The Annals of Applied Probability

2016, Vol. 26, No. 5, 2733-2753

DOI: 10.1214/15-AAP1160

© Institute of Mathematical Statistics, 2016

WHAT IS THE PROBABILITY THAT A LARGE RANDOM
MATRIX HAS NO REAL EIGENVALUES?
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Warwick* and Technische Universitiit Dresden’
We study the large-n limit of the probability p;, o4 that a random 2n x

2n matrix sampled from the real Ginibre ensemble has 2k real eigenvalues.
We prove that

1 1 3
nl—>moo T log pon 2k = —>oo \/— log p2n,0 = EC (5)7
where ¢ is the Riemann zeta-function. Moreover, for any sequence of non-
negative integers (kn);>1,

1 3
nl)moo—logPZn 2ky JTTT;(E)

provided lim, s 0o (n~1/2 log(n))ky, = 0.

1. Introduction and the main result. Our paper is dedicated to the study of
the probability pa, 2 that a real 2n x 2n random matrix with independent normal
entries (the so-called “real Ginibre matrix™) has 2k real eigenvalues. It has been
known since [10] that a typical large N x N Ginibre matrix has O(+/N) real
eigenvalues. What is the probability of rare events consisting of such a matrix
having either anomalously many or few real eigenvalues?

The former question has been addressed by many authors. Building on the orig-
inal work by Ginibre [13], Edelman used the real Schur decomposition to prove

that
[\ N(N=1)/4
PN,N = (5) s

see [9]. In [2], Akemann and Kanzieper employed the method of skew-orthogonal
polynomials to determine the probability that all but two eigenvalues of a real
Ginibre matrix are real. In the large-N limit, their result reads

(1.1) DN N2 = e~ 102@/HN+(10g3VD /)N +o(N)
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where limy .0 0(N)/N = 0. These answers were generalised in a very recent pa-
per [7] where the large deviations principle of [3] was extended to prove that the

probability that a real Ginibre matrix has ¢ N (where 0 < o < 1) real eigenvalues

. N 2 oy
1S PN.aN % e=N7lu | where the symbol “~” denotes the logarithmic asymp-

totic equivalence and the constant I, is characterised as the minimal value of an
explicitly given rate functional; see Proposition 2 and formula (4) of [7].

In the present paper, we answer the question about the probability that a real
Ginibre matrix has very few real eigenvalues.

THEOREM 1.1. Let Gy, be a random 2n x 2n real matrix with independent
N (0, 1) matrix elements. Let pa, 2k be the probability that G, has 2k real eigen-
values. Then for any fixed k =0,1,2,3, ...,

1 1 3
1.2 lim —1 =—— =),

where ¢ is the Riemann zeta-function. Moreover,

1 1 3
1.3 lim —1 =——7(=),
(1.3) nlm \/ﬂ 0g P2n .2k, «/2_§(2)

where (kp)n>1 IS a sequence of nonnegative integers such that
- —-1/2 _
nll)rréo(n log(n))k, = 0.

In particular, the probability that a large 2n x 2n Ginibre matrix has no real
eigenvalue behaves as

DP2n,0 > e_\/’7/7§(3/2)+0(\/ﬁ).

Notice that the answer (1.2) is qualitatively different from the results for the
probability of having O(n) real eigenvalues quoted above: the “cost” of having
O (n) real eigenvalues normalised by the total number of “anomalous” eigenvalues
increases linearly with n, whereas the “cost” of removing all real eigenvalues from
the real axis is constant per eigenvalue.

It is also worth noting that our result “almost” extends to the typical region
k~nl/? (e.g., we can choose k, = [\/n/ log2 n] in (1.3)). It would be interesting
to see if (1.3) survives for k, = [c4/n] where ¢ < 1.

The statement of the theorem can be guessed using existing results: in the limit
N — 00, the unscaled law of real eigenvalues for the real Ginibre N x N ensemble
converges. The limit coincides with the t = 1 law for the A + A — & interacting
particle system on R [16]. The probability that an interval of length s has no parti-
cles for A+ A — @ has been calculated formally by Derrida and Zeitak [8]. These
two facts allowed Forrester [11] to conclude that the large-N limit of the proba-
bility that there are no real eigenvalues in the interval (a, a + s) should be given
by

(1.4) Prob[GOo has no eigenvalues in (a, a + s)] e e—(l/(2«/ﬂ));(3/2)s'
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Let us stress that equation (1.4) is valid for N = oo only. However, we know from
the work of Borodin and Sinclair [6] and Forrester and Nagao [12] that the law
of real eigenvalues for the real Ginibre ensemble is a Pfaffian point process for
all values of N < oco. Convergence of the finite-NV kernel to the N = oo kernel is
exponentially fast within the spectral radius. The spectral radius is Ry = v'N +
O (1) [10]. We also know that the boundary effects for a large but finite matrix
size N are only felt in the boundary layer of the width of order 1 near the edge.
Therefore, the simplest finite-N guess for Prob[G y has no real eigenvalues] is

Prob[G y has no real eigenvalues]
~ Prob[G y has no real eigenvalues in (—Ry + L, Ry — L)]
~ Prob[GOO has no real eigenvalues in (— Ry, RN)].

