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Estimating Structural Mean Models with
Multiple Instrumental Variables Using the
Generalised Method of Moments
Paul S. Clarke, Tom M. Palmer and Frank Windmeijer

Abstract. Instrumental variables analysis using genetic markers as instru-
ments is now a widely used technique in epidemiology and biostatistics. As
single markers tend to explain only a small proportion of phenotypic vari-
ation, there is increasing interest in using multiple genetic markers to ob-
tain more precise estimates of causal parameters. Structural mean models
(SMMs) are semiparametric models that use instrumental variables to iden-
tify causal parameters. Recently, interest has started to focus on using these
models with multiple instruments, particularly for multiplicative and logis-
tic SMMs. In this paper we show how additive, multiplicative and logistic
SMMs with multiple orthogonal binary instrumental variables can be esti-
mated efficiently in models with no further (continuous) covariates, using
the generalised method of moments (GMM) estimator. We discuss how the
Hansen J-test can be used to test for model misspecification, and how stan-
dard GMM software routines can be used to fit SMMs. We further show that
multiplicative SMMs, like the additive SMM, identify a weighted average of
local causal effects if selection is monotonic. We use these methods to re-
analyse a study of the relationship between adiposity and hypertension using
SMMs with two genetic markers as instruments for adiposity. We find strong
effects of adiposity on hypertension.

Key words and phrases: Structural mean models, multiple instrumental
variables, generalised method of moments, Mendelian randomisation, local
average treatment effects.

1. INTRODUCTION

Additive and multiplicative structural mean models
(SMMs) and G-estimation were introduced by Robins
(1989, 1994) for estimating the causal effects of treat-
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ment regimes on outcomes from encouragement de-
signs, namely, randomised controlled trials (RCTs) af-
fected by noncompliance. Additive SMMs are param-
eterised in terms of average treatment effects and mul-
tiplicative SMMs in terms of causal risk ratios; the
G-estimators for these models are consistent, asymp-
totically normal and can be constructed to be semi-
parametrically efficient. Vansteelandt and Goetghe-
beur (2003) subsequently developed a class of esti-
mators for generalised SMMs and, in particular, the
“double-logistic” SMM for estimating causal odds ra-
tios. Within this literature, causal effects among the
treated are identified by the assumption of no effect
modification by the instrumental variable (NEM), that
is, the causal effect among the treated is the same at
each level of the instrumental variable; see, for exam-
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ple, Hernán and Robins (2006). Alternative estimators
and identifying assumptions for generalised SMMs
have also been developed by Robins and Rotnitzky
(2004), Tan (2010) and, for a closely related class of
models, van der Laan, Hubbard and Jewell (2007).

The application of SMMs is not limited to encour-
agement designs, however, and extends to the anal-
ysis of observational studies using instrumental vari-
ables; see, for example, Hernán and Robins (2006).
Instrumental variables analysis involves estimating the
causal effect of a temporally antecedent predictor vari-
able on an outcome using an instrumental variable that
is associated with the outcome only through its associ-
ation with the predictor. Instrumental variables analy-
sis has historically been a domain of econometrics, but
is now frequently used within epidemiology and bio-
statistics. In particular, genetic markers were proposed
as instruments for modifiable risk factors by Katan
(1986) and Davey Smith and Ebrahim (2003). Epi-
demiological studies using genetic markers are known
as Mendelian randomisation studies after the assump-
tion that each individual’s genotype is randomly as-
signed at conception, which implies that the genetic
marker is an instrumental variable if it at least partly
explains variation in the risk factor. In practice, genetic
markers explain only a small proportion of phenotypic
variation, and so large sample sizes are required to ob-
tain any reasonable precision. The number of genome-
wide association studies has increased as the costs of
genotyping have decreased, which has led to the iden-
tification of multiple genetic variants for the same risk
factor. An important attraction of using multiple ge-
netic variants as instrumental variables is that, poten-
tially, more precise causal estimates can be obtained.

Techniques for multiple instruments in linear instru-
mental variables analysis are already in use; see, for
example, Palmer et al. (2012). For linear and nonlin-
ear SMMs, the different frameworks we have men-
tioned are all general enough to incorporate multiple
instrumental variables, but to date the focus in ap-
plications has mainly been on cases involving a sin-
gle instrumental variable. The exceptions are Bowden
and Vansteelandt (2011) and Tan (2010). In the first
paper, within the frameworks introduced by Robins
(1994) and Vansteelandt and Goetghebeur (2003), the
authors propose a combination of multiple instrumen-
tal variables into a single instrumental variable which,
they argue, leads to an optimally efficient estimator.
In the second paper, multiple instrumental variables
are directly incorporated into the estimating equations,
within an alternative framework that introduces new

structural models together with doubly robust estimat-
ing equations.

In this paper, we consider an alternative framework
based on the generalized method of moments (GMM);
see, for example, Hansen (1982) and Newey (1993).
GMM is widely used in econometrics for the estima-
tion of instrumental variables models. We show how
nonlinear SMMs with multiple instruments can be for-
mulated as instrumental variables models and esti-
mated using GMM. Furthermore, if the instrumental
variables result in an over-identified model, then the
Hansen J-test can be used to test parametric identifying
assumptions like NEM. We also argue that GMM has
good efficiency properties for SMMs without baseline
covariates. Specifically, GMM is shown to be semi-
parametrically efficient in cases where the instrumen-
tal variables can be represented by a set of orthogonal
binary variables, in which case the efficient combina-
tion of the instrumental variables is equivalent to that
proposed by Bowden and Vansteelandt (2011). An im-
portant practical advantage of GMM is that it can be
implemented using existing routines in software pack-
ages like Stata and R; see Chaussé (2010).

The focus of our presentation is on SMMs without
covariates because these models are widely applicable
to Mendelian randomisation studies. A drawback to fit-
ting SMMs with covariates using our approach is that
the user must correctly specify the covariate effects in
a model for the counterfactual exposure-free outcomes,
which cannot be tested for misspecification. However,
if the covariate effects are saturated—in the sense that
the covariates define population strata and the SMM
has a separate parameter for the causal effect in each
stratum—then this counterfactual model is nonpara-
metric and cannot be misspecified, and the efficiency
properties listed above all hold. Saturated SMMs like
this can be used to deal with population stratification
in Mendelian randomisation studies; see, for example,
Lawlor et al. (2008). Tan (2010) also uses GMM but
applies it to a very different family of doubly robust
estimating equations for which the user must specify
the covariate effects in two sets of models; the advan-
tage of this approach is that each model can be tested
for misspecification, and the estimator remains consis-
tent for the SMM parameters even if one set of models
is misspecified.

In the second part of the paper, we consider the in-
terpretation of additive and multiplicative SMMs with
multiple instruments when the key NEM assumption
fails. In such circumstances, an additive SMM with
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one binary instrument identifies a “local” average treat-
ment effect (LATE)—also known as a “complier” av-
erage causal effect (CACE)—provided that selection
is monotonic, and multiplicative SMMs identify local
causal risk ratios; see, for example, Clarke and Wind-
meijer (2010). When there are multiple instruments,
Imbens and Angrist (1994) show that a GMM estima-
tor for the additive SMM identifies a weighted aver-
age of LATEs. We extend their analysis to multiplica-
tive SMMs to show that a GMM estimator identifies
weighted averages of local risk ratios.

To demonstrate our findings, we reanalyse data from
a study of the relationship between hypertension and
adiposity by Timpson et al. (2009). In the original
study, two genetic markers were used as instruments
for adiposity and analysed using linear instrumental
variables models. We reanalyse this study by focusing
on hypertension as a binary outcome and by estimat-
ing causal effects of adiposity using multiplicative and
logistic SMMs.

The remainder of the paper is organised as fol-
lows. In Section 2 we review the potential outcomes
framework and the additive, multiplicative and logis-
tic SMMs, first for the simple case of a single binary
instrumental variable and then more generally. In Sec-
tion 3 we show how SMMs with a single binary in-
strument can be formulated as an instrumental vari-
ables model and estimated using GMM, and in Sec-
tion 4 extend this to multiple instrumental variables.
In Section 5 we discuss how GMM combines multi-
ple instruments efficiently for orthogonal binary instru-
ments. In Section 6 we present the results of a Monte
Carlo study for multiplicative and logistic SMMs. In
Section 7 we derive the multiple instruments results for
the local risk ratio. Finally, in Section 8 we apply our
estimation procedures to reanalyse the adiposity and
hypertension data of Timpson et al. (2009), and in Sec-
tion 9 make concluding remarks. In the Appendix we
provide Stata and R code for the estimation of the three
SMMs using GMM.

2. STRUCTURAL MEAN MODELS

2.1 The Basic Setup

To introduce SMMs, we follow the exposition in
Hernán and Robins (2006) and focus on SMMs for a
randomised controlled trial where Zi , Xi and Yi are
i.i.d. dichotomous random variables for individual sub-
jects i = 1, . . . , n drawn from the target population. For
individual i, let Zi be a binary indicator of treatment
assignment following randomization, Xi the selected

treatment, and Yi the study outcome. For notational
simplicity the subject index is sometimes suppressed
for the random variables.

The potential outcomes can now be defined in the
usual way. The potential treatments X0 and X1 are the
treatments selected by the individual following assign-
ment to treatment z = 0,1, respectively. Similarly, the
potential (study) outcome Yxz is that obtained if the
individual is assigned to treatment z but given treat-
ment x. Using potential outcomes notation, we can
now state five key conditions that must be satisfied for
causal inference: (i) the “stable unit treatment value as-
sumption” that each individual’s potential treatments
and potential study outcomes are mutually independent
of those for any other individual; (ii) the “consistency
assumption” X = XZ and Y = YXZ that links the ob-
served realisations to the potential outcomes; (iii) the
“independence assumption”, potential outcomes Yzx

are independent of Z; (iv) the “exclusion restriction”
Yxz = Yx ; and (v) “association assumption”, there is an
association between X and Z. Alternative statements
of the key conditions can be found in Robins and Rot-
nitzky (2004) and Tan (2010).

2.2 SMM Identification

For the basic setup defined above, the generalized
SMM of Vansteelandt and Goetghebeur (2003) is

h
{
E(Y |X,Z)

}− h
{
E(Y0|X,Z)

}
(1)

= (ψ0 + ψ1Z)X,

where Y0 is often referred to as the exposure-free po-
tential outcome, and h is the link function that deter-
mines the interpretation of the target causal parame-
ters ψ0 and ψ0 + ψ1. For example, the identity link
leads to the additive SMM E(Y |X,Z)−E(Y0|X,Z) =
(ψ0 + ψ1Z)X, where ψ0 = E(Y1 − Y0|X = 1,Z = 0)

and ψ0 + ψ1 = E(Y1 − Y0|X = Z = 1) are both aver-
age treatment effects; the log link leads to the multi-
plicative SMM E(Y |X,Z)/E(Y0|X,Z) = exp{(ψ0 +
ψ1Z)X}, where exp(ψ0) = E(Y1|X = 1,Z = 0)/

E(Y0|X = 1,Z = 0) and exp(ψ0 + ψ1) = E(Y1|X =
Z = 1)/E(Y0|X = Z = 1) are causal risk ratios.

The SMM parameters are identified by exploiting the
conditional mean independence (CMI), or randomisa-
tion, assumption

E(Y0|Z) = E(Y0),(2)

which follows automatically from the key condi-
tions on Z specified above. For the additive SMM,
h is the identity link and E(Y0|Z) = E{Y − (ψ0 +
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ψ1Z)X|Z}; and for the multiplicative SMM, h = log
and E(Y0|Z) = E[Y exp{−(ψ0 + ψ1Z)X}|Z]. How-
ever, the CMI assumption (2) alone does not identify
ψ0 and ψ1; for instance, in this simple setup, CMI im-
plies the single independent moment condition

E
{
Y − (ψ0 + ψ1)X|Z = 1

}
(3)

= E(Y − ψ0X|Z = 0),

under the additive SMM. In other words, there is
one moment condition with two unknowns. Hence,
we must impose dimension-reducing constraints on
the SMM. Hernán and Robins (2006) highlight the
importance of no effect modification by Z (NEM),
which constrains ψ1 = 0 in (3) and identifies ψ0. Un-
der NEM, the parameter ψ0 of the additive SMM can
be interpreted as E(Y1 − Y0|X = 1), that is, the aver-
age causal effect among the treated; and the parameter
exp(ψ0) of the multiplicative SMM can be interpreted
as E(Y1|X = 1)/E(Y0|X = 1), that is, the causal risk
ratio among the treated.

