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In order to have a better understanding of finite random matrices with
non-Gaussian entries, we study the 1/N expansion of local eigenvalue statis-
tics in both the bulk and at the hard edge of the spectrum of random matrices.
This gives valuable information about the smallest singular value not seen in
universality laws. In particular, we show the dependence on the fourth mo-
ment (or the kurtosis) of the entries. This work makes use of the so-called
complex Gaussian divisible ensembles for both Wigner and sample covari-
ance matrices.

1. Beyond universality. The desire to assess the applicability of universality
results in random matrix theory has pressed the need to go beyond universality,
in particular the need to understand the influence of finite n and what happens
if the matrix deviates from Gaussian normality. In this article, we provide exact
asymptotic correction formulas for the smallest singular value of complex matrices
and bulk statistics for complex Wigner matrices.

“Universality,” a term encountered in statistical mechanics, is widely found in
the field of random matrix theory. The universality principle loosely states that
eigenvalue statistics of interest will behave asymptotically as if the matrix elements
were Gaussian. The spirit of the term is that the eigenvalue statistics will not care
about the details of the matrix elements.

It is important to extend our knowledge of random matrices beyond universality.
In particular, we should understand the role played by:

e finite n and
e non-Gaussian random variables.

From an application viewpoint, it is very valuable to have an estimate for the de-
parture from universality. Real problems require that n be finite, not infinite, and
it has long been observed computationally that co comes very fast in random ma-
trix theory. The applications beg to know how fast. From a theoretical viewpoint,
there is much to be gained in searching for proofs that closely follow the underly-
ing mechanisms of the mathematics. We might distinguish “mechanism oblivious”
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proofs whose bounds require n to be well outside imaginably useful ranges, with
“mechanism aware” proofs that hold close to the underlying workings of random
matrices. We encourage such “mechanism aware” proofs.

In this article, we study the influence of the fourth cumulant on the local statis-
tics of the eigenvalues of random matrices of Wigner and Wishart type.

On one hand, we study the asymptotic expansion of the smallest eigenvalue
density of large random sample covariance matrices. The behavior of smallest
eigenvalues of sample covariance matrices when p/n is close to one (and more
generally) is somewhat well understood now. We refer the reader to [6, 7, 14, 17,
34]. The impact of the fourth cumulant of the entries is of interest here; we show
its contribution to the distribution function of the smallest eigenvalue density of
large random sample covariance matrices as an additional error term of order of
the inverse of the dimension (see Theorem 3.1).

On the other hand, we consider the influence of the fourth moment in the local
fluctuations in the bulk. Here, we consider Wigner matrices and discuss a conjec-
ture of Tao and Vu [32] that the fourth moment brings a correction to the fluctua-
tion of the expectation of the eigenvalues in the bulk of order of the inverse of the
dimension. We prove (cf. Theorem 3.3) that the quantiles of the one point corre-
lation function fluctuate according to the formula predicted by Tao and Vu for the
fluctuations of the expectation of the eigenvalues.

In both cases, we consider the simplest random matrix ensembles that are called
Gaussian divisible, that is whose entries can be described as the convolution of a
distribution by the Gaussian law. To be more precise, we consider the so-called
Gaussian-divisible ensembles, also known as Johansson-Laguerre and Johansson—
Wigner ensembles. These ensembles, defined hereafter, have been first considered
in [24] and have the remarkable property that the induced joint eigenvalue density
can be computed. It is given in terms of the Itzykson—Zuber—Harich—Chandra inte-
gral. From such a formula, saddle point analysis allows to study the local statistics
of the eigenvalues. In [20], this idea was used to bound the rate of convergence
of the partition function of Gaussian divisible ensemble toward their limit by the
inverse of the dimension to the power 2/3. We precise this study by showing that
at the hard edge or in the bulk, this error is in fact of the order of the inverse of the
dimension and give the explicit form of this error, and in particular its dependency
on the fourth moment. It turns out that in both cases under study, the contribution
of the fourth moment to the local statistics can be inferred from the fluctuations of
the one-point correlation function, that is of the mean linear statistics of Wigner
and Wishart random matrices. The covariance of the latter is well known, since
[25], to depend on the fourth moments, from which our results follow.

2. Discussion and simulations.

2.1. Preliminaries: Real kurtosis. We will only consider distributions whose
real and imaginary parts are independent and are identically distributed.
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TABLE 1
Standard Kurtoses and codes

Distribution y Univariate code
Normal 0 randn

Uniform [—«/§, «/§] —1.2 (rand-0.5) *sqgrt (12)
Bernoulli -2 sign (randn)
Gamma 6 rand (Gamma ()) - 1

DEFINITION 1. The kurtosis of a distribution is
R

Ky iz
= —4 = —4 — 3’
Oy Oy

where Kj“ is the fourth cumulant of the real part, GE% is the variance of the real part,
and p4 is the fourth moment about the mean. The fourth cumulant of a centered
complex distribution P with i.i.d. real and complex part with variance 05%, is given
by

K4 = /\zz*\zdP(z) — 8oy = 2] =2y 0y

Note. From a software viewpoint, commands such as randn make it natural
to take the real and the imaginary parts to separately have mean 0, variance 1, and
also to consider the real kurtosis.

Example of Kurtoses y for distributions with mean 0, and 0> = 1 is provided
in Table 1.

For the matrices themselves, we compute the smallest eigenvalues of the Gram
matrix constructed from (n 4+ v) x n complex random matrices with Julia [8] code
provided for the reader’s convenience in Table 2.

2.2. Smallest singular value experiments. Let A be arandom n + v by n com-
plex matrix with i.i.d. real and complex entries all with mean 0, variance 1 and

TABLE 2
Matrix codes

RM Complex matrix code

Normal randn (n+v,n) +im*randn (n+v, n)

Uniform ((rand (n+v,n)-0.5) +im*rand (n+v,n)-0.5) ) xsgrt (12)
Bernoulli sign(randn(n+v,n))+imxsign(randn(n+v,n))

Gamma (rand (Gamma () ,n+v,n)-1) +imx* (rand (Gamma () ,n+v,n) -1)
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kurtosis y. In the next several subsections, we display special cases of our results,
with experiment vs. theory curves for v =0, 1 and 2.
We consider the cumulative distribution function

X 2 X
F) =P (hnin(447) = - ) =P((omn(4)* = 7).
where opmin(A) is the smallest singular value of A. We also consider the density

f(X)=%F(X).

In the plots to follow, we took a number of cases when n = 20, 40 and some-
times n = 80. We computed 2,000,000 random samples on each of 60 processors
using Julia [8], for a total of 120,000,000 samples of each experiment. The runs
used 75% of the processors on a machine equipped with 8 Intel E7-8850-2.0 GHz-
24M-10 Core Xeon MP Processors. This scale experiment, which is made easy by
the Julia system, allows us to obtain visibility on the higher order terms that would
be hard to see otherwise. Typical runs took about an hour for n = 20, three hours
for n = 40 and twelve hours for n = 80.

We remark that we are only aware of two or three instances where parallel com-
puting has been used in random matrix experiments. Working with Julia is pioneer-
ing in showing just how easy this can be, giving the random matrix experimenter
a new tool for honing in on phenomena that would have been nearly impossible to
detect using conventional methods.

2.3. Example: Square complex matrices (v =0). Consider taking, a 20 by 20
random matrix with independent real and imaginary entries that are uniformly dis-

tributed on [—+/3, «/§].
((rand(20,20) — 0.5) + im* (randn(20,20) — 0.5)) * sgrt(12).

This matrix has real and complex entries that have mean 0, variance 1 and kur-
tosis y = —1.2.

An experimenter wants to understand how the smallest singular value compares
with that of the complex Gaussian matrix

randn(20,20) + im* randn(20, 20).

The law for complex Gaussian matrices [13, 14] in this case valid for all fi-
nite sized matrices, is that nApin(AA™) = nalfﬁn(A) is exactly exponentially dis-
tributed: f(x) = %e*x/ 2. Universality theorems say that the uniform curve will
match the Gaussian in the limit as matrix sizes go to co. The experimenter obtains
the curves in Figure 1 (taking both n = 20 and n = 40).

Impressed that » = 20 and n = 40 are so close, he or she might look at the
proof of the universality theorem only to find that no useful bounds are available

at n =20, 40.
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Universality Law vs Experiment

— Empirical PDF: N=20

— Empirical PDF: N=40

= « Universality Law exp(—z/2)/2

0.5

5 10 15 20
FIG. 1. Universality law vs. experiment: n = 20 and n = 40 already resemble n = oo.