Here, L > 1 is a large N-independent constant. The last probability in our heuris-
tic chain of arguments can be approximated using (1.4) with s = 2R}y . This sug-
gests

Prob[G y has no real eigenvalues] ~ e/ Ve 3/ 2)ﬁ’

which agrees with the statement of Theorem 1.1.
The value of the constant which defines the rate of decay of p2, o in (1.2) is

1
m§(3/2) 1.0422,
which is consistent with its numerical estimate; see Figure 1. The numerical anal-
ysis of the exact formula for pj, o [see (2.2) below] also shows that under the
assumption that the next-to-leading term in the large- N expansion of py o is con-
stant, the resulting coefficient (& 0.06267) is close to its exact counterpart from
the large gap size expansion of the Derrida—Zeitak formula (& 0.0627). At the
moment, we do not have a theory explaining this closedness.

Both the numerical simulations and the heuristic argument given above provide
a strong hint in favour of Theorem 1.1.

There are several possible routes to the proof of the theorem. For example,
one can try to use Forrester’s observation, coupled with the knowledge of the
rate of convergence of the Borodin—Sinclair—Forrester—Nagao kernel in the large-
N limit, to show that the errors in applying Derrida—Zeitak’s formula to gaps of
N-dependent sizes vanish as N — oco. There is however a problem with this ap-
proach: in the case we are interested in (annihilating Brownian motions or the
2-state Potts model) the infinite sums entering the gap formula converge only poly-
nomially; see [8] for details. Therefore, a careful justification would be required
for the validity of the interchange of summation and taking the large gap size limit.
We feel that such a justification is best done in the context of a general theory of
“Fredholm Pfaffians”. In this paper, we will adopt the spirit of Derrida—Zeitak’s
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FIG. 1. The logarithm of the probability py o that an N x N matrix of even size sampled from the

real Ginibre ensemble does not have any real eigenvalues, as a function of ~/N. The leading coef-
ficient extracted using the best fit is —1.042, the best fit for the next-to-leading constant is 0.06267.
The “exact” curve is constructed using formula (2.2) of Lemma 2.1 below. The form of the by-term
in the fitting curve was chosen to minimise the numerical goodness-of-fit X2-

calculation to construct rigorous asymptotics of a very compact and easy to use ex-
act determinantal expression for the probability p, 2k specific to the real Ginibre
ensemble. This determinantal expression can be derived building upon the results
of [14] and [12]; see Lemma 2.1 below. We hope of course that our very specialised
proof will contribute to the general discussion of the theory of large deviations for
Pfaffian point processes.

There is a drawback to our approach as well: even though we can now claim
that (1.2) is true, we still do not know how a large Ginibre matrix without real
eigenvalues looks. For example, is there a unique optimal configuration of com-
plex eigenvalues for such matrices? What can be said about the overlaps between
left and right eigenvectors of Ginibre matrices without real eigenvalues? To answer
these questions, one has to develop a large deviations principle along the lines of
[7] which will most likely use the picture of the “two-component” plasma con-
sisting of one-dimensional and two-dimensional “gases” of eigenvalues discussed
there.

Our paper is organised as follows: a reader who is satisfied by our heuristic
argument and the numerics can stop here. Those interested in the mathematical
proof are advised to read Section 2 and consult Appendix A for the proofs of the
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technical facts used in the proof of Theorem 1.1. Appendix B contains remarks on
the numerical evaluation of py, ¢ for large values of n.

2. The proof of Theorem 1.1. Our starting point is the following exact deter-
minantal representation for the generating function for the probabilities pa, 2.
LEMMA 2.1. Let n be a positive integer. Then

(z—1) I'G+k—3/2) ]
V2r JT@j—DI@k-DJ

n
@.1) Zﬁmmﬁé®thm+
k=0 Jj.k=1,n

In particular,

R T(+k—3/2) }
V2r JTQj=DI k=D [

We postpone to Appendix A the proofs of all lemmas used during the proof of
the main theorem.

Notice that the expression (2.2) coincides (as it should) with the s — oo limit
of the probability that a 2n x 2n real Ginibre matrix has no real eigenvalues in the
interval (—s, s) calculated by Forrester; see formula (3.48) of [11].

