
The Annals of Applied Probability
2016, Vol. 26, No. 4, 2083–2105
DOI: 10.1214/15-AAP1140
© Institute of Mathematical Statistics, 2016

EULER APPROXIMATIONS WITH VARYING COEFFICIENTS:
THE CASE OF SUPERLINEARLY GROWING

DIFFUSION COEFFICIENTS

BY SOTIRIOS SABANIS

University of Edinburgh

A new class of explicit Euler schemes, which approximate stochastic dif-
ferential equations (SDEs) with superlinearly growing drift and diffusion co-
efficients, is proposed in this article. It is shown, under very mild conditions,
that these explicit schemes converge in probability and in Lp to the solution
of the corresponding SDEs. Moreover, rate of convergence estimates are pro-
vided for Lp and almost sure convergence. In particular, the strong order 1/2
is recovered in the case of uniform Lp-convergence.

1. Introduction. Motivated by the work of [10] and [6] on explicit Euler-type
schemes which approximate (in an Lp sense) SDEs with superlinearly growing
drift coefficients, the author extends the techniques developed in [10] and [3] to ob-
tain, under very mild assumptions, convergence results for the case of superlinearly
growing diffusion coefficients. For an extensive and up to date literature review on
Euler approximations, one can consult [6] and [5], where it is demonstrated that
the implementation of implicit schemes requires significantly more computational
effort than this new generation of explicit Euler-type approximations. Thus, the
focus of this work is solely on explicit methods. For implicit methods, one could
consult [4, 9] and the references therein.

In order to highlight the progress made in this article with comparison to the
latest developments in the field, namely [5] and [11], the following example is
presented; consider a nonlinear (d-dimensional) SDE which is given by

dX(t) = λX(t)
(
μ − ∣∣X(t)

∣∣)dt + ξ
∣∣X(t)

∣∣3/2
dWt

with initial condition X0 ∈ R
d , where λ, μ and all elements of the vector X0

are positive constants. Moreover, ξ ∈ R
d×d1 is a positive definite matrix and

{W(t)}t≥0 is a d1-dimensional Wiener martingale. This SDE is chosen since its
one-dimensional version is the popular 3/2-model in Finance (see, e.g., [1] and
the references therein), which is used for modelling (nonaffine) stochastic volatil-
ity processes and for pricing VIX options. One then further observes that the co-
ercivity and monotonicity conditions, which are given in A-4 and A-6 below, are
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satisfied with p0 = 2p1 −1 and p1 = λ
|ξ |2 +1 (for more details, see the Appendix).

Due to Theorem 2 below, one obtains convergence results in L2 (or more generally
in Lp) with order 1/2 even when p1 and p0 are relatively small. Consider, for ex-
ample, the case p1 = 3.5 (and thus p0 = 6); then the explicit Euler-type scheme in
Theorem 2 below converges to the true solution of the above SDE in L2 with order
1/2, whereas the authors in [5] are able to show Lp-convergence (without rate) of
their explicit schemes only for p < 1/2 (see Section 4.10.3 in [5]). Also, the find-
ings in [11] (see Lemma 3.1 in [11]) do not produce the required moment bounds
for the above case, and thus, no statement can be made about the convergence of
their explicit numerical scheme in L2.

To further highlight the advantages of the proposed approximation methods
hereunder, it is noted that Theorem 1 presents optimal Lp-convergence results of
explicit Euler-type schemes under the monotonicity condition A-3 (see below) in
the sense that Lp-convergence results are obtained for any p < p0 which essen-
tially closes the gap appearing in [5]. Furthermore, Theorem 3 presents uniform
Lp-convergence results with order 1/2. The author is not aware of any other such
results for the case of explicit Euler-type approximations to SDEs with superlin-
early growing diffusion coefficients.

This section concludes by introducing some basic notation. The norm of a vec-
tor x ∈ R

d and the Hilbert–Schmidt norm of a matrix A ∈ R
d×m are respectively

denoted by |x| and |A|. The transpose of a matrix A ∈ R
d×m is denoted by AT and

the scalar product of two vectors x, y ∈ R
d is denoted by xy. The integer part of

a nonnegative real number x is denoted by �x�. Moreover, Lp = Lp(�,F,P) de-
notes the space of random variables X with a norm ‖X‖p := (E[|X|p])1/p < ∞ for
p > 0. Finally, B(V ) denotes the σ -algebra of Borel sets of a topological space V .

2. Main results. Let (�, {Ft }t≥0,F,P) be a filtered probability space satis-
fying the usual conditions, that is, the filtration is increasing, right continuous and
complete. Let {W(t)}t≥0 be a d1-dimensional Wiener martingale. Furthermore,
it is assumed that b(t, x) and σ(t, x) are B(R+) ⊗ B(Rd)-measurable functions
which take values in R

d and R
d×d1 , respectively. For a fixed T > 0, let us consider

an SDE given by

dX(t) = b
(
t,X(t)

)
dt + σ

(
t,X(t)

)
dW(t) ∀t ∈ [0, T ],(2.1)

with initial value X(0) which is an almost surely finite F0-measurable random
variable.

Let constants p0 and p1 ∈ [2,∞). We consider the following conditions:

A-1. The function b(t, x) is continuous in x for any t ∈ [0, T ].
A-2. For every R ≥ 0, there exists a constant NR such that

sup
|x|≤R

∣∣b(t, x)
∣∣ ≤ NR

for any t ∈ [0, T ].
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A-3. For every R > 0, there exists a positive constant LR such that, for any
t ∈ [0, T ],

2(x − y)
(
b(t, x) − b(t, y)

) + (p1 − 1)
∣∣σ(t, x) − σ(t, y)

∣∣2 ≤ LR|x − y|2
for all |x|, |y| ≤ R.

A-4. There exists a positive constant K such that

2xb(t, x) + (p0 − 1)
∣∣σ(t, x)

∣∣2 ≤ K
(
1 + |x|2)

for any t ∈ [0, T ] and x ∈ R
d .

A-5. E[|X(0)|p0] < ∞.

REMARK 1. Due to A-2 and A-4, for every R ≥ 0, there exists a constant N ′
R

such that sup|x|≤R |σ(t, x)| ≤ N ′
R for any t ∈ [0, T ].

