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1. Introduction

The concept of volatility expresses the ubiquitous phenomenon that observa-
tional fields exhibit more variation than expected; that is, more than the most
basic type of random influence1 envisaged.

Accordingly, volatility is a relative concept, and its meaning depends on the
particular setting under investigation. Once that meaning is clarified the ques-
tion is how to assess the volatility empirically and then to describe it in stochas-
tic terms and incorporate it in a suitable probabilistic model.

The ‘additional’ random fluctuations denoted as volatility/intermittency, gen-
erally vary, in time and/or in space, in regard to Intensity (activity rate and
duration) and Amplitude. Typically the volatility/intermittency may be further
classified into continuous and discrete (i.e., jumps) elements, and long and short
term effects.

In turbulence and certain other areas of study the phenomenon is refered
to as intermittency (Frisch, 1995, Chapter 8) rather than volatility. Energy
dissipation is a key concept in the statistical theory of turbulence, and is in the
character of a specific type of intermittency.

In finance the investigation of volatility is well developed and many of the
procedures of probabilistic and statistical analysis applied (Barndorff-Nielsen
and Shephard, 2010) are similar to those of relevance in turbulence.

In this paper, we introduce the notion of relative volatility/intermittency and
the closely related statistics, realised relative power variations. They pave the
way for practical applications of some recent advances in the asymptotic theory
of power variations of non-semimartingales (see, e.g., Corcuera, Nualart and

1Often thought of as Gaussian.
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Woerner (2006) and Barndorff-Nielsen, Corcuera and Podolskij (2011, 2013)) to
volatility/intermittency measurements and inference with empirical data.

In the non-semimartingale setting, realised power variations need to be scaled
properly, in a way that depends on the smoothness of the process through un-
known parameters, to ensure convergence. Realised relative power variations,
however, are self-scaling and, moreover, admit a statistically feasible central
limit theorem, which can be used, e.g., to construct confidence intervals for the
realised relative volatility/intermittency. (Self-scaling statistics have also been
recently used by Podolskij and Wasmuth (2013) to construct a goodness-of-fit
test for the volatility coefficient of a fractional diffusion.)

This paper is organised as follows. Section 2 presents some results from the
theory of Brownian semistationary processes that are pertinent to assessment of
volatility/intermittency, and the definitions of relative volatility/intermittency
and realised relative power variations are given in Section 3. A stable func-
tional central limit theorem for realised relative power variations of Brownian
semistationary processes is presented in Section 4. An application to empirical
data on atmospheric turbulence is carried out in Section 5, and Section 6 con-
cludes. Appendices contain a discussion of extending the theory beyond Brown-
ian semistationary processes (Appendix A), an alternative method of assessing
the volatility/intermittency of a Brownian semistationary process (Appendix B),
and some supporting results (Appendix C).

2. Brownian semistationary processes and realised volatility/
intermittency

2.1. Probabilistic setup

Brownian semistationary (BSS) processes, introduced by Barndorff-Nielsen and
Schmiegel (2009), may be used as models of timewise development of homoge-
neous and isotropic turbulent velocity fields. More concretely, a BSS process
can be used to describe the velocity at a fixed point in space and in the main
direction of the flow in a turbulent field. While the original motivation for BSS
processes arose out of a study in turbulence, these processes have since found
widespread interest in regard to their theoretical properties and to applica-
tions beyond physics, including, e.g., modelling of electricity price dynamics
(Barndorff-Nielsen, Benth and Veraart, 2013).

A generic BSS process Y = {Yt}t≥0 is defined on a complete filtered proba-
bility space (Ω,F , {Ft}t∈R, P ) via the decomposition

Yt = Xt +At, (2.1)

where the process

Xt =

∫ t

−∞

g(t− s)σsdBs, t ≥ 0, (2.2)
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is constructed from a standard Brownian motion B = {Bt}t∈R and a non-zero2

càglàd volatility/intermittency process σ = {σt}t∈R, both of which are adapted
to {Ft}t∈R, and using a square integrable kernel g : (0,∞) → R such that

∫ t

−∞

g(t− s)2σ2
sds < ∞ a.s.

for all t ≥ 0. This condition ensures the existence of the stochastic integral
in (2.2). In the decomposition (2.1), A = {At}t≥0 is a process that allows for
skewness in the distribution of Yt. The process A is assumed to fulfill one of two
negligibility conditions, viz. (2.7) and (4.3) given below (Appendix C presents
more concrete criteria that can be used to check these conditions).

Example 2.1. In the context of turbulence, the gamma kernel

g(t) = ctν−1e−λt, t > 0, (2.3)

where c > 0, ν > 1
2 , and λ > 0, has a special role. In particular, if ν = 5

6
and σ is stationary with E{σ2

0} < ∞, then the autocorrelation function of X
is identical to von Kármán’s autocorrelation function (von Kármán, 1948) for
ideal turbulence and also belongs to the Whittle–Matérn family of correlation
functions (Guttorp and Gneiting, 2005). The parameter value ν = 5

6 agrees with
Kolmogorov’s (K41) scaling law of turbulence (Kolmogorov, 1941a,b).

Example 2.2. The process A can be specified as

At = µ+

∫ t

−∞

q(t− s)σ2
sds, t ≥ 0, (2.4)

where the kernel q belongs to L1((0,∞)), which makes the integral in (2.4)
convergent under the assumption supt∈R

E{σ2
t } < ∞. In particular, q can be

chosen to be of the gamma form (2.3). Lemma C.1 in Appendix C provides
sufficient conditions for the process A to be negligible in the sense of conditions
(2.7) and (4.3) when q is a gamma kernel.

2.2. Assessing volatility/intermittency

In relation to the BSS process Y , a central question is that of determining the
dynamics of volatility/intermittency σ from Y . If X were a semimartingale and
A of finite variation, then the answer would be given by the quadratic variation
[Y ] of Y . In fact, if

g(0+) < ∞ and g′ ∈ L2
(
(0,∞)

)
, (2.5)

then X is a semimartingale with [X ]t = g(0+)2σ2+
t for any t ≥ 0, where

σ2+
t =

∫ t

0

σ2
sds

2More precisely, a.e. sample path is not equal to zero on a set with positive Lebesgue
measure.
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is the accumulated volatility/intermittency (Barndorff-Nielsen and Schmiegel,
2009). Assuming normalisation |g(0+)| = 1, given a set of equidistant discrete
observations of Y at time points 0, δ, . . . , ⌊t/δ⌋δ, where δ > 0, the accumulated
volatility σ2+

t can then be estimated consistently as the limit in probability for
δ → 0 of the realised quadratic variation

[Yδ]t =

⌊t/δ⌋∑

j=1

(Yjδ − Y(j−1)δ)
2.

