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EXACT FORMULAS FOR RANDOM GROWTH WITH HALF-FLAT
INITIAL DATA

BY JANOSCH ORTMANN1,∗, JEREMY QUASTEL2,∗ AND DANIEL REMENIK3,†

University of Toronto∗ and Universidad de Chile†

We obtain exact formulas for moments and generating functions of the
height function of the asymmetric simple exclusion process at one spatial
point, starting from special initial data in which every positive even site is ini-
tially occupied. These complement earlier formulas of E. Lee [J. Stat. Phys.
140 (2010) 635–647] but, unlike those formulas, ours are suitable in principle
for asymptotics. We also explain how our formulas are related to divergent se-
ries formulas for half-flat KPZ of Le Doussal and Calabrese [J. Stat. Mech.
2012 (2012) P06001], which we also recover using the methods of this pa-
per. These generating functions are given as a series without any apparent
Fredholm determinant or Pfaffian structure. In the long time limit, formal
asymptotics show that the fluctuations are given by the Airy2→1 marginals.

1. Introduction. The one-dimensional asymmetric simple exclusion process
(ASEP) is a continuous time Markov process with state space {0,1}Z, the 1’s be-
ing thought of as particles and the 0’s as holes. Each particle has an independent
exponential clock which rings at rate one. When it rings, the particle chooses to
attempt to jump one site to the right with probability p ∈ [0,1], or one site to the
left with probability q = 1 − p. However, the jump is only executed if the target
site is empty; otherwise, the jump is suppressed and the particle must wait for the
alarm to ring again. If q = 1, p = 0 (or q = 0, p = 1, but we will assume for con-
venience that q ≥ p), it is called the totally asymmetric simple exclusion process
(TASEP); if 0 < q �= p it is the (partially) asymmetric simple exclusion process
(ASEP); if q = p = 1/2 it is the symmetric simple exclusion process (SSEP). We
denote by ηt (x) = 1 or 0 the presence or absence of a particle at x ∈ Z at time t .
The state of the system is completely determined at time t > 0 by the initial data
ηx(0), x ∈ Z, together with the family of exponential clocks; for more details on
the construction of the process, we refer the reader to [26]. Given η ∈ {0,1}Z, we
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define η̂ ∈ {−1,1}Z by η̂(x) = 2η(x) − 1. The height function of ASEP is defined
in terms of η̂t by

h(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2Nflux
0 (t) + ∑

0<y≤x

η̂t (y), x > 0,

2Nflux
0 (t), x = 0,

2Nflux
0 (t) − ∑

x<y≤0

η̂t (y), x < 0,

(1.1)

where Nflux
0 (t) is the net number of particles which crossed from site 1 to 0 up to

time t , meaning that particle jumps 1 → 0 are counted as +1 and jumps 0 → 1 are
counted as −1.

ASEP is an important member of the one-dimensional Kardar–Parisi–Zhang
(KPZ) universality class. This is a broad class of one-dimensional driven diffu-
sive systems, or stochastic growth models, characterized by unusual, but universal
asymptotic fluctuations. These should be of size t1/3, and decorrelate on spatial
scales of t2/3, with special distributions in the long time limit, usually given in
terms of Fredholm determinants, which only depend on the initial data class. There
are a few special classes of initial data characterized by scale invariance: curved
(or step), corresponding to starting with particles at every nonnegative site; flat (or
periodic), corresponding to starting with particles at all even sites; and stationary,
corresponding to starting with a product Bernoulli measure. In addition, there are
three crossover classes: curved → flat, curved→stationary and flat → stationary;
corresponding to putting two different initial conditions on either side of the ori-
gin. Based on exact computations for TASEP and a few other models with special
determinantal (Schur) structure, the asymptotic spatial fluctuations in all six cases
are known to be given by the Airy processes, a family of processes defined through
their finite dimensional distributions which are given by specific Fredholm deter-
minants. The full space–time limit in this KPZ scaling ε1/2h(ε−3/2t, ε−1x) is be-
lieved to be a Markov process known as the KPZ fixed point. For more details, see
the reviews [11, 31, 32].

Within the universality class, the KPZ equation

∂th = 1

2
∂2
xh + γ

2
(∂xh)2 + ξ,

where ξ is space–time white noise, plays a special role as a heteroclinic orbit con-
necting the Edwards–Wilkinson (linear) fixed point ∂th = 1

2∂2
xh+ ξ to the (nonlin-

ear and poorly understood) KPZ fixed point. It can be obtained from other models
with adjustable nonlinearity or noise in the diffusive (t = ε−2T , x = ε−1X) weakly
asymmetric, or weak noise limit, with rigorous proofs available in a few cases [1,
2, 4, 5, 13, 17, 18, 29].

The importance of ASEP in this context is that it has an adjustable nonlinearity

γ = q − p.
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Although in the case γ > 0 it does not have a determinantal structure, somewhat
surprisingly exact formulas have been discovered for the distribution of the height
function of ASEP at a fixed t > 0 and x ∈ Z for certain initial data, starting with
the work of Tracy and Widom in 2008 [34, 35]. The first formula was for the step
case η

step
0 (x) = 1x∈Z>0 . In the weakly asymmetric limit exact formulas were ob-

tained for the one-point distribution of the KPZ equation with so called narrow
wedge initial data (corresponding to the curved class); see [2] and also [33]. In
the t → ∞ limit, one obtains the Tracy–Widom GUE distribution. An analogous
procedure was then performed on the step Bernoulli, or curved → stationary case
for ASEP, corresponding to half-Brownian initial data for KPZ; the t → ∞ limit
in this case gives the Airy2→BM marginals, or BBP transitional distributions [12].
Parallel computations were performed on the physics side using the nonrigorous
replica method. The case of Brownian initial data for KPZ (corresponding to sta-
tionary ASEP) has also recently been completed in the physics [21] and math-
ematics [7] literatures. It should be emphasized that these are formulas for one
point distributions only, and for very special initial data. So far, multipoint distri-
butions have resisted rigorous analysis, though some nonrigorous attempts have
been made [14, 15, 30].

Among the primary scaling invariant initial data at the KPZ level, this left the
flat and half-flat cases. In [23, 24], Le Doussal and Calabrese gave formulas for
the one point height distribution of KPZ for the half-flat and flat initial data via the
replica method. Their half-flat formula is an uncontrolled divergent series, with no
apparent Fredholm structure. As such, it is a pure formalism, and is mainly used
as an intermediate step in order to obtain a Fredholm Pfaffian formula for the flat
initial condition, by scaling the wedge to infinity, that is, looking farther and farther
into the flat region.

Here, we will work directly with ASEP, which in particular can be regarded as
a microscopic version of KPZ [5], and where one can avoid the problems asso-
ciated with the nonsummable moments. Later, in Section 5, we will discuss how
the methods we will use can be applied in the case of KPZ, yielding some of the
formulas appearing in [23, 24].

We will be primarily concerned with the half-flat initial condition,

ηh-fl
0 (x) = 1x∈2Z>0 .(1.2)

The superscript h-fl will be used for probabilities and expectations computed with
respect to this initial condition. The limit to the flat initial condition ηflat

0 (x) =
1x∈2Z will be pursued in an upcoming paper.

E. Lee’s thesis already contains exact formulas for the quantities we are inter-
ested in. Here, and in the rest of the paper, we set

τ = p

q
∈ (0,1).
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THEOREM 1.1 ([22]).

P
h-fl(

h(t,0) ≥ 2m − x
)

= (−1)m
∑
k≥m

τ (k−m)(k−m+1)/2

(1 + τ)k(k−1)k!
(

k − 1
k − m

)
τ

(1.3)

×
∫
Ck

R

∏
i �=j

ξj − ξi

p + qξiξj − ξi

∏
i

ξ x
i etε(ξi)

(1 − ξi)(ξ
2
i − τ)

× ∏
i<j

1 + τ − (ξi + ξj )

τ − ξiξj

∏
i

dξi,

where

ε(ξi) := pξ−1
i + qξi − 1.(1.4)

CR is a contour large enough to contain all the poles of the integrand, and
(n
k

)
τ

=
nτ !

kτ !(n−k)τ ! with the τ -factorial nτ ! defined in (1.10).

These formulas are similar in structure to earlier formulas of [35]. However,
such formulas turn out not to be conducive to asymptotics analysis. They need
considerable “postproduction” before the asymptotic behaviour can be extracted
[34, 36], and no one has been able to figure out how to do this for (1.3), nor to
extract the relevant asymptotics (even formally).

Our main result is an explicit formula for the one-point distribution in the half-
flat case, expressed as a certain series which has a structure reminiscent of a Fred-
holm determinant. In an upcoming paper, we will use these formulas to obtain
analogous moment formulas in the flat case and, furthermore, a Fredholm Pfaffian
formula for a certain transform of the height function. Formal asymptotics lead to
the expected results in the t → ∞ and weakly asymmetric limits, but turning them
into rigorous proofs presents some considerable technical challenges and is left for
future work (see the Appendix for a discussion of the large time case).

Formulas for the half-flat case can be obtained by the method of [9], together
with an ansatz coming from a study of the mechanics of (1.3). Let

Nx(t) =
x∑

y=−∞
ηt (y)(1.5)

be the total number of particles to the left of x at time t . It is not hard to check
that when all particles start to the right of the origin, Nflux

0 (t) = N0(t), and thus
by (1.1)

h(t, x) = 2Nx(t) − x(1.6)
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in the half-flat case. Define

Q̃x(t) = τNx(t) − τNx−1(t)

τ − 1
= τNx−1(t)ηx(t).

THEOREM 1.2. Consider ASEP with half-flat initial condition as in (1.2).
Then for any 	x ∈ Z

k we have

E
h-fl[

Q̃x1(t) · · · Q̃xk
(t)

]
= τ (1/2)k(k−1)

(2π i)k
(1.7)

×
∫
Ck

1,ρ

d	z ∏
1≤a<b≤k

za − zb

za − τzb

1 − zazb

1 − τzazb

k∏
a=1

1

τz2
a − 1

fxa,t (za),

where C1,ρ is a circle around 1 with radius 0 < ρ < min{τ−1/2 − 1, (1 + τ)−1},
Ck

1,ρ denotes the product of k copies of C1,ρ ,

fx,t (z) =
(

1 − τz

1 − z

)x−1

eε̃(z)t ,

and ε̃ is defined in terms of the function ε given in (1.4) by

ε̃(z) = ε

(
1 − τz

1 − z

)
= p

1 − z

1 − τz
+ q

1 − τz

1 − z
− 1.(1.8)

For simplicity, throughout the rest of the paper we will omit the bound on the
indices in products such as

∏
1≤a≤k and

∏
1≤a<b≤k when no confusion can arise

and the factors involved in the products are defined in terms of a collection of k

variables. A similar convention will sometimes be used for sums. Additionally, we
will continue using the notation Ck for the product of k copies of a given contour
C in the complex plane.

An analogous formula holds for the stochastic heat equation/KPZ/delta Bose
gas; see Section 5 for details. On the other hand, the analogous ansatz does not
work in the case of q-TASEP and the O’Connell–Yor semi-discrete polymer, at
least with the most straightforward candidates for half-flat initial conditions.

The interesting new term here over earlier formulas [6, 9] is
∏

a<b
1−zazb

1−τzazb
,

which together with the factor
∏

a
1

τz2
a−1

allows us to recover the periodic initial

data. This term leads to the double product
∏

a<b h(wa,wb; sa, sb) appearing in
(1.13) below, which is the obstacle to making long time limit fluctuations rigor-
ous (see the Appendix). Factors of this form were fortuitously absent from earlier
formulas for step and step Bernoulli initial data, which only contained the double
product

∏
a<b

za−zb

za−τzb
; this last factor turns into the determinant in (1.13) and this

makes it much easier to deal with. Similar expressions have also proved to be an
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obstacle in the replica formulas [23, 24] for half-flat and flat initial data, as well as
for expressions for multipoint distributions [14–16].