We will prove Theorem 1.1 in two steps: first, we will prove (1.2) for k =0,
then we will show that lim,,_, o «/%71 log pan 2k, = lim, o0 ﬁ log pan.0, Where

2.2) Paan,0= det |:5j,k
Jj.k=1,n

(kn)n>1 1s a sequence of integers which grows with n slower than nl/2 /log(n).

2.1. The calculation of lim,,_, « ﬁ log pan.0. Let M, be an n x n symmetric
matrix entering the statement of Lemma 2.1:

1 L'(j+k—3/2)
V2r TR —DI k=1’

LEMMA 2.2. M, is a positive definite matrix. Moreover, there exists a positive
constant | > 0 and a natural number N such that for any n > N,

(2.4) Jmax () < 1 — 2,
n

(2.3) My (j, k) = l<jk=<n.

where Amax (1) is the maximal eigenvalue of M,,.
Using Lemmas 2.1 and 2.2 we represent pa, o as follows:

1 1
——=log pon.0 = ——=Trlog(I — M,,)
1 & 1

1
—TrM" — —R,(K,),
\/anX:lm " V2n e

(2.5)
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where K, is a cut-off which increases with n (chosen below) and R, is the remain-
der of the Taylor series for log(/ — M,,) written in the integral form:

1 MK+ p
Ra(K) = [ (e ) (0 =%
An upper bound on |R, (K)| follows from Lemma 2.2 by replacing all eigenvalues
of M,, with Apax(n):

! (1-x)k
K+1
|Ru(K)| < (n)/o .

max — Amax (n)x) K+
K
O xrlnax(m) =" logG) (1-%)
So, if we choose
(2.6) K, =|n"%], a>1,
it is easy to check that
(2.7) nll)rgo R, (K,)=0.

The last step of the proof is the calculation of anf": | %Tr M. The relevant
results can be summarised as follows.

LEMMA 2.3. For any fixed integer m > 0,

1 1
(2.8) lim —TrM,'=| —
n—oo  /on 2mm

Moreover, for any positive integers m, n

n 1 1 m
2.9 TTM"< | —(1+n N+ -4+ -/ —(1+2n"H.
(2.9) rn_nm(—l-n )+4+8 jm(—i-n)

Let us stress that formula (2.8) alone is not enough for the calculation of the
limy, 0o n 12 log pan.0 using (2.5) since the limits n — oo and m — oo do not
necessarily commute. Instead, let us fix an arbitrary integer K > 0. For a suffi-
ciently large n (so that K,, > K), relation (2.9) gives

m
mZmTrM

KI'L

Z TM’”

(2.10)

Bn (A+2n~ 1 &g

(1+”_1) m=32 4
- Var mX:l 4@,;111 8v27n ,;
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In writing the above double inequality, we used the fact that M,, is positive definite,
which implies that Tr M, > O for all values of m, n. Let us choose K, in the form
(2.6) with o < 2 and take n — oo in (2.10). As K is n-independent, we can use
formula (2.8) to compute the limit of the left-hand side. On the right-hand side, the
last two sums vanish in the limit [as log(n)//n and n®/?>~! correspondingly]. The
first sum converges to

1
-3/2 _
m Z by =10
where ¢(x) =>">_; m™* is the Riemann zeta-function.

We have found that for any positive integer K,

= m —Tr
Var = oo op imm "

<limsup —— Z TrM,'

n—oo
«/—_§(3/2)
As K is arbitrary, we conclude that
K}‘l 1
2.11) lim Tr M) = 3/2).
( s m 2 el

So we proved that both (2.7) and (2.11) hold provided the cut-off is taken in the
form (2.6) for any fixed @ € (1, 2).

Finally, we can take the n — oo limit in (2.5). Employing (2.7) and (2.11), we
find that

1 1
lim ——1log pry0o=——""-=¢@3/2).
5 108 Pan.0 mi( /2)

n—oo

Theorem 1.1 is proved for k = 0.

2.2. The calculation of limy,_, ﬁlog Pan.2k for k > 0. It follows from
Lemma 2.1 that

Lid kd 1 M,
P2n2k = X <d_) et( +@@—-D n)

Equivalently,

k
poano [ d

2.12 = — | —

(2.12) D2n,2k T (dz)

=0’
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where P, = (I — M,,))~'M,,. Recall that

det(I +zP) =Y ZFer(v),

k=0
where v = (vq, 12, ..., V,) are the eigenvalues of P, and ey is the degree-k ele-
mentary symmetric polynomial in n variables [15],
ex(v) = > Vi Viy -+ Vi
1<i|<ir<-<ip<n
Therefore,
(2.13) P2n.2k = P2n,0€k (V) fork=0,1,...,n.