More generally, the volatility/intermittency functional σp+
t =

∫ t

0 |σs|pds for any
p > 0 can be estimated consistently as δ → 0 using the realised p-th order power
variation

[Yδ]
(p)
t =

⌊t/δ⌋∑

j=1

|Yjδ − Y(j−1)δ|p (2.6)

rescaled by δ1−p

mp
, where mp = E{|ξ|p} with ξ ∼ N(0, 1), see Barndorff-Nielsen

et al. (2006).
Whenever the process σ is not identically equal to zero, the condition (2.5) is

both sufficient and necessary for X to be a semimartingale. However, in many
interesting situations (2.5) does not hold and thus X is not a semimartingale.
They include the case where g is a gamma kernel with ν ∈

(
1
2 , 1

)
∪
(
1, 32

)
, which

is of interest for turbulence. Then, in order to determine σ2+
t by a limiting

procedure from the realised quadratic variation [Yδ]t the latter has to be rescaled
by a factor depending on δ and the scaling properties of X . Specifically, as
shown by Barndorff-Nielsen and Schmiegel (2009), the appropriate scaling can
be described using the second-order structure function (or variogram)

R(t) = E{(Gt −G0)
2}, t ≥ 0,

of the Gaussian core G of X defined by Gt =
∫ t

−∞ g(t− s)dWs, t ≥ 0.
Let us now recall the general version of the law of large numbers for power

variations of BSS processes, due to Barndorff-Nielsen, Corcuera and Podolskij
(2011). To this end, we need to introduce some conditions concerning the kernel
g and the volatility/intermittency process σ. Below Lf : (0,∞) → R stands
for a function that is slowly varying at zero, indexed by a given function f .
Recall that slow variation at zero requires that limt→0+ Lf (ut)/Lf(t) = 1 for
any u > 0.

Assumption 2.3. For some ν ∈
(
1
2 , 1

)
∪
(
1, 32

)
, the kernel g and the process σ

satisfy:

(i) g(t) = xν−1Lg(t).
(ii) g′(t) = xν−2Lg′(t) and g′ ∈ L2

(
(ε,∞)

)
for any ε > 0. Moreover, |g′| is

non-decreasing on (a,∞) for some a > 0.
(iii)

∫∞

1 g′(s)2σ2
t−sds < ∞ a.s. for any t > 0.
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Moreover, the second-order structure function R satisfies:

(iv) R(t) = t2ν−1LR(t).
(v) R′′(t) = t2ν−3LR′′(t).
(vi) For some b ∈ (0, 1),

lim sup
s↓0

sup
t∈[s,sb]

∣∣∣∣
LR′′(t)

LR(s)

∣∣∣∣ < ∞.

Example 2.4. If g is the gamma kernel (2.3) with ν ∈
(
1
2 , 1

)
∪
(
1, 3

2

)
and

supt∈R
E{σ2

t } < ∞, then Assumption 2.3 is in force, see Barndorff-Nielsen,
Corcuera and Podolskij (2011, pp. 1173).

Remark 2.5. Under Assumption 2.3, the process X is not a semimartingale,
unless σ is identically equal to zero. The parameter ν describes the smoothness
of the processX and is analogous to the Hurst parameter of fractional Brownian
motion. In fact, the increments of the Gaussian core G over short time intervals
are ‘close’ to increments of fractional Brownian motion with Hurst parameter
ν − 1

2 , see Corcuera et al. (2013, p. 2557).

The following statement is a special case of Theorem 3 of Barndorff-Nielsen,
Corcuera and Podolskij (2011) that provides a law of large numbers for multi-
power variations of BSS processes.

Theorem 2.6. Let p > 0. Suppose that Assumption 2.3 holds and that the
process A satisfies the negligibility condition

δ

R(δ)
p
2

[Aδ]
(p)
t

P−−−→
δ→0

0 for any t ≥ 0, (2.7)

where [Aδ]
(p)
t is defined analogously to (2.6). Then,

δ

R(δ)
p
2

[Yδ]
(p)
t

P−−−→
δ→0

mpσ
p+
t for any t ≥ 0.

Remark 2.7. Assumption 2.3 (iv) implies, by Potter’s bounds for slowly vary-
ing functions (Bingham, Goldie and Teugels, 1987, Theorem 1.5.6), that for any
ε > 0 and t0 ∈ (0, 1) there exist C, C′ > 0 such that

Ct2ν−1+ε ≤ R(t) ≤ C′t2ν−1−ε (2.8)

for any t ∈ [0, t0). Then, the negligibility condition (2.7) holds if

[Aδ]
(p)
t = OP(δ

γ)

for any γ > p(ν − 1
2 ) − 1. Another consequence of (2.8) is that under the

assumptions of Theorem 2.6 the ‘raw’ realised quadratic variation [Yδ]t satisfies

[Yδ]t
P−−−→

δ→0

{
0, ν ∈

(
1, 32

)
,

∞, ν ∈
(
1
2 , 1

)
.
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(In the critical case ν = 1 the limit of [Yδ]t is indeterminate, unless we have
more information on the slowly varying part LR of the structure function R
near zero.)

3. Realised relative volatility/intermittency

3.1. Consistent estimation of relative volatility/intermittency

Using Theorem 2.6 for estimation of the accumulated volatility σ2+
t requires

knowledge of the scaling factor δ/R(δ)
p
2 . More precisely, the behaviour of the

second-order structure function R near zero should be known or determinable
from data with sufficient accuracy. We discuss the viability of estimation of the
scaling factor in Appendix B.

However, instead of the precise of value of σ2+
t for fixed t, we are often

more interested in measuring the dynamics of σ2+
t , as a function of t, in relative

terms. That is, for T > 0 we are interested in the relative volatility/intermittency
process

σ̃2+
t,T =

σ2+
t

σ2+
T

, 0 ≤ t ≤ T,

which captures the variation of σ2+
t in t but loses the original scale of measure-

ment. Clearly, under the assumptions of Theorem 2.6, we may estimate σ̃2+
t,T

consistently using the realised relative quadratic variation of Y ,

[̃Yδ]t,T =
[Yδ]t
[Yδ]T

,

that is, [̃Yδ]t,T
p−→ σ̃2+

t,T as δ → 0. The realised relative quadratic variation [̃Yδ]t,T
is entirely empirically determined, self-scaling, and its consistency does not re-
quire information on the second-order structure function R.