The formula for Eh-fl[Q̃x1(t) · · · Q̃xk
(t)] can be used to write a formula for the

moments of τNx(t) by using ideas of [9, 20]. The result is given in Section 3 as
Proposition 3.2. The formula for E[τ kNx(t)] is given as a nested contour integral
(see Figure 1). As given, such a formula is suitable neither for asymptotic analysis
(not even at a formal level) nor for our later goal of deriving a formula for the
full flat case. In order to obtain a formula where all the contours coincide we will
expand the nested contours so that they all coincide with largest one. The resulting
formula amounts to computing the residue expansion associated to the poles that
we cross as we perform this deformation. It is given in Proposition 3.3 as a sum of
multiple contour integrals indexed by partitions. After some rewriting, this formula
leads to our main result for ASEP with half-flat initial data. Define the following
functions:

f(w;n) = (1 − τ)ne(q−p)t[1/(1+w)−1/(1+τnw)]
(

1 + τnw

1 + w

)x−1

,

g(w;n) = (−w; τ)∞
(−τnw; τ)∞

(τ 2nw2; τ)∞
(τnw2; τ)∞

,(1.9)

h(w1,w2;n1, n2) = (w1w2; τ)∞(τn1+n2w1w2; τ)∞
(τn1w1w2; τ)∞(τn2w1w2; τ)∞

,

where the infinite q-Pochhammer symbols are defined as

(a;q)∞ =
∞∏

n=0

(
1 − qna

)
.

Note that g and h can be written in terms of ratios of finite q-Pochhammer symbols,
but it will more convenient for us to write them in this form. The formulas for g
and h can alternatively be written as ratios of q-Gamma functions,


q(x) = (1 − q)1−x(q;q)∞
(qx;q)∞

,

which converge (uniformly on compact sets) to the usual Gamma function as
q → 1. We also define the q-factorial

mq ! =
∏k

a=1(1 − qa)

(1 − q)k
.(1.10)

For later use, we further introduce the q-exponential function

eq(x) = 1

((1 − q)x;q)∞
=

∞∑
k=0

xk

kq ! ,(1.11)
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where the second equality only holds for |x| < 1 and amounts to the q-Binomial
theorem (see, e.g., Theorem 10.2.1 in [3]). As q → 1, this function converges to the
usual exponential function, uniformly on (−∞,A] for any A. In keeping with the
standard usage we have used the parameter q in the definition of these q-deformed
functions, but in all that follows the parameter τ will appear in place of q .

THEOREM 1.3. Consider ASEP with half-flat initial condition as in (1.2) and
let m ∈ Z≥0. Then

E
h-fl[

τmNx(t)] = mτ !
m∑

k=0

νh-fl
k,m(t, x)(1.12)

with

νh-fl
k,m(t, x) = 1

k!
∑

n1,...,nk≥1
n1+···+nk=m

1

(2π i)k

∫
γ k−1,0

d 	w det
[ −1

waτna − wb

]k

a,b=1

(1.13)
× ∏

a

f(wa;na)g(wa;na)
∏
a<b

h(wa,wb;na,nb),

where γ−1,0 is a (positively oriented) contour around −1 and 0, strictly contained
inside the circle of radius τ−1/2, which does not include any other singularities of
the integrand.

The contour γ−1,0 in the theorem can for example be chosen to be a circle
around the origin with radius in (1, τ−1/2). In fact, the determinant clearly never
vanishes for this choice, and one can check that all the other singularities of the
integrand, except for wa = 0 and wa = −1, are outside this contour.

With a formula for the moments of τNx(t) at our disposal we are ready to form
a generating function, namely the τ -Laplace transform of τNx(t). The formula in-
volves a Mellin–Barnes integral representation of the infinite sums in n1, . . . , nk

appearing in (1.13) after summing over m ≥ 0.

THEOREM 1.4. Let ζ ∈ C \R≥0. Then, for eτ as in (1.11),

E
h-fl[

eτ

(
ζ τNx(t))]

=
∞∑

k=0

1

k!
1

(2π i)2k

∫
(1/2+iR)k

d	s
∫
γ k−1,0

d 	w det
[ −1

waτ sa − wb

]k

a,b=1
(1.14)

× ∏
a

(−ζ )sa f(wa; sa)g(wa; sa)
∏
a<b

h(wa,wb; sa, sb).
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Now set ζ = −τ−t/4−t2/3x/2+t1/3r/2. Since eτ (z) −→ 0 as z → −∞ and
eτ (z) −→ 1 as z → 0 for fixed τ , uniformly in z ∈ (−∞,0] we have (see [6],
Lemma 4.1.39)

lim
t→∞E

h-fl[
eτ

(−τN
t2/3x

(t/γ )−(1/4)t−(1/2)t2/3x+(1/2)t1/3r−(1/4)t1/3x21x≤0
)]

(1.15)

= lim
t→∞P

h-fl
(

h(t/γ, t2/3x) − (1/2)t − (1/2)t1/3x21x≤0

t1/3 ≥ −r

)
,

where we recall γ = q − p. In the Appendix, we show that a formal steepest
descent analysis of the right-hand side of (1.14) gives (a scaled version of) the
one-point marginals of the Airy2→1 process A2→1(x).

Outline. The rest of the paper is organized as follows. Section 2 contains the
proof of Theorem 1.2. In Section 3 we will use the formula obtained in Theo-
rem 1.2 to derive the moment formula given in Theorem 1.3, while in Section 4
we will derive the formula for the τ -Laplace transform of τNx(t) (Theorem 1.4).
Section 5 explains how the methods used for ASEP can be applied to the case
of the SHE/KPZ equation (or, more precisely, the delta Bose gas) and discusses
the relation with the work of Le Doussal and Calabrese. Finally, the Appendix
contains the formal derivation of the limiting fluctuations for ASEP with half-flat
initial condition.

2. Contour integral ansatz. To prove Theorem 1.2, we will use Proposi-
tion 4.10 of [9], which shows that Eh-fl[Q̃x1(t) · · · Q̃xk

(t)] can be represented as
the solution of a certain evolution equation with boundary conditions. We describe
this result next.

Let η0 be an ASEP configuration with a leftmost particle and consider ASEP
started with η0 as initial condition. Let ũ0(	x) = ∏k

a=1 τNxa−1(0)ηxa (0) (where, of
course, Nx(0) is computed with respect to the initial condition η0). Consider the
following system of differential equations:

(1) For all 	x ∈ Z
k and t ≥ 0, writing 	x±


 = (x1, . . . , x
 ± 1, . . . , xk),

d

dt
ũ(t, 	x) =

k∑
j=1

[
pũ

(
t, 	x−

j

) + qũ
(
t, 	x+

j

) − ũ(t, 	x)
]
.

(2) For all 	x ∈ Z
k such that there exists 
 < k with x
+1 = x
 + 1,

pũ
(
t, 	x−


+1

) + qũ
(
t, 	x+




) = ũ(t, 	x).

(3) There exist constants c,C, δ > 0 such that for all 	x ∈ Z
k with x1 < x2 <

· · · < xk and t ∈ [0, δ], ∣∣ũ(t, 	x)
∣∣ ≤ Cec

∑
j |xa |.
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(4) For all 	x ∈ Z
k such that x1 < x2 < · · · < xk we have

ũ(0, 	x) = ũ0(	x).

PROPOSITION 2.1 ([9]). Suppose that ũ(t, 	x) solves (1)–(4). Then for all 	x ∈
Z

k such that x1 < x2 < · · · < xk we have

E
η0

[
Q̃x1(t) · · · Q̃xk

(t)
] = ũ(t, 	x),

where the superscript on the left-hand side means that ASEP is started with initial
condition η0.

We proceed now to the proof of our formula for Eh-fl[Q̃x1(t) · · · Q̃xk
(t)].

PROOF OF THEOREM 1.2. In view of Proposition 2.1 and (1.7), we need to
check that

ũ(t; 	x) := τ (1/2)k(k−1)

(2π i)k

∫
Ck

1,ρ

d	z ∏
1≤a<b≤k

za − zb

za − τzb

1 − zazb

1 − τzazb

(2.1)

×
k∏

a=1

1

τz2
a − 1

fxa,t (za)

satisfies (1)–(4) with ũ0 defined in terms of the half-flat initial condition η0(x) =
1x∈2Z>0 . A straightforward computation shows that in this case

ũ0(	x) =
k∏

a=1

1xa∈2Z>0τ
∑xa−1

y=−∞ ηy(0) = τ−k
k∏

a=1

1xa∈2Z>0τ
(1/2)xa .(2.2)

We will denote the integrand in (2.1) by Ik,t (	x; 	z), that is,

Ik,t (	x; 	z) = ∏
a<b

za − zb

za − τzb

1 − zazb

1 − τzazb

∏
a

1

τz2
a − 1

fxa,t (za).(2.3)

Additionally, we will write 	x(i1,...,i
) and 	z(i1,...,i
) to denote, respectively, the vec-
tors 	x and 	z with the components i1, . . . , i
 removed.

Computing d
dt

ũ(t, 	x) introduces a factor
∑k


=1 ε̃(z
) in front of the integrand.

Similarly, computing ũ(t, 	x±

 ) introduces a factor (1−τz


1−z

)±1 in front of the inte-

grand. Hence, (1) is satisfied if we can show that

k∑

=1

ε̃(z
) =
k∑


=1

[
p

1 − z


1 − τz


+ q
1 − τz


1 − z


− 1
]
.

But this follows immediately from the definition of ε̃; see (1.8)
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For (2), let 	x ∈ Z
k and suppose that there exists 
 such that x
+1 = x
 + 1. Then

using the above computation of ũ(t, 	x±

 ), we have

pũ
(
t, 	x−


+1

) + qũ
(
t, 	x+




) − ũ(t, 	x)

= τ (1/2)k(k−1)

(2π i)k

∫
Ck

1,ρ

d	z Ik,t

(	x−

+1; 	z)(2.4)

×
[
p + q

1 − τz


1 − z


1 − τz
+1

1 − z
+1
− 1 − τz
+1

1 − z
+1

]
.

We need to show that the integral vanishes. The expression inside the brackets
equals (q−p)(z
−τz
+1)

(1−z
)(1−z
+1)
. Note that the factor z
 − τz
+1 cancels a like factor in

the denominator of the product
∏

a<b
za−zb

za−τzb
coming from Ik,t (	x−


+1; 	z), and thus
(using the fact that x
+1 = x
 + 1) the integrand in (2.4) can be rewritten as

(q − p)(z
 − z
+1)(1 − z
z
+1)

(1 − z
)(1 − z
+1)(1 − τz
z
+1)
fx
,t (z
)fx
,t (z
+1)G

(	x(
,
+1), 	z(
,
+1)),
where, as suggested by the notation, the factor G(	x(
,
+1), 	z(
,
+1)) does not de-
pend on x
, x
+1, z
 and z
+1. This expression is antisymmetric in z
, z
+1, and
thus its integral over (z
, z
+1) ∈ C2

1,ρ must vanish. This shows that the integral
in (2.4) is zero, proving (2).

(3) follows directly from the form of fx,t and the facts that C1,ρ is compact and
that the integrand is continuous in 	z ∈ Ck

1,ρ .
We turn now to (4). Note that when t = 0 the essential singularity in the expo-

nent of fx,t in Ik,t disappears [see (2.3)], and thus we can evaluate the integral by
computing residues.

First, if x1 ≤ 1 then fx1,0(z1) has no pole at z1 = 1. Hence, the integrand is
analytic in z1 inside C1,ρ , and thus the integral is 0. Since x1 < · · · < xk , this
accounts for the condition that all xa’s be at least 2. So let us assume now that
2 ≤ x1 < · · · < xk . We will evaluate the zk integral first, by expanding the contour
to infinity. Note that, thanks to the decay coming from the factor (τz2

k − 1)−1 there
is no pole at infinity, and thus the integral equals minus the sum of the residues of
the poles of the integrand outside C1,ρ .

In zk , the poles are ±τ−1/2, τ−1z
 and τ−1z−1

 for 
 < k. The condition imposed

on ρ implies that all these poles lie outside the contour. Consider first the poles at
zk = τ−1z
, 
 < k. The residue of Ik,0 at this point is given by

Ik−1,0
(	x(k); 	z(k)) ∏

a<k
a �=


(
za − τ−1z


za − z


1 − τ−1zaz


1 − zaz


)
(1 − τ)z
(1 − τ−1z2


)

1 − z2



× ((1 − z
)/(1 − τ−1z
))
xk−1

τ−1z2

 − 1
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= Ik−2,0
(	x(
,k); 	z(
,k)) 
−1∏

a=1

(
za − τ−1z


za − τz


1 − τ−1zaz


1 − τzaz


)

×
k−1∏

b=
+1

(
τ−1z
 − zb

z
 − τzb

1 − τ−1zbz


1 − τzbz


)

× (1 − τ)z


1 + z


((1 − τz
)
x
−1/(1 − τ−1z
)

xk−1)

(1 − τz2

)

(1 − z
)
xk−x
−1.