Generally, the form of E(Y0|Z) is more complex
than for the additive and multiplicative SMMs because
the inverse link function h−1 is not separable. Specif-
ically, for the additive SMM, h = h−1 is the addi-
tively separable identity function [i.e., h−1(a + b) =
h−1(a) + h−1(b)]; and for the multiplicative SMM,
h = log so that h−1 = exp is multiplicatively separable
[i.e., h−1(a + b) = h−1(a) × h−1(b)]. For nonsepara-
ble h−1, however, CMI and NEM do not alone iden-
tify the parameters of SMMs. For example, the logistic
SMM

logit
{
E(Y |X,Z)

}− logit
{
E(Y0|X,Z)

}
(4)

= (ψ0 + ψ1Z)X,

where logit(p) = log{p/(1 − p)} and the parameters
exp(ψ0) and exp(ψ0 + ψ1) are causal odds ratios for
the (X,Z) = (1,0) and (1,1) groups, respectively; as-
suming that CMI and NEM hold,

E(Y0|Z) = E
[
expit

{
logit

(
E(Y |X,Z)

)
(5)

− ψ0X
}|Z],

where expit(a) = exp(a)/{1 + exp(a)} is the nonsep-
arable inverse logit function. It is clear that ψ0 is not
identified unless E(Y |X,Z) is known; see, for exam-
ple, Robins (2000). Hence, to identify ψ0, it is neces-
sary to specify an association model

ha

{
E(Y |X,Z)

}= mβ(X,Z),(6)

where ha is its link function and mβ(X,Z) its linear
predictor. Vansteelandt and Goetghebeur (2003) spec-
ify the double-logistic SMM such that ha = h = logit,
where the SMM parameters are identified by the con-
ditional moment conditions

E
[
expit

{
mβ(X,Z) − ψ0X

}|Z = 0
]

= E
[
expit

{
mβ(X,Z) − ψ0X

}|Z = 1
]
,

E
[
Y − expit

{
mβ(X,Z)

}|X,Z
]= 0,

provided that the association model is correctly spec-
ified. A saturated association model is mβ(X,Z) =
β0 + β1X + β2Z + β3XZ for the simple setup consid-
ered here, and is nonparametric in the sense of placing
no constraints on the distribution of the observed data.
However, nonsaturated logistic association models are
potentially uncongenial to the logistic SMM and hence
misspecified; see Robins and Rotnitzky (2004). Robins
and Rotnitzky (2004) propose an estimator that solves
this problem, but Vansteelandt et al. (2011) argue that
the impact of an uncongenial association model will be
small in practice.

As highlighted by Vansteelandt and Goetghebeur
(2005) and Tan (2010), for more general scenarios
where any or all of X, Z and Y are nonbinary, NEM
is not the only identifying assumption for SMMs. For
example, if Z has three categories and X is binary, then
CMI implies 3 independent moment conditions, and so
the model can be identified if it is correct to assume that
Z has a linear effect and the SMM is (ψ0 + ψ1Z)X,
which identifies both SMM parameters without need-
ing to assume NEM.

2.3 Estimating Equations

The construction of consistent estimating equations
requires the specification of suitable unconditional mo-
ment conditions based on the conditional moment con-
ditions introduced above. The estimating equations are
sample analogues of these unconditional moment con-
ditions, and the different estimating approaches in the
SMM literature differ in how these unconditional mo-
ment conditions are specified. We first consider esti-
mating equations for simple scenarios involving only
binary variables, before moving on to the more general
case.

Robins (1994) derived G-estimation for additive and
multiplicative SMMs. The G-estimator is based on an
unconditional moment condition of the form

E
[{

Z − E(Z)
}
E(Y0|Z)

]= 0,(7)

which holds under (2). As shown above, for SMMs
with separable inverse link functions, we can write
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E(Y0|Z) = E{h∗(X,Y ;ψ0)|Z}, where h∗ is deter-
mined by the SMM and NEM is taken to hold. Thus,
the sample analogue of (7) is

n−1
n∑

i=1

{
Zi − E(Z)

}
h∗(Xi, Yi; ψ̂0) = 0,(8)

where, for example, h∗(X,Y ; ψ̂0) = Y − ψ̂0X for the
additive SMM and h∗(X,Y ; ψ̂0) = Y exp(−ψ̂0X) un-
der the multiplicative SMM. Under regularity condi-
tions, ψ̂0 is a consistent estimator for ψ0 under CMI
provided that (a) the SMM is correctly specified and
(b) E(Z) is known. The second of these conditions
will be satisfied if Z is based on a known allocation
rule such as randomisation. Otherwise, if E(Z) is un-
known, we must specify a (trivial) model E(Z) = μ

and replace E(Z) in (8) with μ̂, that is, a consistent
estimator of μ. Robins, Mark and Newey (1992) note
that the correct asymptotic covariance matrix for ψ̂0
can only be derived from an extended system of mo-
ment conditions that includes E(Z − μ) = 0; see also
Vansteelandt and Goetghebeur (2003) and Tan (2010).
Conversely, treating μ̂ as known when deriving the
asymptotic variance of ψ̂0 leads to an expression that
is too large, and results in conservative inferences; see
Robins, Mark and Newey (1992) and Vansteelandt and
Goetghebeur (2003).

The estimating equations for the double-logistic
SMM are

n−1
n∑

i=1

(Zi − μ) expit
{
mβ(X,Z) − ψ0X

}= 0,(9)

where μ = E(Z) as before. Due to the nonseparability
of the expit function, the estimating equation involves
the association model logit{E(Y |X,Z)} = mβ(X,Z).
As with μ, we must replace β in (9) with a consistent
estimator β̂ , and the correct asymptotic covariance can
only be derived from a set of moment conditions that
includes ones for mβ(X,Z) as well as for μ. Conser-
vative inferences again result if β̂ is treated as known
when deriving the asymptotic covariance matrix.

More generally, for models involving multiple or
continuous instrumental variables, the estimators above
are based on unconditional moment conditions of the
form

E
[{

d(Z) − μd

}
E(Y0|Z)

]= 0,(10)

where E(Y0|Z) is determined by the SMM, d(Z)

is a user-specified function, and μd = E{d(Z)}. The
choice of d(Z) does not affect consistency but does
affect efficiency. Robins (1994) derives the choice of

d(Z) = dopt(Z) for the additive and multiplicative
SMMs so that the first-order asymptotitc variance is
minimised and the estimator is semiparametrically ef-
ficient; Vansteelandt and Goetghebeur (2003) derive
the equivalent choice for the double-logistic SMM.
For further details see, for example, Tsiatis (2006) and
Bowden and Vansteelandt (2011).

2.4 Covariates

In this paper we focus mainly on SMMs that do not
condition on baseline covariates, but for completeness
we discuss here the estimation of SMMs which do
include covariates; the treatment of covariates is dis-
cussed further in Section 9. A generalised SMM with
baseline covariates C has the form

h
{
E(Y |X,Z,C)

}− h
{
E(Y0|X,Z,C)

}
= ηψ (X,Z,C),

where ψ is the SMM parameter vector and ηψ (X,Z,

C) must satisfy ηψ(0,Z,C) = 0. If h−1 is nonsep-
arable, then the association model is specified as
h{E(Y |X,Z,C)} = mβ(X,Z,C). In terms of identify-
ing assumptions, CMI is now conditional on baseline
C such that

E(Y0|Z,C) = E(Y0|C),

where NEM corresponds to ηψ (X,Z,C) = ηψ (X,C)

and alternative dimension-reducing parametric con-
straints are discussed by Vansteelandt and Goetghebeur
(2005) and Tan (2010). Finally, the unconditional mo-
ment condition (10) on which the estimating equations
are based becomes

E
[{

d(Z,C) − μd(C)
}
E(Y0|Z,C)

]= 0,

where E(Y0|Z,C) is determined, as before, by the
SMM, E(Y0|Z,C) = d(Z,C) is a user-specified func-
tion, and μd(C) = E{d(Z,C)|C}. Consistency thus
depends on correctly specifying the conditional dis-
tribution of Z given C so that μd(C) is correct for
given d . Robins (1994) and Vansteelandt and Goetghe-
beur (2003) derive the optimal choices of d for addi-
tive, multiplicative and double-logistic SMMs when
Pr(Z = z|C) is presumed to be known; see also
Bowden and Vansteelandt (2011).

An important special case for Mendelian randomisa-
tion studies is where there are discrete baseline covari-
ates to handle population stratification; see, for exam-
ple, Lawlor et al. (2008). The generalized SMM with
saturated covariate effects can be written

h
{
E(Y |X,Z,C = c)

}− h
{
E(Y0|X,Z,C = c)

}
= Xψc,
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where NEM is taken to hold, and ψc is a unique param-
eter for the population in the stratum defined by C = c.
Saturated models of this form are equivalent to spec-
ifying separate no-covariate SMMs within each stra-
tum. Therefore, it can be shown that all of the results
in this paper regarding no-covariate SMMs also apply
to saturated-covariate SMMs; see also Angrist and Im-
bens (1995), Theorem 3.

Tan (2010) develops an alternative family of doubly
robust estimating equations specifically for generalised
SMMs with nonseparable inverse link functions that
include continuous covariates. Furthermore, he allows
for the inclusion of an extended set of covariates V that
includes C so that additional covariates predictive of Z,
X and Y can be incorporated. The analyst first chooses
a working distribution p∗(z|c) for Pr(Z = z|C = c)
that is arbitrary and so does not have to be correct.
The analyst must then specify two sets of paramet-
ric models involving the full covariates V: (a) Pr(Z =
z|V = v) = kλ(z|v); and (b) Pr(X = x|Z = z,V =
v) = gα(x|z,v) and E(Y |X,Z,V) =m∗

υ(X,Z,V). Us-
ing the law of iterated expectations, it can be shown
that the following estimating equation is consistent for
ψ̂ if either model (a) or model (b) are misspecified (but
not both):

n−1
∑
i

[
p∗(Zi |Ci)

kλ̂(Zi |Vi )
φi�i

ψ̂,β̂

−
{
p∗(Zi |Ci )

kλ̂(Zi |Vi )
φiŵi − E∗

Z

(
φiŵi)}]= 0,

where �i
ψ,β = Yi − h−1{mβ(Xi,Zi,Ci)} +

h−1{mβ(Xi,Zi,Ci) − ηψ (Xi,Zi,Ci)},
ŵi =∑

x′
gα̂

(
x′|Zi,Vi

)[
h−1{m∗̂

υ

(
x′,Zi,Vi

)}
+ �i

ψ̂,β̂
− Yi

]
,

is an estimator of E(�i
ψ,β |Z,V), and E∗

Z|C=c(·) =∑
z′ p∗(z′|c)(·) if Z is discrete. Three important fea-

tures to note are that �i
ψ̂,β̂

− Yi does not depend

on Yi , �i
ψ,β is the key to identification because

E{E(�i
ψ,β |Zi,Vi)|Ci} = E(Yi0|Zi,Ci), and, while

p∗ does not need to be correctly specified, one must
construct φi = d(Zi,Ci)−μ∗(Ci) for user-specified d

where μ∗(C) = E∗
Z|C{d(Z,C)}. Tan (2010) also con-

siders other doubly robust estimating schemes and ar-
gues that the estimator based on the estimating equa-
tions above is locally efficient given the analyst’s
choices of p∗ and d .

3. THE GENERALISED METHOD OF MOMENTS

In this section we propose an alternative approach
to constructing estimating equations based on the gen-
eralized method of moments (GMM). Hansen (1982)
proposed GMM for moment-condition models of the
form E(g(δ)) = 0, where g(δ) is a random vector and
a function of parameter δ, and 0 is an appropriately di-
mensioned column vector of zeros. A general expres-
sion for the GMM estimator is given by

δ̂ = arg min
δ

{
n−1

n∑
i=1

g′
i (δ)

}
W−1

n

{
n−1

n∑
i=1

gi (δ)

}
,(11)

where gi (δ) is the random vector for subject i, g′
i (δ) is

its transpose, and Wn is a user-chosen weight-matrix
that determines the efficiency of the estimator. Tan
(2010) has applied the theory of GMM to the doubly
robust estimating equations discussed in the previous
section, but the focus here is on its use in econometrics
for instrumental variables models of the form

g(δ) = v(δ)S,(12)

where v(δ) is known as the generalized residual and
S is a random vector of instrumental variables. The
generalized residual is so called because it satisfies
E(v(δ)|S) = 0. We show how any nonlinear SMM can
be expressed as an instrumental variables model by ex-
ploiting that E{Y0 − E(Y0)|Z} = 0 under CMI (2) and
by developing estimating equations which are sample
analogues of

E
[
d(S)E

{
Y0 − E(Y0)|S}]= 0,

where d(S) is a user-specified function that affects ef-
ficiency but not consistency. The choice of d(S) that
minimises the variance of the GMM estimator, the so-
called efficient instrument, depends on Wn and will be
discussed further on.