Furthermore, for every n ≥ 1, the following numerical scheme is defined:

dXn(t) = bn

(
t,Xn

(
κn(t)

))
dt + σn

(
t,Xn

(
κn(t)

))
dW(t)

(2.2)
∀t ∈ [0, T ],

with the same initial value X(0) as equation (2.1), where bn(t, x) and σn(t, x)

are B(R+) ⊗ B(Rd)-measurable functions which take values in R
d and R

d×d1 ,
respectively, and κn(t) := �nt�/n. The following conditions are considered:

B-1. For every R ≥ 0,∫ T

0
sup

|x|≤R

[∣∣bn(t, x) − b(t, x)
∣∣p0 + ∣∣σn(t, x) − σ(t, x)

∣∣p0
]
dt → 0

(2.3)
as n → ∞.

B-2. There exist an α ∈ (0,1/2] and a constant C such that, for every n ≥ 1,∣∣bn(t, x)
∣∣ ≤ min

(
Cnα(

1 + |x|), ∣∣b(t, x)
∣∣) and

(2.4) ∣∣σn(t, x)
∣∣2 ≤ min

(
Cnα(

1 + |x|2)
,
∣∣σ(t, x)

∣∣2)
,

for any t ∈ [0, T ] and x ∈ R
d .

B-3. There exists a positive constant K such that, for every n ≥ 1,

2xbn(t, x) + (p0 − 1)
∣∣σn(t, x)

∣∣2 ≤ K
(
1 + |x|2)

(2.5)

for any t ∈ [0, T ] and x ∈ R
d .

REMARK 2. Note that the set of sequences of functions which satisfy B-1–B-3
is nonempty. In order to see this, one considers the following.
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Model 1:

bn(t, x) := 1

1 + n−α|b(t, x)| + n−α|σ(t, x)|2 b(t, x)(2.6)

and

σn(t, x) := 1

1 + n−α|b(t, x)| + n−α|σ(t, x)|2 σ(t, x),(2.7)

for any t ∈ [0, T ], x ∈ R
d and n ≥ 1. One observes immediately that B-2 is satis-

fied, and furthermore that, due to A-4, B-3 is also satisfied. One also observes that,
for every R ≥ 0,∫ T

0
sup

|x|≤R

∣∣bn(t, x) − b(t, x)
∣∣p0 dt

≤ n−αp0

∫ T

0
sup

|x|≤R

2p0−1(|b(t, x)|p0 + |σ(t, x)|2p0)

(1 + n−α|b(t, x)| + n−α|σ(t, x)|2)p0

∣∣b(t, x)
∣∣p0 dt,

which tends to 0 as n → ∞, due to A-2. Similarly, one obtains the same result for
the diffusion coefficients so as to show that B-1 holds.

Finally, for every n ≥ 1, one deduces immediately that bn(t, x) and σn(t, x)

are B(R+) ⊗ B(Rd)-measurable functions which take values in R
d and R

d×d1 ,
respectively.

REMARK 3. Note that due to B-2, for each n ≥ 1, the norm of bn and of
σn have at most linear growth in x and that guarantees the existence of a unique
solution to (2.2). Moreover, it guarantees along with A-5 that for each n ≥ 1,

sup
0≤t≤T

E
[∣∣Xn(t)

∣∣p]
< ∞(2.8)

for any p ≤ p0. Clearly, one cannot claim at this point that any of these bounds is
independent of n.

The main results of this paper follow.

THEOREM 1. Suppose A-1–A-5 and B-1–B-3 hold with α ∈ (0,1/2], then the
numerical scheme (2.2) converges to the true solution of SDE (2.1) in Lp-sense,
that is,

lim
n→∞ sup

0≤t≤T

E
[∣∣X(t) − Xn(t)

∣∣p] = 0

for all p < p0.

If one then moves from local to global monotonicity conditions and considers
coefficients which have at most polynomial growth, one typically assumes the fol-
lowing:
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A-6. There exist positive constants l and L such that, for any t ∈ [0, T ],
2(x − y)

(
b(t, x) − b(t, y)

) + (p1 − 1)
∣∣σ(t, x) − σ(t, y)

∣∣2 ≤ L|x − y|2
and ∣∣b(t, x) − b(t, y)

∣∣ ≤ L
(
1 + |x|l + |y|l)|x − y|

for all x, y ∈ R
d .

REMARK 4. One observes that if A-2, A-4 and A-6 hold, then∣∣b(t, x)
∣∣ ≤ ∣∣b(t, x) − b(t,0)

∣∣ + ∣∣b(t,0)
∣∣ ≤ L

(
1 + |x|l)|x| + N0

(2.9)
≤ N

(
1 + |x|l+1)

for any t ∈ [0, T ] and x ∈ R
d , where N is a positive constant. Similarly, one cal-

culates ∣∣σ(t, x)
∣∣2 ≤ K

(
1 + |x|2) + 2N

(
1 + |x|l+1)|x| ≤ C

(
1 + |x|l+2)

.(2.10)

REMARK 5. Note that A-6 and Remark 4 allow us to specify another model
which produces the optimal rate of convergence and satisfies B-1–B-3. Consider
the following.

Model 2:

bn(t, x) := 1

1 + n−α|x|l b(t, x)(2.11)

and

σn(t, x) := 1

1 + n−α|x|l σ (t, x),(2.12)

for any t ∈ [0, T ], x ∈ R
d and n ≥ 1. One then observes that B-2 is satisfied due to

(2.9) and (2.10), and furthermore that, due to A-4, B-3 is also satisfied. One also
observes that, for every R ≥ 0,∫ T

0
sup

|x|≤R

∣∣bn(t, x) − b(t, x)
∣∣p0 dt ≤ n−αp0

∫ T

0
sup

|x|≤R

|x|lp0

(1 + n−α|x|l)p0

∣∣b(t, x)
∣∣p0 dt

→ 0,

as n → ∞, due to (2.9). Similarly, one obtains the same result for the diffusion
coefficients so as to show that B-1 holds.

p-condition. The coefficients bn and σn are given by equations (2.11) and (2.12)
with α = 1/2, l ≤ p0−2

4 and there exists a positive p such that p < p1 and p ≤
p0

2l+1 .
One then can recover the optimal rate of (strong) convergence for Euler approx-

imations.
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THEOREM 2. Suppose A-2 and A-4–A-6 and the p-condition hold, then the
numerical scheme (2.2) converges to the true solution of SDE (2.1) in Lp-sense
with order 1/2, that is,

sup
0≤t≤T

E
[∣∣X(t) − Xn(t)

∣∣p] ≤ Cn−p/2,(2.13)

where C is a constant independent of n.