The results in this paper give the following correction in terms of the kurtosis

(when v = 0):
_ 1 y/1 x 1
—x2f (T —
fx)=e (2—|—n(4 8>)+0<n2>.

On the bottom of Figure 1, with the benefit of 60 computational processors, we
can magnify the departure from universality with Monte Carlo experiments, show-
ing that the departure truly fits %(}—1 — %)e‘x/ 2. This experiment can be run and
rerun many times, with many distributions, kurtoses that are positive and negative,
small values of n, and the correction term works very well. Figure 2 shows that the
corrections converge as predicted for uniform, Bernoulli and Gamma distributed
entries.

2.4. Example: n + 1 by n complex matrices (v = 1). The correction to the
density can be written as

1 1 1
fx)= e_x/2<512(s) + ;;V (s (s) —xIZ(s))> + O(E)’

where I;(x) and I»(x) are Bessel functions and s = +/2x.
Simulations are shown in Figure 3.

2.5. Example: n + 2 by n complex matrices (v = 2). The correction to the
density for v =2 can be written

1
Foo) = 5ex/2([1§<s> L) )]

2
+ %[(x +4)13(s) — 25 1o (s) 11 (s) — (x — 2)122(s)]>,

where Iy, 11, I», and I3 are Bessel functions, and s = +/2x.
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Bernoulli (v=0,y=-2)

Uniform (v=0,y=-1.2)

1* Order Correction
1* Order Correction

1% Order Correction

— Experiment: N=20
—0.3 — Experiment: N=40 N9
— Experiment: N=80
=+ Theory: 1/4—z/8 S
-0.4 : : : ‘
0 1 2 3 4 5
N-A

'min

FI1G. 2. Correction for square matrices Uniform, Bernoulli (v = 0). Monte Carlo simulations are
histogrammed, Oth order term subtracted and result multiplied by ne*/? /y. Bottom curve shows
convergence for n =20, 40, 80 for a distribution with positive kurtosis.

Simulations are given in Figure 4.

3. Models and results. In this section, we define the models we will study
and state the results. Let some real parameter a > 0 be given. Consider a matrix
M of size p x n:

M=W+aV,
where:

o V = (Vij)i<i<p;1<j<n has ii.d. entries with complex N¢(0, 1) distribution,
which means that both RV;; and JV;; are real i.i.d. N (0, 1/2) random vari-
ables,
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Uniform (v=1,y=-1.2) Bernoulli (v=1,y=-2)

1* Order Correction
1" Order Correction

Gamma (v=1,y=6)

0.30]] — Experiment: N=20
—  Experiment: N=40 e
—  Experiment: N=80 y

=+ (sI,(s)-21,(s))/8 where s =v2r

1 Order Correction
1** Order Correction

F1G. 3. Correction for v = 1. Uniform, Bernoulli, Normal and Gamma; Monte Carlo simulations
are histogrammed, Oth order term subtracted and result multiplied by ne*/? /(1 4+ y). Bottom right
curve shows convergence for n = 20, 40, 80 for a distribution with positive kurtosis.

o W = (W;j)i<i<p;1<j<n 18 a random matrix with entries being mutually inde-
pendent random variables with distribution P;;, 1 < j < n independent of n and
p, with uniformly bounded fourth moment,

e W is independent of V,

e v:=p —n > 0is a fixed integer independent of .

We then form the Gaussian divisible ensemble (also known as the Johansson—
Laguerre matrix):

1 1 11
1 —M*M:(—W V)(—W V>.
(1) " \/71( +aV) «/7_1( +aV)
When W is fixed, the above ensemble is known as the deformed Laguerre ensem-
ble.
We assume that the probability distributions P; j satisfy

1
) fzdpj,k(z) =0, f|zz*|dp,-,k(z) =0l = e
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Uniform (v=2,y=-1.2) Bernoulli (v=2,y=-2)

1" Order Correction
1* Order Correction

0 1 2 3 4 5 0 1 2 3 4 5
NN N M

Normal (v=2,y=0) Gamma (v=2,y=6)

—  Experiment: N=20

—  Experiment: N=40
[| — Experiment: N=s0 .
- - Theory Y

1* Order Correction
1* Order Correction

FI1G. 4. Correction for v = 2. Uniform, Bernoulli, Normal and Gamma; Monte Carlo simulations
are histogrammed, Oth order term subtracted and result multiplied by ne*/? /(24 y). Bottom right
curve shows convergence for n =20, 40, 80 for a distribution with positive kurtosis.

Here, the complex O'Cz = 2‘7921 represents the complex variance. Hypothesis (2) en-
sures the convergence of the spectral measure of %W*W to the Marchenko—Pastur
distribution with density

2471 —
3) ppM<x>=;7x, 0O<x<l.

Condition (2) implies also that the limiting spectral measure of %M *M 1is then
given by Marchenko—Pastur’s law with parameter 1/4 + a?; we denote p, the den-
sity of this probability measure, that is, p,(x) = (1 +4a®) "2 ppm(x /1 + 4a?).

For technical reasons, we assume that the entries of W have subexponential
tails: There exist C, ¢, 8 > 0 so that for all j,e N, allt >0

(4) Pii(lzl = 1) <Ce™ .

This hypothesis could be weakened to requiring enough finite moments.
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Finally, we assume that the fourth moments do not depend on j, k and let x4 be
the difference between the fourth moment of P; ; and the complex Gaussian case,

k4 = /|ZZ*|2de,k -8

(Thus, with the notation of Definition 1, x4 = 2)/0_@ = 2/{2‘.)
Then our main result is the following. Let o := +/4~! + a2 and for an Hermitian
matrix A denote Apin(A) =A1(A) <A (A) <--- <A, (A) the eigenvalues of A.

THEOREM 3.1. Let F,) be the cumulative density function of the hard edge of
a Gaussian p x n matrix V., v = p — n, with entries with complex variance o*:

FY(s) = ]P><o2xmm(vv*) < %)

Then, for all s > 0, if our distribution has complex fourth cumulant k4 = 2/{2{,

IP>()‘min(1‘/”‘/1*) = %) =F,(s)+ S(?‘)%m + o(l).

n

We note that this formula is scale invariant. It is equivalent to

]P’(Amin(MM*) > 5) =1—F'(s)+ wm + 0(1).
n o'n n

Let FY (s) = lim,— F,)(s) be the limiting cumulative distributive function
in the Gaussian case. F) is well known: we provide a few of its definitions in
Section 4; see also (12). The difference F,) — F}, was derived by Schehr [31] and
Bornemann [10], after it was conjectured in the first version of this paper. We can
then deduce the following.

COROLLARY 3.2. For all integer number v,

P(Amin(MM*) < %) = FY(s) + (v + %)w + 0(1).

n n

Note. Corollary 3.2 is the convenient formulation we used for v =0, 1,2 in
our showcase examples in Sections 2.3, 2.4 and 2.5, respectively.

Note. Corollary 3.2 is remarkable because it states that the correction term
for n being a finite Gaussian as opposed to being infinite, and the correction term
for n being non-Gaussian as opposed to Gaussian “line up,” in that either way the
corrections are multiples of s(F%,)’(s). This could not be predicted by Theorem 3.1
alone.
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Note. 1t is worth taking more of a close look between the formulation in The-
orem 3.1 and Corollary 3.2. The first term in Theorem 3.1 is n dependent, while
in Corollary 3.2 the first term has reached its n — oo limit. Also of note is that the
F,, formulation in Theorem 3.1 involves Laguerre polynomials (and exponentials.)
The F formulation in Corollary 3.2 involves Bessel functions (and exponentials).

For the Wigner ensemble, we consider the matrix

1
M,=—
n \/ﬁ
where W is a Wigner matrix with complex (resp., real) independent entries above
(resp., along) the diagonal W;;, 1 <i < j < N with law P;;. We assume that the

distributions P;; have subexponential moments: there exists C,c¢ > 0, and o > 0
such that forallr >0andall 1 <i<j <N

(5) P;j(Ix] = 1) < Cexp{—ct®},

(W +aV),

and satisfy

(6) /xdp,-j(x)zo, /|x|2dP,",-(x)= 1/4, /x3dp,-j(x):0.

Again we assume that the fourth moments do not depend on 7, j and let x4 be the
difference between the fourth moment of P;; (j # i) and the Gaussian case,

K4:/|zz*|2dp,-j —1/8.