More generally, for any p > 0, the relative volatility/intermittency functionals

σ̃p+
t,T =

σp+
t

σp+
T

, 0 ≤ t ≤ T, (3.1)

can be estimated consistently using the realised p-th order relative power vari-
ations

[̃Yδ]
(p)

t,T =
[Yδ]

(p)
t

[Yδ]
(p)
T

, 0 ≤ t ≤ T,

as outlined in the following result.

Theorem 3.1. Let p > 0. Suppose that Assumption 2.3 holds and that the
process A satisfies (2.7). Then for any T > 0,

[̃Yδ]
(p)

t,T
P−−−→

δ→0
σ̃p+
t,T (3.2)

uniformly in t ∈ [0, T ].
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Proof. Pointwise convergence in (3.2) follows immediately from Theorem 2.6.
It remains to note that the convergence is uniform since the sample paths of
{
[̃Yδ]

(p)

t,T

}
0≤t≤T

are non-decreasing and since {σ̃p+
t,T }0≤t≤T is a continuous pro-

cess.

3.2. Connection to relative energy dissipation in turbulence

Let us briefly consider the interpretation of relative volatility/intermittency from
the point of view of physics. In the classical theory of turbulence (see, e.g.,
Frisch, 1995), velocity fields are assumed to be differentiable — that is, in place
of a BSS process Y we would consider a differentiable function y : [0, T ] → R

describing the velocity component in the main direction of the flow. Then, for
t ∈ [0, T ], the surrogate energy dissipation of y at time t is defined as

ε(t) = y′(t)2

and the coarse-grained energy dissipation of y over the interval [0, t] as

ε+(t) =

∫ t

0

y′(s)2ds.

Using the mean value theorem, it is easy to show that the realised quadratic
variation of y, viz. [yδ]t, is connected to ε+(t) via the convergence

[yδ]t
δ

−−−→
δ→0

ε+(t).

Thus, we find that the realised relative quadratic variation [̃yδ]t,T satisfies

[̃yδ]t,T −−−→
δ→0

ε+(t)

ε+(T )
,

where the limit is the relative energy dissipation of y over the subinterval [0, t]
of [0, T ]. Within the turbulence literature, this definition of the relative energy
dissipation is strongly related to the definition of a multiplier in the cascade
picture of the transport of energy from large to small scales (see Cleve, Schmiegel
and Greiner (2008) and references therein).

Motivated by this discussion, in the turbulence context we interpret σ̃2+
t,T as

the relative energy dissipation of Y over [0, t] ⊂ [0, T ].

4. Central limit theorem for realised relative power variations

4.1. Stable convergence

We are about to derive a stable central limit theorem for realised relative power
variations of BSS processes. To this end, recall first that random elements
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U1, U2, . . . in some metric space U converge stably (in law) to a random ele-
ment U in U, defined on an extension (Ω′,F ′, P ′) of the underlying probability
space (Ω,F , P ), if

E{f(Un)V } −−−−→
n→∞

E′{f(U)V }

for any bounded, continuous function f : U → R and bounded random variable

V on (Ω,F , P ). We write then Un
st−→ U . Stable convergence, introduced by

Rényi (1963), is stronger than ordinary convergence in law and weaker than
convergence in probability. It is essential to note that the limiting random el-
ement U is defined on an extension of the original probability space. In fact,

when U is F -measurable, the convergence Un
st−→ U is equivalent to Un

P−→ U
(Podolskij and Vetter, 2010, Lemma 1).

Remark 4.1. The usefulness of stable convergence can be illustrated by the
following example that is pertinent to the asymptotic results below. Suppose

that Un
st−→ θξ in R, where ξ ∼ N(0, 1) and θ is a positive random variable

independent of ξ. In other words, Un follows asymptotically a mixed Gaussian
law with mean zero and conditional variance θ2. If θ̂n is a positive, consistent

estimator of θ, i.e., θ̂n
P→ θ, then the stable convergence of Un allows us to

deduce that Un/θ̂n
d−→ N(0, 1). We refer to Rényi (1963), Aldous and Eagleson

(1978), Jacod and Shiryaev (2003, pp. 512–518), and Podolskij and Vetter (2010,
pp. 332–334) for more information on the properties of stable convergence.

4.2. Stable functional central limit theorem

As a preparation for the stable central limit theorem for realised relative power
variations, we recall the stable central limit theorem for realised power variations
of BSS processes, due to Barndorff-Nielsen, Corcuera and Podolskij (2011). As
usual, the central limit theorem requires somewhat stronger assumptions than
the corresponding law of large numbers (Theorem 2.6). In particular, we need to
control the Hölder regularity of the volatility/intermittency process σ as follows.

Assumption 4.2. There exists a constant γ > 1
2 such that for any q > 0 and

T > 0,

E{|σt − σs|q} ≤ Cq,T |t− s|γq, s, t ∈ [0, T ],

where Cq,T > 0 is a constant that may depend on q and T .

In what follows, we write D([0, T ]) for the space of càdlàg functions from
[0, T ] to R, endowed with the usual Skorohod metric (Jacod and Shiryaev, 2003,
Chapter V). (Recall, however, that convergence to a continuous function in
this metric is equivalent to uniform convergence.) We also introduce a function
λp :

(
1
2 ,

5
4

)
→ (0,∞) given by

λp(ν) =

∞∑

l=2

l!a2l

(
1 + 2

∞∑

j=1

ρν(j)
l

)
, (4.1)
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where a2, a3, . . . are the coefficients in the expansion of the function up(x) =
|x|p −mp, x ∈ R, in second and higher-order Hermite polynomials x2 − 1, x3 −
3x, . . . , satisfying

∑∞
l=2 l!a

2
l < ∞ (in the case p = 2 we have, clearly, a2 = 1

and al = 0 for all l > 2). The sequence (ρν(j))
∞
j=1 is the correlation function of

fractional Gaussian noise with Hurst parameter ν − 1
2 , namely

ρν(j) =
1

2

(
(j + 1)2ν−1 − 2j2ν−1 + (j − 1)2ν−1

)
, j ≥ 1. (4.2)

Theorem 4.3. Let p ≥ 1. Suppose that Assumptions 2.3 and 4.2 hold, ν ∈(
1
2 , 1

)
, and that A satisfies

√
δ

R(δ)
p
2

[Aδ]
(p)
t

P−−−→
δ→0

0 for any t ≥ 0. (4.3)

Then for any T > 0,

δ−1/2

(
δ

R(δ)
p
2

[Yδ]
(p)
t −mpσ

p+
t

)
st−−−→

δ→0

√
λp(ν)

∫ t

0

|σs|pdWs in D([0, T ]),

where {Wt}t∈[0,T ] is a standard Brownian motion, independent of the filtration
{Ft}t∈R.