REMARK 6. Observe that when l = 0, that is, the drift and diffusion coeffi-
cients are allowed to grow at most linearly and satisfy a global Lipschitz condi-
tion, Theorem 2 produces the optimal result known in classical literature, and thus
it can be seen as a generalisation of the classical approach since the restrictions in
the p-condition are reduced to only one, namely p ≤ p0.

For somewhat smaller values of p, one obtains similar results in the case of
uniform Lp convergence.

THEOREM 3. Suppose A-2, A-4–A-6 and the p-condition hold, then the nu-
merical scheme (2.2) converges to the true solution of SDE (2.1) in uniform Lq -
sense with order 1/2, that is,

E

[
sup

0≤t≤T

∣∣X(t) − Xn(t)
∣∣q]

≤ Cn−q/2,(2.14)

where C is a constant independent of n, for all q < p.

3. Convergence in probability and moment bounds. One first notes the
following result which along with the relevant moment bounds of the numerical
scheme (2.2) suffice for the proof of Theorem 1.

THEOREM 4. Suppose conditions A-1–A-4 and B-1 hold. Then the numerical
scheme (2.2) converges to the true solution of SDE (2.1) in probability, that is,

sup
0≤t≤T

∣∣Xn(t) − X(t)
∣∣ P→0 as n → ∞.

PROOF. This is a direct consequence of Theorem 4.1 in [3]. �

The L2 estimate is presented first as it demonstrates the stability of the proposed
numerical schemes.

LEMMA 1. Consider the numerical scheme (2.2) and let A-5, B-2 and B-3
hold, then for some C := C(T ,K,E[|X(0)|2]),

sup
n≥1

sup
0≤u≤T

E
∣∣Xn(u)

∣∣2 < C.(3.1)
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PROOF. The application of Itô’s formula yields∣∣Xn(t)
∣∣2 = ∣∣X(0)

∣∣2 + 2
∫ t

0
Xn(s)bn

(
s,Xn

(
κn(s)

))
ds +

∫ t

0

∣∣σn

(
s,Xn

(
κn(s)

))∣∣2 ds

+ 2
∫ t

0
Xn(s)σn

(
s,Xn

(
κn(s)

))
dW(s)

= ∣∣X(0)
∣∣2 + 2

∫ t

0

[
Xn

(
κn(s)

)
bn

(
s,Xn

(
κn(s)

))
(3.2)

+ {
Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))]
ds

+
∫ t

0

∣∣σn

(
s,Xn

(
κn(s)

))∣∣2 ds + 2
∫ t

0
Xn(s)σn

(
s,Xn

(
κn(s)

))
dW(s).

Moreover, one calculates

E

∫ t

0

{
Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds

= E

∫ T

0

∫ s

κn(s)
bn

(
u,Xn

(
κn(u)

))
dubn

(
s,Xn

(
κn(s)

))
ds

+E

∫ t

0

∫ s

κn(s)
σn

(
u,Xn

(
κn(u)

))
dW(u)bn

(
s,Xn

(
κn(u)

))
ds

≤ E

∫ T

0

∫ s

κn(s)

∣∣bn

(
u,Xn

(
κn(u)

))∣∣du
∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds

(3.3)

+E

n(�t�+1)∑
k=0

∫ ((k+1)/n)∧t

k/n

∫ s

k/n
σn

(
u,Xn(k/n)

)
dW(u)bn

(
s,Xn(k/n)

)
ds

≤ Cn2α
E

∫ t

0

∫ s

κn(s)

(
1 + ∣∣Xn

(
κn(u)

)∣∣)du
(
1 + ∣∣Xn

(
κn(s)

)∣∣)ds

(due to B-2)

≤ Cn2α−1
(

1 +E

∫ t

0

∣∣Xn

(
κn(s)

)∣∣2 ds

)
,

where C is a positive general constant independent of n. Thus, due to (3.2), B-3,
(2.8) and (3.3), for any t ∈ [0, T ],

E
∣∣Xn(t)

∣∣2 ≤ C

(
1 +E

∣∣X(0)
∣∣2 +E

∫ t

0

∣∣Xn

(
κn(s)

)∣∣2 ds

)

≤ C

(
1 +E

∣∣X(0)
∣∣2 +

∫ t

0
sup

0≤u≤s

E
∣∣Xn(u)

∣∣2 ds

)
,

which implies

sup
0≤u≤t

E
∣∣Xn(u)

∣∣2 ≤ C

(
1 +E

∣∣X(0)
∣∣2 +

∫ t

0
sup

0≤u≤s

E
∣∣Xn(u)

∣∣2 ds

)
< ∞,
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where the positive general constant C is independent of n. One then observes that
the application of Gronwall’s lemma yields the desired result. �

LEMMA 2. Suppose that A-1–A-5, B-2 and B-3 hold, then for every p ≤ p0

sup
0≤t≤T

E
∣∣X(t)

∣∣p ∨ sup
n≥1

sup
0≤t≤T

E
∣∣Xn(t)

∣∣p < C,(3.4)

where the constant C := C(p,T ,K,E[|X(0)|p]).

PROOF. It is well known from the classical literature that the result

sup
0≤t≤T

E
∣∣X(t)

∣∣p < C

holds for every p ≤ p0 when A-1–A-5 hold. One could consult, for example, [8]
for more details or just observe that the application of Itô’s formula to |X(t)|p0 ,
along with A-4, A-5 and the application of Gronwall’s and Fatou’s lemmas yields
the desired result. Furthermore, due to B-2, B-3 and Remark 3, one obtains on the
application of Itô’s formula

E
∣∣Xn(t)

∣∣p0

≤ E
∣∣X(0)

∣∣p0 + p0

2
E

∫ t

0

∣∣Xn(s)
∣∣p0−2

K
(
1 + ∣∣Xn

(
κn(s)

)∣∣2)
ds(3.5)

+ 2E
∫ t

0

∣∣Xn(s)
∣∣p0−2{

Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds.