The other matrix V is a GUE random matrix withi.i.d. N¢(0, 1) entries. We denote
by A1 < Ay <--- < X, the ordered eigenvalues of M,. By Wigner’s theorem, it is
known that the spectral measure of M,

l n
Mn = — Z 8)4
n*
i=l
converges weakly to the semicircle distribution with density
1
(7) 02% (x) = > V402 —x2p<e: 0P =1/4+ad%
o

This is the Gaussian-divisible ensemble studied by Johansson [24]. We study
the dependency of the one point correlation function p, of this ensemble, given as
the probability measure on R so that for any bounded measurable function f

1 n
E[;izzlm,-)} - f £ on () dx

as well as the localization of the quantiles of p, with respect to the quantiles of the
limiting semicircle distribution. In particular, we study the 1/n expansion of this
localization, showing that it depends on the fourth moment of n. Define N, (x) :=
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%ﬁ{i, Ai < x}, and Ny (x) = ffoo dos.(u), with oy defined in (35). Let us define
the quantiles p; (resp., y;) by

Vi = inf{y, EN,(y) = l—} respectively Ny ((—00, y;]) = l—,
n n
We shall prove the following.

THEOREM 3.3. Let € > 0. There exists a function D on [—2+¢,2 — ¢], inde-
pendent of the distributions P; j, such that for all x € [-2+¢,2 — ¢]

P () = 0 () + ~KaDx) + o<1).
n n

Foralli € [ne,n(1 — &)] for some ¢ > 0, one has that
A K4 1
®) Yi—vYi= %(2%3 —vi)+ 0<;>.

This is a version of the rescaled Tao—Vu conjecture 1.7 in [32] where E[X;] is
replaced by ;. A similar result could be derived for Johansson-Laguerre ensem-
bles. We do not present the details of the computation here, which would resemble
the Wigner case. The function D is computed explicitly in Proposition 6.1.

4. Smallest singular values of n + v by n complex Gaussian matrices. The-
orem 3.1 depends on the partition function for Gaussian matrices, which itself de-
pends on v and n. In this section, we investigate these dependencies.

4.1. Known exact results. It is worthwhile to review what exact representa-
tions are known for the smallest singular values of complex Gaussians.

We consider the finite n density f,’(x), the finite n cumulative distribution
F;(x) (we stress the v-dependency in this section), and their asymptotic values
f&(x) and F) (x). We have found the first form in the list below useful for sym—
bolic and numerlcal computation. In the formulas to follow, we assume a;, =1
so that a command such as randn () can be used without modification for the
real and imaginary parts. All formulas concern nimi,(AA*) = noém(A) and its
asymptotics. We present in the array below eight different formulations of the ex-
act distribution F),.

Some of these formulations allow one or both of v or n to extend beyond inte-
gers to real positive values. Assuming v and n are integers ([14], Theorem 5.4),
the probability density fn (x) takes the form x"e™*/? times a polynomial of degree
(m—Nvand1—F)(x)ise ~*/2 times a polynomial of degree nv.

REMARK. A helpful trick to compare normalizations used by different authors
is to inspect the exponential term. The 2 in e~*/? denotes total complex variance 2
(twice the real variance of 1). In general the total complex variance o = 20&12{ will
appear in the denominator.

In the next paragraphs, we discuss the eight formulations introduced above.
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4.1.1. Determinant. v by v determinant. The quantities of primary use are
the beautiful v by v determinant formulas for the distributions by Forrester and
Hughes [19] in terms of Bessel functions and Laguerre polynomials. The infinite
formulas also appear in [18], equation (8.98). Hereafter, I; denotes the modified
Bessel functions and L ; the Laguerre polynomials:

Fo(x)=e P detli;(V20)];

FL) = ge P det[ by WD),

F)(x)= e /2 det[Lfl]:ii_)j (—X/Zn)]i,jzl ..... v

von i” (n—1! 22
I (x)_(2n> 2ntv—1°

i
xdet[LflJ_llJr,-_)j(—x/zn)]i,jzl ..... v

Recall that /;(x) = I ;(x). To facilitate reading of the relevant v by v determi-
nants, we provide expanded views:

det[1i—j(v/2x)]; i

L=

Iy I L e I
| Iy L - Ly
—| D I Iy e Ly3 ’
L1 I, Iv—3 T IO Bessel functions evaluated at v/2x
det[ Io4i—j (v zx)]i,jzl ..... v
L L Iy - L-3
L L L1 - L
=|1ls L DL - Il ,
Liyi L L I2 IBessel functions evaluated at V2x
i X
it ()
"IN 2n) it
(e8] @) (v—=1)
%nl) Frc L?ﬁz - L"(_v2+)1
_ e
Ln+1 Ln Ln—l Ln—v+2
(=2) (=D (v=3)
= Ln+2 Ln+1 Ly e Ln—v+3 ,

n+v—1 n+v-2 n+v-3 77 Ln evaluated at —x/2n
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(j—i+2) X )}
det| L N

.....

@ ©) C)) (v+1)
Ln Ln—Z Ln—3 e an—v
) @) 3 (v)
L Lnfl Ln72 e Ln7v+1
1 2 —1
=| Lt L,(q ) LE:—)I e Liv—ulz
(B3—v) (4-v) (5-v) @)
Ln+v—2 Ln+v—3 Ln+v—4 e Ln—l evaluated at —x/2n

The following Mathematica code symbolically computes these distributions:

M[x_,v_]:= Table
,v_]:= Table
{3,v}1;
M[x_,n,v_]:= Table[LaguerreL[n+i-j,j-1i,-x/(2*n)],
{i,v},{3,v}1;

BesselI [Abs[l_j] IX] 7 {l/v} 7 {j IV}] H
BesselI[Abs([2+1-J],x],{1,Vv},

—, = /o

m[x_,n_,v_]:= Table[LaguerreL[n-1+i-3j,j-1i+2,-x/(2*n)],
{i,v},{3,v}1;
Flx_,v_ ]:= 1-Exp[-x/2]*Det [M[Sgrt[2 x],v]];
flx_,v_]: (1/2)*Exp[-x/2]1+*Det [m[Sqgrt[2 x],v]];
FIx ,n_,v_]:= 1-Exp[-x/2]*Det[M[x,n,Vv]];
flx_,n_,v_1:= (x/(2n))"v*x((n-1)!'/(2(n+v-1)1))

*Exp[-x/2]*Det[m[x,n,v]].

4.1.2. Painlevé IlI. According to [18], equation (8.93), [9], pages 814-815,
[33, 34], we have the formula valid for all v > 0O:

2x ds
Fl(x)=1-— exp(—/o o(s) —>,

s

where o (s) is the solution to a Painlevé 111 differential equation. Please consult the
references taking care to match the normalization.

4.1.3. n by n determinant. Following standard techniques to set up the mul-
tivariate integral and applying a continuous version of the Cauchy—Binet theorem
(Gram’s formula) [28], for example, Appendix A.12 or [35], for example, equa-
tions (1.3) and (5.2) one can work out an n x n determinant valid for any v, so
long as n is an integer [26]:

det(M(m, v, x/2))
det(M (m, v, 0)) ’

Flx)=1-

n
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TABLE 3

Exact results for smallest singular values of complex Gaussians (smallest eigenvalues of complex

Wishart or Laguerre ensembles)

1. Determinant: v by v [18, 19]

2. Painlevé 111 [18], equation (8.93)

3. Determinant: n by n [26]

4. Fredholm determinant [9, 33]

5. Multivariate integral recurrence [14, 19]

6. Finite sum of schur polynomials (evaluated at ) [12]

7. Hypergeometric function of matrix argument [12]

8. Confluent hypergeometric function of matrix argument [30]

where, if I denotes the incomplete gamma function,

M@m,v, x)
rv+1,x) rv+2,x) 'v+3,x) C'v+m,x)
'v+2,x) 'v+3,x) 'v+4,x) Frv+m+1,x)
— | T'v+3,x) r'v+4,x) 'v+5,x) Frv+m+2,x)

Fr+m,x) Tw+m+1,x) Tw+m—+2,x) Frv+2m—1,x)

4.1.4. Remaining formulas in Table 3. The Fredholm determinant is a stan-
dard procedure. The multivariate integral recurrence was computed in the real case
in [14] and in the complex case in [19]. Various hypergeometric representations
may be found in [12], but to date we are not aware of the complex representation
of the confluent representation in [30] which probably is worth pursuing.

4.2. Asymptotics of smallest singular value densities of complex Gaussians.
A very useful expansion extends a result from [19], (3.29).

