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Abstract. We review higher order tangent spaces and influence functions
and their use to construct minimax efficient estimators for parameters in high-
dimensional semiparametric models.
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1. MAIN DISCUSSION

The concept of influence function of an estimator
was originally coined in the theory of robust statistics,
and as an asymptotic influence function played a role in
the development of semiparametric statistics ([2, 3]). If
an estimator Tn of a quantity μ based on a random
sample of observations X1,X2, . . . ,Xn possesses an
asymptotic expansion of the form

Tn = μ + 1

n

n∑
i=1

ψ(Xi) + oP

(
n−1/2)

,(1.1)

then the function ψ is its asymptotic influence function.
The name derives from the fact that if an observation
Xi is replaced by a value x, then the change in the esti-
mator is n−1(ψ(x) − ψ(Xi)), at least if the remainder
term oP (n−1/2) is neglected. The estimator is “asymp-
totically robust” if this change is bounded in x, that is,
if the influence function ψ is bounded.

Semiparametric theory as developed in the 1980s/90s
was not concerned with robustness, but with efficient
estimation. Provided that the variables ψ(Xi) have
zero mean and finite variance, the expansion (1.1) im-
plies that the sequence

√
n(Tn − μ) is asymptotically

normally distributed with mean zero. Among differ-
ent asymptotically unbiased estimators, the ones with
small asymptotic variance are preferred. Semiparamet-
ric lower bound theory showed that under so-called
“asymptotic regularity” estimators with an expansion
(1.1) with ψ the efficient influence function attain the
smallest variance. Furthermore, it showed how to com-
pute the latter function from the tangent space of the
underlying semiparametric model ([4, 7, 1], and [17]).
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Higher order tangent spaces and influence functions
are generalizations of these concepts, but were devel-
oped by Robins et al. [9] from the perspective of con-
structing estimators rather than asymptotic efficiency.
Thus, it will be fruitful to also give the definitions of
influence functions and tangent spaces from the point
of view of constructing estimators.

Assume that the observations X1, . . . ,Xn are a ran-
dom sample from a distribution Pη with density pη rel-
ative to a measure μ on a sample space (X ,A). The pa-
rameter η is known to belong to a subset H of a normed
space, and it is desired to estimate the value χ(η) of a
functional χ :H → R. Interest is in the situation of a
semiparametric or nonparametric model, where H is
infinite-dimensional and the dependence η �→ pη is as-
sumed smooth (as in [16]).

Given a “consistent” initial estimator η̂ of η, the
“plug-in estimator” χ(η̂) is typically consistent for the
parameter of interest χ(η), but it may not be a good es-
timator. In particular, if η̂ is a general purpose estima-
tor, not specially constructed to yield a good plug-in,
then χ(η̂) will often have a suboptimal precision. To
gain insight in this situation assume that the parameter
permits a Taylor expansion of the form

χ(η) = χ(η̂) + χ ′
η̂(η − η̂) + O

(‖η − η̂‖2)
.(1.2)

Such an expansion suggests that the plug-in estimator
will have an error of the order OP (‖η − η̂‖), unless the
linear term χ ′

η̂
(η− η̂) in the expansion vanishes and the

error has the square of this order. For a large parameter
set, the latter estimation error will typically be large.

The expansion (1.2) also suggests that better estima-
tors can be obtained by “estimating” the linear term.
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To achieve this assume a “generalized von Mises rep-
resentation” of the derivative of the form

χ ′
η̂(η − η̂) =

∫
χ̇1

η̂ d(Pη − Pη̂)

(1.3)
= Pηχ̇

1
η̂ + O

(‖η − η̂‖2)
,

for some measurable function χ̇1
η̂

:X → R. Here Pf

is short for the integral
∫

f dP , and it is assumed that
Pηχ̇

1
η = 0 for every η [which can always be arranged

by a recentering, as
∫

1d(Pη − Pη̂) = 0]. The von
Mises representation (1.3) and (1.2) suggest the “cor-
rected plug-in estimator”