Thus, one needs to estimate the “correction” term

E := E

∫ t

0

∣∣Xn(s)
∣∣p0−2{

Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds.(3.6)

Then one calculates

E = E

∫ t

0

∣∣Xn

(
κn(s)

)∣∣p0−2{
Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds

+E

∫ t

0

(∣∣Xn(s)
∣∣p0−2 − ∣∣Xn

(
κn(s)

)∣∣p0−2)
(3.7)

× {
Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds

= E1 + E2.

Moreover, due to B-2,

E1 := E

∫ t

0

∣∣Xn

(
κn(s)

)∣∣p0−2{
Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds

= E

∫ t

0

∣∣Xn

(
κn(s)

)∣∣p0−2
∫ s

κn(s)
bn

(
u,Xn

(
κn(u)

))
dubn

(
s,Xn

(
κn(s)

))
ds(3.8)
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+E

∫ t

0

∣∣Xn

(
κn(s)

)∣∣p0−2

×
∫ s

κn(s)
σn

(
u,Xn

(
κn(u)

))
dW(u)bn

(
s,Xn

(
κn(s)

))
ds

≤ E

∫ t

0

∣∣Xn

(
κn(s)

)∣∣p0−2

×
∫ s

κn(s)
Cnα(

1 + ∣∣Xn

(
κn(u)

)∣∣)duCnα(
1 + ∣∣Xn

(
κn(s)

)∣∣)ds

≤ Cn2α−1
(

1 +
∫ t

0
E

∣∣Xn

(
κn(s)

)∣∣p0 ds

)

≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds

)
.

Furthermore, one uses Itô’s formula for p0 ≥ 4 in order to estimate E2 [whereas
for the case 2 < p0 < 4, Lemma 1 and the finiteness of supn≥1 E

∫ T
0 |Xn(t) −

Xn(κn(t))|p|bn(t,Xn(κn(t)))|p dt , see Model 1 for example, are used to provide a
uniform bound for (3.6)]. Note that the case p0 = 2 is covered by Lemma 1:

E2 := E

∫ t

0

(∣∣Xn(s)
∣∣p0−2 − ∣∣Xn

(
κn(s)

)∣∣p0−2)
× {

Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds

= E

∫ t

0

[
(p0 − 2)

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4

Xn(r)bn

(
r,Xn

(
κn(r)

))
dr

+ (p0 − 2)

(
p0 − 2

2
− 1

)∫ s

κn(s)

∣∣Xn(r)
∣∣p0−6∣∣σT

n

(
r,Xn

(
κn(r)

))
Xn(r)

∣∣2 dr

+ (p0 − 2)

2

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

+ (p0 − 2)

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4

Xn(r)σn

(
r,Xn

(
κn(r)

))
dW(r)

]

×
(∫ s

κn(s)
bn

(
r,Xn

(
κn(r)

))
dr +

∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

)

× bn

(
s,Xn

(
κn(s)

))
ds

and thus

E2 ≤ C

(
E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr

×
∫ s

κn(s)

∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr
∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds(3.9)
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+E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr

×
∣∣∣∣
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds

+E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

×
∫ s

κn(s)

∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr
∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds

+E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

×
∣∣∣∣
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds

)

+ (p0 − 2)E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4

Xn(r)σn

(
r,Xn

(
κn(r)

))
dW(r)

×
∫ s

κn(s)
bn

(
r,Xn

(
κn(r)

))
dr bn

(
s,Xn

(
κn(s)

))
ds

+ (p0 − 2)E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4

Xn(r)σn

(
r,Xn

(
κn(r)

))
dW(r)

×
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)bn

(
s,Xn

(
κn(s)

))
ds

≤ C(E21 + E22 + E23 + E24) + (p0 − 2)E25 + (p0 − 2)E26.

One estimates E21–E26 by using Young’s and Hölder’s inequalities as well as B-2.
More precisely,

E21 := E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr

×
∫ s

κn(s)

∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr
∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds

≤ E

∫ t

0
Cn3α−1

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3(

1 + ∣∣Xn

(
κn(s)

)∣∣)3
dr ds

(3.10)

≤ Cn3α−2
(

1 +
∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds

+
∫ t

0
E

∣∣Xn

(
κn(s)

)∣∣p0 ds

)

≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds

)
,
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and

E22 := E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr

×
∣∣∣∣
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds

≤ E

∫ t

0

{(∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr
∣∣bn

(
s,Xn

(
κn(s)

))∣∣)p0/(p0−1)

+
∣∣∣∣
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣
p0}

ds

≤ E

∫ t

0

{(
Cn2α

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3(

1 + ∣∣Xn

(
κn(s)

)∣∣)2
dr

)p0/(p0−1)

+
∣∣∣∣
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣
p0}

ds

≤ E

∫ t

0

(
Cn2α

∫ s

κn(s)

(
1 + ∣∣Xn(r)

∣∣p0−1 + ∣∣Xn

(
κn(s)

)∣∣p0−1)
dr

)p0/(p0−1)

ds

+
∫ t

0
E

(∫ s

κn(s)

∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

)p0/2

ds

≤ Cn(2α−1)(p0/(p0−1))
∫ t

0

(
1 + sup

r≤s
E

∣∣Xn(r)
∣∣p0 +E

∣∣Xn

(
κn(s)

)∣∣p0
)
ds

+
∫ t

0
E

(∫ s

κn(s)
Cnα(

1 + ∣∣Xn

(
κn(r)

)∣∣2)
dr

)p0/2

ds

≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds

)

+ Cn(α−1)(p0/2)

(
1 +

∫ t

0
E

∣∣Xn

(
κn(s)

)∣∣p0 ds

)
,

which yields

E22 ≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 dr

)
.(3.11)

Furthermore,

E23 := E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

×
∫ s

κn(s)

∣∣bn

(
r,Xn

(
κn(r)

))∣∣dr
∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds(3.12)
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≤ E

∫ t

0
Cn3α−1

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4(

1 + ∣∣Xn

(
κn(s)

)∣∣2)
× (

1 + ∣∣Xn

(
κn(s)

)∣∣)2
dr ds

≤ Cn3α−2
(

1 +
∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds +
∫ t

0
E

∣∣Xn

(
κn(s)

)∣∣p0 ds

)

≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds

)

and

E24 := E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

×
∣∣∣∣
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds

≤ E

∫ t

0

{(∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

× ∣∣bn

(
s,Xn

(
κn(s)