LEMMA 4.1. Asn — 00, we have the first two terms in the asymptotic expan-
sion of scaled Laguerre polynomials whose degree and constant parameter sum
ton:

X2 2op

x(k—Z)/Z

n2

NG (Ik_z(2ﬁ)>+0( ! )}

Lg:)k(—x/n) ~ nk{

PROOF. We omit the tedious details but this (and indeed generalizations of this
result) may be computed either through direct expansion of the Laguerre polyno-
mial or through the differential equation it satisfies. [J

We can use the lemma above to conjecture asymptotics of the distribution
F,/(x). This conjecture was recently proved independently by Anthony Perret and
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Grégory Schehr [31] and by Folkmar Bornemann [10]. The first uses properties of
the Jacobi matrix associated with modified Laguerre polynomials and its implica-
tion to Painlevé while the second takes a close look at the Fredholm determinant
and the asymptotics of Laguerre polynomials. This result states as follows.

THEOREM 4.2. Let v be an integer number. Let F,)(x) be the distribution of
nor%lin(A) of an n + v by n complex Gaussian A. We have the expansion

1
F(x) = FY(x) + —xf2 (x) + 0(—2).
2n n

Note. The above is readily checked to be scale invariant, so it is not necessary
to state the particular variances in the matrix as long as they are equal.

5. The hard edge of complex Gaussian divisible ensembles. The hard edge
denotes the location of the smallest eigenvalues of sample covariance matrices
when v = p —n is a fixed integer.

5.1. Reminder on Johansson—Laguerre ensemble. We here recall some impor-
tant facts about the Johansson-Laguerre ensemble, that we use in the following.

Notation. We call u, , the law of the sample covariance matrix %M *M de-
fined in (1). We denote by A1 < Ay <--. < X, the ordered eigenvalues of the ran-
dom sample covariance matrix %M *M. We also set

w
H=—,

Jn
and denote the distribution of the random matrix H by P,. The ordered eigenvalues
of HH™* are denoted by y1(H) < 2 (H) <--- <y, (H).

We can now state the known results about the joint eigenvalue density (j.e.d.)
induced by the Johansson-Laguerre ensemble. Propositions 5.1, 5.2 and 5.3 are de-
rived in [7], Sections 3 and 7. By construction, this is obtained as the integral w.r.t.
P, of the j.e.d. of the deformed Laguerre ensemble. We recall that the deformed
Laguerre ensemble denotes the distribution of the covariance matrix n~' M M*
when H is given. The latter has been first computed by [21] and [23].

We now set

PROPOSITION 5.1.  The symmetrized eigenvalue measure on R’ induced by
Wn,p has a density w.r.t. Lebesgue measure given by

©) g(xl,...,xn)=/dPn(H)g(x1,...,xn;y<H>)
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with

Ax) e—Wi(H)+xj)/(21) Jyi(H)x;j X; v/2\n
det I, ;
ij=1

~ AG(H)) 21 t yi(H)
where t g— =5, and A(x) =[] ;(xi — x;).

From the above computation, all eigenvalue statistics can in principle be com-
puted. In particular, the m-point correlation functions of 1, , defined by

n! "
Rm(u1$“'9um):7'/‘ _ g(ula---s”n) 1_[ dui
(n = m)> Jrey i=m-+1
are given by the integral w.r.t. to d P,,(H) of those of the deformed Laguerre en-
semble. Let

n!
Rm(ul,...,um;)’(H)):m

n
/nfmg(ul,...,un;y(H)) [T du:
+

i=m+1
be the m-point correlation function of the deformed Laguerre ensemble (defined
by the fixed matrix H). Then we have the following.

PROPOSITION 5.2.
Rm(ul,...,um)=/ dP,(H)Ry(u1, ..., um; y(H)).
Mp,n )
In particular,

MM* o0 o0
P(Amin( - )Za)= / Ri(u)du = f /Mpyn(c)dpn(H)Rl(ué)’(H))d”

The second remarkable fact is that the deformed Laguerre ensemble induces a
determinantal random point field, that is all the m-point correlation functions are
given by the determinant of a m x m matrix involving the same correlation kernel.

THEOREM 5.3. Let m be a given integer. Then one has that

Ry (uri, ... upm; y(H)) =det(K, (uj, uj; )’(H)))zlj:p
where the correlation kernel K, is defined by
Kn(u,v; y(H))

= Jf awacora (2R (1) el 5

" w? — yi(H) z yi(H)
1—
* H 2= yi(H) ( SZ<w2—yi<H))<z2—yi(H>>)’

i=1
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where the contour T is symmetric around O and encircles the £./y;(H), y is the
imaginary axis oriented positively 0 — +00, 0 —> —o0, and Kp is the kernel
defined by
XL L(y) =y () (x)

X242 :

(10) Kp(x,y)

There are two important facts about this determinantal structure. The fundamen-
tal characteristic of the correlation kernel is that it depends only on the spectrum
of HH* and more precisely on its spectral measure. Since we are interested in the
determinant of matrices with entries K, (x;, x;; y(H)), we can consider the corre-
f&xi)
fxj)°

lation kernel up to a conjugation: K, (x;, x;; y(H)) This has no impact on
correlation functions and we may use this fact later.

For ease of exposition, we drop from now on the dependency of the correlation
kernel K, on the spectrum of H and write K, (u, v) for K, (u, v; y(H)). The goal
of this section is to deduce Theorem 3.1 by a careful asymptotic analysis of the

above formulas. Set
(11) a=02/4,
with o =,/1/4 + a2,

We recall that it was proved in [7] that

MM* as -
> n_2 = det(] — KB)LZ(O,S)’

(12) lim P(Amin<
n— oo
where K p 1s the usual Bessel kernel

(13) Kp(u,v) =" "Kp(iu,iyv)

with Kp defined in (10). This is a universality result as the limiting distribution
function is the same as that of the smallest eigenvalue of the Laguerre ensemble
(see, e.g., [17]).

5.2. Asymptotic expansion of the partition function at the hard edge. The main
result of this section is to prove the following expansion for the partition function
at the hard edge: recall that « is given by (11).

THEOREM 5.4. Assume that the distributions Pji satisfy the assumptions (4)
and (2). Then there exists a nonnegative function gg, depending on n, so that

MM* 1 1
P(Amin< . )z Z‘—i) = gl()+~ g (s, f dPn<H>[An(H>]+o( )

n

where

An(H) = — ! )Xn(vj)

+ +
ve myp(ve
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with X,(2) =1 m — nmmp(z), mmp(2) is the Stieltjes transform of the
Marchenko—Pastur distribution pmp, (i (H))1<i<n are the eigenvalues of H, and
)2 where

v = (w?
(14) wE=+i(R—1/R)/2, R:=+/1+4a2.

We will estimate the term [ d P, (H)[A,,(H)] in terms of the kurtosis in the next
section.

REMARK 5.5. The function g2 is universal, in the sense that it does not de-
pend on the detail of the distributions Pjy.

5.2.1. Expansion of the correlation kernel. Let sz be the critical points of

1 n
(15) E,(w) :=w?/d® + - > In(w? — yi(H)),
i=1
where the y; (H) are the eigenvalues of H* H. Then we have the following lemma.
Let K, be the kernel defined in Theorem 5.3.

LEMMA 5.6. There exists a smooth function A which is independent of k4
such that for all u, v

o

n—an(uomfz, van 2 y(H))

> A(u, v) zF\? 9 - 1
=Kp(u,v)+ . +<(w:r> —1>£ﬂ:1ﬂ1(3(,8u,,8v)+0<;),

nl/

for H in a set with probability greater than 1 — e~ 2, and where K has been

defined in (13). Note that % = “.

c

PROOF. To focus on local eigenvalue statistics at the hard edge, we consider

a2 \2 a2 \2
u= < ) X; V= < ) y where ro will be fixed later.
2nrg 2nrg

As v = p—nisafixed integer independent of n, this readily implies that the Bessel
kernel shall not play a role in the large exponential term of the correlation kernel.
In other words, the large exponential term to be considered is E, defined in (15).
The correlation kernel can then be rewritten as

. L2 wvl/2N s\
Kn(u,v)=ﬁ6‘vm//dwd1szB<Z , Y )(—)
IS rJy ro ro Z

x exp {nE,(w) —nE,(2)}G(w, 2),

(16)
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where

oo 1% yi(H)
D)1= 6w =1=5 ) o @ i)

a’> wE! (w) — zE! ()
@ : .

