at that level is at most 
dmC

√
Nc2−
+1. The probability of the intersection of the

events in (7.9), (7.10), (7.11) is, for large N , at least

1/3 − (4/5)d

1 − (4/5)d
−

log2 N∑

=0

(
d)2−m
d,

which, for some d is at least 1/4 when N is large enough. �

If TI0 and δy0 are small enough, then we can send the process to extinction with
positive probability within o(

√
N) amount of time. Note that we first need to send

TIt to zero, then send |Vt | to zero to kill the infection.
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PROPOSITION 7.4. If TI0 ≤ Nγ for γ < 1/4 and δy0 ≤ logN/
√

N then for
some C,p > 0,

P
(|VCN2γ | = 0

) ≥ p.

PROOF. Let T = inf{t : TIt = 0 or TIt ≥ 2Nγ }. If t < T then since It ≤ TIt ≤
2Nγ and δy0 ≤ logN/

√
N , using items 1 and 3 of Lemma 4.8, with good proba-

bility in min(N, t) the number of transitions due to the auxiliary part up to time t

is at most Poisson with rate

r+
(
2Nγ )

C
(
(logN)6/

√
N + t/

√
N

)
,

which is at most CtNγ−1/2 for large enough N , for some C > 0. Since
P(Poisson(α) = 0) = e−α , there are no auxiliary transitions with probability
≥ e−CtNγ−1/2 ≥ 1 − CtNγ−1/2, which for t ≤ CN1/2−γ−ε is at least 1 − CN−ε .

We now examine the contribution from the principal part, starting from t = 0,
that we denote as usual by Xt . As noted in the proof of Proposition 7.3, Xt is
dominated by a symmetric simple random walk X̃t , although in this case we will
need to take greater care when estimating the rate.

Using Lemma 4.3, starting from ≤ Nγ , with probability ≥ 1/2, X̃t hits either 0
or 2Nγ after at most CN2γ transitions, so using symmetry, X̃t , and by comparison
Xt , hits 0 before hitting 2Nγ after at most CN2γ transitions with probability at
least 1/4. We now need to estimate the rate of transitions.

Given the initial state of a partnership, for a final state F and duration τ of the
partnership, using Bayes’ rule for the density functions we have

dP(τ |F) = dP(F |τ)dP(τ )

P(F )

and since for a given duration each possible final state occurs with probability ≤ 1,
dP(F |τ) ≤ 1, and in particular dP(τ |F) ≤ CdP(τ ) for some C > 0 not depending
on F . This implies that

P(τ > t |F) ≤ CP(τ > t) = Ce−r−t = e−r−(t−logC)(7.12)

and so (τ |F) is at most logC + exponential(r−), uniformly in the final state F .
If TIt > 0, then either It > 0 or IPAt > 0, where IPAt is defined by IPAt =

SIAt + IIAt . If It > 0, then by definition of TIt , TIt has transition rate at least 1.
If It = 0 but IPAt > 0, then since breakup of an SIA or an IIA partnership gives
at least one infectious singleton, from (7.12), the amount of time until It > 0 is
at most logC + exponential(r−). Thus, for CN2γ transitions in TIt to occur re-
quires at most 2CN2γ transitions in total from either It or IPAt which, with high
probability in N2γ , requires time at most

CN2γ (
2 logC + 3 max(1,1/r−)

)
.

Summarizing so far, for some C > 0, with probability ≥ 1/4 − O(N−ε) which is
at least 1/8 for N large enough, TIt = 0 for some t ≤ CN2γ .
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It remains to control the time until |Vt | = 0. Using (7.12) and noting that the
time for n particles, each decaying at rate r , to all decay is of order logn, with
probability ≥ 1/2, if TIt = 0 then after at most an additional logC + C logNγ

amount of time, Vt = 0. Taking p = (1/8)(1/2) = 1/16, the result follows. �

It is now easy to show that when R0 = 1, the infection dies out by time C
√

N

with positive probability.

PROPOSITION 7.5. There are C,γ > 0 so that from any initial distribution of
(V0,E0), for N large enough and integer m,

P(VmC
√

N = 0) ≥ 1 − e−γm.

PROOF. Let:

• t1 = inf{t : TIt ≤ C
√

N, |δyt | ≤ logN/
√

N},
• t2 = inf{t > t1 : TIt ≤ c

√
N, |δyt | ≤ 2 logN/

√
N},

• t3 = inf{t > t2 : TIt ≤ Nγ , |δyt | ≤ 4 logN
√

N} and
• t4 = inf{t > t3 : |Vt | = 0}.
Apply Propositions 7.1, 7.2, 7.3 and 7.4 in that order, and use the Markov property
at each step, to deduce that t4 ≤ C′√N with probability ≥ p > 0 for some p,C′
uniformly in N . To get the above statement, let 1−p = e−γ and apply the Markov
property repeatedly. �

We conclude with a matching lower bound that works when |V0| ≥ √
N and

δy0 ≤ − logN/
√

N .

PROPOSITION 7.6. If |V0| ≥ √
N and δy0 ≥ − logN/

√
N there is c > 0 so

that with good probability in N ,

Vc
√

N �= 0.

PROOF. First, we show that if |V0| ≥ √
N then for some c > 0, TI0 ≥ c

√
N

whp in
√

N , as follows. First of all,

|V0| ≥
√

N implies max(I0, IP0) ≥ √
N/3.

Since TIt ≥ It , if I0 ≥ √
N/3 then TI0 ≥ √

N/3. If IP0 ≥ √
N/3, note that:

1. with positive probability, an infectious partnership breaks up while at least
one partner is still infectious, and

2. the final state of partnerships existing at t = 0 are independent.
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From this and a standard large deviations argument, it follows that for some c > 0,
TI0 ≥ c

√
N whp in

√
N .