))∣∣)p0/(p0−1)

+
∣∣∣∣
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣
p0}

ds

≤
∫ t

0
E

[∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4

Cnα(
1 + ∣∣Xn

(
κn(r)

)∣∣2)
dr

× Cnα(
1 + ∣∣Xn

(
κn(s)

)∣∣)]p0/(p0−1)

ds

+
∫ t

0
E

∣∣∣∣
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣
p0

ds

≤ E

∫ t

0

(
Cn2α

∫ s

κn(s)

(
1 + ∣∣Xn(r)

∣∣p0−1 + ∣∣Xn

(
κn(s)

)∣∣p0−1)
dr

)p0/(p0−1)

ds

+
∫ t

0
E

(∫ s

κn(s)

∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

)p0/2

ds

≤ Cn(2α−1)(p0/(p0−1))
∫ t

0

(
1 + sup

r≤s
E

∣∣Xn(r)
∣∣p0 +E

∣∣Xn

(
κn(s)

)∣∣p0
)
ds

+
∫ t

0
E

(∫ s

κn(s)
Cnα(

1 + ∣∣Xn

(
κn(r)

)∣∣2)
dr

)p0/2

ds
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≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds

)

+ Cn(α−1)(p0/2)

(
1 +

∫ t

0
E

∣∣Xn

(
κn(s)

)∣∣p0 ds

)
,

which also yields

E24 ≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 dr

)
.(3.13)

Finally,

E25 := E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4

Xn(r)σn

(
r,Xn

(
κn(r)

))
dW(r)

(3.14)
×

∫ s

κn(s)
bn

(
r,Xn

(
κn(r)

))
dr bn

(
s,Xn

(
κn(s)

))
ds = 0

and

E26 := E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4

Xn(r)σn

(
r,Xn

(
κn(r)

))
dW(r)

×
∫ s

κn(s)
σn

(
r,Xn

(
κn(r)

))
dW(r)bn

(
s,Xn

(
κn(s)

))
ds

= E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−4

Xn(r)σn

(
r,Xn

(
κn(r)

))
σT

n

(
r,Xn

(
κn(r)

))
dr

× bn

(
s,Xn

(
κn(s)

))
ds

(3.15)

≤ E

∫ t

0

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr
∣∣bn

(
s,Xn

(
κn(s)

))∣∣ds

≤ E

∫ t

0
Cn2α

∫ s

κn(s)

∣∣Xn(r)
∣∣p0−3(

1 + ∣∣Xn

(
κn(s)

)∣∣2)(
1 + ∣∣Xn

(
κn(s)

)∣∣)dr ds

≤ Cn2α−1
(

1 +
∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds +
∫ t

0
E

∣∣Xn

(
κn(s)

)∣∣p0 ds

)

≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds

)
.

Thus, due to (3.10)–(3.15), (3.8), (3.9) and (3.7),

E

∫ t

0

∣∣Xn(s)
∣∣p0−2{

Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds

≤ C

(
1 +

∫ t

0
sup
r≤s

E
∣∣Xn(r)

∣∣p0 ds

)
,



2096 S. SABANIS

which yields due to (3.5) and Young’s inequality that

E
∣∣Xn(t)

∣∣p0 ≤ C

(
1 +E

∣∣X(0)
∣∣p0 +E

∫ t

0

∣∣Xn(s)
∣∣p0 ds

+E

∫ t

0

(
1 + ∣∣Xn

(
κn(s)

)∣∣2)p0/2
ds

)
(3.16)

+ 2E
∫ t

0

∣∣Xn(s)
∣∣p0−2{

Xn(s) − Xn

(
κn(s)

)}
bn

(
s,Xn

(
κn(s)

))
ds

≤ C

(
1 +E

∣∣X(0)
∣∣p0 +

∫ t

0
sup

0≤u≤s

E
∣∣Xn(u)

∣∣p0 ds

)
< ∞

due to (2.8). The application of Gronwall’s lemma yields the desired result. �

REMARK 7. In order to ease notation, it is chosen not to explicitly present the
calculations for, and thus it is left as an exercise to the reader, the case where the
drift and the diffusion coefficient(s) have the following representation:

b(t, x) = b(1)(t, x) + b(2)(t, x) and σ(t, x) = σ (1)(t, x) + σ (2)(t, x),

where b(1)(t, x) and σ (1)(t, x) are Lipschitz continuous and grow at most linearly
(in x) and the nonlinearities, that is, super-linear growth, appear in b(2)(t, x) and in
σ (2)(t, x). In such a case, the analysis for b(1)(t, x) and σ (1)(t, x) follows closely
the classical approach, see also “correction” term E in (3.6). Note also that in such
a case, b(t, x) and σ(t, x) are replaced by b(2)(t, x) and σ (2)(t, x), respectively, in
(2.6), (2.7), (2.11) and (2.12).

4. Proof of main results.

4.1. Lp-convergence.

PROOF OF THEOREM 1. This is now a direct consequence of Theorem 4 and
Lemma 2. �

LEMMA 3. Consider the numerical scheme (2.2) with coefficients bn and σn

given by (2.11) and (2.12), respectively. Suppose A-2, A-4–A-6 and p ≤ p0
2l+1 .

Then

E

[∫ T

0

∣∣b(
s,Xn

(
κn(s)

)) − bn

(
s,Xn

(
κn(s)

))∣∣p ds

]
≤ Cn−αp(4.1)

and

E

[∫ T

0

∣∣σ (
s,Xn

(
κn(s)

)) − σn

(
s,Xn

(
κn(s)

))∣∣p ds

]
≤ Cn−αp,(4.2)

where C is a constant independent of n.
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PROOF. One immediately observes that, due to (2.9), (2.10), (2.11) and (2.12)

E

[∫ T

0

∣∣b(
s,Xn

(
κn(s)

)) − bn

(
s,Xn

(
κn(s)

))∣∣p ds

]

≤ n−αp
E

[∫ T

0

|Xn(κn(s))|lp
(1 + n−α

∣∣Xn(κn(s))
∣∣l)p

∣∣b(
t,Xn

(
κn(s)

))∣∣p dt

]

≤ Cn−αp
E

[∫ T

0

∣∣Xn

(
κn(s)

)∣∣lp(
1 + ∣∣Xn

(
κn(s)

)∣∣l+1)p
ds

]
,

which implies (4.1) due to Lemma 2 and the assumption that p ≤ p0
2l+1 . One applies

the same technique in order to obtain (4.2). �

LEMMA 4. Consider the numerical scheme (2.2). Let A-2, A-4–A-6 and B-2
with α = 1/2 hold, then for any positive p ≤ max(2,

2p0
l+2) and l ≤ p0 − 2,

sup
0≤t≤T

E
∣∣Xn(t) − Xn

(
κn(t)

)∣∣p ≤ Cn−p/2,(4.3)

where C is a positive constant independent of n.