Tn = χ(η̂) + Pnχ̇
1
η̂ ,(1.4)

where Pnf = n−1∑n
i=1f (Xi) is the expectation

n−1∑n
i=1f (Xi) of a function f under the empirical

measure Pn. It is reasonable to assume that (Pn −
Pη)χ̇

1
η̂

is asymptotically equivalent to (Pn − Pη)χ̇
1
η up

to the order oP (n−1/2), as the difference (Pn − Pη)χ̇
1
η̂

is “centered” and ought to have “variance” of the order
O(1/n). (We put “centered” and “variance” in quotes
because the randomness in the initial estimator η̂ pre-
vents a simple calculation of mean and variance.) Thus,
under reasonable regularity conditions the corrected
plug-in estimator (1.4) will satisfy

Tn − χ(η)

= χ(η̂) − χ(η) + Pηχ̇
1
η̂ + (Pn − Pη)χ̇

1
η̂(1.5)

= O
(‖η̂ − η‖2) + (Pn − Pη)χ̇

1
η + oP

(
n−1/2)

.

If the first term on the right is sufficiently small, specif-
ically ‖η̂−η‖ = oP (n−1/4), then Tn satisfies (1.1) with
χ̇1

η as the influence function.
The improvement of the estimator (1.4) over the

ordinary plug-in estimator is that the estimation er-
ror ‖η̂ − η‖ need have order OP (n−1/4) rather than
OP (n−1/2) for the estimator to have error OP (n−1/2).
For small “parametric” models this is not very rele-
vant, but for semi- or nonparametric models the gain
can be substantial. For instance, if η̂ involves an ordi-
nary smoothing estimator of a regression function on
a d-dimensional domain, then a typical rate of estima-
tion is n−α/(2α+d), for α the number of derivatives of
the true regression function. This is never OP (n−1/2),
but OP (n−1/4) for α ≥ d/2.

The function χ̇1
η in the von Mises representation

(1.3) is exactly an “influence function” as in the the-
ory of semiparametric models (see [4, 7, 17, 2]) and

can be related to the “tangent set”. Informally, a tan-
gent set (at Pη) of a model (Pη :η ∈ H) is the set of all
score functions at t = 0,

ġη := ∂

∂t |t=0
logpηt =

(
∂

∂t |t=0
pηt

)/
pη,(1.6)

of (smooth) one-dimensional submodels (Pηt : t ≥ 0)

with η0 = η. [Here t �→ ηt is a map from a neighbour-
hood of 0 ∈ R to H such that the derivative (1.6) ex-
ists.] An influence function [of the real parameter χ(η)

at Pη] is defined as a measurable map x �→ χ̇1
η (x) such

that, for all paths t �→ ηt considered,

d

dt |t=0
χ(ηt ) = Pηχ̇

1
η ġη.(1.7)

Combining (1.2)–(1.3) (with ηt in the role of η and η

in the role of η̂), we see that χ(ηt ) is to the first or-
der given by χ(η) + Pηt χ̇

1
η . Since, according to (1.6),

ġη dPη is the derivative at t = 0 of dPηt , we next con-
clude that the function χ̇1

η in the von Mises expansion
(1.3) is an influence function also in the sense of (1.7).

An influence function is not necessarily unique, as
only its inner products with elements ġη of the tangent
set matter. An influence function that is contained in
the closed linear span of the tangent set is called the
efficient influence function. It minimizes the variance
varη Pnχ̇

1
η over all influence functions and is the influ-

ence function of asymptotically efficient estimators.
The theory developed by Robins et al. in [9] extends

the preceding from linear to higher order approxima-
tions. The motivation is that the parameter η may be
so high dimensional that no estimator η̂ attains the rate
OP (n−1/4). The preceding suggests that then the cor-
rected plug-in estimator will be suboptimal, as in the
expansion (1.5) the “bias” χ(η̂) − χ(η) + Pηχ̇

1
η̂

dom-

inates the “variance” (Pn − Pη)χ̇
1
η̂

. For this situation
Robins et al. [9] introduced higher order expansions
and influence functions, as follows.

A tangent set of order m (at Pη) are all deriva-
tives of the type, for given one-dimensional submodels
(Pηt : t ≥ 0),

ġη(x1, . . . , xm)

=
(

∂j

∂tj |t=0

m∏
i=1

pηt (xi)

)/(
m∏

i=1

pη(xi)

)
,(1.8)

j = 1,2, . . . ,m.