Let us enumerate the eigenvalues of M, and P, as follows:
MZApy=- =2y >0,
Vi > >-- >, > 0.

By the definition of P,, v; = % Note that v; is a monotonically increasing

function of A;. Combining this remark with the spectral bound of Lemma 2.2, we
get the following bound on the elementary symmetric polynomials:

PN k
()
1 -2 2

Substituting (2.14) into (2.13), we obtain the following upper bound on log p2, 2«:

(2.14) er(v) <vker(1,1,...,1) 5(

2
n
(2.15) log pon. 2k <10g P20 +klog<;>-

Next, we derive a lower bound on log p2, 2. By positive definiteness, v; > A; and,
therefore, ex (v) > ex(A). Let us fix a positive integer k. Due to (2.8), for any ¢ > 0
there is a positive integer N, such that for any n > N,

(2.16) \/z(l—e)gTrMnf\/?(l—i—s).
T b4

On the other hand,

TeMy =1+ + -1+ e+ + 1)
(2.17)
S (k=1 + @ —k+ D,

where the inequality is due to (2.4) and the chosen ordering of A’s.
Combining (2.16) and (2.17), we obtain the following bound on the kth largest
eigenvalue of M,,:

> Jnjr(l—e)—k+1

2.18
( ) n—k+1

’
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which holds for n > N,. Inequality (2.18) leads to the desired bound for e (v):
njm(l—g)—k+ 1)’<

ek(v>2ek(x)zmz---xkzxiz( o

Substituting this result into (2.13), we find that

Jn/mt(l—e)—k+1
(2.19) log pon, 2k > 10g pon,o +k log( / )
n—k—+1
Combining (2.15) and (2.19), we find that
1
(2.20) Jim «/7 log pon, 2k = lim o log pan,0-

Relations (2.20) and (2.1) imply that formula (1.2) of Theorem 1.1 is proved for
any fixed integer k > 0.
Moreover, it is evident from (2.15) and (2.19) that equality (2.20) generalises to

1 1
2.21 lim —1o = hm ——1o ,

where (k,),>1 is a sequence of natural numbers such that
. —-1/2 _
nll)ngo(n log(n))k, = 0.

This proves the last claim of Theorem 1.1.

REMARK. Our proof of the k > 0O part of the theorem is a simple consequence

of positive-definiteness of M,, the spectral bound and the fact that Tr(M,,) e
J/n/m. It is interesting that the proof does not rely on any detailed knowledge of
the spectrum of M,,.

APPENDIX A: PROOFS FOR THE LEMMAS

A.1. Proof of Lemma 2.1. To prove the lemma, we start with the exact for-
mula due to Kanzieper and Akemann [14] which expresses the probabilities po, 2k
in terms of elementary symmetric functions:

(A.) P2n,2k = Pon2nen—k(,s - tn—k),

where ¢;’s are given by

(A.2) tj=1Tr(A"'B)’.

Here, A and B are 2n x 2n antisymmetric matrices whose entries
(A.3) Ajk=(qj-1,9k-1)R;

(A4) Bjr=(qj-1,q9k-1)c,
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are defined in terms of skew products

1
A5 gk [, dxdye I ey -0 £ (05()
and
A8 (fghe=i [ dee @R erfc(ﬂ)[ﬂz)g@ @)
Imz>0 l'«/i

Let us stress that (A.1) is valid for an arbitrary choice of monic polynomials g ; (x)
of degree j, provided matrix A is invertible.
Substituting equations (A.1) and (A.2) into the generating function

n
(A.7) gn(2) =Y 2" pan 2
k=0

and making use of the summation formula [15]
(A.8) Zzeez(tl,---,tz)=exp(2(—1)J1tj_~>’

=0 j=1 J
we obtain the Pfaffian representation [2, 5, 14]:
(A9) 821 (2) = p2a,2a PE(—A™") Pf(zA + B);

see remark 1.3 of [5] justifying the transition from square roots of determinants to
Pfaffians. Since g2, (1) = 1, pan.2n = (Pf(—A~!) Pf(zA +B))~! and (A.9) simpli-
fies to

Pf(zA +B
(A.10) gom(e) = LEAEB)

Pf(A+B)

Next, we will use the fact that expression (A.10) for the generating function does
not depend on a particular choice of monic polynomials g;(x) in (A.3) and (A.4)
to simplify it even further. Namely, we will choose g;(x)’s in such a way that
the matrix A + B is block diagonal. Clearly, such polynomials should be skew-
orthogonal with respect to the skew product

(A.1D) (fig)=(f.g)r+ ([ 8)c,
that is
(A.12) (q2js q2k+1) = —(q2k+1, q2j) =78 k>

(92> q2k) = (q2j+1,> q2k+1) = 0.
These were first calculated in the paper [12]:
g2, (x) =x%, Q1 (x) =xH T —2jx2 =1
ri=~2aTQ2j+1).