2 w2 —z

We note that E,(w) = H, (w?) where H,(w) = w/a2 + % Yoo In(w — yi(H)).

We may compare the exponential term E,, to its “limit,” using the convergence
of the spectral measure of H*H = %W*W to the Marchenko—Pastur distribution
oMp- Set

E(w) :=w?/a? —|—/ln(w2 —y)dpmp(y).

It was proved in [7] that this term has two conjugated critical points satisfying
E’(w) = 0 and are given by w defined in (14). Let us also denote by z the true
nonreal critical points (which can be seen to exist and be conjugate [7]) associated
to E,. These critical points do depend on n but for ease of notation we do not stress
this dependence. These critical points satisfy

Ej)=0. zf=—z

and it is not difficult to see that they are also on the imaginary axis.
We now refer to the results established in [7] to claim the following facts:

e there exists a constant C so that for any &€ € (0, 1)
(17) lzF —wE|<cn”*

with probability greater than 1 — e forn large enough. In the sequel we
will take & = 3/4. This comes from concentration results for the spectral mea-
sure of H established in [22] and [2] and formula (30).

e Fix 6 > 0. By the saddle point analysis performed in [7], the contribution of
the parts of the contours y and I within {|w — zf| >nn=1/2} is O(e_“"e) for
some ¢ > 0. This contribution “far from the critical points” is thus exponen-
tially negligible. In the sequel, we will choose 6 = 1/11. The choice of 1/11 is
arbitrary.

e We can thus restrict both the w and z integrals to neighborhoods of width
n'/1p=1/2 of the critical points z*

c

Also, we can assume that the parts of the contours I" and y that will contribute to
the asymptotics are symmetric w.r.t. zf. This comes from the fact that the initial
contours exhibit this symmetry and from the location of the critical points. A plot
of the oriented contours close to critical points is given in Figure 5.

Let us now make the change of variables

w=z+sn V% 2=zl +tm 2
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IV+

T
Ze

Iy

N

Z(‘,

r-

F1G. 5. Contours close to the critical points.

where z!, z2 are equal to zJ or z; depending on the part of the contours y and

" under consideration and s, ¢ satisfy |s|, |¢| < n'/11 Then we perform the Taylor
expansion of each of the terms arising in both z and w integrands. Then one has
that

enEn (zf«ksnil/z)ann(zzt)

— NGO, EY (zE)s /Gmi/>Y) (1+ O(n—23/22))

(18)
3, +
N G C S 3 L LM ST
nl/2 6
e1(s)

4 3
+l E”(ﬁ)sz/z(Erg)(Zci)S4 <E$)(Zci)>2£> (1) E/(z)s2)2
e’ nic + _|_0 e’ ni\<c ,

n 4! 6 2 n
ex(s)

as |s| <n'/!. For each term in the integrand, one has to consider the contribution
of equal or opposite critical points. In the following, we denote by z, zg, zg any of
the two critical points (allowing z. to take different values with a slight abuse of
notation). We then perform the Taylor expansion of each of the functions arising
in the integrands. This yields the following four expansions:

1
12 1202 ]
(19) Wz =2z.2;+n /(szc+tzc)+; st_,
v1(s,1) v2(s,1)
and

1, 85 ot
g Zc—f-m,zc-f-m

(20)
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1/(s* 9 1> 92 9?
—G f——
T (( 2 522000 w4y 292 om 8x1> zg.,zz>
82(s.1)

1
—i—o(—).
n
One also has
w” 1,2 —1/2 01,2y VS Vi
<_) = (zc/z2)" +n /(ZC/Zc)v(z_l_z_z)
C

Z c

@b 1 v(v r](;’)ts)2 v(v+ D2 vist 1
—(-1/,2)V — _
+ n (Zc/zc) ( (Zg)Z + (Z%)Z Z1Z2> +0(I’L>

ra(s,t)

Last, one has that

2x1/2 y1/2)
ro ro

KB(

’

ro ro

7
(22)
1 9 9 ) KB(xlxl/Z X2y1/2>
Zeslc

hi(s,t)
D e )
n\2 8x12 2 ax% 0x1 0x2
ho(s,t)

12 1/2 1
KB(Xlx e )+o<—).
Zc,%c ro ro n

In all the lines above, z) /zg = =+1 as critical points are either equal or opposite
Also one can note that the o are uniform as long as |s|, |[f| < nl/1

We now choose
ro = |w?|.

Combining the whole contribution of neighborhoods of a pair of equal critical
points, for example, denoted by K, (i, v)oquar, we find that it has an expansion of

the form
4

4n 2
2 12 12

23) = ”// dsdt'ZC| ( (” Ly )

417’[ |wc | |wc |

e —ZL

2K (u, v)equal
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A ()

i=l

Enzd) | ~8ilsD) | (1 2 ri(s,1) | (1
x( 5 +i§ oY +0<2)><1+Z—ni/2 +o<;)>

i=1

x <1+§:Ui(s,t)n_i/ )(eXP{E (ze)(s* ~1 )/2}<1+0<%)

1
+ 172 (e1(s) —e1(1)) + Z(_e‘ (s)er(r) +eals) — ez(ﬂ))),

where h;, e;, ri, v; and g; defined above have no singularity.

It is not difficult also to see that /1, g1, 71, e; are odd functions in s as well as in
t: because of the symmetry of the contour, their contribution will thus vanish. The
first nonzero lower order term in the asymptotic expansion will thus come from the
combined contributions kg1, g171,r1h1, hie1, g1€1,71€1, 1 V1, . . . and those from
ha, g2, 12, e2, va. Therefore, one can check that one gets the expansion

o ax oy
—Kn|\ 5.3
n n=  n</equal

w12 172 +. 1
:e_<|z |> KB(Z 2y >+a1(zc,x,y)+0(_>’
2 |wc | |wL | |wc | n n

where a; is a function of zf.[, x,y only. aj is a smooth and nonvanishing function
a priori.

We can write the first term above as (T)ZK (( )2x ( )zy) so that we
deduce that

N2 12 212
We |wc | |wc |

+

8 z
=K ¢
B<x,y>+((wi

c

)2 3 1)3;8(,3]23(,3)6, ﬂy))‘ﬁ:1 +o(zF — wi).

One can do the same thing for the combined contribution of opposite critical points
and get a similar result. We refer to [7] for more detail about this fact. Summing
these terms yield a contribution of order rll However, it is clear that, as a; is smooth
and using (17),

(24) a1(zf;x,y)=a1(wf;x,y)—|—0(1).

Note that w does not depend on the exact distributions Pj, but only on the lim-
iting Marchenko—Pastur distribution popp. As a consequence, there is no fourth
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moment contribution in this % terms. We denote the contribution of the determin-
istic error from all the combined (equal or not) critical points by A(x, y)/n. This
completes the proof of the lemma. [J

5.2.2. Asymptotic expansion of the density. The distribution of the smallest
eigenvalue of M, is defined by

MM* as ”
IP)()\-min( n > = ﬁ) = /dPn(H) det(l - K” (y(H)))Lz(OsS)’

for H in a set with overwhelming probability and where K . 1s the rescaled corre-

lation kernel % K, (xan~2, yom_z; y(H)). In the above we choose o = (a2/2r0)2.
. .o, . n . .

The limiting correlation kernel is then, at the first order, the Bessel kernel:

Kp(x,y) :=e""Kp(ivx.i/y).
Hereafter we drop the dependency in y(H) to simplify the notations. The error

terms are ordered according to their order of magnitude: the first-order error term,
in the order of O(n~"), can thus come from two terms, namely:

— The deterministic part that is A(x, y)/n, which we have seen is independent
of k4.
— The kernel (arising 4 times due to the combination of critical points)

_zF\? F
e‘””(%) KB(%(«/;’ ﬁ))
lwe' | lwe'|
(25)
- @ /wih)? -
= K;_z;()c,y)—l—/1 ﬁﬁKB(ﬁx,ﬁy)dﬁ-

Lemma 5.6 and the arguments above (24), (25) give the following:

%Kn (xan™?2, yan~?)