In our simple scenario involving only binary vari-
ables, the SMM is just identified in the sense that it has
one parameter and one moment condition under CMI
(for now taking β to be known for the double-logistic
SMM). For example, the additive SMM under NEM
leads to the well-known estimator

ψ̂0 = E(Y |Z = 1) − E(Y |Z = 0)

E(X|Z = 1) − E(X|Z = 0)
,(13)

in this case, namely, the classical instrumental variable
estimator; see, for example, Hernán and Robins (2006).
Theory based on the GMM estimator (11) is not needed
here because ψ̂0 is simply the solution to (3) under
NEM, and the choice of d(S) is irrelevant because Z
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is binary. However, we can use this simple example to
show how the additive SMM can be specified as an in-
strumental variables model.

First, the CMI moment condition can be written as
E(Y0|Z = z) − α0 = 0 for z = 0,1, where E(Y0) is
simply treated as an extra parameter α0 and results in
the additional moment condition E(Y0) − α0 = 0. It
follows that one of E(Y0|Z = z)−α0 = 0 is redundant
because Z is discrete and E{E(Y0|Z)} = α0 by defi-
nition. However, using the additional E(Y0) − α0 = 0
moment condition allows the system of moment condi-
tions to be expressed in terms of a generalised residual
and a vector of instrumental variables as in (12). For
example, under the additive SMM, it follows that[

E(Y − ψ0X) − α0
E(Y − ψ0X|Z = 1) − α0

]
=
(

0
0

)
(14)

⇒ E

[
Y − ψ0X − α0

(Y − ψ0X − α0)Z

]
=
(

0
0

)
,

that is, E{g(ψ0, α0)} = 0, where g(ψ0, α0) = (Y −
ψ0X − α0)S and S = (1,Z)′. Similarly, for the mul-
tiplicative SMM, it follows that

E

[
Y exp(−ψ0X) − α0{

Y exp(−ψ0X) − α0
}
Z

]
=
(

0
0

)
,(15)

and for the double-logistic SMM with a saturated asso-
ciation model,

E

⎡⎢⎢⎣
expit(β0 + β1X + β2Z

+ β3XZ − ψ0X) − α0{
expit(β0 + β1X + β2Z

+ β3XZ − ψ0X) − α0
}
Z

⎤⎥⎥⎦
(16)

=
(

0
0

)
.

The estimators for these three models are trivial spe-
cial cases of GMM because each is just identified, but
it is clear that moment conditions (14)-(15) are of the
form E(v(δ)S) = 0, where 0 is an appropriately dimen-
sioned vector of zeros. It is also clear that moment con-
dition (16) for the double-logistic SMM has the more
complicated form E{g(δ;β)} = 0, because the vector
of association model parameters β is usually unknown.
We now discuss what happens when S is expanded to
include multiple instrumental variables.

4. MULTIPLE INSTRUMENTS

Mendelian randomisation studies justify the use of
genetic markers as instrumental variables by arguing
that (a) the random allocation of genes from parents
to offspring mimics a randomised experiment, and

(b) there is an established relationship between the
marker and some modifiable risk factor of interest; see,
for example, Katan (1986), Davey Smith and Ebrahim
(2003) and Lawlor et al. (2008).

The genetic variant typically has three forms: ho-
mozygous for the common allele; heterozygous; and
homozygous for the rare allele. If we code these 0, 1
and 2, respectively, then the resulting instrument Z is
multivalued. In fact, this is a simple multiple instru-
ments example because the three-level variable can be
coded using two orthogonal binary variables, for ex-
ample, Z1 = I (Z = 1) and Z2 = I (Z = 2), where I is
the indicator function.

4.1 Additive SMM

The additive SMM for multiple instruments in this
case can be written as

E(Y |X,Z1,Z2) − E(Y0|X,Z1,Z2)

= (ψ0 + ψ1Z1 + ψ2Z2)X,

where NEM corresponds to constraining ψ1 = ψ2 = 0
and CMI yields the moment conditions⎧⎨⎩

E(Y − ψ0X − α0)

E(Y − ψ0X − α0|Z1 = 1)

E(Y − ψ0X − α0|Z2 = 1)

⎫⎬⎭=
⎛⎝0

0
0

⎞⎠ ,

where α0 = E(Y0) as before. The unconditional mo-
ment condition is

E
{
(Y − ψ0X − α0)S

}= 0,

where S = (1,Z1,Z2)
′ is a random vector represent-

ing the multiple instruments; note that S is orthogonal
because its elements are mutually exclusive such that
SS′ = diag(S). In fact, this model is linear and so the
parameters can be consistently estimated using stan-
dard Two-Stage Least Squares (2SLS). The 2SLS es-
timator can be obtained as the ordinary least squares
(OLS) estimator from regressing Y on X̂, where X̂

is the prediction from the first-stage regression of X

on S. The 2SLS estimator is a special case of a “one-
step” GMM estimator with Wn = n−1∑

i SiS′
i (see

next section), and is commonly used for linear instru-
mental variables analysis with multiple instruments;
see Palmer et al. (2012) for its use with Mendelian ran-
domisation studies.

4.2 Multiplicative SMM

The saturated multiplicative SMM for the two instru-
ments is

E(Y |X,Z1,Z2)/E(Y0|X,Z1,Z2)

= exp
{
(ψ0 + ψ1Z1 + ψ2Z2)X

}
,
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where NEM here corresponds to ψ1 = ψ2 = 0. Using
the same vector of instrumental variables S, the multi-
plicative SMM moment conditions can be written as

E

[{
Y

exp(Xψ0)
− α0

}
S
]

= 0.(17)

Letting α∗
0 = log(α0), it is easy to show that (17) also

implies

E

{
Y − exp(α∗

0 + Xψ0)

exp(Xψ0)
S
}

= 0(18)

and

E

{
Y − exp(α∗

0 + Xψ0)

exp(α∗
0 + Xψ0)

S
}

= 0,(19)

where (19) is obtained simply by dividing (18) by
exp(α∗

0) �= 0. Moment condition (19) is the same as that
for exponential-mean models proposed by Mullahy
(1997).

For example, consider a GMM estimator based
on moment condition (17). The GMM estimator for
δ = (α0,ψ0)

′ is the solution to (11) with g(δ) =
{Y exp(−Xψ0) − α0}S. The one-step GMM estimator
δ̂1 is obtained by choosing the weight matrix in (11) to
be Wn = n−1∑

i SiS′
i . The two-step GMM estimator

δ̂2 is obtained by estimating the weight matrix

Wn(̂δ1) = n−1
n∑

i=1

gi (̂δ1)g′
i (̂δ1),

using the one-step GMM estimator δ̂1. Under standard
regularity conditions, the limiting distributions of the
one-step and two-step GMM estimators are

n1/2(̂δ1 − δ0)
d−→ N

{
0,
(
C′

0W
−1C0

)−1
C0W

−1

· 	0W
−1C0

(
C′

0W
−1C0

)−1}
,

n1/2(̂δ2 − δ0)
d−→ N

{
0,
(
C′

0	
−1
0 C0

)−1}
,

respectively, where δ0 is the true parameter value,
d−→

indicates convergence in distribution, N indicates a
normally distributed random vector,

C0 = E

{
∂g(δ0)

∂δ′
}
, 	0 = E

{
g(δ0)g′(δ0)

}
,

and W = E(SiS′
i) is the probability limit of the one-

step GMM estimator’s weight matrix.
Chamberlain (1987) shows that the two-step GMM

estimator is semiparametrically efficient when the in-
struments are mutually exclusive indicators that follow
a multinomial distribution, as is the case in this exam-
ple provided that there are no continuous covariates

or instruments. More generally, as will be discussed
in Section 5, one must derive the efficient instrument
d(S) = dopt(S) for the GMM estimator to be semipara-
metrically efficient.

A useful property of two-step GMM for over-
identified models is that it admits the use of the Hansen
J-test, which can be used to assess the validity of the
moment conditions; see Hansen (1982). The test statis-
tic and its limiting distribution (under the null hypoth-
esis that the moment conditions are valid) are given
by

J (̂δ2) = n

{
n−1

n∑
i=1

g′
i (̂δ2)

}

· W−1
n (̂δ1)

{
n−1

n∑
i=1

gi (̂δ2)

}
d−→ χ2

q ,

where χ2
q indicates a chi-squared random variable with

q degrees of freedom, and q is the number of moment
conditions by which the model is over identified (e.g.,
q = 1 in this illustration).

4.3 Double-Logistic SMM

Under NEM, the logistic SMM for the two instru-
ments is

logit
{
E(Y |X,Z1,Z2)

}− logit
{
E(Y0|X,Z1,Z2)

}
= ψ0X,

and its association model is

E(Y |X,Z1,Z2) = expit
{
mβ(X,Z1,Z2)

}
,(20)

where mβ(X,Z1,Z2) = β0 + β1X + β2Z1 + β3Z2 +
β4XZ1 + β5XZ2 is saturated. We describe two esti-
mation methods: first, where the parameters in the sat-
urated association model are estimated by maximum
likelihood and then plugged into the estimating equa-
tions for the double-logistic SMM; and, second, where
all parameters are estimated jointly in a similar man-
ner to that proposed by Vansteelandt and Goetghebeur
(2003) and Bowden and Vansteelandt (2011).

Denoting β̂ as the maximum likelihood estimator
of β , it follows that

E
{
g(δ; β̂)

}= E
[{

q(ψ0; β̂) − α0
}
S
]= 0,(21)

where δ = (ψ0, α0)
′, q(ψ0;β) = expit{mβ(X,Z1,

Z2) − Xψ0} and S = (1,Z1,Z2)
′. Point estimation is

carried out exactly as before, but standard error esti-
mates obtained by fixing β̂ and plugging it into the
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asymptotic covariance matrices presented above will
be biased because the first stage estimation of β is ig-
nored; see the discussion in Section 2.3. However, the-
ory for “two-stage” GMM estimators (2SGMM) has
been developed by Gouriéroux, Monfort and Renault
(1996). The 2SGMM δ̂1,β is the solution to (11) and
its asymptotic distribution is

n1/2(̂δ1,β − δ0)

d−→ N
{
0,
(
C′

0WC0
)−1

C0W	∗
0WC0

(
C′

0WC0
)−1}

,

where C0 and W are both defined as above, and 	∗
0 is

the asymptotic variance of the limiting normal distri-
bution of

n−1/2
n∑

i=1

gi (δ0;β0) + E

{
∂g(δ0;β0)

∂β ′
}
n1/2(β̂ − β0),

which has the consistent estimator

n	̂∗ =
n∑

i=1

ĝi ĝ′
i + Ĝ′

β
̂V (β̂)Ĝβ

+ Ĝ′
β
̂V (β̂)

(
n∑

i=1

QiRi ĝ′
i

)

+
(

n∑
i=1

Qi ĝiR′
i

)
̂V (β̂)Ĝβ,

with ĝi = gi (̂δ1,β; β̂), Ĝβ = ∑
i ∂g′

i (̂δ1,β; β̂)/∂β ,
̂V (β̂) = (

∑
i p̂i(1 − p̂i)RiR′

i )
−1, Ri = (1,Xi,Z1i ,

Z2i ,XiZ1i ,XiZ2i )
′, p̂i = expit{mβ̂(Xi,Zi1,Zi2)} and

Qi = Yi − p̂i . Furthermore, 	̂∗ is also the weight ma-
trix for the asymptotically efficient two-step 2SGMM
estimator, and so the limiting distribution of the Hansen
J-test statistic (with Wn = 	̂∗) is also valid.