Remark 4.4. The restriction p ≥ 1 is not necessary, but we introduce it for
the sake of simpler exposition. See Theorem 4 of Barndorff-Nielsen, Corcuera
and Podolskij (2011) or Theorem 3.2 of Corcuera et al. (2013) for more general
versions of Theorem 4.3.

Remark 4.5. Using the bounds (2.8), we deduce that, under Assumption 2.3
(iv), the negligibility condition (4.3) holds if

[Aδ]
(p)
t = OP(δ

γ)

for any γ > p(ν − 1
2 )− 1

2 .

Building on Theorem 4.3, we can prove the following stable central limit
theorem for realised relative power variations of Y .

Theorem 4.6. Let p ≥ 1. Suppose that Assumptions 2.3 and 4.2 hold, ν ∈(
1
2 , 1

)
, and that A satisfies (4.3). Then for any T > 0,

δ−1/2
(
[̃Yδ]

(p)

t,T − σ̃p+
t,T

)
st−−−→

δ→0

√
λp(ν)

mpσ
p+
T

(∫ t

0

|σs|pdWs − σ̃p+
t,T

∫ T

0

|σs|pdWs

)
(4.4)

in D([0, T ]), where σ̃p+
t,T is given by (3.1) and W is a standard Brownian motion

as in Theorem 4.3.

Theorem 4.6 follows from Theorem 4.3 by invoking the following simple result
concerning the stable convergence of a process that has been normalised by its
terminal value.
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Lemma 4.7. Let T > 0 be fixed and suppose that:

• Zn = {Zn
t }0≤t≤T , for any n ∈ N, is a process defined on (Ω,F , P ) with

non-decreasing sample paths in D([0, T ]) such that Zn
T 6= 0 a.s.,

• Z = {Zt}0≤t≤T is a process defined on (Ω,F , P ) with non-decreasing sam-
ple paths in C([0, T ]) such that ZT 6= 0 a.s.,

• ξ = {ξt}0≤t≤T is a process defined on an extension (Ω′,F ′, P ′) of (Ω,F , P )
with sample paths in C([0, T ]).

If √
n(Zn

t − Zt)
st−−−−→

n→∞
ξt in D([0, T ]), (4.5)

then
√
n

(
Zn
t

Zn
T

− Zt

ZT

)
st−−−−→

n→∞

1

ZT

(
ξt −

Zt

ZT
ξT

)
in D([0, T ]).

Proof. Since Zn and Z have non-decreasing sample paths and the sample paths
of Z are continuous, we have

sup
0≤t≤T

∣∣∣∣
Zn
t

Zn
T

− Zt

ZT

∣∣∣∣ ≤
2

|ZT |
sup

0≤t≤T
|Zn

t − Zt| P−−−−→
n→∞

0

by (4.5). Due to the properties of stable convergence, we obtain then

(√
n(Zn

t − Zt),
Zn
t

Zn
T

)
st−−−−→

n→∞

(
ξt,

Zt

ZT

)
in D([0, T ])2. (4.6)

Let us now consider the decomposition

√
n

(
Zn
t

Zn
T

− Zt

ZT

)
=

1

ZT

(√
n(Zn

t − Zt)−
√
n(Zn

T − ZT )
Zn
t

Zn
T

)
.

Using again the fact that convergence to a continuous function in D([0, T ]) is
equivalent to uniform convergence, it follows that the map (x, y) 7→ x − x(T )y
from D([0, T ])2 to D([0, T ]) is continuous on C([0, T ])2. Since ξ and Z have
continuous sample paths, the assertion follows from (4.6) and the properties of
stable convergence.

For practical applications, we need a statistically feasible version of Theorem
4.6. Conditional on {Ft}t∈R, the limiting process on the right-hand side of (4.4)
is a Gaussian bridge. In particular, its (unconditional) marginal law at time
t ∈ [0, T ] is mixed Gaussian with mean zero and conditional variance

λp(ν)

(mpσ
p+
T )2

((
1− σ̃p+

t,T

)2
σ2p+
t +

(
σ̃p+
t,T

)2
(σ2p+

T − σ2p+
t )

)
. (4.7)

To be able to estimate the conditional variance (4.7), we need a consistent
estimator of the factor λp(ν) that depends on the smoothness parameter ν. To
this end, the following fact is crucial.
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Lemma 4.8. The function ν 7→ λp(ν) is continuous.

Proof. It suffices to show that ν 7→ λp(ν) is continuous on
(
1
2 , ν

)
for any ν ∈(

1
2 ,

5
4

)
. Applying the mean value theorem twice to (4.2), we can show that there

is a constant C > 0 such that |ρν(j)| ≤ Cj2ν−3 for any j ≥ 1 and ν ∈
(
1
2 , ν

)
.

Thus for any l ≥ 2 the function ν 7→
∑∞

j=1 ρν(j)
l is continuous on

(
1
2 , ν

)
, by

Lebesgue’s dominated convergence theorem. Moreover, since |ρν(j)| ≤ 1 and
6− 4ν > 1, we have for any ν ∈

(
1
2 , ν

)
and l ≥ 2,

∣∣∣∣∣

∞∑

j=1

ρν(j)
l

∣∣∣∣∣ ≤
∞∑

j=1

ρν(j)
2 ≤ C2

∞∑

j=1

1

j6−4ν
< ∞.

The continuity of λp follows then by applying Lebesgue’s dominated convergence
theorem to the outer sum in (4.1) (recall that

∑∞
l=2 l!a

2
l < ∞).

Barndorff-Nielsen, Corcuera and Podolskij (2011, 2013) and Corcuera et al.
(2013) have developed estimators ν̂δ of ν, based on the observations Y0, Yδ, . . . ,
Y⌊T/δ⌋δ , that are consistent as δ → 0. Using such an estimator, Lemma 4.8, and
the properties of stable convergence, we obtain a feasible central limit theorem
for realised relative power variations.

Proposition 4.9. Suppose that ν̂δ
P−→ ν as δ → 0. Then under the assumptions

of Theorem 4.6, we have for any T > 0 and t ∈ (0, T ),

δ−1/2
(
[̃Yδ]

(p)

t,T − σ̃p+
t,T

)

√
Vt,T (δ)

d−−−→
δ→0

N(0, 1),

where

Vt,T (δ)

=
λp(ν̂δ)

δm2p

(
[Yδ]

(p)
T

)2
((

1− [̃Yδ]
(p)

t,T

)2

[Yδ]
(2p)
t +

(
[̃Yδ]

(p)

t,T

)2(
[Yδ]

(2p)
T − [Yδ]

(2p)
t

))
.