Observe that the factors za − z
 and 1 − zaz
 appearing in the denominator of the
first line are canceled by matching factors coming out of Ik−1,0(	x(k); 	z(k)). This
is crucial, because it implies that the resulting integrand has no singularities in z


inside C1,ρ except possibly at z
 = 1. On the other hand, since xk ≥ x
 + 1, the
simplification leading to the second line above implies again that there is no pole
at z
 = 1. We deduce that the integrand is analytic in z
 inside C1,ρ , and hence the
integral vanishes. An analogous argument shows that the residues at zk = τ−1z−1




also vanish.
Thus, the only important poles are those at ±τ−1/2. We have

Res
zk=τ−1/2

Ik,0(	x; 	z) = Ik−1,0
(	x(k); 	z(k)) k−1∏

a=1

(
za − τ−1/2

za − τ 1/2

1 − τ−1/2za

1 − τ 1/2za

)

× ((1 − τ 1/2)/(1 − τ−1/2))xk−1

2τ 1/2

= Ik−1,0
(	x(k); 	z(k))(−1)xk−1 1

2
τ (1/2)xk−k.

Similarly,

Res
zk=−τ−1/2

Ik,0(	x; 	z) = Ik−1,0
(	x(k); 	z(k)) k−1∏

a=1

(
za + τ−1/2

za + τ 1/2

1 + τ−1/2za

1 + τ 1/2za

)

× ((1 + τ 1/2)/(1 + τ−1/2))xk−1

−2τ 1/2

= −Ik−1,0
(	x(k); 	z(k))1

2
τ (1/2)xk−k.

If xk is odd then the two residues cancel each other out. Therefore,

Res
zk=τ−1/2

Ik,0(	x; 	z) + Res
zk=−τ−1/2

Ik,0(	x; 	z)

= −Ik−1,0
(	x(k); 	z(k))1xk∈2Z≥0τ

(1/2)xk−k.
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Recalling that we have computed the residues on the outside of C1,ρ , which intro-
duces a minus sign, we get

ũ(0, 	x) = τ (1/2)k(k−1)

(2π i)k

∫
Ck

1,ρ

d	z Ik,0(	z)

= τ−11xk∈2Z>0τ
(1/2)xk

τ (1/2)(k−1)(k−2)

(2π i)k−1

∫
Ck−1

1,ρ

d	z Ik−1,0
(	x(k); 	z).

Equation (2.2) follows by induction, and this proves (4). �

3. Moment formulas. Recall that Theorem 1.2 provides a formula for the
expectation of Q̃x1(t) · · · Q̃x


(t), where Q̃x(t) = ηx(t)τ
Nx−1(t) and the xa’s have

to be different. To turn this into a formula for the moments of τNx(t), we will use
the following identity, first proved as Proposition 3 of [20] (in [20] the identity was
stated only for the expected value of both sides, the more general form stated here
appears as Lemma 4.17 in [9]).

LEMMA 3.1. Let η ∈ {0,1}Z and write Nx(η) = ∑
y≤x ηy . Then

τ kNx(η) =
k∑


=0

(−1)

(

k




)
τ

(τ ; τ)

∑

x1<···<x
≤x

ηx1τ
Nx1 (η) · · ·ηx


τNx

(η),(3.1)

where the summand for 
 = 0 should be interpreted as 1.

Note that this result is not specific to ASEP, which is why we have introduced
the notation Nx(η). For the case of ASEP, and in view of (1.5), we are writing
Nx(t) = Nx(ηt ). The expected value of the right-hand side of (3.1) is explicit in
this case (i.e., when we take η to be the ASEP configuration at time t , ηt ) thanks
to (1.7), and we will turn it into a single multiple integral it using arguments similar
to those in Section 4 of [9].

PROPOSITION 3.2. For any k ∈ Z≥0, we have

E
[
τ kNx(t)]

(3.2)

= τ (1/2)k(k−1)

(2π i)k

∫
d 	y ∏

a<b

(
ya − yb

ya − τyb

1 − τ−2yayb

1 − τ−1yayb

)∏
a

Fx,t (ya)

ya

,

where

Fx,t (y) = τ + y

τ − y2

(
1 + y

1 + τ−1y

)x−1
etε̂(y),

ε̂(y) = ε̃(−τ−1y), and the integration contours are given as follows. For each a =
1, . . . , k, the ya contour is composed of two disconnected pieces: a circle around
−τ with radius small enough so that −τ 1/2 is on its exterior, and a circle around
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FIG. 1. Contours appearing in Proposition 3.2 in the case k = 3. The dashed contours correspond
to multiplying each of the contours by τ and illustrate the nesting condition described in the propo-
sition.

0 with radius small enough so that τ 1/2 is on its exterior. The radii of these circles
are chosen so that, in addition, for all a < b the ya contour does not include the
image under multiplication by τ of the yb contour (see Figure 1).

PROOF. By (1.7) and Lemma 3.1, we have

E
[
τ kNx(t)] =

k∑

=0

(−1)

(

k




)
τ

(τ ; τ)
G


with

G
 = τ (1/2)
(
−1)

(2π i)


∫
C


1,ρ

d	z ∏
a<b

za − zb

za − τzb

1 − zazb

1 − τzazb

(3.3)

× ∑
x1<···<x
≤x

∏
a

eε̃(za)t

τ za
2 − 1

(
1 − τza

1 − za

)xa−1

.

For ease of notation, let ξ̃a = 1−τza

1−za
. A computation shows that

∑
x1<···<x
≤x


∏
a=1

ξ̃ xa−1
a =


∏
a=1

ξ̃ x−1
a


∏
a=1

1

ξ̃1 · · · ξ̃a − 1
.

Using this in (3.3), changing variables za = −τ−1ya and writing ξa = 1+ya

1+τ−1ya
we

get

G
 = τ (1/2)
(
−1)

(2π i)


∫
C
−τ,τρ

d 	y ∏
a<b

ya − yb

ya − τyb


∏
a=1

1

ξ1 · · · ξa − 1
(3.4)

× ∏
a<b

1 − τ−2yayb

1 − τ−1yayb


∏
a=1

ξx−1
a

τ − y2
a

etε̂(ya),
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where the new contour C−τ,τρ is a circle around −τ with radius τρ (note that
this implies that −τ 1/2 lies on its exterior). Now the symmetrization identities
appearing in Lemma 7.2 of [9] imply straightforwardly that∑

σ∈S


∏
a<b

yσ(a) − yσ(b)

yσ(a) − τyσ(b)

∏
a

1

ξσ(1) · · · ξσ(a) − 1

= (−1)


(τ ; τ)


∏
a

τ + ya

ya

∑
σ∈S


∏
a<b

yσ(a) − yσ(b)

yσ(a) − τyσ(b)

.

Note that, crucially, the last two factors on the right-hand side of (3.4) are already
symmetric, so the above identity can be used to symmetrize the whole integral,
yielding

G
 = (−1)
τ (1/2)
(
−1)−(1/2)k(k−1) 1

(τ ; τ)

ν̃


with

ν̃
 = τ (1/2)k(k−1)

(2π i)


∫
C
−τ,τρ

d 	y ∏
a<b

ya − yb

ya − τyb

1 − τ−2yayb

1 − τ−1yayb

×

∏

a=1

etε̂(ya)

τ − y2
a

(
1 + ya

1 + τ−1ya

)x−1 τ + ya

ya

.

Therefore, we have

E
[
τ kNx(t)] =

k∑

=0

(
k




)
τ

τ (1/2)
(
−1)−(1/2)k(k−1)ν̃
.

We have written things so that we may easily compare with Lemma 4.20 in [9].
Note that ν̃
 may be rewritten as

ν̃
 = 1

(2π i)


∫
C
−τ,τρ

∏
a<b

ya − yb

ya − τyb

s(ya, yb)
∏
a

f (ya)
1

ya

,

where s(y, y′) = (1 − τ−2yy′)/(1 − τ−1yy′) has no poles in y and y′ in a suitable
contour encircling 0 and −τ , while f is a function with no poles in a ball around 0
and such that f (0) = 1. This is exactly the structure of ν̃
 in Lemma 4.20 of [9],
and it is easy to see the extra factor

∏
a<b s(ya, yb) in our formula makes no dif-

ference in the argument. Hence, using their result, we deduce that E[τ kNx(t)] has
the form claimed in (3.2). �

As we explained in the Introduction, we would like to manipulate the for-
mula (3.2) given in the last result into one where all contours coincide. Doing
this involves expanding the nested contours one by one so that they all end up co-
inciding with the largest one. As this multiple contour deformation is performed,
many poles are crossed. The associated residues group into clusters, and this leads
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to a formula which is a sum of contour integrals naturally indexed by partitions
λ = (λ1 ≥ λ2 ≥ · · · ≥ 0). We will write λ � k if

∑
a λa = k and we will de-

note by 
(λ) the number of nonzero elements of λ. Additionally, we will write
λ = 1m12m2 · · · if a appears ma times in λ, so in this case 
(λ) = ∑

a ma and
λ � ∑

a ama .
The contour shift argument referred to above was used in the setting of Macdon-

ald processes in [6] and later for q-TASEP and ASEP in [9]. In the setting of the
delta Bose gas (or Yang’s system) with general type root systems, it goes back to
the work of [19]. Section 7 of [8] contains a detailed presentation of this argument,
and in fact the proposition that follows is a particular case of a result proved there.

PROPOSITION 3.3.

E
[
τ kNx(t)]

= kτ !
∑
λ�k

λ=1m1 2m2 ···

(1 − τ)k

m1!m2! · · ·
1

(2π i)
(λ)

(3.5)

×
∫
γ


(λ)
−τ,0

d 	w det
[ −1

waτλa − wb

]
(λ)

a,b=1

× H
(
w1, τw1, . . . , τ

λ1−1w1, . . . ,w
(λ), . . . , τ
λ
(λ)−1w
(λ)

)
,

where γ−τ,0 is a (positively oriented) contour around −τ and 0, strictly contained
inside the disk of radius τ 1/2 and which does not include any other singularities of
the integrand, and

H(y1, . . . , yk) = ∏
a<b

1 − τ−2yayb

1 − τ−1yayb

∏
a

Fx,t (ya).

PROOF. It is not hard to check that the contours and the integrand which ap-
pear on the right-hand side of (3.2) satisfy the hypotheses of Proposition 7.4 of [8],
and thus

E
[
τ kNx(t)]

= ∑
λ�k

λ=1m1 2m2 ···

(−1)k(1 − τ)k

m1!m2! · · ·
1

(2π i)
(λ)

∫
γ


(λ)
−τ,0

d 	w det
[

1

waτλa − w(b)

]
(λ)

a,b=1

×

(λ)∏
a=1

wλa
a τ (1/2)λa(λa−1)

× E
(
w1, τw1, . . . , τ

λ1−1w1, . . . ,w
(λ), . . . , τ
λ
(λ)−1w
(λ)

)
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with

E(y1, . . . , yk)

= ∑
σ∈Sk

∏
1≤b≤a≤k

yσ(a) − τyσ(b)

yσ(a) − yσ(b)

∏
a<b

1 − τ−2yσ(a)yσ(b)

1 − τ−1yσ(a)yσ(b)

∏
a

Fx,t (yσ(a))

yσ(a)

.

Note now that the second and third products in the definition of E are symmetric
under permutation of the indices in 	y. On the other hand, by III.(1.4) in [27] the
first double product in the same identity can be symmetrized as∑

σ∈Sk

∏
a>b

yσ(a) − τyσ(b)

yσ(a) − yσ(b)

= (1 − τ)−k(τ ; τ)k = kτ !.(3.6)

Hence, E(y1, . . . , yk) = kτ !∏a<b
1−τ−2yayb

1−τ−1yayb

∏k
a=1

Fx,t (ya)

ya
. Evaluating E at the

point (y1, . . . , yk) = (w1, τw1, . . . , τ
λ1−1w1, . . . ,w
(λ), . . . , τ

λ
(λ)−1w
(λ)) leads,
after some simplifications, to (3.5). �

As we will see below, the strings of geometric progressions appearing in (3.5)
account for the ratios of q-Pochhammer symbols in (1.9) [see (3.12)], which in
this case can be thought of as ratios of q-Gamma functions. This is analogous to
the strings of arithmetic progressions which appear in the case of the delta Bose
gas, which give rise to ratios of Gamma functions (see Section 5).

We are now ready for the proof of our main moment formula for τNx(t) in the
half-flat case.

PROOF OF THEOREM 1.3. The formula given in Proposition 3.3 can be rewrit-
ten as

E
[
τ kNx(t)] = kτ !

k∑

=0

∑
m1,m2,···∑

a ma=
,
∑

a ama=k

1


!