Vansteelandt and Goetghebeur (2003) developed es-
timating equations for the double-logistic SMM by ex-
panding its system of estimating equations to include
those for the association model. As in Bowden and
Vansteelandt (2011), a joint GMM estimator can be ob-
tained by applying the GMM estimator to

g(δ;β)
(22)

=
( [

Y − expit
{
mβ(X,Z1,Z2)

}]
R[

expit
{
mβ(X,Z1,Z2) − ψ0X − α0

}]
S

)
,

where R is defined above and δ = (α0,ψ0)
′. Gourié-

roux, Monfort and Renault (1996) show that the
asymptotic distributions of the 2SGMM and the joint
GMM estimators are the same. An important advan-
tage of using the joint moments (22) is that standard

GMM software can be used to make asymptotically
correct inferences about the target parameter ψ0. Fur-
ther details on how the gmm command in Stata and the
gmm() function in R can be used to implement these
estimators are given in the Appendix.

5. COMBINING MULTIPLE INSTRUMENTS

Bowden and Vansteelandt (2011) derive the opti-
mally efficient combination of instruments and, for
practical purposes, a simplified expression for this
combination. We consider the particular case of SMMs
without covariates where identification is obtained us-
ing orthogonal binary instruments. In such cases, we
show that the one-step GMM estimator combines the
instruments as in Bowden and Vansteelandt (2011) un-
der the simplifying assumption of a constant variance,
and that the two-step GMM estimator combines the in-
struments optimally.

First consider the one-step GMM estimator by not-
ing that it is the solution to the first derivative of (11)
evaluated at zero. For the multiplicative SMM based on
(17), this gives{

n−1
n∑

i=1

∂g′
i (δ)

∂δ

}
W−1

n

{
n−1

n∑
i=1

gi (δ)

}

=
⎧⎨⎩n−1

n∑
i=1

(
1

YiXi exp(−Xiψ0)

)
S′

i

⎫⎬⎭
· W−1

n

{
n−1

n∑
i=1

gi (δ)

}
= 0,

where gi (δ) = {Y exp(−Xψ0)−α0}S. This system can
be expressed as

B ′S
(
S′S

)−1
S′v = 0,

where B = {b′
i} and S = {S′

i} are the matrices formed
by stacking the vectors b′

i = (1, YiXi exp(−Xiψ0))

and S′
i , respectively, and v = {vi} is a column vector

with elements given by vi = Yi exp(−Xiψ0) − α0. It
is thus apparent that the GMM estimator combines the
instruments in the projection S(S′S)−1S′B , that is, the
multiple instruments for each individual are replaced
by the linear projection of bi onto the space spanned
by S; alternatively put, the combined instrumental vari-
able can be thought of as the prediction from a linear
regression of bi on the instruments Si .

For the binary variables case considered here, we
have that

YiXi exp(−Xiψ0) = YiXi exp(−ψ0),(23)
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so that the one-step GMM can be thought of comb-
ing the instruments simply using the linear projection
of YX onto the space spanned by S. The one-step
GMM estimator for the double-logistic SMM estimator
also has the form of a linear projection of bi onto the
space spanned by S, but here b′

i = (1, qi(ψ0; β̂){1 −
qi(ψ0; β̂)}Xi). For both the multiplicative and logistic
SMMs, these are the simplified combinations of multi-
ple instruments of Bowden and Vansteelandt (2011).

In the simple setup involving only binary variables,
the one-step GMM estimator for the multiplicative
SMM can be expressed as a linear 2SLS estimator. Fol-
lowing Angrist (2001), note that exp(−ψ0X) = (1 −
X) + X exp(−ψ0) and, therefore,

Y exp(−ψ0X)−α0 = Y(1−X)+YX exp(−ψ0)−α0.

Hence, the moment conditions can be expressed as the
linear [in exp(−ψ0)] moments

E
[{

Y(1 − X) + YX exp(−ψ0) − α0
}
S
]= 0,(24)

from which we see that the one-step GMM estimator
for exp(−ψ0) using moment condition (17) is identi-
cal to the 2SLS estimator from regressing Y(X − 1)

on ŶX, where ŶX are the predictions from the linear
regression of YX on S.

Multiplying (24) by the risk ratio exp(ψ0), we obtain

E
[{

YX + Y(1 − X) exp(ψ0) − γ0
}
S
]= 0,(25)

where γ0 = α0 exp(ψ0). In this case, the same esti-
mator as the one-step GMM estimator for exp(ψ0) is
obtained from a linear instrumental variable estimator
where (X − 1)Y is instrumented by ŶX. We will use
this result later in Section 6 when deriving results for
local risk ratios.

We now move on to the optimal combination of in-
struments. As we discussed at the end of Section 4.2,
Chamberlain (1987) established efficiency results for
GMM estimators. We describe these results in terms
of a simple multiplicative SMM and its three moment
conditions

E
{
Y exp(−Xψ0) − α0|Z = z

}= 0,(26)

for z = 0,1,2. As shown previously, the instruments
can be represented by the vector of orthogonal binary
instruments S and the generalized residual

ν(Y,X; δ0) = Y exp(−Xψ0) − α0,

where δ0 = (α0,ψ0)
′. Using the notation of Newey

(1993), the efficient instrument is

dopt(S) = Qe(S)/σ 2(S),(27)

where Q is any nonsingular matrix,

e(S) = E

{
∂ν(Y,X; δ0)

∂δ

∣∣∣S}

= −
(

1
E
{
Y exp(−Xψ0)X|S}

)
,

σ 2(S) = E
{
ν2(Y,X; δ0)|S}

= E
[{

Y exp(−Xψ0) − α0
}2|S],

which leads to a GMM estimator with asymptotic co-
variance

� = [
E
{
e(S)e(S)′/σ 2(S)

}]−1
.

Chamberlain (1987) showed that, when S comprises
multinomially distributed multiple orthogonal binary
instruments such that SS′ = diag(S), the asymptotic
covariance of the two-step GMM (C′

0	
−1
0 C0)

−1 = �.
Hence, we can derive the optimum combination of in-
strumental variables from the first-order condition for
the two-step GMM estimator:{

n∑
i=1

∂g′
i (δ)

∂δ

}
W−1

n (̂δ1)

{
n∑

i=1

gi (δ)

}

=
⎧⎨⎩

n∑
i=1

(
1

Yi exp(−Xiψ0)Xi

)
S′

i

⎫⎬⎭
· W−1

n (̂δ1)

{
n∑

i=1

gi (δ)

}
= 0,

where gi (δ) = {Yi exp(−Xiψ0) − α0}Si , Si = (Zio,

Zi1,Zi2)
′ with Zij = I (Zi = j), and

Wn(̂δ1)

=
n∑

i=1

(
Yi exp(−Xiψ̂1) − α̂1

)2SiS′
i

=

⎡⎢⎢⎢⎢⎣
∑
i

Zi0ν
2(Yi,Xi; δ̂1) 0

0
∑
i

Zi1ν
2(Yi,Xi; δ̂1)

0 0

0
0∑

i

Zi2v
2(Yi,Xi; δ̂1)

⎤⎥⎥⎦ .

As before, let the matrices S and B be defined as
B = {b′

i} and S = {S′
i}, obtained by stacking the vec-

tors b′
i = (1, Yi exp(−Xiψ0)Xi) and S′

i , respectively,
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then the way the two-step GMM estimator combines
the multiple instruments is given by

SW−1
n (̂δ1)S

′B

= S diag

(
1

nz

∑
i,Zi=z

v2(Yi,Xi; δ̂1)

)−1(
S′S

)−1
S′B,

which is a consistent estimate for the optimal instru-
ments. Chamberlain (1987) further showed that � is
also the lower bound for the asymptotic variance of any
consistent asymptotically normally distributed estima-
tor of a semiparametric model where the only substan-
tive restriction imposed on the distribution of the data
is (26).

6. MONTE CARLO STUDIES

6.1 Multiplicative SMM

We now present two Monte Carlo simulation studies
to demonstrate the properties of GMM estimators with
multiple orthogonal binary instruments in models with-
out covariates. First, we consider the multiplicative
SMM by generating data from population model M1,
which satisfies the multiplicative SMM under both the
NEM and CMI restrictions. Population model M1 is
defined so that

E(Y |X,Z1,Z2) = exp
{
β0 + (β1 + ψ0)X + β2Z1

+ β3Z2 + β4XZ1 + β5XZ2
}
,

where ψ0 = 0.6 is the treatment effect. To define
the distribution of the observed data, we further de-
fine Z to follow the marginal distribution given by
P(Z = 1) = 0.3 and P(Z = 2) = 0.2, and P(X =
1|Z = z) = p10 + 0.15 × z for z = 0,1,2. To define
the joint distribution of the observed and potential out-
comes, we set the expected treatment-free outcome
in the population to be α0 = E(Y0) = 0.19, which
leads to α∗

0 = logE(Y0) = −1.6607 in moment con-
ditions (18) and (19), and E(Y ) = 0.25, β1 = 0.15,
β4 = 0.6 and β5 = −0.6. The other parameter values
are then numerically found in order for CMI and NEM
to hold: β0 = −1.6976, β2 = −0.3186, β3 = 0.2511
and p10 = 0.2321.

Table 1 presents some estimation results for 10,000
samples of size 10,000 drawn from population mo-
del M1. Three different versions of the GMM estima-
tor are applied: the first column of Table 1 contains the
results of the just-identified model using the multival-
ued instrument Z ∈ {0,1,2} as a single instrument so
that S = (1,Z)′; in the second and third columns, we

TABLE 1
Monte Carlo estimation results for multiplicative SMM

Single instrument Multiple instruments

Instruments S 1,Z 1,Z1,Z2

Moment conditions (18) or (19) (18) (19)

One-step GMM
α∗

0 −1.6614 −1.6628 −1.6599
(0.0839) (0.0561) (0.0561)

[0.0843] [0.0566] [0.0565]
ψ0 0.6151 0.6102 0.6033

(0.2175) (0.1358) (0.1353)

[0.2168] [0.1361] [0.1356]
Two-step GMM
α∗

0 −1.6629 −1.6598
(0.0561) (0.0561)

[0.0565] [0.0565]
ψ0 0.6095 0.6024

(0.1355) (0.1350)

[0.1359] [0.1353]
Hansen J 0.9806 0.9793
Rej. freq. 5% 0.0478 0.0475

Notes: Sample size 10,000; means based on 10,000 Monte Carlo
replications; std. error in brackets; means of estimated standard er-
rors in square brackets; data drawn from population model M1 as
described in Section 6.1; α∗

0 = −1.6607 and ψ0 = 0.6.

present the one- and two-step GMM estimates for mo-
ment conditions (18) and (19), respectively, using mul-
tiple instruments so that S = (1,Z1,Z2)

′.
All of the estimators display a small positive bias

for ψ0 = 0.6, and the mean estimated standard errors
are very close to the true standard errors. Among the
two estimators using multiple instruments, this bias is
slightly larger for the estimator based on moment con-
dition (18). There is here a negligible gain in preci-
sion from using the two-step GMM estimator as com-
pared to the one-step estimator. However, there is a
substantial gain in efficiency from using two instru-
mental variables rather than one, with the standard er-
ror decreasing from 0.22 for the just-identified model
to 0.14 for the two-step GMM estimators. This is be-
cause the GMM projection (23) in this case is not
linear in Z, even though the conditional probabilities
P(X = 1|Z) are. More specifically, the coefficient on
Z2 in the regression of YX on (1,Z1,Z2) from (23)
is actually smaller than that of Z1. Under this partic-
ular population model (but not generally) the relation-
ship between the coefficients is roughly linear: the av-
erage coefficient on Z1 is equal to 0.1067 and for Z2
it equals 0.0557. Hence, a single instrument that takes
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the value 1 if Z = 2 and 2 if Z = 1 leads to a just-
identified estimator which is likely to be almost as ef-
ficient as the over-identified GMM estimators. Further
simulations show that this is indeed the case, with the
just-identified estimator for ψ0 just described having
an average of 0.6077 and a standard error of 0.1375,
which are both virtually identical to those of the over-
identified GMM estimators.

We repeated the analysis above for a similar design
to M1 but with the instrument Z taking the six val-
ues 0,1, . . . ,5; full details of this design are avail-
able from the authors. The GMM estimators are again
well behaved. Using moment conditions (19), the mean
based on 10,000 Monte Carlo estimates using the two-
step GMM estimator is 0.5966 with a standard er-
ror 0.0801; the mean estimated standard error equals
0.0806. The rejection frequency of the J-test is 5.1% at
the 5% level.