PROOF. For any p ∈ [1,
2p0
l+2 ] and every t ∈ [0, T ],

E
∣∣Xn(t) − Xn

(
κn(t)

)∣∣p
= E

∣∣∣∣
∫ t

κn(t)
bn

(
r,Xn

(
κn(r)

))
dr +

∫ t

κn(t)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣
p

and thus, due to Hölder’s inequality,

E
∣∣Xn(t) − Xn

(
κn(t)

)∣∣p
≤ 2p−1∣∣t − κn(t)

∣∣p−1
E

∫ t

κn(t)

∣∣bn

(
r,Xn

(
κn(r)

))∣∣p dr(4.4)

+ 2p−1
E

∣∣∣∣
∫ t

κn(t)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣
p

.

One then observes that, due to B-2,

2p−1∣∣t − κn(t)
∣∣p−1

E

∫ t

κn(t)

∣∣bn

(
r,Xn

(
κn(r)

))∣∣p dr

≤
(

2

n

)p−1

E

∫ t

κn(t)
nαp(

1 + ∣∣Xn

(
κn(r)

)∣∣)p dr(4.5)

≤ Cn(α−1)p
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and, due to (2.10), one obtains

E

∣∣∣∣
∫ t

κn(t)
σn

(
r,Xn

(
κn(r)

))
dW(r)

∣∣∣∣
p

≤ CE

[(∫ t

κn(t)

∣∣σn

(
r,Xn

(
κn(r)

))∣∣2 dr

)p/2]
(4.6)

≤ CE

[(∫ t

κn(t)

(
1 + ∣∣Xn

(
κn(r)

)∣∣l+2)
dr

)p/2]
≤ Cn−p/2.

This due to the fact that for the case p > 2, Hölder’s inequality gives the desired re-
sult as p ≤ 2p0

l+2 and thus l+2
2 p ≤ p0, and for the case 1 ≤ p ≤ 2, one uses Jensen’s

inequality for concave functions and/or the fact that l ≤ p0 − 2. Substituting (4.5)
and (4.6) in (4.4) yields (4.3). Similarly, one obtains the same result for 0 < p < 1,
due to Jensen’s inequality for concave functions, l ≤ p0 − 2 and

E
∣∣Xn(t) − Xn

(
κn(t)

)∣∣p ≤ (
E

∣∣Xn(t) − Xn

(
κn(t)

)∣∣)p ≤ (
Cn−1/2)p

. �

PROOF OF THEOREM 2. One considers first, for every n ≥ 1 and t ∈ [0, T ],
χn(t) := X(t) − Xn(t), βn(t) := b

(
t,X(t)

) − bn

(
t,Xn

(
κn(t)

))
(4.7)

and

αn(t) := σ
(
t,X(t)

) − σn

(
t,Xn

(
κn(t)

))
(4.8)

to obtain for any p ≥ 2

∣∣χn(t)
∣∣p ≤ p

2

∫ t

0

∣∣χn(s)
∣∣p−2[

2χn(s)βn(s) + (p − 1)
∣∣αn(s)

∣∣2]
ds

(4.9)

+ p

∫ t

0

∣∣χn(s)
∣∣p−2

χn(s)αn(s) dW(s).

One then observes, for any ε > 0,

2χn(s)βn(s) + (p − 1)
∣∣αn(s)

∣∣2
= 2

[
X(s) − Xn(s)

][
b
(
s,X(s)

) − b
(
s,Xn(s)

)]
+ 2

[
X(s) − Xn(s)

][
b
(
s,Xn(s)

) − b
(
s,Xn

(
κn(s)

))]
+ 2

[
X(s) − Xn(s)

][
b
(
s,Xn

(
κn(s)

)) − bn

(
s,Xn

(
κn(s)

))]
(4.10)

+ (1 + ε)(p − 1)
∣∣σ (

s,X(s)
) − σ

(
s,Xn(s)

)∣∣2
+ 2

(
1 + 1

ε

)
(p − 1)

∣∣σ (
s,Xn(s)

) − σ
(
s,Xn

(
κn(s)

))∣∣2
+ 2

(
1 + 1

ε

)
(p − 1)

∣∣σ (
s,Xn

(
κn(s)

)) − σn

(
s,Xn

(
κn(s)

))∣∣2.
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One further observes that

(p1 − 1)
∣∣σ(t, x) − σ(t, y)

∣∣2
≤ L|x − y|2 − 2(x − y)

(
b(t, x) − b(t, y)

)
(due to A-6)

≤ C
(
1 + |x|l + |y|l)|x − y|2

and thus, due to A-2, A-4, A-6 and the fact that there exists an ε such that (1 +
ε)(p − 1) ≤ p1 − 1 since it is assumed that p < p1, estimate (4.10) yields

2χn(s)βn(s) + (p − 1)
∣∣αn(s)

∣∣2
≤ C

∣∣χn(s)
∣∣2 + C

(
1 + ∣∣Xn(s)

∣∣2l + ∣∣Xn

(
κn(s)

)∣∣2l)
(4.11)

× ∣∣Xn(s) − Xn

(
κn(s)

)∣∣2 + ∣∣b(
s,Xn

(
κn(s)

)) − bn

(
s,Xn

(
κn(s)

))∣∣2
+ C

∣∣σ (
s,X

(
κn(s)

)) − σn

(
s,Xn

(
κn(s)

))∣∣2.
Furthermore, by taking into consideration (4.9), (4.11), Remark 3 and (4.2), one
obtains that

E
∣∣χn(t)

∣∣p
≤ CE

[∫ t

0

{∣∣χn(s)
∣∣p + (

1 + ∣∣Xn(s)
∣∣2l + ∣∣Xn

(
κn(s)