!

m1!m2! · · ·
1

(2π i)


(3.7)
×

∫
γ 
−τ,0

d 	w I
(λm1,m2,...; 	w),

where λm1,m2,... is specified by λm1,m2,... = 1m12m2 · · · and

I
(λ; 	w)

= det
[ −1

waτλa − wb

]
(λ)

a,b=1
H

(
w1, . . . ,w

λ1−1
1 , . . . ,w
(λ), . . . ,w

λ
(λ)−1

(λ)

)
(3.8)

× ∏
a

(1 − τ)λa .

In the above sum, m1,m2, . . . encodes the partition λm1,m2,... of k of length 
.
Observe on the other hand that, by the symmetry of the integrand, the right-hand
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side of (3.7) is unchanged if we permute the λa’s. Thus, we can get rid of the
multinomial coefficient 
!

m1!m2!··· by replacing the sum over the ma’s by a sum over
(unordered) n1, . . . , n
 with the following correspondence: for each a, exactly ma

out of the n1, n2, . . . , n
 equal a. This gives

E
[
τ kNx(t)] = kτ !

k∑

=0

1


!
∑

n1,...,n
≥1∑
na=k

1

(2π i)


∫
γ 
−τ,0

d 	w I


(
(n1, . . . , n
); 	w)

,(3.9)

where the notation (3.8) has been extended trivially to unordered 
-tuples
(n1, . . . , n
).

What remains is to simplify the integrand. Define

g1(w) = (−τ−1w; τ)∞
(τ−1w2; τ 2)∞

(
τ

τ + w

)x−1

e(q−p)t (τ/(τ+w)),

g2(w1,w2) = (τ−1w2
1; τ 2)∞

(τ−3w2
2; τ 2)∞

(τ−3w2
2; τ)∞

(τ−2w1w2; τ)∞
,

and write 	w ◦ 	n = (w1, . . . ,w
n1−1
1 , . . . ,w
, . . . ,w

n
−1

 ). We have

H( 	w ◦ 	n) = H̃ ( 	w ◦ 	n)

k∏
a=1

na−1∏
b=0

Fx,t

(
τbwa

)
(3.10)

with H̃ (y1, . . . , yk) = ∏
a<b

1 − τ−2yayb

1 − τ−1yayb

.

One checks directly that Fx,t (y) = g1(y)/g1(τy), whence

k∏
a=1

g1(wa)

g1(τnawa)
=

k∏
a=1

na−1∏
b=0

Fx,t

(
τbwa

)
.(3.11)

On the other hand, we have

H̃ ( 	w ◦ 	n) = H̃
( 	w(1) ◦ 	n(1)) ∏

0≤a1<a2<n1

1 − τa1+a2−2w2
1

1 − τa1+a2−1w2
1

×
k∏

b=2

n1−1∏
a1=0

nb−1∏
a2=0

1 − τa1+a2−2w1wb

1 − τa1+a2−1w1wb

.

The first product on the right-hand side equals

n1−2∏
a1=0

1 − τ 2a1−1w2
1

1 − τa1+n1−2w2
1

=
n1−2∏
a1=0

(τ 2a1−1w2
1; τ 2)∞

(τ 2a1+1w2
1; τ 2)∞

(τ a1+n1−1w2
1; τ)∞

(τ a1+n1−2w2
1; τ)∞

= g2
(
w1, τ

n1w1
)
.
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One checks similarly that, for fixed b, the second product equals h(τ−1w1, τ
−1wb;

n1, nb). We deduce that H̃ ( 	w ◦ 	n) = H̃ ( 	w(1) ◦ 	n(1))g2(w1, τ
n1w1)

∏k
b=2 h(τ

−1w1,

τ−1wb;n1, nb). Proceeding inductively to rewrite the right-hand side yields and
using (3.10) and (3.11) yields

H( 	w ◦ 	n) = ∏
a

g1(wa)

g1(τnawa)
g2

(
wa, τ

nawa

) ∏
a<b

h
(
τ−1wa, τ

−1wb;na,nb

)
.(3.12)

To finish, we note that there is a simplification in the τ -Pochhammer symbols
coming from the factors g1(wa)/g1(τ

nawa) and g2(wa, τ
nawa):

(−τ−1w; τ)∞
(τ−1w2; τ 2)∞

(τ−1+2nw2; τ 2)∞
(−τ−1+nw; τ)∞

(τ−1w2; τ 2)∞
(τ−3+2nw2; τ 2)∞

(τ−3+2nw2; τ)∞
(τ−2+nw2; τ)∞

= (−τ−1w; τ)∞
(−τ−1+nw; τ)∞

(τ−1+2nw2; τ 2)∞
(τ−2+nw2; τ)∞

(τ−3+2nw2; τ)∞
(τ−3+2nw2; τ 2)∞

= (−τ−1w; τ)∞
(−τ−1+nw; τ)∞

(τ−2+2nw2; τ)∞
(τ−2+nw2; τ)∞

.

The right-hand side is exactly g(w,n). Using this in (3.12) and (3.8), we deduce
that

I


(
(n1, . . . , n
); 	w) = det

[ −1

waτλa − wb

]


a,b=1

∏
a

f
(
τ−1wa,na

)
g
(
τ−1wa,na

)
× ∏

a<b

h
(
τ−1wa, τ

−1wb;na,nb

)
.

Comparing with (3.9) and (1.12) yields the result after the change of variables
wa 
→ τwa (absorbing the Jacobian from the change of variables into the determi-
nant). �

4. Generating function. Since, by definition, Nx(t) ≥ 0, we have τNx(t) ≤ 1
and thus by (1.11) we have for |ζ | < 1 that

E
[
eτ

(
ζ τNx(t))] = ∑

m≥0

ζm

mτ !E
h-fl[

τmNx(t)].(4.1)

Using (1.12) to write the expectation on the right-hand side explicitly and inter-
changing the sums in m and k formally leads to

E
[
eτ

(
ζ τNx(t))] = ∑

k≥0

1

k!
∑

n1,...,nk≥1

1

(2π i)k

∫
γ k−1,0

d 	w det
[ −1

waτna − wb

]k

a,b=1

(4.2)
× ∏

a

ζ na f(wa,na)g(wa,na)
∏
a<b

h(wa,wb;na,nb).
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As we will see in the proof of Theorem 1.4, the application of Fubini’s theorem
here can be justified, which implies that the above formula holds as long as |ζ | < 1.
In order to analytically extend this identity beyond this region, we proceed as in [6]
and use a Mellin–Barnes representation for the sums in na . The precise result we
will use is the following.

LEMMA 4.1. Let g be a meromorphic function and C1,2,... a negatively ori-
ented contour enclosing all positive integers (e.g., C1,2,... = 1

2 + iR oriented with
increasing imaginary part) but no other singularities of g(τ s) (in s).4 Then for
ζ ∈ C \R≥0 with |ζ | < 1 we have

∞∑
n=1

g
(
τn)

ζ n = 1

2π i

∫
C1,2,...

ds
π

sin(−πs)
(−ζ )sg

(
τ s),

provided that the left-hand side converges and that there exist closed contours Ck ,
k ∈ N enclosing the positive integers from 1 to k and such that the integral of the
integrand on the right-hand side over the symmetric difference of C1,2,... and Ck

goes to zero as k → ∞.

The statement follows easily from the fact that π/ sin(−πs) has a pole at each
s = k ∈ Z with residue equal to (−1)k+1.

We will also need some precise estimates on h, which will be provided by the
lemma that follows. These estimates will be valid when the relevant variables lie
inside some carefully chosen contours, which we define next.

DEFINITION 4.2. Let B(x, r) ⊆ C denote the ball of radius r centered at x.
For x1 < x2 and suitably small r1, r2 > 0, we define a positively oriented con-
tour γ̄ (x1, r1;x2, r2) consisting on the left half of ∂B(x1, r1), the right half of
∂B(x2, r2), and two lines connecting, respectively, the top and bottom ends of the
two half circles. Additionally, for θ,M > 0 we define a contour Dθ,M going by
straight lines from M − i∞, to M − iθ , to 1

2 − iθ , to 1
2 + iθ , to M + iθ , to M + i∞.

See Figure 2.

LEMMA 4.3. Define the function

h0(z; s1, s2) = (z; τ)∞(τ s1+s2z; τ)∞
(τ s1z; τ)∞(τ s2z; τ)∞

.

Then there exist constants C > 0 and ρ ∈ (0,min{1
2(τ−1/2 − 1),1}) such that,

given any δ ∈ (0,1) there are θ,M > 0 with the following property: if s1, s2 lie to
the right of Dθ,M and z is inside γ̄ (0, δ;1, ρ), then |h0(z; s1, s2)| < 1 + Cδ.

4Here, z 
−→ zs is defined by taking a branch cut along the negative real axis.
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FIG. 2. Contours in Definition 4.2.

PROOF. Fix δ0 ∈ (1, τ−1/2) and ρ0 ∈ (0,min{1
2(τ−1/2 − 1),1}). For fixed s1

and s2, h0(z; s1, s2) is a meromorphic function of z, with poles at z = τ−s1−


and z = τ−s2−
 for 
 ≥ 0. Since we are interested only in �(s1) = �(s2) ≥ 1
2 , all

these poles lie outside of B(0, τ−1/2), and thus h0(z; s1, s2) is analytic in z inside
γ̄ (0, δ0;1, ρ0). Now, in general, if D1, . . . ,Dm are bounded domains in C and f

is a complex-valued function defined on D = D1 × · · · × Dm which is analytic in
each variable, then by the mean value theorem there exists a constant C > 0 such
that for every 	w ∈ D and every 	w′ ∈ B( 	w,δ) ∩ D we have∣∣f ( 	w′) − f ( 	w)

∣∣ ≤ Cδ.(4.3)

We deduce that there is a C1 > 0 such that if z, z′ lie inside γ̄ (0, δ0;1, ρ0) and
|z − z′| < r , then ∣∣h0(z; s1, s2)

∣∣ ≤ ∣∣h0
(
z′; s1, s2

)∣∣ + C1r.(4.4)

Now for x,α1, α2,∈ [0,1] let

g(x;α1, α2) = (x; τ)∞(α1α2x; τ)∞
(α1x; τ)∞(α2x; τ)∞

.

A computation shows that ∂xg(x;α1, α2)|x=0 = (τ − 1)−1(1 − α1)(1 − α2). We
deduce that

C0 := − sup
s1,s2∈[1/2,∞)

∂xg
(
x; τ s1, τ s2

)∣∣
x=0 ∈ (0,∞).(4.5)

On the other hand, we claim that g(x;α1, α2) is concave in x ∈ [0,1] for ev-
ery fixed α1, α2 ∈ (0,1). To see this, write g(x;α1, α2) = ∏


≥0 g
(x;α1, α2) with

g
(x;α1, α2) = (1−τ 
x)(1−τ
α1α2x)

(1−τ 
α1x)(1−τ
α2x)
. Then it is enough to show that each g
 is posi-

tive, decreasing, and concave. The positivity of g
 is clear, while the decrease and
concavity can be checked by computing ∂xg
 and ∂2

xg
 (we leave the details to the
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reader). As a consequence of this and (4.5), and since h0(x; s1, s2) = g(x; τ s1, τ s2)

and g(0; s1, s2) = 1, we deduce that

h0(x; s1, s2) ≤ 1 − C0x(4.6)

for all s1, s2 ∈ [1
2 ,∞) and x ∈ [0,1].

Choose ρ < min{ρ0,C0/C1} and let r(x) = (1−x)δ +xρ. In order to prove the
result it is enough to prove the following statement: there are θ,M > 0 (depending
on δ) and C2 > 0 such that for all x ∈ [0,1], z ∈ B(x, r(x)) and s1, s2 lying to the
right of Dθ,M we have ∣∣h0(z; s1, s2)

∣∣ ≤ 1 + (C1 + C2)δ.(4.7)

Assume first that s1, s2 ∈ [1
2 ,∞). Fix x ∈ [0,1] and z ∈ B(x, r(x)). Then by (4.4)

and (4.6), we have∣∣h0(z; s1, s2)
∣∣ ≤ ∣∣h0(x; s1, s2)

∣∣ + r(x)C1
(4.8)

≤ 1 + C1δ + C1(ρ − δ)x − C0x < 1 + C1δ,

so, in particular, (4.7) holds.
Now we want to extend this to all s1, s2 lying to the right of Dθ,M . Write sa =

ηa + iθa . There are four cases to consider, depending on whether or not η1 and η2
are larger than M . Let us assume first that η1, η2 ≥ M . Since z ∈ B(0,2) (because
δ, ρ < 1) we have that τ sz ∈ B(0,2τM) ⊆ B(0, 1

2δ) for �(s) ≥ 1
2 and large enough

M , and thus |τ s1z − τη1z| < δ, |τ s2z − τη2z| < δ and |τ s1+s2z − τη1+η2z| < δ.
An argument similar to the one above, based on (4.3), shows then that there is a
constant C2 > 0 such that∣∣h0(z; s1, s2) − h0(z;η1, η2)

∣∣ < C2δ.