Returning to the design with Z taking the values
0,1,2, we modify population model M1 so as to study
how the multiplicative GMM performs when Z does
not satisfy the key conditions of an instrumental vari-
able. We do this by keeping all M1 parameters the same
but making the “instrument” Z1 invalid. This is done
by specifying

E(Y |X,Z1,Z2)

= exp
{
β0 + (β1 + ψ0)X + (β2 + φ)Z1

+ β3Z2 + β4XZ1 + β5XZ2
}
,

with φ = 0.15. In this case, the CMI assumption is vi-
olated as E[Y0|Z = 0] = E[Y0|Z = 2] = 0.19 as be-
fore, but now E[Y0|Z = 1] = 0.2207. The GMM es-
timators are now severely biased upwards. The mean
based on 10,000 Monte Carlo estimates of the two-
step GMM estimator using moments (19) is equal to
1.1191, with a standard error of 0.1681. The mean
(variance) of Hansen’s J-test is equal to 3.56 (3.70)
with a rejection frequency at the 5% level of 34%. If
instead we change the coefficient on Z2 to β3 + 0.15,
we get a much smaller bias, with the mean (std. er-
ror) of the estimator equal to 0.6452 (0.1370), but the
rejection frequency of the J-test is now much larger,
namely, 93% at the 5% level. This difference is due to
the fact that, as highlighted above, in this case Z1 is
a stronger instrument than Z2, in the sense the SMM
estimator is more precise using Z1 than when using
Z2 as an instrument. For example, in the original de-
sign where both instruments are valid, using only Z1
as an instrument resulted in the median of the 10,000
estimates to be equal to 0.6009 with the interquartile

range equal to 0.1967, whereas using only Z1 as an in-
strument resulted in a median of 0.6242, with a much
larger interquartile range of 1.5253. If the bias is due
to a violation of the CMI assumption for Z1, the esti-
mator based on Z2 does not have enough precision to
reject the null that both moment conditions are valid
as frequently as for when Z2 is invalid, as the estima-
tor based on Z1 is more precise and the test has more
power.

6.2 Logistic SMM

To investigate the performance of the GMM esti-
mators for the logistic SMM, we generate data from
population M2 satisfying the logistic SMM model and
its corresponding NEM and CMI identification restric-
tions. More specifically, the data are generated from

E(Y |X,Z1,Z2) = expit
{
β0 + (β1 + ψ0)X + β2Z1

+ β3Z2 + β4XZ1 + β5XZ2
}
,

where the treatment effect is again ψ0 = 0.6. Similarly
to model M1, we set P(Z = 1) = 0.3, P(Z = 2) = 0.2,
P(X = 1|Z = z) = p10 + 0.15 × z, E(Y0) = 0.19,
E(Y ) = 0.25, β1 = 0.15, β4 = −0.6 and β5 = 0.6.
The other parameters are such that CMI and NEM
hold: β0 = −1.518, β2 = 0.3183, β3 = −0.5202, and
p10 = 0.4404.

Table 2 contains estimation results for 10,000 sam-
ples of size 10,000 drawn from population model M2.
Three different versions of the GMM estimator for the
logistic SMM are applied: the first column of Table 2
contains the results of the just-identified model using
multivalued Z as a single instrument; in the second col-
umn, we present the one- and two-step GMM estimates
for the 2SGMM using multiple instruments; and the
third column contains the corresponding results for the
joint-GMM estimator based on (22). Both the 2SGMM
and joint-GMM estimators use saturated logistic mod-
els for β as in (20).

All of the estimators are virtually unbiased and the
means of the estimated standard errors are close to
Monte Carlo standard errors. There is an efficiency
gain from using the instruments separately: the stan-
dard error in the just-identified case is 0.1905, com-
pared to 0.1729 for the 2SGMM estimator. The perfor-
mances of the 2SGMM estimator and the GMM esti-
mator using the joint moment conditions are virtually
identical. The Hansen J-tests are well behaved in both
cases. There is no efficiency gain from using the two-
step GMM estimators as compared to the one-step es-
timators in this design.
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TABLE 2
Monte Carlo estimation results for logistic SMM

Single instrument Multiple instruments

Instruments S 1,Z 1,Z1,Z2 1,Z1,Z2

Moment conditions Joint/2SGMM 2SGMM Joint-GMM

One-step GMM
α0 0.1912 0.1905 0.1907

(0.0168) (0.0153) (0.0153)

[0.0167] [0.0152] [0.0152]
ψ0 0.5970 0.6033 0.6001

(0.1905) (0.1729) (0.1731)

[0.1899] [0.1722] [0.1721]
Two-step GMM
α0 0.1904 0.1911

(0.0153) (0.0154)

[0.0152] [0.0152]
ψ0 0.6038 0.5957

(0.1729) (0.1735)

[0.1722] [0.1722]
Hansen J 0.9882 0.9827
Rej. freq. 5% 0.0503 0.0495

Notes: Sample size 10,000; means based on 10,000 Monte Carlo
replications; std. [error] in brackets; means of estimated standard
errors in square brackets; data drawn from population model M2 as
described in Section 6.2; α0 = 0.19 and ψ0 = 0.6.

As with the multiplicative SMM, we also find that
the estimators behave well for instruments with 6 or
even 11 values, although we find that the 2SGMM es-
timator has a small upward finite sample bias in the
designs we considered. For example, for an instrument
with values 0,1,2, . . . ,10, we get means (std. error)
of the two-step GMM estimates of 0.6323 (0.1073) for
2SGMM and 0.5999 (0.1066) for the joint moments
GMM estimator. Details of this design are available
from the authors.

Finally, we return to the design with Z taking the
values 0,1,2, and modify population model M2 so as
to study how these estimators perform when Z is not a
valid instrumental variable. We keep all parameters the
same but make the “instrument” Z2 invalid, by chang-
ing the parameter of Z2 to β3 + τ with τ = 0.25. The
GMM estimators are now severely biased upwards.
The mean of 10,000 Monte Carlo estimates of the two-
step GMM estimator using the joint moments (22) is
equal to 1.2805, with a standard error of 0.1511. How-
ever, in this case the mean (variance) of Hansen’s J-test
is equal to 1.26 (3.09), with a rejection frequency at the
5% level of only 8.5%. In contrast, if we instead change
the parameter of Z1 to β2 + τ with τ = 0.1, the estima-
tor has a much smaller bias, with a mean of 0.5527 and

standard error of 0.1660, but the J-test has much more
power in this case as it rejects 49.4% of the time at the
5% level. This is explained by the fact that here Z2 is a
stronger instrument than Z1.

7. LOCAL AVERAGE TREATMENT EFFECTS

The parameters of the SMMs we have considered
thus far are all identified by the assumption of no ef-
fect modification by the instruments (NEM). For the
case where we have two instruments Z1 and Z2, recall
that the NEM assumption for the identification of the
conditional causal relative risk is that

E(Y |X,Z1,Z2)

E(Y0|X,Z1,Z2)
= exp(ψ0X),

that is, the instruments Z1 and Z2 do not modify the
causal effect of X on the risk. In this section, we con-
sider how the failure of NEM impacts on GMM estima-
tors for additive and multiplicative SMMs with multi-
ple instruments.

Clarke and Windmeijer (2010) review identifica-
tion results concerning the additive and multiplicative
SMMs in the simple case of a single binary instrument
where both X and Y are also binary. If the NEM as-
sumption fails, then a causal effect is identified if the
instrument Z has causal effect on treatment X and se-
lection is “monotonic”. In this simple case, where Z is
randomised treatment assignment and X is the selected
treatment, selection is monotonic if

P(X1 − X0 ≥ 0) = 1,

that is, subjects cannot defy their treatment assign-
ments in every potential scenario, so that {X1 = 0,

X0 = 1} has zero probability. Under monotonicity, the
additive SMM estimator (13) identifies the “local av-
erage treatment effect” (LATE), and the multiplicative
SMM identifies the “local risk ratio” (LRR), where

LATE = E(Y1 − Y0|X1 > X0);
LRR = E(Y1|X1 > X0)

E(Y0|X1 > X0)
.

LATE is the average treatment effect for the subgroup
of subjects who actually and counterfactually accept
the treatments to which they have been assigned, that
is, X1 = 1 and X0 = 0; for this reason, these subjects
are also known as “compliers” and LATE is also known
as the “complier average causal effect” (CACE). The
logistic SMM does not estimate a local causal effect
when NEM fails, but for binary outcomes the local
odds ratio can be estimated by taking the ratio of LRR
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estimates obtained by fitting multiplicative SMMs to
binary Y and 1 − Y .

If we have two instruments, then these instruments
could in principle define two different local causal
effects, provided that the two instruments can be
combined into a single multivalued instrument. We
consider using the single K-valued instrument Z ∈
{0,1,2, . . . ,K − 1} for binary X. In this scenario,
monotonic selection does not have the convenient “no
defiers” interpretation; instead, selection is monotonic
if z > z̃ implies that Xz ≥ Xz̃ with probability 1, for
any two values z �= z̃ of the instrument. From this, we
can define the analogue of (13) for z > z̃ as

βz,̃z = E(Y |Z = z) − E(Y |Z = z̃)

E(X|Z = z) − E(X|Z = z̃)
,

where βz,̃z = E(Y1 − Y0|Xz > Xz̃) ≡ LATEz,̃z under
monotonicity.

The 2SLS estimator for the additive SMM is ob-
tained as the OLS estimator from the regression of Y

on X̂, where X̂ is the prediction from the first-stage
regression of X on S = {1,Z1, . . . ,ZK−1}′ and Zk =
I (Z = k). Let monotonicity hold and the values of Z

be ordered such that E(X|Z = k) > E(X|Z = k − 1).
Imbens and Angrist (1994) show that the 2SLS estima-
tor is consistent for

βz =
K−1∑
k=1

μkβk,k−1,

where

μk = {
E(X|Z = k) − E(X|Z = k − 1)

}
·

∑K−1
l=k {E(X|Z = l) − E(X)}πl∑K−1

l=0 E(X|Z = l){E(X|Z = l) − E(X)}πl

,

and πl = P(Z = l) such that 0 ≤ μk ≤ 1 and∑K−1
l=1 μk = 1; see also Angrist and Imbens (1995)

and Angrist and Pischke (2009). In other words, when
NEM fails but selection is monotonic, the 2SLS esti-
mator is not consistent for E(Y1 −Y0|X = 1), but for a
weighted sum of local average treatment effects.

Alternatively, if we define

βk,0 = E(Y |Z = k) − E(Y |Z = 0)

E(X|Z = k) − E(X|Z = 0)
,

then, following the proof given by Angrist and Imbens
(1995), it is easily established that

βz =
K−1∑
k=1

λkβk,0,

where

λk = {
E(X|Z = k) − E(X|Z = 0)

}
· {E(X|Z = k) − E(X)}πk∑K−1

l=0 E(X|Z = l){E(X|Z = l) − E(X)}πl

,

such that
∑K−1

l=1 λk = 1. However, in this case, βz is
only a weighted average of the βk,0 (i.e., 0 ≤ λk ≤ 1) if
E(X|Z = 1) > E(X).

We now extend this result to the multiplicative SMM
and give an analogous result for local risk ratios. In
Section 4.3 we established that the one-step GMM esti-
mator for exp(−ψ0) using moment condition (17) was
equivalent to a linear 2SLS estimator because

Y exp(−Xψ0) − α0
(28)

= Y(1 − X) + YX exp(−ψ0) − α0.

We can therefore straightforwardly generalise the abo-
ve results of Imbens and Angrist (1994) for the additive
SMM to the multiplicative SMM for the inverse local
risk ratio. As above, let

e
−β
k,k−1

= E{Y (X − 1)|Z = k} − E{Y (X − 1)|Z = k − 1}
E(YX|Z = k) − E(YX|Z = k − 1)

,

(29)

where

e
−β
k,k−1 = E(Y0|Xk > Xk−1)

E(Y1|Xk > Xk−1)
≡ ILRRk,k−1

is the inverse local risk ratio under monotonicity; see
Angrist (2001). We then get equivalent results to the
above for the linear SMM, namely, the 2SLS estimator
for exp(−ψ0) in (28) is a consistent estimator of

e−β
z =

K−1∑
k=1

μke
−β
k,k−1,

where

μk = {
E(YX|Z = k) − E(YX|Z = k − 1)

}
·

∑K−1
l=k {E(YX|Z = l) − E(YX)}πl∑K−1

l=0 E(YX|Z = l){E(YX|Z = l) − E(YX)}πl

,

and so e
−β
z is a weighted average of inverse local risk

ratios if E(YX|Z = k) > E(YX|Z = k − 1). As in
Angrist and Imbens (1995), the weights μk are propor-
tional to E(YX|Z = k)−E(YX|Z = k−1), and hence
the stronger the instrument, that is, the bigger the im-
pact of the instrument on the regressor YX in (28), the
more weight (29) receives in the linear combination.
The second component of the weighting gives more
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weight to the estimates (29) when the values of Z are
closer to the center of the distribution of Z (see Angrist
and Imbens, 1995, pages 437).