The functions on the right-hand side are higher or-
der score functions ([14, 6]). These are defined relative
to the joint density (x1, . . . , xm) �→ ∏m

i=1pη(xi) of m
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observations, not as higher order derivatives of a sin-
gle density, because higher order derivatives of the log
likelihood of n observations do not reduce to sums over
single observations, as do first order derivatives. The
relationship between expansions on a single observa-
tion and the joint likelihood can be seen from

n∏
i=1

pηt

pη

(xi)

=
n∏

i=1

(
1 + t ġη(xi) + 1

2
t2g̈η(xi) + · · ·

)

= 1 + t

n∑
i=1

ġη(xi)

+ t2

(
1

2

n∑
i=1

g̈η(xi) + ∑∑
1≤i<j≤n

ġη(xi)ġη(xj )

)

+ · · · .
Inspection of this expansion shows that the coefficient
of tj is a U -statistic of degree j [cf. equation (1.11)
below]. The kernels of these U -statistics up to order
m can also be obtained as higher order derivatives of
products of m densities, as in (1.8). Furthermore, they
are degenerate in the sense that the integral of a ker-
nel with respect to a single coordinate relative to the
true density pη is zero, generalizing the property that a
score function has mean zero; equivalently, this prop-
erty can be described as orthogonality of higher order
score functions relative to lower order score functions.

Correspondingly, an influence function of order m

[of the map η �→ χ(η) at Pη] is a measurable map
(x1, . . . , xm) �→ χ̇η(x1, . . . , xm) such that, for every
given one-dimensional submodel (Pηt : t ≥ 0),

∂j

∂tj |t=0
χ(pηt ) = P m

η χ̇ηġη, j = 1,2, . . . ,m.(1.9)

This influence function is determined only up to its
inner products with the tangent set and hence is not
unique. A minimal version could be defined as one
such that the variance of the U -statistic with kernel χ̇η

is minimal.
For computation in examples the defining equations

(1.9) of a higher order influence function can be te-
dious. It is usually easier to apply the rule that a
higher order derivative is the derivative of the previ-
ous order derivative (as shown for second order in-
fluence functions in [8], 4.3.11). One computes the
first order influence function x1 �→ χ̇1

η (x1) of the

functional η �→ χ(η) as usual. Next one recursively
for j = 2,3, . . . ,m determines influence functions,
written xj �→ χ̇

j
η (x1, . . . , xj ) as influence functions

of the functionals η �→ χ̇
j−1
η (x1, . . . , xj−1), for fixed

(x1, . . . , xj−1). The function χ̇
j
η can be made degen-

erate (in the sense defined previously) by subtracting
its projection on the linear span of all functions of one
argument less. Then

χ̇η(x1, . . . , xm) =
m∑

j=1

1

j ! χ̇
j
η (x1, . . . , xj )

is an mth order influence function. As we consider only
a single value of m at a time, we do not let m show up in
the notation on the left. As a consequence, the formulas
in the following will appear as in the linear case.

Given an influence function of order m, we may now
generalize the definition of the improved plug-in esti-
mator (1.4) to

Tn = χ(η̂) +Unχ̇η̂,(1.10)

for Unf denoting a U -statistic of order m with kernel
f :

Unf = 1

n(n − 1) · · · (n − m + 1)
(1.11)

· ∑
1≤i1 
=i2 
=···
=im≤n

f (Xi1, . . . ,Xim).

The term Unχ̇η̂ should correct the plug-in estimator
χ(η̂) up to order m and, hence, an argument similar
to (1.5) should give the expansion

Tn − χ(η) = O
(‖η̂ − η‖m+1)

(1.12)
+ (

Un − P m
η

)
χ̇η + oP

(
n−1/2)

.

The bias of the plug-in estimator χ(η̂) would be cor-
rected to the order O(‖η̂ − η‖m+1), and good estima-
tors for χ(η) exist even in situations where η is es-
timable only with low precision. The only cost would
be a slightly larger variance in the U -statistic relative
to the empirical measure.