Given the choice of ¢;’s described above:

(A.13)
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(a) the matrix A + B acquires a block-diagonal form, A + B =r ® J, where
(A.14) r =diag(ro, ..., 1), J= < 01 (1)) ,
which leads to
Pfr® J+ (z — DA)
Pi(r®J)

(A.15) g2n(2) =

(b) the matrix A is given by
(A.16) Asjok =Agjp12k41=0,  Agj 1 =T(j+k—3).

Notice that matrix elements of both r ® J and A labeled by a pair of indexes of
the same parity vanish. Therefore, the 2n x 2n Pfaffians in the numerator and the
denominator of (A.15) are reduced to n x n determinants:
det[rj 18k + (z — DA2j—12%]1<j k<n

det[rj—18jk)1<j k<n '

(A.17) gon(2) =

Finally, we apply the formula det(U)/ det(V?) = det(V~'UV ~!) to perform divi-
sion in (A.17). With the help of the explicit formulae (A.13) and (A.16) we get

(z—1) T(+k=3/2) }
V21 JTQj— DIk —Dli<jken’

(A18)  gon(D) = det[a ik
Lemma 2.1 is proved.

A.2. Proof of Lemma 2.2. The proofs of Lemmas 2.2, 2.3 are based on the
following integral representation for the matrix elements (2.3) of matrix M,,:

© dx x/ xk

/_/ SERNNY: oy Yo
1 < j, k < n, which can be obtained by representing I'(j + & — 3/2) in (2.3) as an

integral.
Take any v = (v, v2, ..., vy) € R"\ {0}. It follows from (A.19) that

2
0 dx - vixt
(A20) (v, M,v) = J—/ x512¢ <Z x/FéJi—l)

So, M, is positive definite by definition.
Next, let us prove bound (2.4) on the spectral radius of M,,. Let A1, Ao, ..., Ay >
0 be the eigenvalues of M,,. Then

(A.19) M,(j, k)=

1/n
(A21) Amax(m) = (VL ()" < (Zxk) = (TrM™)'/".
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It follows from the upper bound (2.9) of Lemma 2.3 that for any ¢ > 0, there is N,
such that for any n > Ng,

Tr M < 1+1+1/T+ I—c1+
T — 4+ -4+ /—4e=1—c1+s,
"“Ynr 4 8\=&m !

where c; € (0, 1). Therefore, we can choose ¢ small enough so that
TrM, <1-—p,

where u € (0, 1). Using this estimate in (A.21) for n > N, we get

(A22) () = (1 =)'/ < 1= 2.

Lemma 2.2 is proved for N = N,.

REMARK. The spectral properties of M, seem quite interesting. For instance,
in the large-n limit there is a concentration of eigenvalues near 1 such that the
restriction of M, to the space spanned by the corresponding eigenvectors is close
to an identity operator perturbed by an elliptic linear differential operator. For-
mal analysis of this perturbation suggests the asymptotic Amax(n) = 1 — pon™" +
o(n~1) for suitable 1 > 0.

A.3. Proof of Lemma 2.3. The integral representation (A.19) for the matrix
elements of M, leads to the following integral representation for the trace of a
power of M,,:

Te M™ /00 dxi ©  dxy o dxy,
= ... 76
(A23) " 0 +/2mx1Jo A 2mxo 0 /2mxy,
x cosh, 1 (/Xmx1) cosh, 1 (/x1x2) - - - coshy 1 (/Xm—1Xm),

where cosh, (x) =3}, é—ik), is the degree-2n Taylor polynomial generated by the

XX

hyperbolic cosine. Performing the change of variables x; = y,% in (A.23), we can
rewrite the integral representation for Tr M)"* as follows:

m/2
Tr M, = (E) dye™ Xi= %

T R
(A.24)

x coshy—1(Ymy1) coshy—1(y1y2) - - - cOshy—1 (Y —1Ym).-
Here, RY = {(y1,y2,..., ym) € R"|yx 2 0,k =1,2,...,m} is the first “quad-
rant” of R™ and dy is a shorthand notation for Lebesgue measure on R™. As
the integrand of (A.24) is symmetric with respect to reflection y; — —y; for any

i=1,2,...,m, we canrewrite Tr M, as an integral over R":
m/2
Tr M, = (L> dye™ Ti=1 %
2 R™
(A.25)

x coshy, 1 (ymy1) cosh,—1(y1y2) - - - coshy, 1 (Yym—1ym)-
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To prove Lemma 2.3, we will establish an upper and a lower bound on Tr M,
and then compute the large-# limit of each of these bounds.