For the local risk ratio, we use the results from Sec-
tion 4.3 that the one-step GMM estimator for exp(ψ0)

can be obtained from a linear IV estimator in the ad-
ditive SMM with YX as the “outcome” and Y(X − 1)

as the “treatment”, but with instruments a constant and
E(YX|S). Let

e
β
k,k−1

= E(YX|Z = k) − E(YX|Z = k − 1)

E{Y(X − 1)|Z = k} − E{Y(X − 1)|Z = k − 1} ,

where e
β
k,k−1 = E(Y1|Xk > Xk−1)/E(Y0|Xk >

Xk−1) ≡ LRRk,k−1 under monotonicity. It follows that
the multiplicative SMM estimator is consistent for

eβ
z =

K−1∑
k=1

τke
β
k,k−1,

where

τk = {
E
(
Y (X − 1)|Z = k

)− E
(
Y (X − 1)|Z = k − 1

)}
·

∑K−1
l=k {E(YX|Z = l) − E(YX)}πl∑K−1

l=0 E{Y (X − 1)|Z = l}{E(YX|Z = l) − E(YX)}πl

,

and hence e
β
z is a weighted average of local risk ratios

if E(YX|Z = k) > E(YX|Z = k − 1) and E{Y(X −
1)|Z = k} > E{Y(X − 1)|Z = k − 1}.

As an example, consider an instrument that takes the
values Z = {0,1,2,3}, with Y and X generated from a
bivariate normal distribution as

X = I (c0 + c1Z1 + c2Z2 + c3Z3 − V > 0),

Y = I (b0 + b1X − U > 0),(
U

V

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
,

with, as before, Zk = I (Z = k). Setting πl = P(Z =
l) = 0.25 for all l, the cl parameters are such that
P(X = 1|Z = l) = 0.1 + 0.1 × l, b0 = �−1(0.4),
b1 = 0.5 and ρ = 0.8. The local risk ratios in this pop-
ulation are LRR1,0 = 1.1585, LRR2,1 = 1.3227 and
LRR3,2 = 1.5303; the population τ -weights are

τ1 = 0.3725, τ2 = 0.3991, τ3 = 0.2285.

Clarke and Windmeijer (2010) show that the NEM as-
sumption does not hold under this design. However, the
instruments are monotonic and so the one-step GMM
estimator based on moment conditions (17) identi-
fies the weighted average τ1LRR1,0 + τ2LRR2,1 +

TABLE 3
Risk ratio estimation results

e
β
1,0 e

β
2,1 e

β
3,2 e

β
z τ1 τ2 τ3

Mean 1.1644 1.3304 1.5415 1.3113 0.3726 0.3995 0.2279
St. dev. 0.0946 0.1213 0.1601 0.0377 0.0268 0.0321 0.0216

Notes: Estimation results from 10,000 Monte Carlo replications.
Sample size 40,000.

τ3LRR3,2 = 1.3090. Table 3 presents some estimation
results confirming this, for a sample of size 40,000 and
for 10,000 Monte Carlo replications. Using the two-
step GMM results, the Hansen J-test rejects the null
47% of the time at the 5% level, therefore clearly hav-
ing power to reject this violation of the NEM assump-
tion.

8. THE EFFECT OF ADIPOSITY ON
HYPERTENSION

8.1 Binary Exposure

Timpson et al. (2009) used multiple genetic instru-
ments to estimate the causal effect of adiposity on hy-
pertension from the Copenhagen General Population
Study; full details of the variable definitions and se-
lection criteria are given in that paper. We apply the
procedures described above to reanalyse these data us-
ing additive, multiplicative and logistic SMMs, using
the same genetic markers as instruments for adiposity.
Furthermore, our sample includes additional individu-
als who have been recruited into the study since the
previous study was published; the total number of in-
dividuals in our analyses is 55,523.

The binary outcome variable is an indicator of
whether an individual has hypertension, which is de-
fined as a systolic blood pressure of >140 mmHg, di-
astolic blood pressure of >90 mmHg, or the taking
of antihypertensive drugs. The intermediate adiposity
phenotype is being overweight, defined as having a
BMI > 25. The two Single Nucleotide Polymorphisms
(SNPs) that were used as instruments by Timpson et al.
(2009) and that have been consistently shown to relate
to BMI and adiposity are the FTO (rs9939609) and
MC4R (rs17782313) loci; see Frayling et al. (2007)
and Loos et al. (2008). Lawlor et al. (2008) provide
further details on the use of genes as instruments in
Mendelian randomisation studies.

FTO is specified as having three categories: no risk
alleles (homozygous TT), one risk allele (heterozygous
AT) and two risk alleles (homozygous AA). Due to the
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TABLE 4
Combinations of instruments

FTO MC4R Z Freq.

0 0 0 0.20
0 1 1 0.15
1 0 1 0.27
1 1 2 0.21
2 0 2 0.09
2 1 3 0.07

nature of the association between MC4R and adipos-
ity (a dominant genetic model), MC4R is specified as
having two categories: no risk alleles (TT) versus one
or two risk alleles (CT or CC). Combining the two in-
struments together results in an instrument with 6 dif-
ferent values, but we found that two pairs of combi-
nations of alleles gave the same predicted value of be-
ing overweight; this is also true for the projection in
the multiplicative SMM. We therefore condensed the
number of values of the instrument to four. The combi-
nations for the four values are given in Table 4. Table 5
gives the frequency distributions for the hypertension
(Y ) and overweight (X) variables.

The estimation results for the linear, multiplicative
and logistic SMM estimators are presented in Table 6.
The instrument set for the GMM estimators is S =
(1,Z1,Z2,Z3)

′. For the linear SMM, the 2SLS and
two-step GMM estimates are virtually identical to the
OLS estimate. As the F-statistic in the regression of
overweight on S is equal to 113, this is not due to a
weak instrument problem. The OLS estimate of the
risk difference is quite large and equal to 0.20 (95% CI
0.19; 0.21). The two-step GMM estimate is almost the
same and equal to 0.21 (95% CI 0.05–0.37), but clearly
the 95% confidence interval is much wider for the two-
step GMM estimate than it is for OLS. The J-test does
not reject the null of the validity of the model assump-
tions, including the NEM assumption, and therefore

TABLE 5
Frequency distributions for the hypertension (Y ) and overweight

(X) variables

All Z = 0 Z = 1 Z = 2 Z = 3

X X X X X

Y 0 1 0 1 0 1 0 1 0 1

0 0.18 0.12 0.19 0.12 0.19 0.12 0.17 0.13 0.16 0.13
1 0.25 0.44 0.27 0.42 0.26 0.43 0.23 0.46 0.23 0.48

these results indicate that there may not be much con-
founding bias in the OLS results. We find similar re-
sults for the multiplicative and logistic SMMs. The
GMM estimates are virtually identical to the Gamma
and the logistic regression estimates, respectively, and
all estimates indicate that being overweight leads to hy-
pertension. The Gamma estimate for the risk ratio is
equal to 1.35 (95% CI, 1.33–1.36), whereas the two-
step GMM estimate is equal to 1.36 (95% CI 1.08–
1.72). We present and compare the multiplicative SMM
results to that of the Gamma generalised linear model
with a log link here, because moment conditions (17)–
(19) when using X as an instrument for itself are equiv-
alent to the first-order condition of the Gamma with log
link GLM. The logistic regression odds ratio is equal to
2.58 (95% CI, 2.49–2.68) and the two-step GMM esti-
mate is equal to 2.87 (95% CI 1.25–6.55). All estima-
tion results indicate a large causal effect of adiposity
on hypertension.

8.2 Continuous Exposure

Following Vansteelandt and Goetghebeur (2003), we
can use the same GMM format to estimate the logis-
tic SMM with a continuous exposure X. With a con-
tinuous exposure, parametric modelling assumptions
have to be made in order to identify causal parame-
ters. As in Vansteelandt and Goetghebeur (2003) and
Vansteelandt et al. (2011), we impose that the expo-
sure effect is linear in the exposure on the log-odds ra-
tio scale and independent of the instrumental variable:

odds(Y = 1|X,Z)

odds(Y0 = 1|X,Z)
= exp(ξ0X),

where odds(Y = 1|X,Z) = P(Y = 1|X,Z)/P (Y =
0|X,Z). Further, we specify the association model as

logit
{
P(Y = 1|X,Z)

}= logit
{
mβ(X,Z1,Z2,Z3)

}
= β0 + β1X + β2Z1 + β3Z2

+ β4Z3 + β5XZ1 + β6XZ2

+ β7XZ3,

and estimate the parameters using the joint moment
conditions as in (22).

For the continuous exposure we use (BMI − BMI),
10(ln BMI − ln BMI) and 10(ln RELBMI), where
ln BMI is the natural logarithm of BMI, and ln RELBMI
are the residuals of the regression of ln BMI on sex,
age, age squared, ln(height) and an age–sex interaction,
as used in Timpson et al. (2009) to represent relative
BMI. We subtract the mean from BMI and ln BMI to
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TABLE 6
SMM estimation results of the effect of being overweight on hypertension

Additive OLS 2SLS GMM2 J -test
ψ0 0.2009 0.2091 0.2095 0.2956

[0.1932;0.2087] [0.0485;0.3697] [0.0489;0.3701]
Multiplicative Gamma GMM1 GMM2 J -test
exp(ψ0) 1.3464 1.3621 1.3640 0.3071

[1.3300;1.3630] [1.0784;1.7204] [1.0798;1.7231]
Logistic Logistic regression GMM1 GMM2 J -test
exp(ψ0) 2.5823 2.8317 2.8656 0.2924

[2.4885;2.6797] [1.2382;6.4759] [1.2538;6.5489]

Notes: Sample size 55,523. Gamma regression uses log link; multiplicative SMM uses moments (17); logistic SMM uses joint moments (22);
instruments, S = {1,Z1,Z2,Z3}; 95% CIs in brackets; p-values are reported for the J -test.

ensure that zero exposure is part of the data range. We
further multiply the ln BMI and ln RELBMI by a factor
10 so that the estimated odds ratio is for an increase in
exposure of approximately 10%.

Table 7 presents the two-step estimation results for
three separate models for the three exposure measures.
Again, we find a strong positive effect of adiposity on
hypertension. The estimate of the odds ratio for a one-
unit increase in BMI is equal to 1.12 (95% CI 1.10;
1.67), whereas the estimates for the odds ratios for a
10% increase in ln BMI or ln RELBMI are 1.35 (95%
CI 1.10–1.67) and 1.33 (95% CI 1.09–1.63), respec-
tively, the latter two therefore virtually identical. Also,
for these logistic SMM models with continuous expo-
sures, the J -test results do not indicate a problem with
the model assumptions.

9. DISCUSSION

We have shown how the conditional moment con-
ditions that identify additive, multiplicative and logis-
tic SMMs can be used to derive a standard GMM es-

TABLE 7
Estimation results for double-logistic SMM with continuous

exposure

Exposure BMI ln BMI ln RELBMI

exp(ξ0) 1.1187 1.3546 1.3337
[1.0984;1.6705] [1.0984;1.6705] [1.0929;1.6276]

J-test 0.4714 0.4828 0.5004

Notes: Sample size 55,523. Two-step GMM estimates, using joint
moments (22). Instruments, S = {1,Z1,Z2,Z3}. BMI and ln BMI
taken in deviation from the mean. ln BMI and ln RELBMI multi-
plied by a factor 10. 95% CIs in brackets; p-values are reported for
the J-test.

timator of the type widely used in econometrics. The
key to this formulation is simply to treat the expected
exposure-free potential outcome E(Y0) as a parameter.
For simple SMMs without continuous baseline covari-
ates, these estimators are semiparametrically efficient
if the identifying instrumental variables are orthogonal
binary variables. In these cases, the estimator combines
the instruments optimally in the manner proposed by
Bowden and Vansteelandt (2011). Another major ad-
vantage is that standard GMM routines are available
in statistical software packages. We provide example
Stata and R syntax in the Appendix for use by applied
researchers. These estimation routines provide correct
asymptotic inference, even for the logistic SMM, when
the two sets of model parameters are estimated jointly,
and a simple test for the validity of the SMM moment
conditions. We used Monte Carlo studies to show that
the Hansen J-test can have power to detect violations of
the CMI and NEM assumptions. Moreover, if the NEM
assumption fails and selection is monotonic, then we
have shown that the one-step GMM estimator for the
multiplicative SMM is consistent for a weighted aver-
age of the instrument-specific local risk ratios.