4.3. Inference on relative volatility/intermittency

Proposition 4.9 can be used to construct approximative, pointwise confidence
intervals for the relative volatility/intermittency σ̃p+

t,T . Since, by construction,

σ̃p+
t,T assumes values in [0, 1], it is natural to constrain the confidence interval

to be a subset of [0, 1]. Thus, we define for any a ∈ (0, 1) the corresponding
(1− a) · 100% confidence interval as

[
max

{
[̃Yδ]

(p)

t,T − z1−a/2

√
δVt,T (δ), 0

}
, min

{
[̃Yδ]

(p)

t,T + z1−a/2

√
δVt,T (δ), 1

}]
,

where z1−a/2 > 0 is the 1− a
2 -quantile of the standard Gaussian distribution.
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Another application of the central limit theory is a non-parametric homo-
skedasticity test that is similar in nature to the classical Kolmogorov–Smirnov
and Cramér–von Mises goodness-of-fit tests for empirical distribution functions.
This extends the homoskedasticity tests proposed by Dette, Podolskij and Vetter
(2006) and Dette and Podolskij (2008) to a non-semimartingale setting. Another
extension of these tests to non-semimartingales, namely fractional diffusions, is
given by Podolskij and Wasmuth (2013). The approach is also similar to the
cumulative sum of squares test (Brown, Durbin and Evans, 1975) of structural
breaks studied in time series analysis literature. To formulate our test, we in-
troduce the hypotheses

{
H0 : σt = σ0 for all t ∈ [0, T ],

H1 : σt 6= σ0 for some t ∈ [0, T ].

As mentioned above, Theorem 4.6 implies that under H0,

δ−1/2

(
[̃Yδ]

(p)

t,T − t

T

)
st−−−→

δ→0

√
λp(ν)

mp · T
(
Wt −

t

T
WT

)
. (4.8)

The distance between the realised relative power variation and the linear func-
tion t 7→ t

T can be measured using various norms and metrics. Here, we consider
the typical sup and L2 norms that correspond to the Kolmogorov–Smirnov and
Cramér–von Mises test statistics, respectively. More precisely, we define the
statistics

SKS
δ =

mp

√
T√

δλp(ν̂δ)
sup

k=1,...,⌊T/δ⌋−1

∣∣∣∣[̃Yδ]
(p)

kδ,T − k

⌊T/δ⌋

∣∣∣∣,

SCvM
δ =

m2
p

λp(ν̂δ)

⌊T/δ⌋−1∑

k=1

(
[̃Yδ]

(p)

kδ,T − k

⌊T/δ⌋

)2

,

where ν̂δ is any consistent estimator of ν. Under H0, these statistics have the
classical Kolmogorov–Smirnov and Cramér–vonMises limiting distributions, re-
spectively, as outlined in the following result.

Proposition 4.10. Suppose that the assumptions of Theorem 4.6 hold. Then,
under H0,

SKS
δ

st−−−→
δ→0

sup
0≤s≤1

∣∣W s

∣∣, (4.9)

SCvM
δ

st−−−→
δ→0

∫ 1

0

W
2

sds, (4.10)

where
{
W t

}
t∈[0,1]

is a standard Brownian bridge, independent of the filtration

{Ft}t∈R. Moreover, under H1, both SKS
δ and SCvM

δ diverge to infinity as δ → 0.
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Proof. Under H0, we have

SKS
δ =

mp

√
T√

δλp(ν̂δ)
sup

0≤t≤T

∣∣∣∣[̃Yδ]
(p)

t,T − t

T

∣∣∣∣+Op(δ
1/2)

st−−−→
δ→0

sup
0≤s≤1

∣∣W s

∣∣,

SCvM
δ =

m2
p

δλp(ν̂δ)

∫ T

0

(
[̃Yδ]

(p)

t,T − t

T

)2

dt+Op(δ
1/2)

st−−−→
δ→0

∫ 1

0

W
2

sds,

by (4.8), Lemma 4.8, and the scaling properties of Brownian motion. The di-
vergence of SKS

δ and SCvM
δ as δ → 0 under H1 is a straightforward consequence

of Theorem 3.1.

Remark 4.11. Well-known series expansions for the cumulative distribution
functions of the limiting functionals in (4.9) and (4.10) can be found, e.g., in
Lehmann and Romano (2005, p. 585) and Anderson and Darling (1952, p. 202),
respectively.

Remark 4.12. The finite-sample performance of the test statistics SKS
δ and

SCvM
δ is explored in a separate paper (Bennedsen, Lunde and Pakkanen, 2014a).

5. Application to turbulence data

We apply the methodology developed above to empirical data of turbulence.
The data consist of a time series of the main component of a turbulent ve-
locity vector, measured at a fixed position in the atmospheric boundary layer
using a hotwire anemometer, during an approximately 66 minutes long observa-
tion period at sampling frequency of 5 kHz (i.e. 5000 observations per second).
The measurements were made at Brookhaven National Laboratory (Long Island,
NY), and a comprehensive account of the data has been given by Drhuva (2000).

As a first illustration, we study the observations up to time horizon T = 800
milliseconds. Using the smallest possible lag, δ = 0.2 ms, this amounts to 4000
observations. Figure 1(a) displays the squared increments corresponding to these
observations. As a comparison, the same time horizon is captured in Figure 1(b)
but with lag δ = 0.8 ms. Figure 1(c) compares the associated accumulated re-
alised relative energy dissipations/quadratic variations. The graphs for these
two lags show very similar behaviour, exhibiting how the total time interval is
divided into a sequence of intervals over which the slope of the energy dissi-
pation is roughly constant. On the other hand, the amplitudes of the volatil-
ity/intermittency are of the same order in the whole observation interval.

To be able to draw inference on relative volatility/intermittency using the
data, we need to address two issues. Firstly, for this time series, the lags δ = 0.2
ms and δ = 0.8 ms are below the so-called inertial range of turbulence, where a
BSS process with a gamma kernel, a model of ideal turbulence, provides an ac-
curate description of the data—see Corcuera et al. (2013), where the same data
are analysed. Secondly, the data were digitised using a 12-bit analog-to-digital
converter. Thus, the measurements can assume at most 212 = 4096 different
values, and due to the resulting discretisation error, a non-negligible number
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(b) δ = 0.8 ms
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Fig 1. Brookhaven turbulence data: (a) The squared increment process with lag δ = 0.2 ms
over the time horizon T = 800 ms. (b) The squared increment process with lag δ = 0.8
ms over the same time horizon T = 800 ms. (c) The realised relative quadratic variations
corresponding to δ = 0.2 ms and δ = 0.8 ms, and the same time horizon, T = 800 ms, as in
plots (a) and (b).

of increments are in fact equal to zero (roughly 20 % of all increments). These
discretisation errors are bound to bias the estimation of the parameter ν, which
is needed for the inference methods. We mitigate these issues by subsampling,
namely, we apply the inference methods using a considerably longer lag, δ = 80
ms, which is near the lower bound of the inertial range for this time series
(Corcuera et al., 2013, Figure 1).