Unfortunately, there is no such free lunch: one can-
not seriously correct bias without seriously increasing
the variance. Although (1.12) and the preceding heuris-
tics are correct, they do not apply, as higher order influ-
ence functions typically do not exist. Besides by a lack
of invertibility of the map η → pη, this is caused by
failure of a higher order von Mises type representation.
Whereas a continuous, linear map B :L2(Pη) → R,
such as arises from the first derivative χ ′

η in (1.2), is al-
ways representable as an inner product B(g) = Pηχ̇

1
ηg
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for some function χ̇1
η , a continuous, multilinear map

B :L2(Pη)
j → R is not necessarily representable as a

repeated integral of the type

B(g1, . . . , gj )

=
∫

· · ·
∫

g1(x1) · · ·gj (xj )

· χ̇η(x1, . . . , xj ) dPη(x1) · · · dPη(xj ).

The definition (1.10) uses such a “von Mises represen-
tation” in order to estimate the higher derivatives using
the data, by a U -statistic.

We must therefore set a more modest aim: correcting
the bias in certain directions only. A key observation
is that a multilinear map on a finite-dimensional sub-
space L × · · · × L ⊂ L2(Pη)

m is always representable
by a kernel. If the invertibility η �→ pη can be resolved,
we can therefore always “represent” and estimate the
mth order derivative at differences η − η̂ within a given
finite-dimensional linear space. The bias in nonrepre-
sented directions then remains, and the challenge is to
determine the directions that balance three terms:

• the bias in the nonrepresented directions, represen-
tation bias,

• the estimation error OP (‖η̂−η‖m+1), the estimation
bias,

• the variance of the resulting U -statistic.

Regarding the third component, we note that, although
the variance of a U -statistic with a fixed kernel is dom-
inated by its linear term and is of order O(1/n), the
need to represent the functionals in more and more di-
rections given larger sample size n results in kernels
that become more and more complex with n. The re-
sulting variance of Unχ̇η̂ is therefore typically larger
than O(1/n). A new balance should be found with the
squared biases, which will also be larger than paramet-
ric.

The preceding heuristic scheme is general, but its
implementation requires finding the appropriate influ-
ence functions that create the correct bias-variance
trade-off. Robins et al. [9] achieved this for estimat-
ing a functional in a class of high-dimensional semi-
parametric models that includes some popular models
for missing data or causal inference. The high dimen-
sions arise by the inclusion of a multivariate “control
covariate”. The models have a technical characteriza-
tion, through a certain form of the first order influence
function. They are structured semiparametric models
in that their natural parameterization is in terms of three
or more parameters, which vary independently. Thus,

the full parameter takes the form η = (a, b, c, f ), that
is partitioned in three subparameters a, b, c and f . The
parameter f is the marginal density of an observable
covariate Z. The technical characterization is that the
first order influence function of the parameter of inter-
est η �→ χ(η) can be written in the form

χ̇1
η (x) = a(z)b(z)S1(x) + a(z)S2(x)

(1.13)
+ b(z)S3(x) + S4(x) − χ(η),

for known functions Si(x) of the data [i.e., S =
(S1, S2, S3, S4) is a given statistic]. The covariate Z

is assumed to range over a compact d-dimensional do-
main and the parameters a, b, f are unknown functions
on this domain, restricted only nonparametrically by
smoothness assumptions. The parameter c is an addi-
tional parameter to complete the identification of the
distribution of X, but it does not appear in (1.13).

As the higher order corrections are based on von
Mises representations of higher order influence func-
tions, which are derivatives of the first order influence
function, it is not unnatural to base a theory on the form
of the first order influence function. However, by itself
(1.13) appears not insightful. The following examples
illustrate the class of models.

EXAMPLE 1.1 (Missing data). In a version of
the missing data problem we observe the triple X =
(YA,A,Z), where Y and A are random variables that
take values in the two-point set {0,1} that are con-
ditionally independent given the variable Z. We can
think of Y as a response, which is observed only if
the indicator A takes the value 1. To ensure indepen-
dence of the response and missingness, the covariate
Z would be chosen such that it contains all informa-
tion on the dependence between Y and A (“missing at
random”). Alternatively, we can think of Y as a coun-
terfactual outcome if a treatment were given (A = 1)
and estimate (half) the treatment effect under the as-
sumption of “no unmeasured confounders”. Both ap-
plications may require that Z is high dimensional (e.g.,
of dimension 10), where there is typically insufficient a
priori information to model the form of the dependence
of A and Y on Z. The three parameters are the marginal
density f of Z and the (inverse) probabilities b(z) =
P(Y = 1|Z = z) and a(z)−1 = P(A = 1|Z = z). The
functional of interest is the mean response EY , that is,

χ(η) =
∫

bf dν.