A characteristic of all estimating equations for
SMMs is that the analyst must specify and estimate
auxiliary models further to the SMM. Extending the
discussion in Section 2.3 to multiple instrumental vari-
ables, the estimating equations for G-estimation de-
pend on E(Zj ) = μj , which must be replaced in the
estimating equation by a consistent estimator μ̂j . To
derive the correct asymptotic distribution, the moment
conditions for μ̂j must be included in the system of
moment conditions. For the multiplicative SMM with
multiple instruments discussed in Section 4, the ex-



ESTIMATING SMM USING GMM 113

tended set of moment conditions is⎛⎜⎜⎝
E(Z1 − μ1)

E(Z2 − μ2)

E
{
(Z1 − μ1)Y exp(−ψ0X)

}
E
{
(Z2 − μ2)Y exp(−ψ0X)

}
⎞⎟⎟⎠=

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ .(30)

The extended moment conditions can easily be incor-
porated in the Stata and R GMM estimation routines,
and we include in the Appendix code that does this for
the additive, multiplicative and logistic SMMs.

There are two relative weaknesses of our approach in
applications where covariates C are required for identi-
fication, in other words, where CMI only holds covari-
ate conditionally such that E(Y0|Z,C) = E(Y0|C) but
E(Y0|Z) �= E(Y0). To discuss these weaknesses, con-
sider a multiplicative SMM which does not depend on
C but where covariates are still required for identifica-
tion. In terms of a GMM estimator, the unconditional
moment conditions [equivalent to (17) in Section 4.2]
are

E

[{
Y

exp(ψ0X)
− E(Y0|C)

}(
S
C

)]
= 0,(31)

which can be seen to depend on the extended instru-
ment (S′,C′)′ and E(Y0|C) as well as the SMM itself.

The first weakness is that the efficiency result for
two-step GMM discussed above does not hold if C
includes continuous covariates or if the resulting ex-
tended instrument cannot otherwise be represented by
a set of the mutually orthogonal binary variables. In
such scenarios, the two-step GMM estimator is only lo-
cally efficient given the unconditional moments, which
here are (17). Newey (1993) discusses different ap-
proaches to improve efficiency, for example, using a
power-series expansions of the instruments.

The second weakness is that consistency of the
GMM estimator now depends on the model for
E(Y0|C) being correctly specified. By definition, this
model cannot be empirically tested for misspecifica-
tion because it is determined by the SMM; but the con-
sequence of misspecifying it is an inconsistent GMM
estimator. In contrast, the G-estimators and the double-
logistic SMM estimator discussed in Section 2 require
only that E(Z|C) is correctly specified, which can be
empirically tested for misspecification. Likewise, the
doubly robust estimating equations proposed by Tan
(2010) depend on covariate-conditional models for Z,
X given Z, and Y given X and Z, all of which can be
tested for misspecification. The doubly robust property
is attractive in theory, but these estimators are not avail-

able in standard software, and further work is required
to explore fully, rather than locally, efficient choices
of weights for the estimating equations. Further work
on the GMM estimators proposed here with continu-
ous covariates might investigate the bias and efficiency
of GMM estimators, both asympotically and in finite
samples, compared to existing estimators for SMMs;
see Okui et al. (2012).

APPENDIX: STATA AND R SYNTAX

In this section we present example Stata (version 11)
and R (version 2.13.1) syntax to fit SMMs using gener-
alised method of moments routines. Our example code
uses the notation of Y the outcome, X the exposure
and two instrumental variables, Z1, Z2, in addition to
the constant vector of 1’s. Both syntaxes easily gener-
alise to more instruments and allow different associa-
tion models in the double logistic SMM.

In both Stata and R it is possible to specify analytic
first derivatives, which we find greatly reduces the time
for the models to fit. Also, both syntaxes allow the in-
clusion of covariates. We have not included these extra
syntaxes here but they are available on request.

Stata Syntax

The Stata syntax uses the gmm command; and
{ey0} denotes E(Y0) the mean exposure free poten-
tial outcome. After fitting each SMM using two-step
estimation we perform the Hansen over-identification
test using the estat overid post-estimation com-
mand. The gmm command automatically includes a
vector of 1’s as instruments to allow estimation of the
constant [E(Y0)] term, hence, we just need to list z1
and z2 in the instruments() option.

Additive SMM. Here {psi} denotes the causal ef-
fect (which is a risk difference for a binary outcome).

gmm (y - {ey0} - x*{psi}),
instruments(z1 z2)

estat overid

This is equivalent to Stata’s built in ivregress
command.

ivregress gmm y (x = z1 z2)
estat overid

Multiplicative SMM. Here {psi} denotes the log
causal risk ratio, and hence we display the exponen-
tiated estimate using the lincom command with its
eform option after fitting the model.
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gmm (y*exp(-1*x*{psi}) - {ey0}),
instruments(z1 z2)

lincom [psi]_cons, eform //
causal risk ratio
estat overid

We also give the Stata syntax for the alternative Mul-
tiplicative SMM moments. Here {logey0} denotes
log{E(Y0)} and so we additionally display the expo-
nentiated form of this parameter after fitting the model.

gmm (y*exp(-x*{psi} - {logey0}) - 1),
instruments(z1 z2)

lincom [psi]_cons, eform //
causal risk ratio
lincom [logey0]_cons, eform // E[Y(0)]
estat overid

Expanded moments for multiplicative SMM.

gmm (z1-{mu1}) ///
(z2-{mu2}) ///
((z1-{mu1})*(y*exp(-1*x*{psi}))) ///
((z2-{mu2})*(y*exp(-1*x*{psi}))) , ///
winitial(identity)
lincom [psi]_cons, eform //
causal risk ratio
estat overid

Logistic SMM. Here {psi} denotes the log causal
odds ratio. In the joint estimation we use the gmm
command’s linear predictor substitution syntax (we de-
note the linear predictor for the association model by
{xb:}). We collect the association and causal model
parameter estimates in a matrix called from; we then
use these estimates as initial values in the joint esti-
mation. Also, in the joint estimation we specify the
winitial(unadjusted, independent) op-
tion so that the moments are assumed to be inde-
pendent in the first step of estimation. Note in Stata,
invlogit(x) = expit(x) = ex/(1 + ex).

* generate interactions
gen xz1 = x*z1
gen xz2 = x*z2

* association model
logit y x z1 z2 xz1 xz2
matrix from = e(b)
predict xblog, xb

* causal model with incorrect SEs
gmm (invlogit(xblog - x*{psi}) - {ey0}),

instruments(z1 z2)
matrix from = (from,e(b))

* joint estimation of association and
causal models
gmm (y - invlogit({xb:x z1 z2 xz1 xz2}
+ {b0})) ///

(invlogit({xb:} + {b0} - x*{psi})
- {ey0}), ///
instruments(1:x z1 z2 xz1 xz2) ///
instruments(2:z1 z2) ///
winitial(unadjusted, independent) from(from)
lincom [psi]_cons, eform //
causal odds ratio
estat overid

R syntax

The R syntax uses the gmm() function in the GMM
package (Chaussé (2010)), which we first load us-
ing library(gmm). After fitting each SMM us-
ing two-step estimation we perform the Hansen over-
identification test using the specTest() function.
The R code assumes our data is in a matrix called
data whose columns contain the values of the vari-
ables Y , X, Z1 and Z2 in this order with column names
"y", "x", "z1", "z2".

In this code we have specified the vcov="iid" op-
tion which assumes the moment conditions are inde-
pendent. We find specifying this option is necessary for
the models to converge on reasonably sized data sets.
We also find that changing the optimization algorithm
used in the estimation through the method option can
reduce the time it takes the models to fit (we find the
BFGS and L-BFGS-B methods are the fastest).

Additive SMM. First, we fit the Additive SMM using
the gmm() function’s formula syntax for linear mod-
els.

asmm <- gmm(data[,"y"] ~ data[,"x"],
x=data[,c("z1","z2")], vcov="iid")
print(summary(asmm))
print(cbind(coef(asmm),confint(asmm)))
# estimates
print(specTest(asmm))

We can also pass the moment conditions to gmm()
using its function syntax. In order to do this, we first
define a function asmmMoments() which returns the
ASMM moments. This function must have two ar-
guments; the first of which theta denotes the vec-
tor of parameters to be estimated, where theta[1]
is E(Y0) and theta[2] is the causal risk differ-
ence. The second argument x is the data matrix; the
user must avoid confusion here with the single vari-
able X. In the gmm() function the t0 option specifies
the initial values of the parameter estimates. After we
have fitted the model with the call to gmm() we print
out the model summary, then the estimates and their
95% CIs, and finally the over-identification test using
specTest().
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asmmMoments <- function(theta,x){
# extract variables from x
Y <- x[,"y"]
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
# moments
m1 <- (Y - theta[1] - theta[2]*X)
m2 <- (Y - theta[1] - theta[2]*X)*Z1
m3 <- (Y - theta[1] - theta[2]*X)*Z2
return(cbind(m1,m2,m3))
}

asmm2 <- gmm(asmmMoments, x=data, t0=c(0,0),
vcov="iid")
print(summary(asmm2))
print(cbind(coef(asmm2),confint(asmm2)))
# estimates
print(specTest(asmm2))

Multiplicative SMM. We again use the gmm() func-
tion syntax to fit the Multiplicative SMM. First we
define the function msmmMoments() to return the
moments. After fitting the model we print the model
summary. Here theta[2] is the log causal risk ratio,
and so we print the exponentiated form of this param-
eter.

msmmMoments <- function(theta,x){
# extract variables from x
Y <- x[,"y"]
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
# moments
m1 <- (Y*exp(- X*theta[2]) - theta[1])
m2 <- (Y*exp(- X*theta[2]) - theta[1])*Z1
m3 <- (Y*exp(- X*theta[2]) - theta[1])*Z2
return(cbind(m1,m2,m3))
}

msmm <- gmm(msmmMoments, x=data, t0=c(0,0),
vcov="iid")
print(summary(msmm))
print(exp(cbind(coef(msmm),
confint(msmm))[2,])) # causal risk ratio
print(cbind(coef(msmm), confint(msmm))[1,])
# E[Y(0)]
print(specTest(msmm))

We can also fit the alternative MSMM moments in
the same way. Here theta[1] denotes log{E(Y0)},
and so we print out the exponentiated form of both es-
timates:

msmmAltMoments <- function(theta,x){
# extract variables from x
Y <- x[,"y"]
X <- x[,"x"]
Z1 <- x[,"z1"]

Z2 <- x[,"z2"]
# moments
m1 <- (Y*exp(-theta[1] - X*theta[2]) - 1)
m2 <- (Y*exp(-theta[1] - X*theta[2]) - 1)*Z1
m3 <- (Y*exp(-theta[1] - X*theta[2]) - 1)*Z2
return(cbind(m1,m2,m3))
}

msmm2 <- gmm(msmmAltMoments, x=data,
t0=c(0,0), vcov="iid")
print(exp(cbind(coef(msmm2),
confint(msmm2)))) # exponentiate estimates
print(specTest(msmm2))

Logistic SMM. In estimation of the logistic SMM,
especially with the joint moments, it is important to
check that convergence has been reached, either by
inspecting the model summary or checking that the
model algoInfo$convergence attribute is equal
to 0. If convergence has not been reached, a higher it-
eration limit (say, 5000) can be specified in gmm()
through the option control=list(maxit=
5000). Note in R qlogis(p) = log(p/(1 − p)) and
plogis(x) = expit(x) = ex/(1 + ex).

First we fit the association model using the glm()
function to fit the logistic regression. Again we col-
lect the parameter estimates and predicted values. We
then fit the causal model using the function cmMo-
ments() to return its moment conditions. In this
function theta[1] denotes E(Y0) and theta[2]
denotes the log causal odds ratio.

In the joint estimation the function lsmmMom-
ents() returns the moment conditions. In this func-
tion theta[1:6] are the coefficients in the associa-
tion model, theta[7] denotes E(Y0) and
theta[8] denotes the log causal odds ratio.