We divide the time series into 66 non-overlapping one-minute-long subperi-
ods, testing the constancy of σ, i.e., the null hypothesis H0, within each sub-
period. Figure 2(a) displays the estimates of ν for each subperiod using the
change-of-frequency method (Barndorff-Nielsen, Corcuera and Podolskij, 2013;
Corcuera et al., 2013). All of the estimates belong to the interval (12 , 1) and they
are scattered around the value ν = 5

6 predicted by Kolmogorov’s (K41) scaling
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Fig 2. Brookhaven turbulence data: (a) Estimates of ν, using the change-of-frequency method
and lag δ = 80 ms, for each one-minute subperiod and the value predicted by Kolmogorov’s
(K41) scaling law. (b) and (c) Kolmogorov–Smirnov and Cramér–von Mises-type test statis-
tics and the corresponding critical values for the constancy of σ for each subperiod. The red
bars indicate the 27th and 40th subperiods that are analysed in more detail in Figure 3.

law of turbulence (Kolmogorov, 1941a,b). The homoskedasticity test statistics,
for p = 2, and their critical values, derived using Proposition 4.10, in Figure
2(b) indicate that the null hypothesis of the constancy of σ is typically rejected.
Moreover, the two variants, SKS

80 and SCvM
80 lead to rather similar results.

To understand what kind of intermittency the tests are detecting in the data,
we look into two extremal cases, the 27th and 40th subperiods (the red bars in
Figure 2(b) and (c)). To this end, we plot the realised relative energy dissipa-
tions, with δ = 80 ms, during the 27th and 40th subperiods in Figure 3(a) and
(b), respectively. We also include the pointwise confidence intervals, the p-values
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Fig 3. Brookhaven turbulence data: Realised relative quadratic variations during the 27th
(a) and 40th (b) subperiods with δ = 80 ms and δ = 0.2 ms. Additionally, p-values for
the hypothesis H0, estimates of ν using the change-of-frequency method, and 95% pointwise
confidence intervals, all using the lag δ = 80 ms.

of the homoskedasticity tests, and as a reference, the realised relative quadratic
variations using the smallest possible lag δ = 0.2 ms. While the realised rela-
tive quadratic variations exhibit a slight discrepancy between the lags δ = 80
ms and δ = 0.2 ms, it is clear that 40th subperiod indeed contains significant
intermittency, whereas during the 27th subperiod, the (accumulated) realised
relative energy dissipation grows nearly linearly.

6. Conclusion

We have introduced the concept of relative volatility/intermittency and we have
shown how relative volatility/intermittency can be assessed using realised rela-
tive quadratic variations in the context of non-semimartingale Brownian semis-
tationary (BSS) processes. (Straightforward extensions of the methodology be-
yond BSS processes are discussed in Appendix A.)

Realised relative quadratic variations are parameter-free statistics that pro-
vide estimates of the relative volatility/intermittency in subintervals of the full
observation range, by relating the realised quadratic variation over each subin-
terval to the total realised quadratic variation for the entire range. They provide
robust estimates of the relative accumulated volatility/intermittency as this de-
velops over time and are intimately connected to the concept of relative energy
dissipation in the statistical theory of turbulence. An extension to vector valued
processes is an issue of interest, in particular in relation to the definition of the
energy dissipation in three-dimensional turbulent fields.

Moreover, we have applied our estimation and inference methods to assess
relative intermittency/energy dissipation in empirical data of atmospheric tur-
bulence. In ongoing work (Bennedsen, Lunde and Pakkanen, 2014b), these meth-
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ods are also being applied to volatility estimation with electricity price data,
which exhibit non-negligible correlations in returns that can be successfully cap-
tured by models based on BSS processes (Barndorff-Nielsen, Benth and Veraart,
2013).
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Appendix A: Relative volatility/intermittency in the context of
fractional processes and beyond

We have introduced relative volatility/intermittency in the context of BSS pro-
cesses, but the concept has much wider applicability. The key asymptotic results
for realised relative power variations, Theorems 3.1 and 4.6, can easily be gen-
eralised to other classes of processes. Indeed, Lemma 4.7 can take any stable3

functional central limit theorem for power variations of some process (provided
that the limiting process is continuous) as an ‘input’ to produce a ‘relative’
version of the result. As an example, we consider now briefly a generalisation
to another class of non-semimartingales, namely fractional processes that are
defined as integrals with respect to fractional Brownian motion. We also list
below a number of other possible generalisations.

More concretely, let us consider a process Y ′ = {Y ′
t }t≥0 given by

Y ′
t =

∫ t

0

usdZ
H
s , (A.1)

where ZH = {ZH
t }t≥0 is a fractional Brownian motion with Hurst parameter

H ∈ (0, 1) and u = {ut}t≥0 is a volatility/intermittency process with finite r-
variation for some r < 1

1−H (we refer to Corcuera, Nualart and Woerner (2006)
for the definition of r-variation). The integral in (A.1) is defined pathwise, in
particular, it is not necessary to assume that u is adapted to the natural filtration
of ZH . We could also add to Y ′

t a skewness term analogous to At of (2.1), but
for simplicity it is eschewed here.

Corcuera, Nualart and Woerner (2006, Theorem 1) show that for any p > 0
and t ≥ 0, the p-th power variation of Y ′ satisfies

δ1−pH [Y ′
δ ]

(p)
t

P−−−→
δ→0

mpu
p+
t ,

3Stable convergence is crucial for the validity of Lemma 4.7.
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where up+
t =

∫ t

0 |us|pds. Thus, analogously to Theorem 3.1, we find that for any
T > 0,

[̃Y ′
δ ]

(p)

t,T

P−−−→
δ→0

ũp+
t,T ,

uniformly in t ∈ [0, T ], where

[̃Y ′
δ ]

(p)

t,T =
[Y ′

δ ]
(p)
t

[Y ′
δ ]

(p)
T

, ũp+
t,T =

up+
t

up+
T

.