> Ax,y) 2 9 > 1
= Ry )+ S0 g (@ wd P =0 | BReBr By) +ol)
We insist that the kernel A is universal in the sense that it does not depend on the
detail of the distributions Pjy.
The Fredholm determinant can be developed to obtain that

det([ — Izn)LZ(Ovs)

e (=D det(F k J
_; K o R

(26)

(=¥ -
= Z /[0 " det(KB(xi,x,-))f,j:1 det(1 + G(x;, xi))f,j=1 dei
k S
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where we have set
G(-xl’-xj)_(KB(-xl’-xJ))1<lj<k(B(-xls-xj))l j=1

with
A(xi, xj) zh\? 9 1
27) B(xi,xj)zT—f—((wg_) _1)3,3 pe l,BKB(ﬂxl,,BXJ)-l-O( )

The matrix (K g (x;, x j))f{ j=1 is indeed invertible for any k.
Therefore, up to an error term in the order o(%) at most,

det(I - I%n)LZ(O,s)
=det(I — Kp)

(— 1)" 1
+Z /[o,s] det(KB(x,,xJ))lJ { (G(xl,xj))” ldx—i—o(;).

Now if we just consider the term which is linear in ((zgL / wzr)2 — 1) which will
bring the contribution depending on the fourth cumulant, we have that the correc-
tion is

(—D*
L::Z 0 /[‘O det(KB(xlvxj))lj 1

k
X Tr([%‘1 8/3,3123(,3)&', ,ij))i,jzl dx|p=1

(— 1>k
— 8'32 /[;)J] det(KB(xl’x]))z ,j=1

k
x Tr(log BK g (Bxi, Bx)); =1 dx|p=1.
As K B 1s trace class, we can write

- k ~ k
Tr(log BKp(Bxi, Bx))); j—; = logdet(BKp(Bxi, Bx})); j—;-
Therefore, we have

lk
_8,32( : /[Os det(KB(x“xj))” 1

x log det(ﬂlzB (Bxi, ,ij)),-,_,-:1 dx|p=1

(28) =Y /[Os]k det(BK 5 (Bxi. )} ;_; dxlp=1

(—DF . .
=2 k! /[o,sﬂ]k det(Kp(yi, y;)); j=1 Vilp=1

= 8/3 det(I — kB)Lz(O,sﬁ)lﬂzl'
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Hence, since det(/ — K B) L2(0,58) is the leading order in the expansion of
P(Amin(MTw) > %) plugging (27) into (28) shows that there exists a function
gg [whose leading order is det(/ — K B)12(0, sﬂ)] so that

MM* os
IP)()\min<—) > _2>
n n

= g05) + 3B [ dPAH)[(ZC;)Z 1] +o<l).

n

(29)

5.2.3. An estimate for (1‘%)2 —1. Let

n
1
Xn(2) =)  ———— —nmmp(2),
" ; Yi(H) -z
where z € C\ R,. Let us express (z:r)2 — (ng)2 in terms of X,,. The critical point
z} of E,, lies in a neighborhood of the critical point w} of E. So u} = (z)? is in
a neighborhood of v} = (wj)z. These points are the solutions with nonnegative
imaginary part of

LIRS S R Y S
a2 nimuf—yi(H) T a? vl —y
Therefore, it is easy to check that
—/ M dpomp(y) + lX,,(vJT) = 0(— (zF — wf“))
(v = y)? noe e e
which gives

N\, 1 1 . 1
(30) ( +> -1 +7—Xn(vc)+0<;>.

w{ v mip(d) n

The proof of Theorem 5.4 is therefore complete. In the next section, we estimate
the expectation of X, (ng) to get the correction in (29).

5.3. The role of the fourth moment. In this section, we compute E[X,, (vj)],
which with Theorem 5.4, will allow to complete the proof of Theorem 3.1.

5.3.1. The expected value E[X,(v})]. In this section, we give the asymptotics
of the mean of X, (z). Such type of estimates is now well known, and can for
instance be found in Bai and Silverstein book [3] for either Wigner matrices or
Wishart matrices with x4 = 0. We refer to [3], Theorem 9.10, for a precise state-
ment. In the more complicated setting of F-matrices, we refer the reader to [36].
In the case where «4 # 0, the asymptotics of the mean have been computed in [29]
and [5].
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PROPOSITION 5.7. Letze C\R; N{Z € C,3IZ = 0}. Then
,,ILIEOE[X"(Z)] = A(z) — k4B(2)
with A independent of k4, and if myp(z) = [(x — z)_1 dpmp(x),

myp(2)?
(1 + (mmp(2)) /42 (z + (zmmp(2))/2)

€1y B(z) =

Note that the above result follows from a simple expansion (up to the 1/N

order) of the normalized trace of the resolvent %Tr( WTW* —zD)7 ' fora complex
number z with nonzero imaginary part. We recall [27] that

1 wWwE -1
mMP(Z)::nll)ngO;Tr( " —zI)

is uniquely defined as the solution with nonnegative imaginary part of the equation

1

(32) m = —zmmp(2).

5.3.2. Estimate at the critical point. Since myp(v}) = a2 and v} < 0 so
that Proposition 5.7 applies, we deduce from (31) that there exists a constant c(v;r)
independent of x4 such that
—4 1

VT — () 4
E[Xn ()] =) U+ U/Ha D2 oF 1+ (1/2a2)

+ o(1).
Moreover, we have

(33) . at _ 4a*
Y T T st a? T T 14 4a2
and by (32), after taking the derivative, we find
_ myp(2)(1+ myp(2)/4)
z(1 +mmp(2)/2)

mi\/IP(Z) =

El

so that at the critical point we get
m (v+) _ (4a2 + 1)2
MPR e /™ 1640 (a? + 1/2)°

2 -2 2
U:fmiv[p(vj)_ (1+4+4a°) a“(1+1/4a%))

(34)

T ad/2+a) T T+ 1/Qad)

Therefore, with the notation of Theorem 5.4, and using (33), (33) and (34), we
find constants C independent of x4 (and which may change from line to line) so
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that
[ apacnia, ]
1
= —————E[n(ma(v) — mmp(v))] +o(1)
Ve mMP(Uc )

_ 1+ 1/(2612) Cl_4 1 1+ 4a2
T a2+ 1/(4a2)) T 1/@4a2)2 1+ 1/Q2a%)  4d +C+o(1)
- Cro = C+o(l
= U gaap TETA )_<1/4T2>Z+ +o(1).

Rescale the matrix M by dividing it by o so as to standardize the entries. Com-
bining Theorem 5.4 and the above, we have therefore found that the deviation of
the smallest eigenvalue are such that

MM* s Y 1
IED(kmin(F) = p) =g,(s)+ ESgn(s) + 0(;)»
where y is the kurtosis defined in Definition (1). At this point g, is identified to be

the distribution function at the hard edge of the Laguerre ensemble with variance 1,
as it corresponds to the case where y = 0. Theorem 3.1 follows.

6. The bulk of Gaussian divisible ensembles. We here choose to consider
the deformed GUE instead of the deformed Laguerre ensemble. Indeed, while the
arguments are completely similar, the technicalities in the deformed Laguerre en-
semble are more involved. To ease the reading, we here present the simplest en-
semble.

6.1. Deformed GUE in the bulk. Let W = (W;;)? i1 be a Hermitian Wigner
matrix of size n. The entries W;; 1 <i < j < n are i.i.d. with distribution P;;.
The entries along the diagonal are i.i.d. real random variables with law P;; inde-
pendent of the off diagonal entries. We assume that P;;, P;;, 1 <i < j < N have
subexponential tails and satisfy (5) and (6). The fourth moment of the P;;’s is also
assumed not to depend on i, j. Let also V be a GUE random matrix with i.i.d.
Nc(0, 1) entries and consider the rescaled matrix

1
M, =—(W +aV).

Jn
We denote by A1 < Ay < .-- < A, the ordered eigenvalues of M,,. By Wigner’s
theorem, it is well known that the spectral measure of M,

1 n
Mn = — ZS)\.Z'
i
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converges weakly to the semicircle distribution with density

1
(35) Gszcg(x):27102V402_x21|x|526; 0'2:1/4+a2.

This is the deformed GUE ensemble studied by Johansson [24]. In this section,
we study the localization of the eigenvalues A; with respect to the quantiles of
the limiting semicircle distribution. We study the % expansion of this localization,
showing that it depends on the fourth moment of P;;, and prove Theorem 3.3.

The route we follow is similar to that we took in the previous section for Wishart
matrices: we first obtain a % expansion of the correlation functions of the Deformed
GUE. The dependency of this expansion in the fourth moment of P;; is then de-
rived.

6.2. Asymptotic analysis of the correlation functions. Let p, be the one point
correlation function of the Deformed GUE. We prove in this subsection the fol-
lowing result, with zci, wf critical points similar to those of the last section, which
we will define precisely in the proof.