)∣∣2l)p/2

× ∣∣Xn(s) − Xn

(
κn(s)

)∣∣p
+ ∣∣b(

s,Xn

(
κn(s)

)) − bn

(
s,Xn

(
κn(s)

))∣∣p
+ ∣∣σ (

s,X
(
κn(s)

)) − σn

(
s,Xn

(
κn(s)

))∣∣p}
ds

]

due to the application of Young’s inequality. Note that

E

∫ T

0
|χn(s)|p−2χn(s)αn(s) dW(s) = 0

since

E

∫ T

0

∣∣χn(s)
∣∣p−2∣∣αT

n (s)χn(s)
∣∣ds

≤ E

∫ T

0

∣∣χn(s)
∣∣p−1(∣∣σ (

s,X(s)
)∣∣ + ∣∣σn

(
s,Xn

(
κn(s)

))∣∣)ds

≤ C

∫ T

0
E

(∣∣χn(s)
∣∣p + ∣∣σ (

s,X(s)
)∣∣p + ∣∣σn

(
s,Xn

(
κn(s)

))∣∣p)
ds

≤ CE

∫ T

0

{∣∣X(s)
∣∣p + ∣∣Xn(s)

∣∣p + (
1 + ∣∣X(s)

∣∣(l+2))p/2(4.12)
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+ (
1 + ∣∣Xn

(
κn(s)

)∣∣(l+2))p/2}
ds

≤ C

due to B-2, Hölder’s inequality, (2.10), Lemma 2 and that (l/2 + 1)p < p0 due to
the p-condition. Moreover,

E(t) := E

∫ t

0
C

(
1 + ∣∣Xn(s)

∣∣lp + ∣∣Xn

(
κn(s)

)∣∣lp)∣∣Xn(s) − Xn

(
κn(s)

)∣∣p ds

≤ C

∫ t

0

(
E

[(
1 + ∣∣Xn(s)

∣∣lp + ∣∣Xn

(
κn(s)

)∣∣lp)(4l+2)/(3l)])(3l)/(4l+2)

× (
E

[∣∣Xn(s) − Xn

(
κn(s)

)∣∣p((4l+2)/(l+2))])(l+2)/(4l+2)
ds

≤ Cn−p/2

due to Hölder’s inequality, Lemma 2 and the fact that p 4l+2
l+2 ≤ 2p0

l+2 and lp 4l+2
3l

<
4l+2
6l+3p0 ≤ p0 (since it is assumed that p <

p0
2l+1 , see p-condition). In view of esti-

mate (4.3), one deduces that

sup
0≤t≤T

E(t) ≤ Cn−p/2.(4.13)

The application of Grownwall’s lemma results in

sup
0≤t≤T

E
[∣∣χn(t)

∣∣p] ≤ Cn−p/2

due to estimate (4.13) and Lemma 3. �

4.2. Uniform Lp and a.s. convergence.

LEMMA 5. Let T ∈ [0,∞) and let f := {ft }t∈[0,T ] and g := {gt }t∈[0,T ] be
nonnegative continuous F-adapted processes such that, for any constant c > 0,

E[fτ1{g0≤c}] ≤ E[gτ1{g0≤c}]
for any stopping time τ ≤ T . Then, for any stopping time τ ≤ T and γ ∈ (0,1),

E

[
sup
t≤τ

f
γ
t

]
≤ 2 − γ

1 − γ
E

[
sup
t≤τ

g
γ
t

]
.

PROOF. See [7] and also Gyöngy and Krylov [2]. �

PROOF OF THEOREM 3. First, fix p to satisfy the p-condition and define, for
every n ≥ 1, χn, βn and αn as in (4.7) and (4.8). Moreover, consider the function
φ : [0, T ] →R which is defined by

φ(t) := exp
(−(L + 2)t

)
,
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where L is the constant in the monotonicity condition in A-6. Then Itô’s formula
yields

d
(
φ(t)

∣∣χn(t)
∣∣2)p/2

≤ p

2
φ(t)p/2∣∣χn(t)

∣∣p−2(
2χn(t) dχn(t) + (p − 1)

∣∣αn(t)
∣∣2 dt

)
− p

2
(L + 2)φ(t)p/2∣∣χn(t)

∣∣p dt

≤ p

2
φ(t)p/2∣∣χn(t)

∣∣p−2(
2χn(s)βn(s) + (p − 1)

∣∣αn(t)
∣∣2)

dt

− p

2
(L + 2)φ(t)p/2∣∣χn(t)

∣∣p dt

+ pφ(t)p/2∣∣χn(t)
∣∣p−2

χn(s)αn(t) dW(t).

Thus, due to (4.11), one obtains that

d
(
φ(t)

∣∣χn(t)
∣∣2)p/2 ≤ p

2
φ(t)p/2∣∣χn(t)

∣∣p−2(
(L + 2)

∣∣χn(t)
∣∣2 + ηn(t)

)
dt

− p

2
(L + 2)φ(t)p/2∣∣χn(t)

∣∣p dt(4.14)

+ pφ(t)p/2∣∣χn(t)
∣∣p−2

χn(s)αn(t) dW(t),

where

ηn(t) := C
[(

1 + ∣∣Xn(s)
∣∣2l + ∣∣Xn

(
κn(s)

)∣∣2l)∣∣Xn(s) − Xn

(
κn(s)

)∣∣2
+ ∣∣b(

s,Xn

(
κn(s)

)) − bn

(
s,Xn

(
κn(s)

))∣∣2(4.15)

+ ∣∣σ (
s,X

(
κn(s)

)) − σn

(
s,Xn

(
κn(s)

))∣∣2]
.

and C is here and below a generic positive constant independent of n. Conse-
quently, one obtains for every stopping time τ ≤ T , due to (4.12),

E
[(

φ(τ)
∣∣χn(τ)

∣∣2)p/2] ≤ p

2
E

[∫ τ

0

(
φ(t)

∣∣χn(t)
∣∣2)(p−2)/2

ηn(t) dt

]
,

which results in, due to Lemma 5,

E

[
sup
t≤T

(
φ(t)

∣∣χn(t)
∣∣2)pγ /2

]
≤ CE

[(∫ T

0

(
φ(t)

∣∣χn(t)
∣∣2)(p−2)/2

ηn(t) dt

)γ ]

for any γ ∈ (0,1). Then, for p > 2, the application of Young’s inequality yields

E

[
sup
t≤T

(
φ(t)

∣∣χn(t)
∣∣2)pγ /2

]

≤ 1

2
E

[
sup
t≤T

(
φ(t)

∣∣χn(t)
∣∣2)pγ /2

]
+ CE

[(∫ T

0
ηn(t) dt

)pγ /2]
,
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which implies that

E

[
sup
t≤T

(
φ(t)

∣∣χn(t)
∣∣2)pγ /2

]
≤ CE

[(∫ T

0
ηn(t)

p/2 dt

)γ ]

≤ C

(
E

[∫ T

0
ηn(t)

p/2 dt

])γ

.