A3.1. Anupper bound for Tr M]'. A good starting point for the calculation is
formula (A.25). For any x € R, cosh,,_1(x) < cosh(x). Also,

—2n
dz 1—z o

A.26 h,, _ =
(A.26) coshy1(0) = P 5

9’

where the integral is anti-clockwise around a circle of radius smaller than 1 centred
at the origin in the complex plane. Replacing all but one cosh,,_; with cosh we get:

1 m/2 .
TI'M,T < <_> dye_ Zk:l yl% COShn—l()’myl) COSh(ylyZ) L
21 Rm
x cosh(Ym—1Ym)
(A.27)
1 m/2 .
= (E) Ea1a2~-~am_l ,/Rm dye k=1Yk
m—1 R
x coshy_ [ (ym y1)ezi=t Ui+
where ay, a2, ..., a,—1 are independent identically distributed random variables

which take values =1 with probability 1/2. Representing the remaining cosh;,_{
with the help of (A.26) and then computing resulting Gaussian integral over R",
we find

dz 1—z72n

—-1/2
e 1oz Pn @1

1 m/2
(A28) TI'M:ln < (5) Ea]az---am—l

where
L) 0 0 2
2 2
e T 0 0
2 2
o -2 4 _% 0 0
2 2
DY (z) = det
m
0 0 _am—3 1 _0‘;11—2 0
2 2
0 0 o  _Im22 1 _m—l
2 2
) 0 o Y-l 1
2

(A.29)



2746 E. KANZIEPER ET AL.

The determinant can be calculated recursively in m, yielding D%a) (z)=1—zand

(A30) DYW(z)=—(m — 1)2im(z, — m)(z + A m—ﬂ) form > 2,
where A,, = ]_[21:_11 ak. Note that (A.30) implies that all principal minors of the
matrix under the sign of the determinant in (A.29) are positive for z = 0. Therefore,
the matrix itself is positive definite for z = 0. By continuity, the real part of this
matrix remains positive definite for z 7 0 provided |z| is small enough. Therefore,
the real part of the quadratic form which determines the Gaussian integral in (A.27)
is positive definite, which justifies the interchange of integrals leading to (A.28)
provided the contour is taken to be a circle around the origin of a sufficiently small
radius.

Substituting (A.30) into (A.28) and changing the integration variable z — A,,z,
we find that the integrand no longer depends on «’s. Averaging over «’s becomes
trivial and we get the following integral upper bound:

dz z7" =1 1 1

2mz 272 =1 J/T—z/(m—Dz+m+1

The rest of the calculation is slightly different depending on whether m =1 or m >
1. Here, present the calculation for m > 1 only, the (simpler) case of m = 1 can be
treated along similar lines. We calculate the integral in the right-hand side of (A.31)
as follows. First, we replace z 2" — 1 with z =2 in the integrand on the right-hand
side of (A.31), since this does not change the value of the integral as the omitted
term is analytic inside of the contour of integration. Next, we deform the contour
away from the singularity at zero and out to infinity, leading to integrals around the
other singularities of the (modified) integrand: a simple pole at z = —1, a branch
cut singularity along the real line from 1 to +o0, and a branch cut singularity
along the real line from — m— to —oo. The contribution from the integral over the
large circle at infinity is zero. The contribution from the pole at z = —1 is easily
evaluated as 1/4. Evaluating the integral around the branch from 1 to +o00 it is
convenient first integrate by parts, so that the singularity at z = 1 is integrable. The
integrals along the two branch cuts lead to two real integrals whose asymptotics are
controlled by the integrand (1 4+ y)~%". Changing variable y — y/2n, and making
some simple estimates on terms that do not affect the leading asymptotics, we are

led to
i Gl 05
4 2n

1 1 3/2 -1 2n+1
(A32) m —+ (m + ) (m )
\/27m 2/m —1\ 2m m+1

X 4 < + y) .
0 J7TT

(A31) TrM™ <
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Both integrals in the above expression can be estimated using the following bound:
(A.33) I —/OO 4y <1+y)_M<1+2
' S Y A V) A

which follows by evaluating the integral, using the substitution ¢t = (1 + %)_1, in
terms of the beta function as

M 11 rm—-3/2
Iy = —B(M——,—) «/MM

b4 22 'M—1/2)
and using bounds on the Gamma function. Using this in (A.32), the final result is

m 1 n 1 1 [m 2\ /m — 1\23/2
TrMnSZ-i- — 1+ )+=/—(1+ - )| —

Tm n 8Y mn n/\m+1

1 n 1 1 [m 2
<-4+ —(1—|——)+— —(1+—),
4 Tm n 8V mn n
which coincides with the claim (2.9) of Lemma 2.3.
Dividing both sides of (A.34) by +/2n and taking the large n limit, we find that

1 1
A.35 li ——TrM" < [ ——.
(A.35) P LY, i \ 27m

A3.2. The limit lim,_, \/%Tr M]". The strategy is to derive an integral

(A.34)

lower bound for Tr M, and calculate the large n-limit of the bound. Our starting
point is the relation (A.24) and the following estimate for the polynomial cosh,,_1.