Define τ = inf{t : |TIt − TI0| ≥ TI0/2}. Since It ≤ TIt , it follows that It =
O(

√
N) for t < τ , and from Lemma 5.1, for t < τ we have It ≥ c

√
N for some

c > 0. Following the proof of Lemma 6.1, and since 1/N = o(i) for t < τ , from
(6.5) we have

qx,x+1 − qx,x−1 − 2qx,x−2 = Iz
(
�(i) + o(i)

)
.(7.13)

As before, let

Qt = (α − 1)qx,x+1(t) + (
α−1 − 1

)
qx,x−1(t) + (

α−2 − 1
)
qx,x−2(t).

Taking now α = 1 − β for small β > 0, so that α < 1, α − 1 = −β , α−1 − 1 =
β + O(β2) and α−2 − 1 = 2β + O(β2) then using (7.13), we have

Qt = (−β + O
(
β2))(

qx,x+1(t) − qx,x−1(t) − 2qx,x−2
)
(t)

= (−β + O
(
β2))(

�(it ) + o(it )
)
Itz.

If β > 0 is small enough, then −2β ≤ −β +O(β2) ≤ 0. Recall that �(i) = −bi +
o(i) for some b > 0. Since it = O(1/

√
N) = o(1) for t < τ , for N large enough

and some C > 0 it follows that

−C/
√

N ≤ �(it ) + o(it ) ≤ 0.

Since z is bounded and It = O(
√

N), it follows that 0 ≤ Qt ≤ b for some b > 0
and t < τ . In order to make it true for all t , for t ≥ τ simply “freeze” the rates
qx,x+· to their values at time τ−. Since the desired event falls in {t < τ }, this does
not affect the conclusion.

Let θ > 0 be such that e−θ = α. Proceeding as in the proof of Lemmas 7.1
and 7.2, we find that e−θXt is a submartingale and e−θXt−bt is a supermartingale.
Applying Doob’s inequality to the submartingale e−θXt , for any t,C > 0 we have

P
(

inf
s≤t

Xs < −Ct
)

= P
(
sup
s≤t

e−θXs > eθCt
)

≤ e−θCtE
[
e−θXt

]

then using the supermartingale e−θXt−bt and the fact that X0 = 0,

E
[
e−θXt

] = ebtE
[
e−θXt−bt ] ≤ ebtE

[
e−θX0

] = ebt

so combining the two,

P
(

inf
s≤t

Xs < −Ct
)

≤ ebt−θCt

so for C > 0 large enough the event holds whp in t . It is easy to check, as in
the proof of Propositions 7.1 and 7.3, that for t = c′√N , with good probability
in c′√N , sups≤t |As | is at most c′C

√
N for some C > 0 that does not depend on
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c′. By first taking C > 0 large enough, then taking c′ small enough, with good
probability in

√
N ,

inf
t≤c′√N

Xt − |At | ≤ −TI0/2,

which implies TIc′√N ≥ TI0/2. In particular, TIc′√N �= 0 which implies that
Vc′√N �= 0. �

APPENDIX

PROOF OF LEMMA 4.6. If X ∼ binomial(n,p) then EeθX = ((1 − p) +
peθ )n = (1 + p(eθ − 1))n ≤ enp(eθ−1) so using Markov’s inequality, for θ ≥ 0,
P(X > x) ≤ e−θx

EeθX ≤ e−θx+np(eθ−1), and setting x = npr with r = eθ gives

P(X > x) ≤ e−x log r+x−x/r

from which the first estimate follows. For the lower bound, note for θ ≥ 0,
Ee−θX ≤ enp(e−θ−1) so P(X < x) = P(e−θX > e−θx) ≤ eθx+np(e−θ−1). Setting
x = np(1− δ) with 1− δ = e−θ , the exponent is −np(1− δ) log(1− δ)−npδ, and
since log(1−δ) ≥ −δ−δ2/2 for δ ≤ 1, (1−δ) log(1−δ)+δ ≥ δ2/2+δ3/2 ≥ δ2/2
and the second estimate follows.

If X ∼ geometric(p) then EeθX = (1 − p)eθ/(1 − peθ ), so if Xi ∼
geometric(p) are independent, i = 1, . . . ,m and Sm = X1 + · · · + Xm then
EeθSm = [(1 − p)eθ/(1 − peθ )]m, and

P(Sm > x) ≤ e−θ(x−m)+m(log(1−p)−log(1−peθ ))

and optimizing in θ gives (1 −peθ ) = m/x and θ = log((1/p)(1 −m/x)). Setting
x = (1 + δ)m/(1 − p) gives θ = log(1 + δ/p) − log(1 + δ) and log(1 − peθ ) =
log(1 − p) − log(1 + δ) and the exponent − log(1 + δ/p)(x − m) + log(1 + δ)x

which since x − m = (δ + p)m/(1 − p) is equal to (−m/(1 − p))(p(1 +
δ/p) log(1 + δ/p) − (1 + δ) log(1 + δ)). Now, the function f (x) := x logx has
f ′(x) = 1 + logx which increases with x, so f (1 + δ/p) − f (1 + δ) ≥ (1/p −
1)δf ′(1 + δ) = (1/p − 1)δ(1 + log(1 + δ)) and so

p(1 + δ/p) log(1 + δ/p) − (1 + δ) log(1 + δ)

= pf (1 + δ/p) − f (1 + δ)

= p
(
f (1 + δ/p) − f (1 + δ)

) + (p − 1)f (1 + δ)

≥ (1 − p)
[
δ
(
1 + log(1 + δ)

) − (1 + δ) log(1 + δ)
]

= (1 − p)
[
δ − log(1 + δ)

]
and the desired estimate follows. �
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