Using this together with the bound (4.8) for h0(z;η1, η2) yields (4.7).
The other three cases are similar. For example, if both s1 and s2 are in

[1
2 ,M] × i[−θ, θ ] then, for M fixed as above, we can choose a small enough θ

so that |τ s1z − τη1z| < δ, |τ s2z − τη2z| < δ and |τ s1+s2z − τη1+η2z| < δ, and then
the same argument works. The mixed case works similarly (although it may yield
a different constant). �

PROOF OF THEOREM 1.4. We will prove this result in three steps. The first
one will consist in showing that (4.2) holds when |ζ | < 1. In the second step we
will apply the Mellin–Barnes representation given by Lemma 4.1 to turn (4.2)
into (1.14) for |ζ | < 1, ζ /∈ R≥0. Finally we will analytically extend the resulting
formula to all ζ /∈ R≥0.

Assume then that |ζ | < 1, so that (4.1) holds. Using this formula together
with (1.12) leads to

E
h-fl[

eτ

(
ζ τNx(t))] = ∑

m≥0

m∑
k=0

1

k!
∑

n1,...,nk≥1
n1+···+nk=m

Ik(	n),
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where

Ik(	n) = 1

(2π i)k

∫
γ k−1,0

d 	w det
[ −1

waτna − wb

]k

a,b=1

× ∏
a

ζ na f(wa;na)g(wa;na)
∏
a<b

h(wa,wb;na,nb).

Interchanging the sums in k and m leads to

E
h-fl[

eτ

(
ζ τNx(t))] = ∑

k≥0

∑
m≥k

1

k!
∑

n1,...,nk≥1
n1+···+nk=m

Ik(	n)

(4.9)

= ∑
k≥0

1

k!
∑

n1,...,nk≥1

Ik(	n).

In order to justify the application of Fubini’s theorem, it is enough to verify that the
sum

∑
k≥0

∑
m≥k | 1

k!
∑

n1+···+nk=m Ik(	n)| is finite, which by the triangle inequality,
will follow if we verify that∑

k≥0

1

k!
∑

n1,...,nk≥1

∣∣Ik(	n)
∣∣ < ∞.(4.10)

The main difficulty we face at this point is the fact that the absolute value of
h(wa,wb;na,nb) is in general not bounded by 1, which in principle introduces
a factor of order ck2

into our sum for some c > 1. To deal with this issue, we will
have to choose the contour γ−1,0 carefully, and moreover let it depend on k. Note,
however, that this choice is made at this point only in order to obtain a suitable
estimate, and does not fix the contour in the statement of the theorem.

Now fix ρ > 0 and C > 0 as in Lemma 4.3 and, for fixed k, let δk = C−1(21/k −
1) and choose θk,Mk > 0 as in Lemma 4.3 for δ = δk . Furthermore, let δ′

k, ρ
′ > 0,

θ ′
k < θk and M ′

k > Mk , and write γ̄k = γ̄ (−1, ρ′;0, δ′
k) and D̄k = Dθ ′

k,M
′
k

(D̄k will
be used in the second step). Note that γ̄k is star-shaped with respect to the origin
(i.e., any ray emanating from the origin intersects the contour in one and only
one point). This implies, in particular, that the denominator inside the determinant
appearing in I (	n) never vanishes. On the other hand, by choosing δ′

k and ρ′ to be
suitably small we may assume that γ̄k is contained inside B(0, τ−1/2), in which
case it is easy to check that there are not singularities of h inside. Therefore, our
choice of γ̄k satisfies the requirements of Theorem 1.3.

Having made this choice of contour, we claim that we can choose an η > 0 such
that if δ′

k = ηδk and ρ′ is small enough then whenever wa,wb ∈ γ̄k we have that
wawb is contained inside γ̄ (0, δk;1, ρ). To see this, observe that {ww′ :w,w′ ∈
[−1,0]} = [0,1] and, therefore, given any open neighborhood U of [0,1] we can
find an open neighborhood V of [−1,0] such that {ww′ :w,w′ ∈ V } is contained
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inside U . Our claim follows easily from this because given any such neighborhood
V we can choose δ′

k and ρ small enough so that γ̄k is contained inside V .
Making these choices, and thanks to our earlier choices of parameters and using

Lemma 4.3, we get∣∣h(wa,wb;na,nb)
∣∣ = ∣∣h0(wawb;na,nb)

∣∣ ≤ 21/k(4.11)

for wa,wb ∈ γ̄k and na,nb ∈ Z≥1 (since in this case na and nb trivially lie to
the right of D̄k). On the other hand, the only singularity of f(wa;na) occurs at
wa = −1, and since γ̄k stays at distance at least ρ′ from −1, this factor is uniformly
bounded along the contour, say by some constant c1 > 0 (independently of k).
A similar argument shows that |g(wa;na)| is uniformly bounded (say by c1 again),
and we deduce that∣∣Ik(	n)

∣∣ ≤ c2k
1 2(1/2)(k−1)

(2π)k

∫
γ̄ k
k

d 	w ∏
a

|ζ |na

∣∣∣∣det
[ −1

waτna − wb

]k

a,b=1

∣∣∣∣
≤ ck

2|ζ |
∑

a na

∫
γ̄ k
k

d 	w ∏
a

1

|wa|
∣∣∣∣det

[ −wa

waτna − wb

]k

a,b=1

∣∣∣∣(4.12)

≤ ck
2k

k/2|ζ |
∑

a na

∫
γ̄ k
k

d 	w ∏
a

1

|wa| sup
a,b=1,...,k

∣∣∣∣ wa

waτna − wb

∣∣∣∣k
for some c2 > 0, where in the last inequality we used Hadamard’s bound. The
supremum is clearly bounded by some constant c3 > 0, uniformly in wa , wb and
na . On the other hand, it is not hard to check that∫

γ̄k

dwa

1

|wa| ≤ c4
∣∣log

(
δ′
k

)∣∣ = c4
∣∣log(ηδk)

∣∣ ≤ c′
4 log(k)

for some c4, c
′
4 > 0 by our choice of δk and δ′

k . We deduce that∣∣Ik(	n)
∣∣ ≤ ck(k1/2 log(k)

)k|ζ |
∑

a na

for some c > 0 and thus, since we are taking |ζ | < 1, (4.10) holds. Therefore, (4.9)
holds for |ζ | < 1.

As we mentioned at the beginning of the proof, the next step is to apply the
Mellin–Barnes representation to (4.9). The idea is to focus on the kth term of the
sum on the right-hand side of (4.9) for some fixed k, and then apply Lemma 4.1
one by one to each of the sums in n1, . . . , nk with the contour C1,2,... taken as
D̄k = Dθ ′

k,M
′
k

[and γ−1,0 as γ̄k = γ̄ (−1, ρ′;0, δ′
k)], which would prove the identity

E
h-fl[

eτ

(
ζ τNx(t))] =

∞∑
k=0

1

k!
1

(2π i)2k

∫
D̄k

k

d	s
∫
γ̄ k
k

d 	w det
[ −1

waτ sa − wb

]k

a,b=1
(4.13)

× ∏
a

(−ζ )sa f(wa; sa)g(wa; sa)
∏
a<b

h(wa,wb; sa, sb)
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for ζ /∈ R≥0 with |ζ | < (1−τ)−1. To this end, we need to verify that the conditions
of the lemma are satisfied. Note that, in view of the preceding argument, we are
free to choose θ ′

k and M ′
k to be respectively even smaller and even larger than in

our original choice. We start by observing that waτ
sa − wb never vanishes for sa

along this contour. To see this, note first that M ′
k can be chosen to be sufficiently

large so that if γ̄k is scaled by τM ′
k then any rotation of the resulting contour is

contained inside γ̄k , which shows that waτ
sa − wb �= 0 for sa with �(sa) ≥ M ′

k .
On the other hand, since γ̄k is star-shaped, waτ

sa − wb �= 0 for sa ∈ [1
2 ,∞), and

thus the same holds in the strip [1
2 ,M ′

k] × i[−θ ′
k, θ

′
k] if θ ′

k is small enough. This
shows that there are no singularities of the determinant in the integrand in (4.13)
for sa lying to the right of D̄k . The singularities of the remaining factors are all
avoided in this region for similar reasons.

What is left to check is that there are closed contours Ck,m enclosing 1, . . . ,m

[and contained in {s :�(s) ≥ 1
2}] such that the integral on the symmetric difference

of D̄k and Ck,m goes to 0 as m → ∞. We choose Ck,m to be union of the piece
of D̄k lying inside B(0,m + 1

2) and the arc on the boundary of this ball lying to
the right of D̄k . But this is actually not hard to see. We have already checked that
f(wa; sa), g(wa; sa), h(wa,wb; sa, sb) and the determinant have no singularities
for sa, sb lying to the right of D̄k , and since these factors depend on sa, sb only
through τ sa , τ sb , which live in a compact set, they are bounded uniformly. The
necessary decay is going to come from the product |π/ sin(πsa)||ζ sa |. In fact, as
|�(sa)| → ∞ with �(sa) = 1

2 we have that |π/ sin(πsa)| decays exponentially
while |ζ sa | stays bounded. The same exponential decay applies in the circular part
of Ck,m restricted to | arg(sa)| > π

4 [since here |�(sa)| → ∞ as before]. Finally,
note that on the circular piece of Ck,m with | arg(sa)| > π

4 we have that sa stays
bounded away from all integers, so that |π/ sin(πsa)| is uniformly bounded, while
�(sa) → ∞, so that |ζ sa | decays exponentially. Putting these facts together shows
that the integrand has the right decay, and gives (4.13).

Our third step is to analytically extend (4.13) to all ζ /∈ R≥0, for which we need
to show that both sides are analytic in ζ in that region. Observe first that the left-
hand side is given by

E
h-fl[

eτ

(
ζ τNx(t))] = ∑

n≥0

P
h-fl(Nx(t) = n)

((1 − τ)ζ τn; τ)∞
.

For each ζ /∈ {(1−τ)−1τ−m}m∈Z≥0 , this series is uniformly convergent on a neigh-
borhood of ζ , and thus the left-hand side is analytic for ζ /∈ R≥0.

Turning to the right-hand side of (4.13), observe that each summand in the series
is clearly analytic in ζ /∈ R≥0. We will use now the fact that the limit of a uniformly
absolutely convergent series of analytic functions is analytic to show that the right-
hand side of (4.13) is analytic in ζ in any fixed neighborhood which avoids R≥0.
Consider the kth term of our series and recall that we have chosen δ′

k and ρ′ so
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that wawb is inside γ̄ (0, δk;1, ρ) for wa,wb ∈ γ̄k , while on the other hand θ ′
k < θk

and M ′
k > Mk . As a consequence, and thanks to Lemma 4.3 and our choice of

parameters, we deduce as in (4.11) that |h(wa,wb; sa, sb)| ≤ 21/k for wa,wb ∈
γ̄k and sa, sb ∈ D̄k . As in the previous step, we have that f(wa; sa), g(wa; sa),
h(wa,wb; sa, sb) are uniformly bounded and proceeding as in (4.12) we deduce
that the kth term of the series on the right-hand side of (4.13) is bounded in absolute
value by

ck
1

k!
1

(2π i)2k

∫
D̄k

k

d	s
∫
γ̄ k
k

d 	w ∏
a

∣∣∣∣ π

sin(πsa)

∣∣∣∣ |ζ sa |
|wa| sup

a,b=1,...,k

∣∣∣∣ wa

waτ sa − wb

∣∣∣∣k

≤ ck
2(k

1/2 log(k))k

k!
1

(2π i)k

∫
Dk

k

d	s ∏
a

∣∣∣∣ π

sin(πsa)

∣∣∣∣∣∣ζ sa
∣∣ ≤ ck

3(k
1/2 log(k))k

k!
for some constants c1, c2, c3 > 0 which are uniform in ζ in a compact subset of
C [here we have used again the fact that |π/ sin(πsa)| decays exponentially as
�(sa) → ∞]. This shows that the right-hand side of (4.13) is absolutely summable,
uniformly in ζ on a fixed neighborhood away from R≥0 as required, and thus
finishes the analytic extension of (4.13) to all ζ /∈ R≥0.