The representation (1.13) can be shown to be valid with
S1 = −A, S2 = AY , S3 = 1 and S4 = 0 (see, e.g., [10]).
The parameters a and b are (transformed) regression
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functions and are nonparametrically estimable at the
rates n−α/(2α+d) and n−β/(2β+d) if they are a priori
known to be α- and β-smooth, where d is the dimen-
sion of Z. The parameter f is a density and can be
estimated from the covariates. Closer inspection [see
(1.14) below] shows that a more crucial parameter is
the quotient f/a, which is proportional to the condi-
tional density of Z given A = 1 and can be estimated
directly from the observed covariates and treatment in-
dicators, at a rate n−γ /(2γ+d) if this function is known
to be γ -smooth. The purpose of constructing higher
order influence functions is to ensure that standard
nonparametric regression or density estimators can re-
place the unknown parameters in theoretical expres-
sions with optimal estimators as a result.

EXAMPLE 1.2 (Covariance model). Let a typical
observation be a triple X = (Y,A,Z), where Y and A

are binary variables with values in {0,1}. We are in-
terested in estimating the expected conditional prod-
uct moment E[E(Y |Z)E(A|Z)]. In terms of the param-
eters a(Z) = E(A|Z) and b(Z) = E(Y |Z), and η =
(a, b, f, c), for f the marginal density of Z and c an
additional parameter, this target can be written as

χ(η) =
∫

abf dν.

Representation (1.13) can be seen to hold with S1 =
−1, S2 = A, S3 = Y and S4 = 0. The parameters a

and b are regression functions of Y and A on Z and
hence can be estimated at the rates n−α/(2α+d) and
n−β/(2β+d) if they are a priori known to be α- and β-
smooth. The marginal density f can be similarly esti-
mated nonparametrically from the observed covariates.

The triple (a, b, f ) does not fully parameterize the
joint distribution of an observation, but the remain-
ing part c of the parameter does not seem to play
a role when estimating χ(η). A full parameterization
is obtained by adding the treatment effect function
c(Z) = E(Y |A = 1,Z) − E(Y |A = 0,Z). The condi-
tional distribution of Y given A can then be expressed
in (a, b, c, f ) through P(Y = 1|A,Z) = c(Z)(A −
a(Z)) + b(Z).

Estimating χ(η) is relevant to the biostatistical setup
through a detour, which relates χ(η) to the treatment
effect function c. First, in terms of statistical diffi-
culty, the functional χ(η) is equivalent to the functional
E cov(Y,A|Z) = E(YA) − χ(η), as E(YA) can be es-
timated at the rate n−1/2 by a simple sample average.
Second, the problem of estimating E cov(Y,A|Z) is a
template for estimating ψ(t) := E cov(Y − tA,A|Z),
for every given t , which can next be inverted to give

an estimate for the value τ that satisfies ψ(τ) = 0. The
latter value can be shown to be equal to the variance
weighted average treatment effect

τ = E var(A|Z)c(Z)

E var(A|Z)
.

(See [12], Section 4 for details.) Under the assump-
tion of nonconfounding this parameter is nonzero if
and only if the treatment A has a nonzero causal effect,
and it may be the ultimate purpose to ascertain this.

EXAMPLE 1.3 (Average treatment effect). Sup-
pose a clinical trial with two possible treatments, in-
dicated by A ∈ {0,1}, has two binary outcome vari-
ables Y1 and Y2, and let aj (Z) = E(Yj |A = 1,Z) −
E(Yj |A = 0,Z) be the treatment effects at level Z of
an observed covariate, for j = 1,2. We observe a ran-
dom sample of the variables (Y1, Y2,A,Z) and are in-
terested in estimating the average treatment effect

χ(η) =
∫

a1a2f dν.

Here η parameterizes the distribution of (Y1, Y2,A,Z),
and f is the density of the covariate Z, relative to some
measure ν, for instance, the Lebesgue measure on a
compact subset of R

d . The parameter η includes the
triplet (a1, a2, f ) and possibly other unknown aspects
of the distribution of an observation. In a clinical trial
the probability π(Z) = P(A = 1|Z) that an individual
with covariate Z is treated will be a known function of
the covariate.