LEMMA A.1. There exist two sequences (h,)u=1, (Sn)n>1 C R such that

lim h, = -, lim S, =2,
n— 00 2 n— 00

(A.36)
e " cosh,_1(ny) > h,1(y <S,)  fory>=0,n>1.

Here, 1(y < Sy) is the indicator function of the set [0, S;).

In fact, as n — o0, e cosh,,_1(ny) converges almost everywhere to %]l(y <
2) for y > 0, but here we only need the lower bound. The proof of Lemma A.1 is
given in Section A.4.

Using the bound (A.36) in (A.24), we find that

2 m/2
Tr M) > hl} <—> n"/? dy
T R
(A.37)

m
X H 1(yyip1 < Sp)e” 2 221:1()’k+1_yk)2’
=1
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where y,,+1 := y1. It is straightforward to verify that the domain of integration for
the integral in (A.37) contains the hypercube (0, /S,)",

0,VS)™ C{y € R ykyks1 < Su k=1,2,...,m}.

Therefore,
(A.38) [1100 <VS) =[2Gy <Sw).  yeRY

Substituting (A.38) in (A.37) and changing the integration variables according to
R=y1+y24- =+ ym,
Zk = Yk+1 — Yk> k=1,2,....m—1,

we get the following lower bound:

) e m/2 ma/S,
Tr MM > —"<—> nmﬂf dR
4 0

m
(A.39)

» / dz1 - dzy e~ DS FHES 207
Py (R)
where P,,_1(R) is the intersection of the hypercube (0, +/S,)"™ and the hyperplane

{yeRIyi+y2+--+yn=R}

In the derivation of (A.39), we used the fact that the Jacobian of the transformation
y— (R, z) isequal to 1/m.

The large-n limit of the right-hand side of (A.39) can be evaluated by arguing
as in the Laplace method:

liminf — Tr M

n— oo /
Wi 2 m/2 ma/Sy
> lim —" (-) n’"/Z/ dR
=00 /2nm \ T 0

X / dz; ...dszle—(n/Z)[ZZ’ A A
m—1

/2
= lim &h’”(E)m nm=072 /oo da
T —o0 2T

w [ dzy-dey e S ke /DT 3

2
. Sn % m/ L m=1/2 dzeu\z (n/2)z2
n—oo\ 2 "\ g 27.[

—00

I
=
=
|
=
3
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2 2
_ ﬁm,/§£hm<2>m/ wnn(zn)m/L/“)dA<muh»ﬂ
n—oo\ 2 "\ g 0o 27T
lim /&hm<2> 2 n- 1)/2(277 "2 \/7 /
n— 0o 2 "\ g 21T 2 m

The crucial, albeit very standard, first step in the above derivation consists of ver-
ifying that extending the integration space for the z-integral from P,,_1(R), when
R € (0,2), to R"~! does not change the large n-limit.

We conclude that
li f ! Tr M) > >/ !
iminf —— Tr —
n— oo /2n an

and in combination with (A.35) this gives

1 1
lim —TrM,'=,| —
n—o00  /on 2mm

Statement (2.8) of Lemma 2.3 is proved.

A.4. Proof of Lemma A.1. Let {o,}7°, be an arbitrary sequence of positive
real numbers which diverges as n — oo slower than n'/2, that is lim,_, o0 &, = 00,
but lim,,—, o0 a1~ /2 = 0. We will show that there exists Ny > 0 such that for any
n>Ngpand x >0

1 1 2
A.40) e " cosh ><——————‘ﬂﬂﬂ1 <2 —an/?).
( ) e a(nx) > 5 man e (x < opn” %)

The statement of Lemma A.1, where cosh, (nx) is replaced by cosh,_1(nx), is
easily deduced from equation (A.40).

Our proof builds on the ideas of [4] dedicated to the study of sections of ex-
ponential series (Taylor polynomials generated by exp). Let e, be a section of
exponential series defined by

noyd

en(x) = Z x_'
j=0 7"

Consider also
e,(f) (x) =e e, (nx), e,(,_)(x) =e e, (—nx).