The above estimate is also true if p = 2, since it is an immediate consequence of
(4.14). Moreover, one calculates

E

[∫ T

0
ηn(t)

p/2 dt

]
≤ C

{
E(t) +E

[∫ T

0

∣∣b(
s,Xn

(
κn(s)

)) − bn

(
s,Xn

(
κn(s)

))∣∣p dt

]

+E

[∫ T

0

∣∣σ (
s,X

(
κn(s)

)) − σn

(
s,Xn

(
κn(s)

))∣∣p dt

]}

≤ Cn−αp

due to (4.13), (4.1) and (4.2). Thus,

E

[
sup
t≤T

(
φ(t)

∣∣χn(t)
∣∣2)pγ /2

]
≤ Cn−αpγ ,

which yields the desired result

E

[
sup
t≤T

∣∣χn(t)
∣∣pγ

]
≤ exp

(
(L + 2)T

)
E

[
sup
t≤T

(
φ(t)

∣∣χn(t)
∣∣2)pγ /2

]
≤ Cn−αpγ . �

COROLLARY 1. Suppose A-2 and A-4–A-6 hold and p0 is sufficiently large.
Then the numerical scheme (2.2) with coefficients which are given by (2.11) and
(2.12) with α = 1/2 converges to the true solution of SDE (2.1) almost surely with
order κ < 1/2, that is, there exists a finite random variable ζκ such that almost
surely

sup
0≤t≤T

∣∣X(t) − Xn(t)
∣∣ ≤ ζκn−κ(4.16)

for any κ ∈ (0, 1
2 − 2l+1

p0
) and l <

p0−2
4 .

PROOF. Consider a p ∈ ( 2
1−2κ

,
p0

2l+1). Then Theorem 3 yields

E

[
sup
t≤T

∣∣X(t) − Xn(t)
∣∣p]

≤ Cn−p/2.

Consequently,∑
n≥1

P

(
sup
t≤T

∣∣X(t) − Xn(t)
∣∣ > n−κ

)
≤ ∑

n≥1

E

[
sup
t≤T

∣∣X(t) − Xn(t)
∣∣p]

nκp

≤ ∑
n≥1

Cn−(1/2−κ)p < ∞
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TABLE 1
Errors in the tamed Euler scheme

Step-size
√

E|X(t) − Xn(t)|2

2−19 0.0007546660690748
2−18 0.0014293698755019
2−17 0.0024054188924763
2−16 0.0036583313232057
2−15 0.0053921530728755
2−14 0.0080671890795787
2−13 0.0118014601267312
2−12 0.0165751338687870
2−11 0.0236798743828524
2−10 0.0322254347247282
2−09 0.0445565040073459
2−08 0.0614016271396012
2−07 0.0826347082207412
2−06 0.1085948479470830

and thus, the Borel–Cantelli lemma implies that there exits a finite random variable
ζκ such that almost surely

sup
t≤T

∣∣X(t) − Xn(t)
∣∣ ≤ ζκn−κ . �

5. Simulation results. In order to further support the theoretical results ob-
tained in this article, simulation results are presented for the following nonlinear
(2-d) stochastic differential equation (see also Section 1 for comparison with [5]
and [11]),

dX(t) = λX(t)
(
μ − ∣∣X(t)

∣∣)dt + ξ
∣∣X(t)

∣∣3/2
dWt,

where the initial data X0 = [1,1]T , λ = 2.5, μ = 1, ξ is the following positive
definite matrix: ( 2√

10
1√
10

1√
10

2√
10

)

with |ξ | = 1, and T = 1. The outputs in Table 1 and Figure 11 are based on 1000
simulations, that is, simulated paths, of scheme (2.2) with coefficients given by
Model 2, that is, (2.11) and (2.12) with l = 1, and presented by using the log2
scale.

1Table 1 and Figure 1 are courtesy of Chaman Kumar.
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FIG. 1. Rate of convergence of the explicit Euler scheme (Model 2).

APPENDIX

Consider the following d-dimensional SDE which is given by

dXt = λXt

(
μ − |Xt |)dt + ξ |Xt |3/2 dWt ∀t ∈ [0, T ],

with initial condition X0 ∈ R
d , where λ, μ and all elements of the vector X0 are

positive constants. Moreover, ξ ∈R
d×d1 is a positive definite matrix and {W(t)}t≥0

is a d1-dimensional Wiener martingale. One then defines b(x) := λx(μ − |x|) and
σ(x) := ξ |x|3/2 for every x ∈R

d and observes that the coercivity condition A-4

2xb(x) + (p0 − 1)
∣∣σ(x)

∣∣2 ≤ K
(
1 + |x|2)

,

is satisfied with p0 ≤ 2λ+|ξ |2
|ξ |2 and K = 2λμ for all x, y ∈ R

d . Moreover, one ob-
tains that

(x − y)
[
b(x) − b(y)

] ≤ λμ|x − y|2 − λ
(|x| + |y|)(|x| − |y|)2

and ∣∣σ(x) − σ(y)
∣∣2 ≤ 2|ξ |2(|x| + |y|)(|x| − |y|)2

.

As a result, the monotonicity condition in A-6

2(x − y)
(
b(t, x) − b(t, y)

) + (p1 − 1)
∣∣σ(t, x) − σ(t, y)

∣∣2 ≤ L|x − y|2
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is satisfied with p1 ≤ λ+|ξ |2
|ξ |2 and L = 2λμ for all x, y ∈ R

d . Finally, one easily
obtains that∣∣b(x) − b(y)

∣∣ ≤ λmax(μ,1)
(
1 + |x| + |y|)|x − y| for all x, y ∈ R

d,

to conclude that l = 1 in A-6.
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