Further, when p ≥ 1, H ∈
(
0, 3

4

)
, and the sample paths of u are γ-Hölder

continuous with γ > 1
2 , it holds that (Corcuera, Nualart and Woerner, 2006,

Theorem 4) for any T > 0,

δ−
1

2

(
δ1−pH [Y ′

δ ]
(p)
t −mpu

p+
t

) st−−−→
δ→0

√
λp

(
H +

1

2

)∫ t

0

|us|pdWs in D([0, T ]),

where W is a standard Brownian motion independent of the natural filtration
of ZH . Using Lemma 4.7, we can then conclude that

δ−
1

2

(
[̃Y ′

δ ]
(p)

t,T − ũp+
t,T

) st−−−→
δ→0

√
λp

(
H + 1

2

)

mpu
p+
T

(∫ t

0

|us|pdWs − ũp+
t,T

∫ T

0

|us|pdWs

)

in D([0, T ]).

In addition to BSS and fractional processes, relative volatility/intermittency
statistics could be used in a similar vein at least in the following settings:

• Power and multipower variations of continuous Itô semimartingales, based
on the asymptotic theory developed by Barndorff-Nielsen et al. (2006).
Also, the consistency of realised relative power variations of certain mul-
tifractal processes (Duvernet, 2010; Duvernet, Robert and Rosenbaum,
2010; Ludeña and Soulier, 2014), which are non-Itô semimartingales, could
be shown.

• Power variations of stochastic integrals with respect to symmetric α-stable
Lévy processes (Corcuera and Farkas, 2010).

• Power variations of BSS processes using higher-order increments (Barn-
dorff-Nielsen, Corcuera and Podolskij 2013; Corcuera et al., 2013). With
second or higher order increments, the restriction ν < 1 in Theorem 4.3
(and in its applications) can be lifted.

• Power variations of two-parameter ambit fields driven by white noise, ob-
served on a line segment (Barndorff-Nielsen and Graversen, 2011) or on
a square lattice (Pakkanen, 2014). However, in these settings only con-
sistency of realised relative power variations can be established using the
currently available asymptotic theory.
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Appendix B: Estimating the scaling factor of realised quadratic
variation

As seen in Sections 2 and 4, the asymptotic theory for power variations of
the BSS process Y requires a suitable scaling of the realised power variation
by a factor that depends on the second-order structure function R. We will
now discuss whether the scaling factor can be estimated from the observed
data, which would be an alternative to using relative volatility/intermittency
statistics. For simplicity, we focus on quadratic variations, which are the most
relevant in practical applications.

Assumption 2.3 postulates that R(δ) behaves like δ2ν−1 as δ → 0, apart from
a slowly varying factor LR(δ). If LR(δ) is ‘well-behaved’ and normalised in the
sense that limδ→0 LR(δ) = 1, then in Theorem 2.6 for the case p = 2 the scaling
factor δ

R(δ) can be replaced with δ2−2ν , to wit,

δ2−2ν [Yδ]t
P−−−→

δ→0
σ2+
t (B.1)

for any t ≥ 0. The condition limδ→0 LR(δ) = 1 holds, e.g., when g is the gamma
kernel (2.3) with ν ∈

(
1
2 ,

3
2

)
and c is chosen in a suitable way (Barndorff-Nielsen,

Corcuera and Podolskij, 2011, p. 1173). If, additionally, LR(δ) = 1 + o(δ
1

2 ) as
δ → 0, which is again true in the aforementioned situation with g of the gamma
form, the convergence in the central limit theorem (Theorem 4.3) in the case
p = 2 can be simplified to

δ−
1

2

(
δ2−2ν [Yδ]t − σ2+

t

) st−−−→
δ→0

√
2

∫ t

0

σ2
sdWs in D([0, T ]). (B.2)

As shown by Barndorff-Nielsen, Corcuera and Podolskij (2013) and Corcuera
et al. (2013), the smoothness parameter ν can be estimated consistently in the
infill asymptotic setting with an estimator ν̂δ with the usual rate of convergence
δ

1

2 . Then it is natural to ask, whether we can simply substitute ν with ν̂δ in
(B.1) and (B.2) without affecting the asymptotic behaviour of the scaled re-
alised quadratic variation. From the following result we learn that [Yδ]t with
the estimated scaling δ2−2ν̂δ indeed attains consistency. However, the second-
order behaviour is affected by the estimated scaling: the rate of convergence
becomes slower and the asymptotic distribution is non-standard, due to the es-
timation error of ν. Similar results have been shown (under constant volatility)
by Coeurjolly (2001, Proposition 4) in the context of fractional Brownian mo-
tion and by Brouste and Iacus (2013, Theorem 1) in the context of fractional
Ornstein–Uhlenbeck processes.

Proposition B.1. Let δ ∈ (0, 1) and let ν̂δ be an estimator of the smoothness
parameter ν such that

δ−
1

2 (ν̂δ − ν)
st−−−→

δ→0
ξ, (B.3)

where ξ is an a.s. finite random variable.
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(a) If the assumptions of Theorem 2.6 hold and limδ→0 LR(δ) = 1, then for
any t ≥ 0,

δ2−2ν̂δ [Yδ]t
P−−−→

δ→0
σ2+
t .

(b) If the assumptions of Theorem 4.3 hold and LR(δ) = 1 + o(δ
1

2 ) as δ → 0,
then

δ−
1

2

log(δ−1)

(
δ2−2ν̂δ [Yδ]t − σ2+

t

) st−−−→
δ→0

2ξσ2+
t in D([0, T ]).

Proof. (a) Let us write

δ2−2ν̂δ [Yδ]t = δ−2(ν̂δ−ν)δ2−2ν [Yδ]t = eQδδ2−2ν [Yδ]t,

where Qδ = 2 log(δ−1)(ν̂δ − ν). By the condition (B.3), we find that

Qδ = 2δ
1

2 log(δ−1)δ−
1

2 (ν̂δ − ν)
P−−−→

δ→0
0. (B.4)

Thus, eQδ
P−→ 1 as δ → 0, and the assertion follows then from (B.1).

(b) Let us consider the decomposition

δ−
1

2

log(δ−1)

(
δ2−2ν̂δ [Yδ]t − σ2+

t

)
= Uδδ

2−2ν [Yδ]t +
δ−

1

2

log(δ−1)

(
δ2−2ν [Yδ]t − σ2+

t

)
,

where

Uδ =
δ−

1

2

log(δ−1)

(
δ−2(ν̂δ−ν) − 1

)
=

δ−
1

2

log(δ−1)

(
eQδ − 1

)
.

By (B.2), we have clearly

δ−
1

2

log(δ−1)

(
δ2−2ν [Yδ]t − σ2+

t

) P−−−→
δ→0

0 in D([0, T ]).