As the tangent space is a true subspace of the full
tangent space, there are multiple influence functions
for χ . It can be shown that any influence function of
χ can be represented in the form (1.13) with, for some
measurable function C,

S1 = 1 − 2A(A − π(Z))

π(Z)(1 − π)(Z)
,

S2 = Y2
A − π(Z)

π(Z)(1 − π)(Z)
,

S3 = Y1
A − π(Z)

π(Z)(1 − π)(Z)
,

S4 = C(Z)
A − π(Z)

π(Z)(1 − π)(Z)
.

Perhaps the special case that Y1 = Y2 is of most inter-
est. The parameter (a1, a2, f ) then reduces to a pair
(a, f ), and S2 = S3, but the general setup remains the
same.
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In models with first order influence function of the
form (1.13) the error of the first order von Mises repre-
sentation (1.2)–(1.3) can be computed to be, for a given
initial estimator η̂ = (â, b̂, f̂ ),

χ(η̂) − χ(η) + Pηχ̇
1
η̂

(1.14)
=

∫
(â − a)(b̂ − b)s̃η,1f dν,

for s̃η,i(z) = Eη(Si |Z = z). [From the fact that a, b and
f are only nonparametrically restricted and that (1.13)
gives the influence function, it can be shown that nec-
essarily s̃η,1b + s̃η,2 = 0 = s̃η,1a + sη,3, after which
identity (1.14) follows by algebra.] This is quadratic
in the errors â − a and b̂ − b of the initial estimators,
but is special in that the squares of the estimation er-
rors |â − a| and |b̂ − b| of the two initial estimators â

and b̂ do no arise, but only their product. This property,
termed “double robustness” in [11, 13], makes that in
first order inference it suffices that one of the two pa-
rameters is estimated well. If initial estimators of a and
b attain estimation rates n−α/(2α+d) and n−β/(2β+d),
respectively, then the order of the remainder term in
the expansion is the product of these rates. This shows
that the linear estimator (1.4) attains a rate OP (n−1/2)

if

α

2α + d
+ β

2β + d
≥ 1

2
.(1.15)

If this condition fails, then the “bias” (1.14) is greater
than OP (n−1/2). The linear estimator (1.4) then does
not balance bias and variance and is suboptimal.

For moderate to large dimensions d , inequality
(1.15) is a restrictive requirement, whose validity is
questionable for many applications. Higher order in-
fluence functions allow to construct better estimators
than the linear estimator (1.4). As shown in [9, 10, 15,
12, 5], there are two cases:

• (α + β)/2 ≥ d/4. In this case estimation at rate
n−1/2 is possible by using a higher order estimator
(1.10) of sufficiently large order m. If the inequality
is strict, then this estimator is also semiparametri-
cally regular and efficient, even though (1.15) need
not be satisfied.

• (α + β)/2 < d/4. In this case the minimax rate
of estimation is slower than n−1/2. If the function
s̃η,1f has a regularity γ bigger than a certain cut-
off [that depends on (α,β)], then the minimax rate
is n−(2α+2β)/(2α+2β+1) and is attainable by a higher
order estimator (1.10) with a carefully constructed
approximate influence function χ̇η.

In both cases it is necessary to estimate the marginal
density f , or rather the function s̃η,1f , notwithstand-
ing the fact that it does not enter the first order influence
function (1.13). Robins et al. [9] construct minimax es-
timators under the assumption that this function has a
minimal smoothness. A completely general solution is
apparently still more complicated.

The details of the constructions are beyond the scope
of the present paper. The approximations are based on
expanding the parameters a and b on bases that express
their regularity (e.g., suitable wavelets) and represent-
ing the higher order derivatives of the functional χ on
the subspaces obtained by truncating these bases. The
truncation point is chosen relative to the functional to
be estimated (and not necessarily the usual one used
to estimate the functions themselves). For orders three
and up, it is in addition necessary to remove pairs of
basis functions [resulting from the pair (a, b)] whose
combined index is “large”, in order to cut variance
without increasing bias. For an introduction to con-
structing truncated second order influence functions we
refer to [10].