At this point, we have proved (4.13). We may now deform the contours D̄k and
γ̄k in each of the summands to the contours 1

2 + iR and γ−1,0 by appealing to
Cauchy’s theorem, thus finishing the proof. �

5. Formulas for the KPZ/stochastic heat equation. The one-dimensional
Kardar–Parisi–Zhang (KPZ) “equation” is given by

∂th = 1
2∂2

xh − 1
2

[
(∂xh)2 − ∞] + ξ,

where ξ is a space–time white noise. This SPDE is ill-posed as written but, at least
on the torus, it can be made sense of by a renormalization procedure introduced
by Hairer in [17, 18]. His solutions coincide with the Cole–Hopf solution (which
is known to be the physically relevant solution; see, e.g., the review [31]) obtained
by setting

h(t, x) = − logZ(t, x),(5.1)

where Z is the unique solution to the (well-posed) stochastic heat equation (SHE)

∂tZ = 1
2∂2

xZ + ξZ.(5.2)

We will now give a contour integral ansatz for the moments of Z with the “tilted”
half-flat initial data defined by Z(0, x) = e−θx1x≥0.

To be more precise, we will provide a solution for the delta Bose gas with this
initial data, which we interpret as the solution v(t, x) to the following system of
equations, where we write Wk = {	x ∈ R

k :x1 < x2 < · · · < xk} (see [6] for more
details):
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(1) For 	x ∈ Wk ,

∂tv(t, 	x) = 1
2�v(t, 	x),

where the Laplacian acts on 	x.
(2) For 	x on the boundary of Wk , with xa = xa+1,

(∂xa − ∂xa+1 − 1)v(t, 	x) = 0.

(3) For 	x ∈ Wk ,

lim
t→0

v(t, 	x) = v0(	x).

In the (tilted) half-flat case, we take v0(	x) = ∏
a e−θxa 1xa≥0.

It is widely accepted in the physics literature that, if Z(t, x) is a solution of
the SHE, then v(t; 	x) = E[Z(t, x1) · · ·Z(t, xk)] is a solution of the delta Bose gas.
This fact is proved in [29], where it is also shown that there is at most one solution.
Therefore, our formulas below for the solution of the delta Bose gas are indeed
identifying the E[Z(t, x1) · · ·Z(t, xk)]. In any case, in the last result of this section
(Proposition 5.3) we will state a formula both for the delta Bose gas and for the
moments of the solution of the SHE, with a proof for the second part which is
independent of this correspondence.

Given α ∈ R
k , we will write 	α + (iR)k = (α1 + iR) × · · · × (αk + iR).

PROPOSITION 5.1. The delta Bose gas with tilted half-flat initial condition
given by v0(	x) = ∏

a e−θxa 1xa≥0, θ ≥ 0, is solved by

v(t, 	x) = 1

(2π i)k

∫
	α+(iR)k

d	z ∏
a<b

(
za − zb

za − zb − 1

za + zb − 1

za + zb

)
(5.3)

×
k∏

a=1

1

za

e(t/2)
∑k

a=1(za−θ)2+∑k
a=1(za−θ)xa ,

where α1 > α2 + 1 > · · · > αk + k − 1 > k − 1 and x1 < · · · < xk .

PROOF. We only verify that (3) is satisfied, the rest follows as in the case of
δ0 initial condition [6]. We need to show that

lim
t→0

v(t, 	x) =
k∏

a−1

e−θxa 1xa≥0.

We will denote the integrand by Ik(z1, . . . , zk). Assume first that x1 < 0. Thanks
to the factor e(1/2)t (z1−α)2

we may move the z1 contour to α1 + R + iR, R > 0.
Note that we do not cross any poles. Changing variables z1 
→ z1 + R gives

v(t, 	x) = 1

(2π i)k

∫
	α+iR

d	zIk(z1 + R,z2, . . . , zk).
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Now me may compute the limit t → 0, which removes the quadratic term
in the exponential. The resulting integrand in limt→0 v(t, 	x) contains a factor

1
z1+R

ex1(z1+R), and since x1 < 0, we may take R → ∞ to deduce without diffi-
culty that the integral vanishes in this case.

So we assume now that x1 ≥ 0 (and so xa ≥ 0 for all a = 1, . . . , k). Our goal is
to move the zk contour to −M + iR (with M > α1). We may do this thanks to the
Gaussian factor as before. Observe that the poles for zk on {−M ≤ �(zk) ≤ αk}
are 0 and −za for a < k. We begin with the second type of pole. We have, for

 < k,

Res
zk=−z


Ik(z1, . . . , zk)

=
∫

d	z Ik−1(z1, . . . , zk−1)
2z
e

−(z
+α)xk+(1/2)t (zk−α)2

2z
 − 1

1

−z


×
k−1∏
a=1
a �=


za + z


za + z
 − 1

za − z
 − 1

za − z


=
∫

d	z Ik−2(z1, . . . , z
−1, z
+1, . . . , zk−1)

× −2e−z
(xk−x
)−α(x
+xk)+(1/2)t (z
−α)2+(1/2)t (zk−α)2

z
(2z
 − 1)

×
k−1∏

b=
+1

1 + z
 − zb

z
 − zb − 1
.

Observe that, due to the cancellation leading to the second line, the z
 integral
has no poles on {�(z
) > α
}. As before we may freely move the z
 contour
to α
 + R + iR, R > 0. Changing variables z
 
→ z
 + R and taking t → 0
yields an integral over the original z1, . . . , zk−1 contours and containing a fac-
tor e−(z
+R)(xk−x
)−α(x
+xk) and no quadratic term in the exponent. Since xk > x
,
taking R → ∞ shows that this term vanishes.

We still need to compute the pole at zk = 0, but let us first observe that the zk

integral over the new contour −M + iR also vanishes after taking the limit t → 0.
In fact, proceeding as above, now changing variables zk → zk − M , the resulting
k-fold integral equals

v(t, 	x) = 1

(2π i)k

∫
	α+iR

d	z Ik(z1, z2, . . . , zk − M).

In the limit t → 0, the integrand contains a factor of the form exk(zk−M), and since
we are assuming xk > 0 we may take M → ∞ to deduce that the whole integral
goes to 0.
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So the only term left in the limit t → 0 is the one corresponding to the pole at
zk = 0. We have

Res
zk=0

Ik(z1, . . . , zk)

=
∫
αj+iR

d	z Ik−1(z1, . . . , zk−1)e
(1/2)tα2−αxk

k−1∏
a=1

(
za

za − 1

za − 1

za

)
.

The last product is obviously 1, so we have proved that

lim
t→0

v(t, 	x) = lim
t→0

1xk≥0

∫
αj+iR

d	z Ik−1(z1, . . . , zk−1)e
(1/2)tα2−αxk

= 1xk≥0e
−αxk lim

t→0
v
(
t, (x1, . . . , xk−1)

)
.

The result follows by induction. �

Observe that, as should be expected, multiplying (5.3) by θk and letting θ →
∞ yields (after shifting contours by θ and changing variables za 
→ za + θ ) the
solution of [6] for the delta Bose gas with narrow wedge initial condition [which
corresponds to Z(0, x) = δ0(x) at the level of the SHE], given by

v0(t, 	x) = 1

(2π i)k

∫
	α+(iR)k

d	z ∏
a<b

za − zb

za − zb − 1

k∏
a=1

e(t/2)
∑k

a=1 z2
a+∑k

a=1 zaxa(5.4)

for x1 < · · · < xk .
When θ = 0, (5.3) gives the solution for the half-flat initial condition Z(0, x) =

1x≥0, which can also be obtained by taking the weakly asymmetric limit of (1.7)
(see the proof of Proposition 5.3 for a similar computation).

By linearity of (5.2), we have that, if Z(0, y; t, x) is the solution to the SHE with
initial data Z(0, y;0, x) = δy(x), then Z(t, x) = ∫ ∞

−∞ dyZ(0, y, t, x)f (y) solves
the SHE with initial condition Z(0, x) = f (x), and hence

Ef

[
Z(t, x1) · · ·Z(t, xk)

] =
∫
Rk

d 	y E
[∏

a

Z(0, ya; t, xa)

]∏
a

f (ya)

(with the subscript in Ef denoting the initial condition for the SHE). Although we
do not have a formula for the integrand on the right-hand side in general note that,
by statistical time reversal invariance, we do have

E

[∏
a

Z(0, ya; t, xa)

]
= E

[∏
a

Z(0, xa; t, ya)

]
.

Now if all the xa’s are the same, we can use the spatial statistical invariance and
symmetry to see that E[∏a Z(0, xa; t, ya)] = E[∏a Z(t, x − ya)]. Finally, chang-
ing variables and then restricting to the Weyl chamber Wk = {	x ∈ R

k :x1 < · · · <
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xk}, we obtain

Ef

[
Z(t, x)k

] = k!
∫
Wk

d 	y E
[∏

a

Z(t, yk − x)

]∏
a

f (x − ya).

Specializing to the tilted half-flat initial condition given by f = fθ with fθ (x) =
e−θx1x≥0, and in view of the relation between the delta Bose gas and the mo-
ments of the SHE discussed above, this suggests an alternative route for obtaining
a formula for v(t;x, . . . , x) in this case, namely

v(t;x, . . . , x) = k!
∫
Wk

d 	y v0(t; 	y)
∏
a

e−θ(x−ya)1ya≤x(5.5)

with v0 as in (5.4). Although this identity can be justified directly from the linearity
of the delta Bose gas itself, it is not at all clear at a first look that this alternative
computation would lead to the same formula as the one in Proposition 5.1.

To see directly why the above formula holds, we start by using the explicit
formula for v0(t; 	y) and computing the ya integrals over Wk , which yield

k!
(2π i)k

∫
	α+(iR)k

d	z ∏
a<b

za − zb

za − zb − 1

k∏
a=1

1

z1 + · · · + za

e(t/2)
∑k

a=1 z2
a+∑k

a=1 zax.

Now deform the za contours one by one so that they all coincide with the leftmost
one. The answer is obtained by an argument analogous to the proof of Proposi-
tion 3.3, and is given by∑

λ�k
λ=1m1 2m2 ···

k!
m1!m2! · · ·

1

(2π i)
(λ)

∫
(α+iR)
(λ)

d 	w det
[

1

wa + λa − wb

]
(λ)

λ1,λb=1

× H(w1,w1 + 1, . . . ,w1 + λ1 − 1, . . . ,w
(λ),w
(λ)+1, . . . ,w
(λ)+λ
(λ)−1)

with

H(z1, . . . , z
) =

∏

a=1

e(t/2)z2
a+zax

∑
σ∈S


∏
a

1

zσ(1) + · · · + zσ(a)

∏
a>b

zσ(a) − zσ(b) − 1

zσ(a) − zσ(b)

.

Using the same procedure as in (3.9) to get rid of the multinomial coefficient
k!

m1!m2!··· , the above turns into

k∑

=0

1


!
∑

m1,...,m
≥1
m1+···+m
=k

1

(2π i)


∫
(α+iR)


d 	w det
[

1

wa + ma − wb

]


λa,λb=1

×

∏

a=1

e(t/2)z2
a+zax

× H(w1,w1 + 1, . . . ,w1 + m1 − 1, . . . ,w
,w
+1, . . . ,w
 + m
 − 1).
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In order to compute the sum over the symmetric group appearing in the definition
of H , we will appeal to the following summation formula, which was used in [24].

LEMMA 5.2. For q1, . . . , qN, κ ∈ C,∑
σ∈SN

μ	q(σ )
∏
a<b

qσ(a) − qσ(b) − iκ

qσ(a) − qσ(b)

= ∏
a<b

qa + qb + iκ

qa + qb

,

where

μ	q(σ ) := q−1
σ(1)(qσ(1) + qσ(2))

−1 · · · (qσ(1) + · · · + qσ(N))
−1

∏
a

qa.

This identity was discovered and checked for small values of N on Mathematica
by Le Doussal and Calabrese. The formula can, in fact, be derived as a suitable
limit of an analogous symmetrization identity proved in [22] in the context of
ASEP with flat initial condition (see Lemma 2 in that paper).

Using the lemma, we obtain

H(z1, . . . , z
) =

∏

a=1

e(t/2)z2
a+zax

∏
a<b

za + zb − 1

za + zb

.

Replacing this formula above and doing some algebra leads directly to (5.9) be-
low, which as we will see next is another way of writing the solution given in
Proposition 5.1 when all the xa’s are the same, thus proving (5.5).

In what follows, we will turn our formula for the tilted half-flat delta Bose gas
(with all xa’s the same) into one in which all the integration contours coincide. As
we will see, this alternative version of our half-flat formula is essentially equivalent
to the formulas given in [23, 24] [see (5.9) and the discussion that follows it]. We
will argue afterwards (see Proposition 5.3), based on the convergence of ASEP to
KPZ, that this formula does indeed give the half-flat SHE moments.