Then the function we are interested in can be written as

fu(x) :=e " cosh, (nx) = %(eg:)(z) +e 2n (%))
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First, we show that e;) (x) > 0 for x > 0. One can check that

d 2nx _ 1 2n 2nx
(A.41) E(e e (—2nx)) = m(an) e >0,

and e ey, (—2nx)|x=0 = 1. So e;)(x) > ¢~#% > 0 for x > 0. The next step is
to show that f;,(x) is a decreasing function. However,

£1(x) = —nel) (%)

which is negative by (A.41).
The fact that f,(x) is decreasing and the positivity of e;) (x) imply that for any
nonnegative x

Jn(x) = fn(x)]l(x <2- (xnn_l/z)
e (2 - ann_l/z)]l(x <2-— ann_l/z)

1
> —eg;)(l - %n_1/2>]1(x <2 —a,n1/?).

Therefore, it remains to prove that

1
(A.42) eéj;)(l - O;_nn_l/z) >1-— \/iozn_le_o"zl/“,
v

for all n > Ny, where Ny is chosen to satisfy ann~ Y2 <2 forall n > Np.

We start with a differential equation satisfied by e,(l+). As it is easy to check,

(A.43) ie}ﬁ (x) = —

n_—nx
T (nx)'e .

1
(n— 1!

So e,(1+) (x) is a decreasing function on R ..

Equation (A.43) has to be solved with a boundary condition lim,_, e,(1+) (x)=
0, which follows from the definition of e,(,+). The solution is

(+) _ n" 0 n _—nt
(A.44) e, ' (x)= - 1)!/); t"e " dt.
Let
by = V2rn(n/e)!
T

By the Stirling approximation formula, ¢, =1 + O(n™!) for n — oo and ¢, < 1.
Define

(A.45) ()=t —1—1logt >0 fort e R;.
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In terms of ¢, and 7, expression (A.44) acquires the following form:

n o
(A.46) e (x) = /—¢, / et O gy,
27'[ X

The integral in the right-hand side can be analysed using the Laplace method. It
follows from the definition that

) n Ra—
I=e,”(0)= Eq&,,/(; e dt.

Therefore, (A.46) can be rewritten as follows:

X
eMx)y=1- /iq)n/ e O g =1 —r,(x).
27 0

Let us estimate the remainder r,(x). Evidently, r,(x) > 0. An application of
Taylor’s theorem with the Lagrange form of the remainder reveals that for
O<tr<x<l,

t”(x) ) ,
(A.47) (1) > > (t—x)"+77x)(t—x)+1(x).
Noticing that t/(x) = —1% and 77(x) = xLZ we can use the above bound on

7(¢) to obtain the following upper bound on r,,:

Fn(x) < T / Y o /@) =0+ (1-0) /1)) g
“V2m 0

_ —n(z(x)—(l—x)2/2>( (\ﬁ _ )_ (\/? _ ))
_2xe erfc 2(1 X) erfc 2(2 x)
< ﬁxe*’”()‘) erfcx(ﬁ(l - x)),

2 2

where erfc and erfcx are complementary and scaled complementary error functions
correspondingly. Finally, applying the classical estimate erfcx(x) < ﬁ valid for

any x > 0O (see, e.g., [1]), we obtain

¢n X e—nr(x) < 1 X e—nt(x)
2nmw 1 —x V2nm 1l —x ’

where we used that ¢, < 1. Therefore,

o 1 _

Using (A47)forx =1landt=1— “T"n_l/z, we obtain

1

which leads to the desired bound (A.42) for eg[). Lemma A.1 is proved.

ra(x) <
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APPENDIX B: ON THE NUMERICAL EVALUATION OF p2,.0

It is clear from the proof of Lemma 2.1 that the final form of the Pfaffian or
determinantal expression for the probability that an n x n real Ginibre matrix has
no real eigenvalues is strongly influenced by the choice of skew orthogonal poly-
nomials used in the derivation. And even though the final exact result does not
depend on the choice of the skew orthogonal polynomials, its numerical stability
is highly sensitive to the choice.

For example, the determinantal formula (2.2) is highly suitable for numerical
evaluations since the condition number of the corresponding matrix I — M,, grows
at most linearly with n. Indeed, its largest eigenvalue is smaller than unity since
M, is positive definite in virtue of the first part of Lemma 2.2. On the other hand,
its smallest eigenvalue is separated from zero by an interval of length of order
O (n~") due to the result of Lemma 2.2 concerning the largest eigenvalue of M,,.

This should be contrasted to the determinantal formula derived in [14]. The
condition number of the matrix p appearing in this formula grows exponentially
with n, forcing one to use high-precision numerics and leading to computation
times growing exponentially with 7.

Acknowledgement. C. Timm acknowledges useful discussions with K. Nest-
mann.
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