2. CONCLUDING REMARKS

One may look at the work of Robins et al. [9] and its
sequel from two perspectives. The mathematical statis-
tical point of view is the simplest: higher order estimat-
ing functions are a means to construct estimators that
are theoretically minimax in complex semiparametric
models, where the interest is not simply in a mean of
the observations, but in a parameter defined through the
structure of the model. As always in high-dimensional
models, minimaxity is about the bias-variance trade-
off. Inspection of higher order tangent spaces reveals
in what form the bias arises, and the connected von
Mises calculus allows to correct for it. So far no com-
pletely general method exists for trading this against
variance (other than the abstract idea to use “finite-
dimensional approximations”), and, in fact, beyond the
application to models characterized by (1.13), nothing
much is known.

The second perspective is practically oriented. The
models dealt with in this paper are relevant in stud-
ies in epidemiology, econometrics and the social sci-
ences. The parameter of interest is defined through the
substantial application, for instance, measuring a re-
sponse to treatment or the consequence of an interven-
tion. High dimensions arise to identify this parameter
of interest from data. Observational studies, where co-
variates must be included in the statistical analysis to
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control for possible confounding, are a typical case.
One has a choice to adopt a relatively simple statisti-
cal model for this complex reality, maybe even a clas-
sical parametric model or a one-dimensional propen-
sity score, or to let the data “speak for itself”, as much
as possible. Without any model restriction one runs
into the “curse of dimensionality” and no conclusions
are possible. Semiparametric models as developed in
the 1980s and 1990s are between these extremes, but
from the present perspective relatively close to finite-
dimensional models. In fact, they focus on function-
als in situations where a bias-variance trade-off is un-
necessary, as the bias is negligible. The main purpose
of methods based on high-dimensional influence func-
tions is to fill the huge gap between “classical semi-
parametric models” and the model in which nothing is
assumed. In a situation with fewer or less stringent a
priori assumptions on the model, statistical bias starts
playing a role and must be traded versus variance. Esti-
mators with bigger standard errors result, but bias due
to model misspecification decreases. The choice be-
tween model bias with smaller variance and larger es-
timation variance is not easy to make with current sta-
tistical methodology. However, larger and larger data
bases certainly make the methodology of higher influ-
ence functions feasible.

Thus, these methods are potentially useful to answer
a wide range of questions. We close with some remarks
about further research that needs to be done to make the
methods fully operational.

The improved estimators based on higher order in-
fluence functions combine good preliminary estimators
for deviations of the parameter of interest χ(η) in some
directions with a priori assumptions that the deviations
in other “nonestimable” directions are small. The lat-
ter a priori assumptions are always questionable. It is
an open problem to develop estimation procedures that
can “adapt” to “scales of a priori conditions”, for in-
stance, by implicitly estimating unknown smoothness
levels from the data.

For practical application, estimation without error
indications are insufficient. Although there is some
preliminary work on confidence intervals related to the
higher order estimators, these procedures remain to be
explored.

The models (1.13) considered in [9] are structured
semiparametric models [with a partitioned parameter
(a, b, c, f ) and the functional of interest defined natu-
rally in terms of the partition], but typically nonpara-
metric in the sense that any law on the sample space is
realized by some choice of the parameters (a, b, c, f ).

Genuinely semiparametric problems, such as partial
linear regression, pose a further challenge. For such
models the first order influence function is nonunique
and, as the estimation error is bigger than the first or-
der variance, the efficient first order influence function
may not play a special role, thus increasing the degrees
of freedom in constructing suitable higher order influ-
ence functions.

ACKNOWLEDGMENT

Supported in part from the European Research
Council under ERC Grant Agreement 320637.