The first step is to deform the za contours in (5.3) one by one so that they all
coincide with αk + iR. The arguments are similar to the ones we used for ASEP in
Section 3, so we only sketch them. We proceed similarly to the proof of Proposi-
tion 3.3, now accounting for poles of the form za = zb +1 for a > b and computing
the corresponding residues. Doing this in the case that all xa’s are equal, using the
symmetrization identity ∑

σ∈Sk

∏
a>b

zσ(a) − zσ(b) − 1

zσ(a) − zσ(b)

= k!,

which plays the role of (3.6) (and follows from suitably rescaling it5), and rewriting
the sum over partitions as in (3.9) yields the following formula for the moments
of the delta Bose gas with initial condition v(0;x, . . . , x) = e−θx1x≥0 (here, and

5It also corresponds to a certain degeneration of the special case of the Hall–Littlewood polynomial
normalization given in Section III.1 of [27].
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below, x is repeated k times in the argument of v):

v(t;x, . . . , x) = k!
k∑


=0

1


!
∑

n1,...,n
,

n1+···+n
=k

1

(2π i)


∫
(α+iR)


d 	w det
[

1

wa + na − wb

]


a,b=1

× H̄ (w1, . . . ,w1 + n1 − 1, . . . ,w
, . . . ,w
 + n
 − 1)

with

H̄ (z1, . . . , zm) = ∏
a<b

za + zb − 1

za + zb

m∏
a=1

1

za

e(t/2)(za−θ)2+x(za−θ),

where α > 0. Rewriting the result as in the proof of Theorem 1.3 yields (after some
simplification)

v(t;x, . . . , x)

= 2kk!
k∑


=0

1


!
∑

n1,...,n
,

n1+···+n
=k

1

(2π i)


∫
(α+iR)


d 	w det
[

1

wa + na − wb

]


a,b=1

× ∏
a


(2wa + na − 1)


(2wa + 2na − 1)
(5.6)

× exp
{

1

2
t

[
1

3
n3

a − 1

2
n2

a + 1

6
na + na(wa − θ)2 + na(na − 1)wa

]
+ x

[
1

2
n2

a − 1

2
na + na(wa − θ)

]}
× ∏

a<b


(wa + wb + na − 1)
(wa + wb + nb − 1)


(wa + wb − 1)
(wa + wb + na + nb − 1)
.

Now we change variables wa 
→ wa − 1
2(na − 1) to obtain

v(t;x, . . . , x)

= 2kk!
k∑


=0

1


!
∑

n1,...,n
≥1
n1+···+n
=k

1

(2π i)


∫
α+(1/2)(n1−1)+iR

dw1 · · ·(5.7)

×
∫
α+(1/2)(n
−1)+iR

dw
Iθ ( 	w, 	n)

with

Iθ ( 	w, 	n)

= det
[

1

wa − wb + (1/2)na + (1/2)nb

]


a,b=1
(5.8)
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× ∏
a

exp
{
t

[
1

24
n3

a − 1

24
na + 1

2
na(wa − θ)2

]
+ xna(wa − θ)

}

× ∏
a


(2wa)


(2wa + na)

× ∏
a<b


(wa + wb + (1/2)(na − nb))
(wa + wb − (1/2)(na − nb))


(wa + wb − (1/2)(na + nb))
(wa + wb + (1/2)(na + nb))
.

The last step is to shift back the wa contours from α + 1
2(na − 1) + iR to α + iR.

As we will see, we will not cross any poles as we do this. To be more precise, we
begin by moving the w1 contour from α + n1−1

2 + iR to α + iR. There are three
types of possible singularities, the first from the Cauchy determinant and the other
two from the Gamma functions:

(1) w1 = wb − 1
2(n1 + nb) for b > 1.

(2) w1 = −
 for 
 ∈ Z≥0.
(3) w1 = −wb ± 1

2(n1 − nb) − 
 for 
 ∈ Z≥0 and b > 1.

The first two types of singularity lie to the left of the origin, whereas our de-
formation region lies entirely to the right of the origin. Turning to (3), both sin-
gularities may or may not lie inside the deformation region, but in any case the
singularity is removable: the simple pole coming from the numerator cancels
with the zero of the denominator since w1 = −wb ± 1

2(n1 − nb) − 
 implies
w1 + wb ∓ 1

2(n1 − nb) = −
 ∈ Z<0, which is a zero of 1

(·) .

It remains to show that, having moved w1, . . . ,wj−1 from their respective
starting points to α + iR, we do not incur any residues when moving wj from

α + nj−1
2 + iR to α + iR. The argument is analogous to the case w1 and is left to

the reader.
This leads to the following.

PROPOSITION 5.3. For the delta Bose gas with tilted half-flat initial condition
v0(t; 	x) = ∏

a e−θxa 1xa≥0 we have

v(t;x, . . . , x) = 2kk!
k∑


=0

1


!
∑

n1,...,n
≥1
n1+···+n
=k

1

(2π i)


∫
(α+iR)k

d 	w Iθ( 	w; 	n)(5.9)

with Iθ given by (5.8). Moreover, in the pure half-flat initial condition correspond-
ing to θ = 0, the same identity holds for the moments of the SHE, that is,

E
h-fl[

Z(t, x)k
] = 2kk!

k∑

=0

1


!
∑

n1,...,n
≥1
n1+···+n
=k

1

(2π i)


∫
(α+iR)k

d 	w I0( 	w; 	n).
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In [24], the authors compute a formal series6 for the generating function of
Z(t, x) using the explicit basis of eigenfunctions of the delta Bose gas [25, 28].
The generating function is expanded in the “number of strings”, which essentially
corresponds to the parameter 
 in (5.9) (the “strings” essentially correspond to
n1, . . . , n
, and index the eigenfunctions). The coefficients in this expansion are
given in their formula (88), and one can check that, as expected, that formula co-
incides essentially with (5.9). By this we mean that, for fixed n1, . . . , n
, the sum-
mand in (5.9) coincides7 with the summand on the right-hand side of (88) in [24]
with ns = 
 and ma = na for a = 1, . . . , ns . This correspondence is consistent with
(39) in their paper. See also [23].

PROOF OF PROPOSITION 5.3. The delta Bose gas case follows directly from
the above discussion. The formula in the case of the moments of the half-flat SHE
can be recovered directly as a weakly asymmetric limit of the half-flat ASEP mo-
ment formula given in Theorem 1.3. Let us briefly sketch how this is done.

Recall from (1.6) that (for the half-flat case) h(t, x) = 2Nx(t) − x. According
to the WASEP scaling theory (see [5]), if γ = q − p = ε1/2 and we let

νε = 1 − 2
√

pq = 1

2
ε + 1

8
ε2 +O

(
ε3)

,

(5.10)

λε = 1

2
log

(
q

p

)
= ε1/2 + 1

3
ε3/2 +O

(
ε5/2)

,

then

hε(t, x) := λεh
(
ε−3/2t/γ, ε−1x

) − νεε
−2t

converges to the Cole–Hopf solution h(t, x) of KPZ starting with h(0, x) = 0 for
x > 0 and h(0, x) = ∞ for x < 0, which in view of (5.1) corresponds to Z(0, x) =
1x≥0. Translating back to Nx(t), and in view of (5.10), we have

Nε−1x

(
ε−2t

) = 1

2λε

[
hε(t, x) + νεε

−2t
] + 1

2
ε−1x

≈ 1

2
ε−1/2h(t, x) − 1

48
ε−1/2t + 1

4
ε−3/2t + 1

2
ε−1x.

6As written, the computation in [24] is only formal, since in view of (88) in their paper the series
given in their formula (40) is clearly divergent. Nevertheless, their computation implicitly leads to a
formula like (5.9) in view of their formula (39).

7A diligent reader will notice two minor differences between (5.9) and the formula in [24]. First,
the formulas differ by a factor of

∏
a(−1)na in the integrand, reflecting the fact that their generating

function computation is implicitly calculating E[(−Z)k], as opposed to E[Zk] [see (40) in their
paper]. Second, one needs to replace t by 2t in our formula to recover theirs. This is because in their
definition of the SHE the Laplacian term lacks the prefactor 1

2 [see (8) in their paper and compare
with (5.2)].
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Therefore, since log(τ ) ≈ −2ε1/2, we deduce that

τN
ε−1x

(ε−2t)−(1/4)ε−3/2t−(1/2)ε−1x ≈ e−h(t,x)−(1/24)t = e−(1/24)tZ(t, x).

This, together with tightness of the moments (which, e.g., can be obtained by
adapting the arguments in Section 2.15 of [31]), gives

E
h-fl[

τ k(N
ε−1x

(ε−2t)−(1/4)ε−3/2t−(1/2)ε−1x+(1/24)t)] →
ε→0

E
h-fl[

Z(t, x)k
]
.(5.11)

Now in view of (1.12), the left-hand side of (5.11) is given by

kτ !
k∑


=0

1


!
∑

n1,...,n
≥1
n1+···+n
=k

1

(2π i)


∫
γ 
−1,0

d 	w det
[ −1

waτna − wb

]


a,b=1

× ∏
a

e(1/24)nat τ−((1/4)ε−3/2t−(1/2)ε−1x)na f(wa;na)g(wa;na)(5.12)

× ∏
a<b

h(wa,wb;na,nb).

Observe that the two sums are finite, so in order to obtain (5.9) it is enough to show
that the multiple integral converges to I0( 	w; 	n). This results in a relatively simple
problem in asymptotic analysis. The starting point for the critical point analysis is
to consider the product τ−((1/4)ε−3/2t−(1/2)ε−1x)na f(wa;na), which is given by

(1 − τ)na exp
{(

1

1 + wa

− 1

1 + τnawa

− 1

4
log(τ )

)
ε−3/2t

− 1

2
ε−1x log(τ )na + log

(
1 + τnawa

1 + wa

)(
ε−1x − 1

)}
.

Scaling wa near 1 through the change of variables wa 
→ 1 − (1 − τ)w̃a , the ex-
ponent above can be written as (1

6n3
a + 1

2n2
aw̃a + 1

2naw̃
2
a)t + (1

2n2
a + naw̃a)x +

O(ε1/2). The change of variables (for all the 
 variables) gives a prefactor of
(−1)
(1 − τ)
, while the factor

∏
a(1 − τ)na coming from the above product

turns into (1 − τ)k . We leave it to the reader to verify that, with this scal-
ing, det[ −1

waτna −wb
]
a,b=1 ≈ (1 − τ)−
 det[ 1

w̃a+na−w̃b
]
a,b=1,

∏
a g(wa;na) ≈ 2k(1 −

τ)−k ∏
a


(2w̃a+na)

(2w̃a+2na)

and

∏
a<b

h(wa,wb;na,nb) ≈ ∏
a<b


(w̃a + w̃b + na)
(w̃a + w̃b + nb)


(w̃a + w̃b + na + nb)
(w̃a + w̃b)
.

Note that near the critical point wa = 1 the contour γ−1,0 turns into iR, negatively
oriented. Introducing an additional factor (−1)
 to flip the orientation of the re-
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sulting contour, we deduce from the above estimates that (5.12) is approximately

2kk!
k∑


=0

1


!
∑

n1,...,n
,

n1+···+n
=k

1

(2π i)


∫
(iR)


d 	̃w det
[

1

w̃a + na − w̃b

]


a,b=1

× ∏
a


(2w̃a + na)


(2w̃a + 2na)

× ∏
a

exp
{
t

[
1

6
n3

a + 1

2
n2

aw̃a + 1

2
naw̃

2
a + 1

24
na

]
+ x

[
1

2
n2

a + naw̃a

]}

× ∏
a<b


(w̃a + w̃b + na)
(w̃a + w̃b + nb)


(w̃a + w̃b)
(w̃a + w̃b + na + nb)
.

Turning this into a rigorous proof involves estimating the integrand away from
the critical point in order to show that the only contribution from the integral that
survives in the limit is that near wa = 1. This is not hard to do in this case because
we do not need an estimate which is uniform in 
 (which is the basic source of
difficulty in turning the calculations of the Appendix into a rigorous proof), so we
will leave the details to the reader. Now changing variables w̃a 
→ w̄a − 1

2 turns
the above formula into (5.6) (with α = 1

2 ), which by (5.7) gives the desired result.
�

APPENDIX: ASYMPTOTICS FOR HALF-FLAT ASEP AND THE AIRY2→1

MARGINALS

In this section, we provide a formal critical point analysis of the long-time
asymptotics of the τ -Laplace transform of τNx(t) in the half-flat case which, in
view of (1.15), gives the asymptotic distribution of the fluctuations of the height
function h(t, x).