PROPOSITION 6.1. For all ¢ > 0, uniformly on u € [—20 + ¢,20 — €], we

have
Xt
on(u) = JSZCU (u) + E[( Sz ) 1)]0520‘7 () + 0(1),
n

Sw/ (u)

where 7" depends on the eigenvalues of W.

PROOF. Denote by yl(%) < yz(%) <-.- < yn(%) the ordered eigenval-

ues of W/\/n. Johansson [24], (2.20) and (2.21) (see also [11]) proves that, for a
fixed W/4/n, the eigenvalue density of M, induces a determinantal process with
correlation kernel given by

w
(e (75))
)1 _ e((u—v)zn)/a2

n
- dz/ dupe" v —Ey(2) Zw),
(2im)? /F y z(u —v) &l )

where

o= pnl (7))

and

El _E/
nlew) = B (0) + 20— 2l

The contour I' has to encircle all the y;’s and y is parallel to the imaginary axis.
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We now consider the asymptotics of the correlation kernel in the bulk, that is
close to some point ug € (—20 +§, 20 — &) for some § > 0 (small). We recall that
we can consider the correlation kernel up to conjugation: this follows from the fact

that det(K, (x;, x;; y(%))) = det(K, (x;, xj; y(%)) Z((jj))), for any nonvanishing

function 2. We omit some details in the next asymptotic analysis as it closely
follows the arguments of [24] and those of Section 5.2.
Let then u, v be points in the bulk with

u=uo+o;—x, v=uo+%; ug=+/1+4acos(@y), 6pec (e, m—2¢).

The constant o will be fixed afterward. Then the approximate large exponential
term to lead the asymptotic analysis is given by

(z—v)?
o+ [ 1= ok,
In the following, we note Ry =+/1 4 4a- =20.

We recall the following facts from [24], Section 3. Let ug = +/1 + 4a? cos(6p)
be a given point in the bulk.

Ey(2) =

e The approximate critical points, that is the solutions of E 4’ ,(2) =0 are given by

: 1
wEuo) = (Roe'™ £ ) /2.

The true critical points satisfy E;O(z) = 0. Among the solutions, we dis-
regard the n — 1 real solutions which are interlaced with the eigenvalues
yl(%), cees yn(%). The two remaining solutions are complex conjugate with

nonzero imaginary part and we denote them by ZCi (up). Furthermore [22]
and [1] prove that
|z —wi|=Cn*
with probability greater than 1 — e forn large enough and any point ug in
the bulk of the spectrum. In the sequel we will take & =3 /4.
e We now fix the contours for the saddle point analysis. The steep descent/ascent
contours can be chosen as
y =25 (v) +it, teR,
r= {z;t(r), r=Rpcos(9),0 € (e,m —¢&)}U {zzt(Ro cos(e)) + x, x > 0}
U {sz(—R() cos(e)) —x,x > 0}.
It is an easy computation [using that EHE,;’O(w) > ( along y] to check that the
contribution of the contour y N {jw — zci(v)| > pl/12-1/2y §g exponentially neg-
ligible. Indeed there exists a constant ¢ > 0 such that

"N (Eug W) —Euy E ) 14 <o n

1/6
e .

fyﬁ{lw—zﬁt(vnznl/lzl/z}
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FI1G. 6. Modification of the I" contour.

Similarly, the contribution of the contour I' N {|w — zci(v)| > pl/12=1/2} ig of
order e="'"° that of a neighborhood of zf(v).

For ease of notation, we now denote z.(v) := zj(v). We now modify slightly
the contours so as to make the contours symmetric around zﬁc(v). To this aim, we
modify the I contour as follows: in a neighborhood of width n!/12=1/2 we replace
I" by a straight line through zgc(v) with slope z..(v). This slope is well defined as

1

— 40,
EJ(zc(v)) *

z.(v) =

using that |z§c(v) — wci (uo)| < n—¢. We refer to Figure 6, to define the new contour
" which is more explanatory. Denote by E the leftmost point of I" N {w, |lw —
zc(W)| = n1/12—1/2}' Then there exists v; such that E = z.(v;). We then define e
by e = z.(v) + z..(v)(v1 — v). We then draw the segment [e, z.(v)] and draw also
its symmetric to the right of z.(v). Then it is an easy fact that

|[E —e| < cn?1/12-1/2) for some constant C.

Here, we have used that e, E both lie within a distance n'/12=1/2 from z.(v). It
follows that

Vzele,El,  |R(nEy(z) —nEy(E))| < Cnn3V1271/2) « p1/6,

This follows from the fact that |E] (z)| = O (n'/12=1/2) along the segment [e, E].
This is now enough as "n E,(E) > RnE,(z.) + cn'/® to ensure that the deforma-
tion has no impact on the asymptotic analysis.

We now make the change of variables z = zzt (v) + ﬁ, w= z;t (v) + ﬁ where

s, |z] < n'/12. We examine the contributions of the different terms in the inte-
grand. We first consider g,,. We start with the combined contribution of equal crit-
ical points, for example, z and w close to the same critical point. In this case we
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have, noting that E/ (z) — E! (z) =a~%(v — u) that

-1 o aE—x) 1 (Eff)(zc(v)) E;:<zc<v>>>
‘ g"(w’z)_E”(ZC(U))+a2nzc(v)+ﬁ 2 (s+0+ z¢(v) :
EP z.w)) , , EP (ze) 5 ElGzW)) 5

+n( 3! (42 st) + 2z:(v) " ze(v)? t)

On the other hand, when w and z lie in the neighborhood of different critical points,
one gets that

a(X —x) vooT t
2w )
@), + )
Ey7(z; (v:)F)t fu (zF(v))s N 0(1)’
(zd —z¢ )\/E

n
where the 0(%) depends on the second and third derivative of E, only.
We next turn to the second term, which depends on z only. One has that

2 lgn(w, ) =

| — pDaa™z _ | _ Ja—Daa Nz jit(r—Daa 3z

We then perform the same Taylor expansion as in Section 5.2 of all the terms in the
integrands. As the contours are symmetric around z.(uq), the first nonzero term in
the expansion is in the scale of % Furthermore, apart from constants, one has that

- Hygigt
gKn (u v; y(ﬂ)> - w(ei(x—i)(a/az)%zj _ e—i(x—fc)(oc/az)‘?szj)
n Y N 2im(x — X)

+ Cx, 3) + 0(1>.
n n

The function C(x,x) does not depend on the detail of the distributions of the
entries of W. We now choose o = a 9 (uo)~! where cr is the density of the
semlclrcle distribution defined in (35). It has been proved in [24] that Aswj (up) =
Ta 0 7 (up). Setting then

B =3z} (u0)/I(w/ (uo))

we then obtain that

n Jn

T(x —X) n
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The constant C’(x, X) does not depend on the distribution of the entries of W. This
proves Proposition 6.1 since

pu(x) = EEK (1 y(%))]

1 ! 1
= —Eip1+ ()

o n

! 1
= 0% )+ 02 B[ — D]+ o).

n

It can be checked, for example, in the case where W is Gaussian that C’(x, x) =0
since moments expand as a series in 1/n2. This completes the proof of the propo-
sition. [J

6.3. An estimate for 7, — w. and the role of the fourth moment. We follow the
route developed for Wishart matrices, showing first that the fluctuations of zzt (uo)
around wgc (uo) depend on the fourth moment of the entries of W.

PROPOSITION 6.2. One has that

Bamse (W (uo))*/(16m) ( 1 )

+ —
(@2 — ml (Wi (o)) (we + mso(wi @))/2)

E[z (o) — w(uo)] = -

As a consequence, for any € > 0 uniformly on u € [—20 + ¢,20 — ¢],

(36) ) = 02 (o) + k4 + (),
n n

where D(ug) = d (w7 (uo)) is given for z € C\ R by

. y B 1 (\( msc(z)4 )
(37) @)= Teraz> (@2 =m{ () +me(2)/2) )

PROOF. We first relate the critical points z~ and w] to the difference of the
Stieltjes transforms m,, — mg.. The true and approximate critical points satisfy the
following equations:

. —ug w,. —Uup
) =0 = —me(w) =0,
Hence,
(38) o wt = (mn(wj_) - msc(wg_)) n 0(1)
‘ ¢ (1/a® — mi (wd)) n)’
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where we have used that m,, — mg. is of order % Indeed, the estimate will again
rely on the estimate of the mean of the central limit theorem for Wigner matrices;
see [3], Lemma 9.5. They find that for z € C \ R,

lim nB(m, (2) — mse(2)) = (1+ Iml(2))kame(2)°/16.