# association model
am <- glm(y ~ x + z1 + z2 + x*z1 + x*z2,
as.data.frame(data), fam=binomial)
print(summary(am))
amfit <- coef(am)
xblog <- qlogis(fitted.values(am))

# causal model with incorrect SEs
cmMoments <- function(theta,x){
# extract variables from x
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
# moments
c1 <- (plogis(xblog - theta[2]*X)
- theta[1])
c2 <- (plogis(xblog - theta[2]*X)
- theta[1])*Z1
c3 <- (plogis(xblog - theta[2]*X)
- theta[1])*Z2
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return(cbind(c1,c2,c3))
}

cm <- gmm(cmMoments, x=data, t0=c(0,0),
vcov="iid")
cmfit <- coef(cm)

lsmmMoments <- function(theta,x){
# extract variables from x
Y <- x[,"y"]
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
XZ1 <- X*Z1
XZ2 <- X*Z2
# association model moments
xb <- theta[1] + theta[2]*X + theta[3]*Z1
+ theta[4]*Z2 + theta[5]*XZ1
+ theta[6]*XZ2
a1 <- (Y - plogis(xb))
a2 <- (Y - plogis(xb))*X
a3 <- (Y - plogis(xb))*Z1
a4 <- (Y - plogis(xb))*Z2
a5 <- (Y - plogis(xb))*XZ1
a6 <- (Y - plogis(xb))*XZ2
# causal model moments
c1 <- (plogis(xb - theta[8]*X)
- theta[7])
c2 <- (plogis(xb - theta[8]*X)
- theta[7])*Z1
c3 <- (plogis(xb - theta[8]*X)
- theta[7])*Z2
return(cbind(a1,a2,a3,a4,a5,a6,c1,c2,c3))
}

lsmm <- gmm(lsmmMoments, x=data,
t0=c(amfit,cmfit),
vcov="iid")
print(summary(lsmm))
print(cbind(coef(lsmm), confint(lsmm))[8])
# E[Y(0)]
print(exp(cbind(coef(lsmm),
confint(lsmm))[-7,])) # exponentiate other
estimates
print(specTest(lsmm))

ACKNOWLEDGMENTS

The authors would like to thank Børge Nordest-
gaard for access to the Copenhagen General Popula-
tion Study data. We also thank two anonymous ref-
erees and the Editor for very useful comments which
improved the manuscript, and George Davey Smith,
Nicholas Timpson, Vanessa Didelez, Roger Harbord,
Nuala Sheehan and conference participants in London,
Lund, Malaga, Manchester and Mannheim for helpful
comments.

Research supported in part by UK Economic & So-
cial Research Council grants RES-060-23-0011 and

RES-576-25-0035, UK Medical Research Council
grants G0601625 and G0600705, and European Re-
search Council grant 269874-DEVHEALTH.

REFERENCES

ANGRIST, J. D. (2001). Estimation of limited dependent vari-
able models with dummy endogenous regressors: Simple strate-
gies for empirical practice. J. Bus. Econom. Statist. 19 2–16.
MR1859994

ANGRIST, J. D. and IMBENS, G. W. (1995). Two-stage least
squares estimation of average causal effects in models with vari-
able treatment intensity. J. Amer. Statist. Assoc. 90 431–442.
MR1340501

BOWDEN, J. and VANSTEELANDT, S. (2011). Mendelian random-
ization analysis of case-control data using structural mean mod-
els. Stat. Med. 30 678–694. MR2767465

CHAMBERLAIN, G. (1987). Asymptotic efficiency in estimation
with conditional moment restrictions. J. Econometrics 34 305–
334. MR0888070

CHAUSSÉ, P. (2010). Computing generalized method of moments
and generalized empirical likelihood with R. J. Statist. Software
34 1–35.

CLARKE, P. S. and WINDMEIJER, F. (2010). Identification of
causal effects on binary outcomes using structural mean models.
Biostatistics 11 756–770.

DAVEY SMITH, G. and EBRAHIM, S. (2003). ‘Mendelian random-
ization’: Can genetic epidemiology contribute to understanding
environmental determinants of disease? International J. Epi-
demiology 32 1–22.

FRAYLING, T. M., TIMPSON, N. J., WEEDON, M. N.,
ZEGGINI, E., FREATHY, R. M., LINDGREN, C. M.,
PERRY, J. R. B., ELLIOTT, K. S., LANGO, H.,
RAYNER, N. W., SHIELDS, B., HARRIES, L. W., BAR-
RETT, J. C., ELLARD, S., GROVES, C. J., KNIGHT, B.,
PATCH, A.-M., NESS, A. R., EBRAHIM, S., LAWLOR, D. A.,
RING, S. M., BEN-SHLOMO, Y., JARVELIN, M.-R., SO-
VIO, U., BENNETT, A. J., MELZER, D., FERRUCCI, L.,
LOOS, R. J. F., BARROSO, I., WAREHAM, N. J., KARPE, F.,
OWEN, K. R., CARDON, L. R., WALKER, M., HIT-
MAN, G. A., PALMER, C. N. A., DONEY, A. S. F.,
MORRIS, A. D., SMITH, G. D., HATTERSLEY, A. T. and
MCCARTHY, M. I. (2007). A common variant in the FTO
gene is associated with body mass index and predisposes to
childhood and adult obesity. Science 316 889–894.

GOURIÉROUX, C., MONFORT, A. and RENAULT, E. (1996). Two-
stage generalized moment method with applications to regres-
sions with heteroscedasticity of unknown form. J. Statist. Plann.
Inference 50 37–63. MR1396448

HANSEN, L. P. (1982). Large sample properties of generalized
method of moments estimators. Econometrica 50 1029–1054.
MR0666123

HERNÁN, M. A. and ROBINS, J. M. (2006). Instruments for causal
inference: An epidemiologist’s dream? Epidemiology 17 360–
372.

IMBENS, G. W. and ANGRIST, J. (1994). Identification and es-
timation of local average treatment effects. Econometrica 62
467–476.

KATAN, M. B. (1986). Apolipoprotein E isoforms, serum choles-
terol, and cancer. Lancet 327 507–508.

http://www.ams.org/mathscinet-getitem?mr=1859994
http://www.ams.org/mathscinet-getitem?mr=1340501
http://www.ams.org/mathscinet-getitem?mr=2767465
http://www.ams.org/mathscinet-getitem?mr=0888070
http://www.ams.org/mathscinet-getitem?mr=1396448
http://www.ams.org/mathscinet-getitem?mr=0666123


ESTIMATING SMM USING GMM 117

LAWLOR, D. A., HARBORD, R. M., STERNE, J. A. C., TIMP-
SON, N. and SMITH, G. D. (2008). Mendelian randomization:
Using genes as instruments for making causal inferences in epi-
demiology. Stat. Med. 27 1133–1163. MR2420151

LOOS, R. J. F., LINDGREN, C. M., LI, S., WHEELER, E.,
BAROSSO, I. et al. (2008). Common variants near MC4R are
associated with fat mass, weight and risk of obesity. Nature Ge-
netics 40 768–775.

MULLAHY, J. (1997). Instrumental variable estimation of Poisson
regression models: Application to models of cigarette smoking
behavior. Rev. Econom. Stat. 79 586–593.

NEWEY, W. K. (1993). Efficient estimation of models with con-
ditional moment restrictions. In Econometrics (G. S. Maddala,
C. R. Rao and H. D. Vinod, eds.). Handbook of Statist. 11 419–
454. North-Holland, Amsterdam. MR1247253

OKUI, R., SMALL, D. S., TAN, Z. and ROBINS, J. M. (2012).
Doubly robust instrumental variable regression. Statist. Sinica
22 173–205. MR2933172

PALMER, T. M., LAWLOR, D. A., HARBORD, R. M., SHEE-
HAN, N. A., TOBIAS, J. H., TIMPSON, N. J., SMITH, G. D.
and STERNE, J. A. C. (2012). Using multiple genetic variants
as instrumental variables for modifiable risk factors. Stat. Meth-
ods Med. Res. 21 223–242. MR2906300

ROBINS, J. M. (1989). The analysis of randomised and non-
randomised AIDS treatment trials using a new approach to
causal inference in longitudinal studies. In Health Service Re-
search Methodology: A Focus on AIDS (L. Sechrest, H. Free-
man and A. Mulley, eds.) 113–159. US Public Health Service,
National Center for Health Services Research, Washington, DC.

ROBINS, J. M. (1994). Correcting for non-compliance in random-
ized trials using structural nested mean models. Comm. Statist.
Theory Methods 23 2379–2412. MR1293185

ROBINS, J. M. (2000). Marginal structural models versus struc-
tural nested models as tools for causal inference. In Statistical

Models in Epidemiology, the Environment, and Clinical Trials
(Minneapolis, MN, 1997) (E. Halloran and D. Berry, eds.). IMA
Vol. Math. Appl. 116 95–133. Springer, New York. MR1731682

ROBINS, J. M., MARK, S. D. and NEWEY, W. K. (1992). Es-
timating exposure effects by modelling the expectation of ex-
posure conditional on confounders. Biometrics 48 479–495.
MR1173493

ROBINS, J. and ROTNITZKY, A. (2004). Estimation of treatment
effects in randomised trials with non-compliance and a dichoto-
mous outcome using structural mean models. Biometrika 91
763–783. MR2126032

TAN, Z. (2010). Marginal and nested structural models using
instrumental variables. J. Amer. Statist. Assoc. 105 157–169.
MR2757199

TIMPSON, N. J., HARBORD, R., DAVEY SMITH, G., ZACHO, J.,
TYBJÆRG-HANSEN, A. and NORDESTGAARD, B. G. (2009).
Does greater adiposity increase blood pressure and hypertension
risk? Mendelian randomisation using the FTO/MC4R genotype.
Hypertension 54 84–90.

TSIATIS, A. A. (2006). Semiparametric Theory and Missing Data.
Springer, New York. MR2233926

VANSTEELANDT, S. and GOETGHEBEUR, E. (2003). Causal in-
ference with generalized structural mean models. J. R. Stat. Soc.
Ser. B Stat. Methodol. 65 817–835. MR2017872

VANSTEELANDT, S. and GOETGHEBEUR, E. (2005). Sense and
sensitivity when correcting for observed exposures in random-
ized clinical trials. Stat. Med. 24 191–210. MR2134503

VANSTEELANDT, S., BOWDEN, J., BABANEZHAD, M. and
GOETGHEBEUR, E. (2011). On instrumental variables estima-
tion of causal odds ratios. Statist. Sci. 26 403–422. MR2917963

VAN DER LAAN, M. J., HUBBARD, A. and JEWELL, N. P. (2007).
Estimation of treatment effects in randomized trials with non-
compliance and a dichotomous outcome. J. R. Stat. Soc. Ser. B
Stat. Methodol. 69 463–482. MR2323763

http://www.ams.org/mathscinet-getitem?mr=2420151
http://www.ams.org/mathscinet-getitem?mr=1247253
http://www.ams.org/mathscinet-getitem?mr=2933172
http://www.ams.org/mathscinet-getitem?mr=2906300
http://www.ams.org/mathscinet-getitem?mr=1293185
http://www.ams.org/mathscinet-getitem?mr=1731682
http://www.ams.org/mathscinet-getitem?mr=1173493
http://www.ams.org/mathscinet-getitem?mr=2126032
http://www.ams.org/mathscinet-getitem?mr=2757199
http://www.ams.org/mathscinet-getitem?mr=2233926
http://www.ams.org/mathscinet-getitem?mr=2017872
http://www.ams.org/mathscinet-getitem?mr=2134503
http://www.ams.org/mathscinet-getitem?mr=2917963
http://www.ams.org/mathscinet-getitem?mr=2323763

	Introduction
	Structural Mean Models
	The Basic Setup
	SMM Identiﬁcation
	Estimating Equations
	Covariates

	The Generalised Method of Moments
	Multiple Instruments
	Additive SMM
	Multiplicative SMM
	Double-Logistic SMM

	Combining Multiple Instruments
	Monte Carlo Studies
	Multiplicative SMM
	Logistic SMM

	Local Average Treatment Effects
	The Effect of Adiposity on Hypertension
	Binary Exposure
	Continuous Exposure

	Discussion
	Appendix: Stata and R Syntax
	Stata Syntax
	Additive SMM
	Multiplicative SMM
	Expanded moments for multiplicative SMM

	Logistic SMM

	R syntax
	Additive SMM
	Multiplicative SMM
	Logistic SMM


	Acknowledgments
	References