More precisely, our derivation will provide a nonrigorous confirmation of the
conjectured asymptotics

lim
t→∞P

h-fl
(

h(t/(q − p), t2/3x) − (1/2)t − t1/3x21x≤0

t1/3 ≥ −r

)
(A.1)

= P
(
A2→1

(
2−1/3x

) ≤ 21/3r
)
,

where A2→1 is the Airy2→1 process. For background on this process and more
details about this conjecture, see [32].

Our starting point is the formula for the eτ -Laplace transform of τNx(t) given in
Theorem 1.4, where we take ζ = −τ−(1/4)t−(1/2)t2/3x+(1/2)t1/3r−(1/4)t1/3x21x≤0 and
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let r̃ = r − 1
2x21x≤0:

E
h-fl[

eτ

(−τN
t2/3x

(t/γ )−(1/4)t−(1/2)t2/3x+(1/2)t1/3r̃)]
=

∞∑
k=0

1

k!
1

(2π i)2k

∫
(δ+iR)k

d	s
∫
γ k−1,0

d 	w det
[ −1

waτ sa − wb

]k

a,b=1
(A.2)

× ∏
a

τ−[(1/4)t+(1/2)t2/3x−(1/2)t1/3r]sa f̃(wa; sa)g(wa; sa)

× ∏
a<b

h(wa,wb; sa, sb)

for δ ∈ (0,1), f, g and h as in (1.9), and with f̃ defined as f with t replaced by t/γ

(recall that γ = q − p).
We will perform a formal critical point analysis on the right-hand side. The

reason the limit is not rigorous is that so far we have not been able to control
the double product

∏
a<b h(wa,wb; sa, sb) on the part of the contour away from

the critical point, nor find an alternative contour where this can be done.8 The
derivation here is done to clarify the algebraic structure of the expansion around
the critical point where one sees the Airy crossover distributions.

The leading order (in t) factor in the integrand comes f̃(wa, sa) and the factor
τ−(1/4)t , and can be written as

∏
a exp[t ( 1

1+wa
− 1

1+τ sa wa
− 1

4sa log(τ ))]. One can

verify that the only critical point of 1
1+w

− τ
1+τ sw

− 1
4s log(τ ) occurs at (w, s) =

(1,0). Moreover, the Hessian of this function vanishes at this point, while the third-
order partial derivatives are not all 0, which suggests a t1/3 scaling. On the other
hand, this suggests that the wa contour should be chosen to cross the line R≥0 at
wa = 1. In view of this we change variables as follows:

wa = 1 + t−1/3w̃a, sa = − 1

log(τ )
t−1/3s̃a.(A.3)

We will need the following lemma.

8More precisely, |h(wa,wb; sa, sb)| can be bounded uniformly by some constant C, but this con-

stant is necessarily larger than one. This yields an estimate of the form Ck2
for some C > 1, which

is too big (note that
∑

k≥0
1
k!Ck2

is divergent). Therefore the rigorous asymptotics remains an in-
teresting open problem. Observe that if the double product could be turned into a determinant [as
happens for the first double product in (3.2), which turns into the determinant in (A.2)], then this
problem would disappear, because by Hadamard’s bound our estimate on |h(wa,wb; sa, sb)| would
essentially yield a factor Ckkk/2, which is small enough for our purposes.
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LEMMA A.1. Let a ∈ R, 
 ∈ Z and k ∈ Z>0. If −
 = kj for some j ∈ Z≥0
(i.e., 
 = 0 or k is a factor of −
) then, as ε → 0,

(
τ 
(1 + εa); τ k)

∞ = −εa

∞∏
n=0
n�=j

(
1 − τ kn+
) +O

(
ε2)

.

On the other hand, if 
 �= 0 and k is not a factor of −
 then, as ε → 0,

(
τ 
(1 + εa); τ k)

∞ = (
τ 
; τ k)

∞

[
1 − εa

∞∑
m=0

τ km+


1 − τ km+


]
+O

(
ε2)

.

PROOF. In the first case, we have τ kj+
 = 1 so(
τ 
(1 + εa); τ k)

∞ =
∞∏

n=0

[
1 − (1 + εa)τ kn+
]

= [
1 − (1 + εa)

] ∞∏
n=0
n�=j

[
1 − (1 + εa)τ kn+
]

= −εa

∞∏
n=0
n�=j

(
1 − τ kn+
) +O

(
ε2)

.

In the second case, we have(
τ 
(1 + εa); τ k)

∞ =
∞∏

n=0

[(
1 − τ kn+
) − εaτkn+
]

=
∞∏

n=0

[
1 − τ kn+
] − εa

∞∑
m=0

τ km+

∞∏

n=0
n�=m

[
1 − τ kn+
] +O

(
ε2)

≈ (
τ 
; τ k)

∞ − εa
(
τ 
; τ k)

∞
∞∑

m=0

τ km+


1 − τ km+

.

�

The scaling (A.3) leads to the following asymptotics:

π

sin(−πsa)

1 + wa

1 + τ sawa

(1 − τ)sa ≈ log(τ )t1/3

s̃a
,

1

waτ sa − wb

≈ τ−1t1/3

w̃a − w̃b − s̃a
,

t

[
1

1 + wa

− 1

1 + τ sawa

− 1

4
sa log(τ ) + 1

2
t1/3sar log(τ )

]
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≈ 1

48

(̃
s3
a − 3̃s2

aw̃a + 3̃saw̃
2
a

) − r̃ s̃a,

(
1 + τ sawa

1 + wa

τ−(1/2)sa

)t2/3x

≈
(

1 − s̃2
a − 2̃saw̃a

8t2/3

)t2/3x

≈ e−(1/8)(̃s2
a−2̃saw̃a)x,

while, using Lemma A.1,

(−wa; τ)∞
(−τ sawa; τ)∞

(τ 2saw2
a; τ)∞

(τ saw2
a; τ)∞

≈ (1 + 2(w̃a − s̃a)t
−1/3; τ)∞

(1 + (2w̃a − s̃a)t−1/3; τ)∞

≈ 2(̃sa − w̃a)

s̃a − 2w̃a

,

and similarly

(wawb; τ)∞(τ sa+sbwawb; τ)∞
(τ sawawb; τ)∞(τ sbwawb; τ)∞

≈ (w̃a + w̃b)(w̃a + w̃b − s̃a − s̃b)

(w̃a + w̃b − s̃a)(w̃a + w̃b − s̃b)
.

Additionally, there is a factor of (−1)kt−2k/3(τ/ log(τ ))k coming from the change
of variables which, except for the (−1)k , cancels exactly with factors coming
out from the first line of the above list of asymptotics. To write the limit choose
first δ = −t−1/3/(2 log(τ )) in (A.2) and deform the sa contour so that it departs
the real axis at angles ±π/3, and likewise deform the wa contours so that they
go through 1 and depart from that point at angles ±π/3. The limiting contours
then become 1

2 + 〈 for s̃a and 〈 for w̃a , where 〈 consists on two infinite rays de-
parting 0 at angles ±π/3 (oriented with increasing imaginary part) and thus us-
ing the above asymptotics in (A.2) we obtain that the formal limit as t → ∞ of

E[eτ (−τN
t2/3x

(t/(q−p))−(1/4)t−(1/2)t2/3x+(1/2)t1/3r̃ )] is given by

Fx(r̃) =
∞∑

k=0

1

k!
1

(2π i)k

∫
(1/2+〈)k

d 	̃s 1

(2π i)k

∫
(〈)k

d 	̃w det
[

1

w̃b − w̃a + s̃a

]k

a,b=1

× ∏
a

exp
{

1

48
(̃s3

a − 3̃s2
aw̃a + 3̃saw̃

2
a) − 1

2
r̃ s̃a − 1

8
(̃s2

a − 2̃saw̃a)x

}

× 2(̃sa − w̃a)

s̃a (̃sa − 2w̃a)

× ∏
a<b

(w̃a + w̃b)(w̃a + w̃b − s̃a − s̃b)

(w̃a + w̃b − s̃a)(w̃a + w̃b − s̃b)
.

Now we introduce the change of variables w̃a = ua and s̃a = ua − va . The ua

contour is 〈, but we may freely deform it (thanks to the cubic terms in the exponent)
to 1+〈. A priori va depends on ua , but again one can check that it can be deformed
to 〉, which is defined in the same way as 〈 but departing the origin at angles ±2π/3.
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We obtain

Fx(r̃) =
∞∑

k=0

1

k!
1

(2π i)k

∫
(1+〈)k

d 	u 1

(2π i)k

∫
(〉)k

d 	v det
[

1

ub − va

]k

a,b=1

× ∏
a

exp
{

1

48
(u3

a − v3
a) + 1

8
(u2

a − v2
a)x − 1

2
(ua − va)r̃

}
2va

u2
a − v2

a

× ∏
a<b

(ua + ub)(va + vb)

(ua + vb)(va + ub)
.

Now we note that the determinant and the cross-product above simplify into a
single determinant: using the Cauchy determinant formula

det
[

1

xa − yb

]k

a,b=1
=

∏
a<b(xa − xb)(yb − ya)∏

a,b(xa − yb)
,

we have

det
[

1

ub − va

]k

a,b=1

∏
a<b

(ua + ub)(va + vb)

(ua + vb)(va + ub)

= 1∏
a(ua − va)

∏
a<b

(u2
b − u2

a)(v
2
a − v2

b)

(u2
a − v2

b)(u
2
b − v2

a)

=
∏

a(v
2
a − u2

a)∏
a(va − ua)

det
[

1

u2
a − v2

b

]k

a,b=1
= ∏

a

(ua + va)det
[

1

u2
b − v2

a

]k

a,b=1
.

Using this above, we get

Fx(r̃) =
∞∑

k=0

1

k!
1

(2π i)k

∫
(1+〈)k

d 	u 1

(2π i)k

∫
(〉)k

d 	v det
[

1

u2
b − v2

a

]k

a,b=1

× ∏
a

2va

ua − va

e(1/48)(u3
a−v3

a)−(1/8)(u2
a−v2

a)x−(1/2)(ua−va)r̃

=
∞∑

k=0

1

k!
1

(2π i)k

∫
(1+〈)k

d 	u

× det
[

1

2π i

∫
〉
dv

2v

ua − v

e(1/48)u3
a−(1/8)u2

ax−(1/2)ua r̃

e(1/48)v3−(1/8)v2x−(1/2)vr̃

1

u2
b − v2

a

]k

a,b=1
.

This last expression is just the series expansion of a Fredholm determinant:

Fx(r̃) = det(I − K)L2(1+〈)
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with

K
(
u,u′) = 1

2π i

∫
〉
dv

2v

u − v

e(1/48)u3+(1/8)u2x−(1/2)ua r̃

e(1/48)v3−(1/8)v2x−(1/2)vr̃

1

u′2 − v2

= 1

2π i

∫ ∞
0

dλ

∫
〉
dv

2v

u′2 − v2

e(1/48)u3+(1/8)u2x−u(λ+(1/2)r̃)

e(1/48)v3+(1/8)v2x−v(λ+(1/2)r̃)
.

For more details on Fredholm determinants, see Section 2 of [32]. Using the cyclic
property of the Fredholm determinant, we deduce that Fx(r̃) = det(I −K̃)L2([0,∞))

with K̃(λ,λ′) = 1
(2π i)2

∫
du

∫
dv 2v

u2−v2
e(1/48)u3+(1/8)u2x−u(λ+(1/2)r̃)

e(1/48)v3+(1/8)v2
ax−v(λ′+(1/2)r̃)

and the same u and

v contours. Scaling u and v by 24/3 and changing variables λ 
→ 2−4/3λ − 1
2r and

λ′ 
→ 2−4/3λ′ − 1
2r finally yields

lim
t→∞E

[
eτ

(−τN
t2/3x

(t/γ )(−1/4)t−(1/2)t2/3x+(1/2)t1/3r̃)]
(A.4)

= det
(
I − K2→1)

L2([21/3r,∞))

with

K2→1(
λ,λ′) = 1

(2π i)2

∫
1+〈

du

∫
〉
dv

2v

u2 − v2

e(1/3)u3+2−1/3u2x−u(λ−2−2/3x21x≤0)

e(1/3)v3+2−1/3v2x−v(λ′−2−2/3x21x≤0)
.

The u and v contours can be easily deformed to match those appearing in the
kernel inside the Fredholm determinant which gives the finite dimensional distri-
butions of the Airy2→1 process, see [10]. Comparing with that formula, we deduce
that the right-hand side of (A.4) equals P(A2→1(2−1/3x) ≤ 21/3r) which, in view
of (1.15), finishes our formal derivation of (A.1).
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