Hence, we deduce that

1 -1 1 5
nli)nolon(ZJr —wl)= <a_2 — Mgy (wj)) (1 + ngc(wj))mmsc(w;r) /16.
Using Proposition 6.1, the expansion for the one point correlation function follows
as

Pn(x) = 027 (o) + 027 (uo) S(E[z (o) — wl (uo)]) +o(1/n)

Swd (uo)
20 (T
(uo) ((1 + (1/4)m (w ) msc(wj)s)

_ 20
=0g (UO) + 16%11):'_(”0) ((l/az) — n’lqc’(wc ))

+o0(1/n)

It is then an easy computation, using that mg(z) +
Proposition 6.2. [J]

1 . .
TR/ = 0, that this yields

6.4. The localization of eigenvalues. We now use (36) to obtain a precise lo-
calization of eigenvalues in the bulk of the spectrum. A conjecture of Tao and Vu
(more precisely Conjecture 1.7 in [32]) states that (when the variance of the entries
of Wis Alf), there exists a constant ¢ > 0 and a function x — C’(x) independent of
k4 such that

1
(39) E()\.i_yi)— / C(x)dx+2 (2)/l .)+0(nl+c)’

‘726 i)
where y; is given by Ny (y;) =i/n if Ng(x) = f do (u). We do not prove

the conjecture but another version instead. More premsely, we obtain the following
estimate. Fix § > 0 and an integer i such that § <i/n <1 —§. Define also

1

(40) Np(x) := —{i, i < x} withAp <Ay <+ < Ap.
n

Let us define the quantile p; by

y .
Vi = inf{y,/ on(x)dx = l—}.
—00 n

By definition EN,, (y;) =i /n. We prove the following result.
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PROPOSITION 6.3. Let e > 0 and take i € [en, (1 — &)n]. There exists a con-
stant ¢ > 0 such that

. K4
(41) Vi—Vi=—

1
3

The main step to prove this proposition is the following.

PROPOSITION 6.4. Let € > 0. Assume that i € [%, (1 — e)n] without loss of
generality. There exists a constant ¢ > 0 such that
Vi = ¥i — Yinj21 + ¥in/2)
1 Vi ’ 1
= on(x) — % (x) dx—i—O( )
O-S2Ca ()/i) )/[n/z][ n SC ] nl—l—c
Note here that y|, /21 = 0 when n is even.

(42)

PROOF. The proof is divided into Lemmas 1 and 2 below. [

LEMMA 1. For any € > 0, there exists ¢ > 0 such that uniformly on i €
[eN, (1 —¢)N]

o A ) |
3) 1= 5= s B = M) + 0(r):

PROOF. Under assumptions of subexponential tails, it is proved in [15] and
[16] (see also Remark 2.4 of [32]) that given 1 > O for n large enough

(44) P( max Jy—al=at) <pm e,

eN<i<(l—é&)n

This implies that
E[Na(yi +n"™)] = = 40787 B[Ny(yi —n"")] <
n

from which it follows that for n large enough
(45) max |y — Pl <207

eN<i<(l—é&)n
From the fact that EN, (y;) = Ny (y;), we deduce that

ENn();l) - Nsc()?i) = Nsc(yi) - Nsc(),/\i)
(46)

Vi [u
=N == [ [ Niwds du.
Vi i

Using that N/, (x) = 5-—+/402 — x21|y<2, and that both y; and 7; lie within

2 2
(=20 +¢&,20 — ¢) for some 0 < & < 20, we deduce that

EN, (7)) — Nse(0)) = 07 () (i — i) + O (v = 7).
We now make the following replacement. [J
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LEMMA 2. Let ¢ > 0. There exist a constant ¢ > 0 such that uniformly on
i €len, (1 —¢)nl,

1
(47) E(Nu (7)) = Nsc (7)) = E(Nu(vi) — Nse (1)) + 0(n1+c)'

PROOF. We write that
E(Nn();t) - Nsc();i))
=E(Nn(yi) - Nsc()/i)) +E(Nn()>i) — Nu(vi) — Nsc();i) + Nsc(Vi))-

We show that the second term in (48) is negligible with respect to n~!. In fact, by
(36) and (45), for ¢ > 0, there exists § > 0 such that for any i € [en, (1 — &)n],

(48)

Vi o
/ (pn(x) — 027 (X)) dx
Yi

’E(Nn(?z) - Nn(Vi) - Nsc(?i) + Nsc(Vi))| =

49

(49) il 1
<n - < .
- n ~ n2n

In the last line, we have used (36). This completes the proof of Lemma 2.
Combining Lemmas 1 and 2 yields Proposition 6.4:

82 () := 2% (v i — P1) — 02° (Vny2) Vinj21 — Pinj21)

h 20 1
_ / [on(x) — 027 (x)] dx + 0( 1+c)
Yin/2] n

1/% D(x)d +0< ! )
= — k4D (x)dx -
n Jyn2) nlte

—1/” D()d +0<1)
=), raex e )’

where we used that y(, /2| vanishes or is at most of order 1/n. This formula will be

the basis for identifying the role of x4 in the % expansion of y;. We now write for
a point x in the bulk (=20 (1 — §),20 (1 —§)) that

(50)

x =20 cosb.
We also write that y; = 20 cos6y. We then have that

cost T “_2 o0
20 o '
By combining Proposition 6.2 and (37), we have that

mse(we(x)) = +iro (x) — 3535

we(x) =

o mge(we(x))*
Gb 20 =3(fgari s mequeone | Ho0)
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When a — 0, we then have the following estimates:
x ~ cos0; Mge(We(x)) ~ —2¢710:
2 . ..
o(x)~ —sin0; We + mge(we) /2 ~isin6.
T

Using (50) and identifying the term depending on k4 in the limit a — 0, we then
find that

. 1 rvi 1
5,@:-/0 K4D(x)dx+0<n1+c>

7/2 cos(46 1
(52) = . 9+0(1—+c)
n Joy T n

1
=—2—a (yl)cos90(2cos 90—1)—|-0< l+c>

where in the last line we used that 1 7 8in(460) = sin6 cos 6 cos(260). Thus, we have
that

1
(53) n (z)——%o () 2y} —%)+0< 1+c)-

We finally show that
Lim n(=yin/2) + Pnj2) =0

which completes the proof of Proposition 6.3.
To that end, let us ﬁrst notice that for any C# function f whose support is strictly
included in that of 62°, we have by [4], Theorem 1.1, that

SC’

n 1
(54) nl_i)rgoE[Z f(xo] =m(f) s [ FOT0 mey (),
i=1 -

dt L —
V1=
with 74 the fourth Tchebychev polynomials and m(f) a linear form independent

of K4.
Next, we can rewrite (54) in terms of the quantiles y; as

ey (f) =n / F@)pu(x)dx + o(1)
Vit
=S o +n Y o0 [ = poenydx + o(1)
i i Yi

1
=> f+ 3 S GG — P +o(1),
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where we used that p; 1 — 7; is of order n~!*7 by (45). Now, again by (45), we
have

S50 =3 100+ XS 0=+ 0 )
i i i
Moreover, since y;41 — y; is at most of order 1/n, we have
X s = n [ feod dx - 5 Zf Wit — 70 +o(1),
Noting that the first term in the right-hand side vanishes we deduce that

me () =Y /() [ (Pis1 — yl+1+y,)+yl—yl}+o<1>

where 9,41 — ¥ — ¥i+1 + ¥i is at most of order n-l-c by (53) since it is approxi-
mately equal to (6,() — 8,(i + 1))/0 7 (y;). Hence, we find by (53) that

—my, (f) = Z i = 7)) +o(1)

Zf( )Gqc (y([n/)])[n(y[n/z] — Yin2)]

Z f(y’ / C'(x)dx +—Zf(yl 2y —vi) +o(1)

20
= 02° V2 [0 Vinj21 — Piny2))] , flx)dx
—L0

X
[ 1w [ coraya
kg / 3 20

+ 5 F0)2x° —x)oll (x)dx + o(1).
We finally take f’ even, that is f odd in which case the last term in k4 vanishes,
as well as the term depending on k4 in m,, (f) as T4 is even and f odd. Moreover,
o2 (Vin /21) goes to 1/2. Hence, we deduce that there exists a constant independent
of k4 such that

Am 1 (Y21 = Vinj2) =C

In fact, this constant must vanish as in the case where the distribution is symmetric,
and n even, both y[,/2) and p},,/2) vanish by symmetry. [
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