REFERENCES

[1] BEGUN, J. M., HALL, W. J., HUANG, W.-M. and WELL-
NER, J. A. (1983). Information and asymptotic efficiency in
parametric–nonparametric models. Ann. Statist. 11 432–452.
MR0696057

[2] BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELL-
NER, J. A. (1993). Efficient and Adaptive Estimation for
Semiparametric Models. Johns Hopkins Univ. Press, Balti-
more, MD. MR1245941

[3] BOLTHAUSEN, E., PERKINS, E. and VAN DER VAART, A.
(2002). Lectures on Probability Theory and Statistics. Lecture
Notes in Math. 1781. Springer, Berlin. MR1915443

[4] KOŠEVNIK, JU. A. and LEVIT, B. JA. (1976). On a non-
parametric analogue of the information matrix. Teor. Veroy-
atn. Primen. 21 759–774. MR0428578

[5] LI, L., TCHETGEN TCHETGEN, E., VAN DER VAART, A. and
ROBINS, J. M. (2011). Higher order inference on a treatment
effect under low regularity conditions. Statist. Probab. Lett.
81 821–828. MR2793749

[6] LINDSAY, B. G. (1983). Efficiency of the conditional score
in a mixture setting. Ann. Statist. 11 486–497. MR0696061

[7] PFANZAGL, J. (1982). Contributions to a General Asymptotic
Statistical Theory. Lecture Notes in Statistics 13. Springer,
New York. MR0675954

[8] PFANZAGL, J. (1985). Asymptotic Expansions for General
Statistical Models. Lecture Notes in Statistics 31. Springer,
Berlin. MR0810004

[9] ROBINS, J., LI, L., TCHETGEN, E. and VAN DER VAART, A.
(2008). Higher order influence functions and minimax esti-
mation of nonlinear functionals. In Probability and Statistics:
Essays in Honor of David A. Freedman. Inst. Math. Stat. Col-
lect. 2 335–421. IMS, Beachwood, OH. MR2459958

[10] ROBINS, J., LI, L., TCHETGEN, E. and VAN DER

VAART, A. W. (2009). Quadratic semiparametric von Mises
calculus. Metrika 69 227–247. MR2481922

[11] ROBINS, J. and ROTNITZKY, A. (2001). Comment on the
Bickel and Kwon article “Inference for semiparametric mod-
els: Some questions and an answer.” Statist. Sinica 11 920–
936.

http://www.ams.org/mathscinet-getitem?mr=0696057
http://www.ams.org/mathscinet-getitem?mr=1245941
http://www.ams.org/mathscinet-getitem?mr=1915443
http://www.ams.org/mathscinet-getitem?mr=0428578
http://www.ams.org/mathscinet-getitem?mr=2793749
http://www.ams.org/mathscinet-getitem?mr=0696061
http://www.ams.org/mathscinet-getitem?mr=0675954
http://www.ams.org/mathscinet-getitem?mr=0810004
http://www.ams.org/mathscinet-getitem?mr=2459958
http://www.ams.org/mathscinet-getitem?mr=2481922


686 A. VAN DER VAART

[12] ROBINS, J., TCHETGEN TCHETGEN, E., LI, L. and
VAN DER VAART, A. (2009). Semiparametric minimax rates.
Electron. J. Stat. 3 1305–1321. MR2566189

[13] ROBINS, J. M. and ROTNITZKY, A. (1995). Semiparamet-
ric efficiency in multivariate regression models with missing
data. J. Amer. Statist. Assoc. 90 122–129. MR1325119

[14] SMALL, C. G. and MCLEISH, D. L. (1994). Hilbert Space
Methods in Probability and Statistical Inference. Wiley, New
York. MR1269321

[15] TCHETGEN, E., LI, L., ROBINS, J. and VAN DER VAART, A.
(2008). Minimax estimation of the integral of a power of a
density. Statist. Probab. Lett. 78 3307–3311. MR2479495

[16] VAN DER VAART, A. (1991). On differentiable functionals.
Ann. Statist. 19 178–204. MR1091845

[17] VAN DER VAART, A. W. (1988). Statistical Estimation in
Large Parameter Spaces. CWI Tract 44. Stichting Mathema-
tisch Centrum, Centrum voor Wiskunde en Informatica, Am-
sterdam. MR0927725

http://www.ams.org/mathscinet-getitem?mr=2566189
http://www.ams.org/mathscinet-getitem?mr=1325119
http://www.ams.org/mathscinet-getitem?mr=1269321
http://www.ams.org/mathscinet-getitem?mr=2479495
http://www.ams.org/mathscinet-getitem?mr=1091845
http://www.ams.org/mathscinet-getitem?mr=0927725

	Main Discussion
	Concluding Remarks
	Acknowledgment
	References