Due to (B.1) and the properties of stable convergence, it suffices now to show

that Uδ
st−→ 2ξ as δ → 0. To this end, define u(x) = ex − 1 − x, x ∈ R. Observe

that

Uδ = 2δ−
1

2 (ν̂δ − ν) +
u(Qδ)

δ
1

2 log(δ−1)
, (B.5)

and in view of the condition (B.3) it remains to show that the second term on
right-hand side of (B.5) converges to zero in probability as δ → 0. To this end,
let η > 0 and consider

P

{∣∣∣∣
u(Qδ)

δ
1

2 log(δ−1)

∣∣∣∣ > η

}
≤ P

{∣∣∣∣
u(Qδ)

δ
1

2 log(δ−1)

∣∣∣∣ > η, |Qδ| ≤ 1

}
+ P{|Qδ| > 1},

where limδ→0 P{|Qδ| > 1} = 0 by (B.4). Using the elementary inequality
|u(x)| ≤ 3x2, valid when |x| ≤ 1, we finally deduce that

P

{∣∣∣∣
u(Qδ)

δ
1

2 log(δ−1)

∣∣∣∣ > η, |Qδ| ≤ 1

}
≤ P

{∣∣∣∣
3Q2

δ

δ
1

2 log(δ−1)

∣∣∣∣ > η

}
−−−→
δ→0

0,
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since
3Q2

δ

δ
1

2 log(δ−1)
= 12δ

1

2 log(δ−1)
(
δ−

1

2 (ν̂δ − ν)
)2 P−−−→

δ→0
0,

which in turn is a simple consequence of the condition (B.3).

Appendix C: Sufficient conditions for the negligibility of the
skewness term

This appendix provides some methods of checking the negligibility conditions
(2.7) and (4.3) with some concrete specifications of the process A = {At}t≥0.

Suppose first that the process A is given by

At = µ+

∫ t

0

asds,

where µ ∈ R is a constant and the process {at}t≥0 is measurable and locally
bounded. Then we can establish rather simple conditions for its negligibility in
the asymptotic results for power variations. By Jensen’s inequality, we have for
any p ≥ 1, s ≥ 0, and t ≥ 0,

|As −At|p ≤ Ca · |s− t|p,

where Ca > 0 is a random variable that depends locally on the path of a. Thus,
we find that for any t ≥ 0,

[Aδ]
(p)
t = Oa.s.(δ

p−1)

as δ → 0. Then, in view of Remarks 2.7 and 4.5 and the restriction ν < 3
2 , the

condition (2.7) holds always and (4.3) holds provided that p > 1
3−2ν (which is

always true if p ≥ 1).
Suppose now, instead, that A follows

At = µ+

∫ t

−∞

q(t− s)asds, (C.1)

where q is the gamma kernel

q(t) = c′tη−1e−ρt

for some c′ > 0, η > 0, and ρ > 0. We assume that the process {at}t∈R is
measurable, locally bounded, and satisfies

A∗
t = sup

0≤u≤t

∫ u

−∞

q(u− s)|as|ds < ∞ a.s. (C.2)

for any t ≥ 0, which is true, e.g., when the auxiliary process
∫ u

−∞
q(u− s)|as|ds,

u ≥ 0, has a càdlàg or continuous modification.
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Lemma C.1. If A is given by (C.1), and (C.2) holds, then for any p > 0 and
t ≥ 0,

[Aδ]
(p)
t = Oa.s.(δ

pmin{η,1}−1) (C.3)

as δ → 0. Thus the condition (2.7) holds if min{η, 1} > ν − 1
2 and (4.3) holds

if min{η, 1} > ν − p−1
2p .

Proof. Let us first look into the properties of q. For the sake of simpler notation,
we make the innocuous assumption that c′ = 1. Since

q′(t) =

(
η − 1

t
− ρ

)
q(t), (C.4)

we find that q is decreasing when η ≤ 1. When η > 1, q is increasing on
(
0, η−1

ρ

)

and decreasing on
(
η−1
ρ ,∞

)
.

Let t ≥ 0 be fixed, δ ∈ (0, 1), and let j ≥ 1 be such that jδ ≤ t. Below, all
big O estimates hold uniformly in such j. We consider the decomposition

Ajδ −A(j−1)δ =

∫ jδ

(j−1)δ

q(jδ − s)asds

+

∫ (j−1)δ

(j−2)δ

(
q(jδ − s)− q((j − 1)δ − s)

)
asds

+

∫ (j−2)δ

s∗

(
q(jδ − s)− q((j − 1)δ − s)

)
asds

+

∫ s∗

−∞

(
q(jδ − s)− q((j − 1)δ − s)

)
asds

= I1δ + I2δ + I3δ + I4δ ,

where

s∗ = −max

{
η − 1

ρ
, 1

}
.

When η ≥ 1, q is bounded and we have |I1δ + I2δ | = a∗tO(δ), where

a∗t = sup
s∗≤s≤t

|as| < ∞ a.s.,

and when η < 1, we find that

|I1δ + I2δ | ≤ 2a∗t

∫ δ

0

q(s)ds = a∗tO(δη).

Next, we want to show that

|I3δ | = a∗tO(δmin{η,1}). (C.5)
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In the case η ≥ 2 the derivative q′ is bounded and (C.5) is immediate. Suppose
that η < 2. Then, |q′(t)| ≤ Ctη−2 on any finite interval, where C > 0 depends
on the interval. Using the mean value theorem, we obtain

|I3δ | ≤ Ca∗t δ

∫ (j−2)δ

s∗

(
(j − 1)δ − s

)η−2
ds,

which implies (C.5). To bound |I4δ |, note that, by (C.4), |q′(t)| ≤ C′q(t) for all
t ≥ −s∗, where C′ > 0 is a constant. For any s < s∗, we have (j−1)δ−s > η−1

ρ .
Thus, by the mean value theorem,

∣∣(q(jδ − s)− q((j − 1)δ − s)
)∣∣ ≤ C′q

(
(j − 1)δ − s

)
δ

and, consequently,

|I4δ | ≤ C′δ

∫ (j−1)δ

−∞

q
(
(j − 1)δ − s

)
|as|ds = A∗

tO(δ).

Collecting the estimates, we have

|Ajδ −A(j−1)δ | = max{a∗t , A∗
t }O(δmin{η,1})

uniformly in j, whence (C.3) follows. Checking the sufficiency of the asserted
criteria for (2.7) and (4.3) is now a straightforward task (based on Remarks 2.7
and 4.5).
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