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Abstract: Partially identified models are characterized by the distribution
of observables being compatible with a set of values for the target param-
eter, rather than a single value. This set is often referred to as an identifi-
cation region. From a non-Bayesian point of view, the identification region
is the object revealed to the investigator in the limit of increasing sample
size. Conversely, a Bayesian analysis provides the identification region plus
the limiting posterior distribution over this region. This purports to convey
varying plausibility of values across the region. Taking a decision-theoretic
view, we investigate the extent to which having a distribution across the
identification region is indeed helpful.

MSC 2010 subject classifications: Primary 60K35, 62F15; secondary
62F12.
Keywords and phrases: Bayesian inference, partial identification, pos-
terior distribution.

Received September 2013.

1. Introduction

1.1. Partial identification

Limitations in terms of what variables can be observed, and how well they
can be measured, can result in a statistical model which is nonidentified. That
is, multiple values of the parameters can give rise to the same distribution of
observables. Say the statistical model at hand is parameterized by θ ∈ Θ, where θ
has p components. If the likelihood function depends on θ only through φ = s(θ)
having q < p components, for some non-injective function s(), then the model is
nonidentified. In this paper we consider situations where the model for the data
given φ obeys standard asymptotic regularity conditions, so that

√
n-consistent

estimation of φ is possible. We also presume that interest focusses on a scalar
inferential target, denoted ψ = g(θ).

In what follows, we generically use square brackets to denote taking the image
of a set under a function, as opposed to simply evaluating the function at a point
in its domain. The identification region for the target parameter is defined as
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I(φ) = g[{θ ∈ Θ : s(θ) = φ}]. Intuitively, say the true parameter values giving
rise to the data are θ = θ0, with φ0 = s(θ0). In the large-sample limit the data
reveal the value of φ0. Thus the corresponding identification region I(φ0) is all
values of the target that remain compatible with the data in this limit.

For simplicity of exposition, and without very much loss of generality, we
restrict our interest to models under which the identification region is in fact
guaranteed to be an interval of finite length, i.e., I(φ) is an interval for all
φ ∈ s[Θ]. More fundamentally, we consider only the sub-class of nonidentified
models and choices of target parameter for which the target is partially identified
in the following sense. By construction, for every θ ∈ Θ, g[{θ}] ⊆ I(s(θ)) ⊆ g[Θ].
We say the target is partially identified if g[{θ}] ( I(s(θ)) ( g[Θ], for at least one
θ ∈ Θ. Note that this corresponds very literally to a sense of partial information.
For a sequence of data arising under such a θ, at least one a priori plausible value
of the target is ruled out as the data accumulate, while at least one incorrect
value of the target remains plausible.

As a very simple example of a partially identified model, say that interest
lies in the population prevalence µ of a binary trait Y . However, only Y ∗, a
binary surrogate for Y , is observable. Furthermore, say the surrogate is known
to have perfect specificity, i.e., Pr(Y ∗ = 0|Y = 0) = 1. However, the sensitivity
η = Pr(Y ∗ = 1|Y = 1) is only known to exceed a bound b. So the problem is
parameterized by θ = (µ, η) ∈ (0, 1)×(b, 1), with target parameter ψ = g(µ, η) =
µ. The likelihood function clearly depends only on φ = s(µ, η) = Pr(Y ∗ = 1) =
µη. Thus the identification interval is I(φ) = (φ,min{φ/b, 1}). Note that even
this simple problem has a typical feature of partial identification: depending on
where we are in the parameter space, we learn less or more about the target. For
instance, say that b = 0.8. If it happens to be that (µ, η) = (0.75, 0.81), then,
as data accumulate, we learn that µ ∈ I(φ) = (0.608, 0.760). But if it happens
to be that (µ, η) = (0.95, 0.99), then we draw the much sharper inference that
µ ∈ I(φ) = (0.9405, 1).

1.2. Example: Imperfect compliance in a randomized trial

As a more involved example of a partially identified model, we consider a version
of the imperfect compliance model with binary variables considered by various
authors, including Chickering and Pearl [3], Imbens and Rubin [16], Pearl [24,
Ch. 8], and Richardson et al. [26]. Clinical trial participants are randomly sam-
pled from a population comprised of never-takers, always-takers, and compliers,
in unknown proportions ωNT , ωAT , and ωCO = 1 − ωNT − ωAT respectively.
Each subject is randomly assigned to either control or treatment. As the labels
suggest, never-takers will not take treatment regardless of their assignment,
always-takers will take treatment regardless of their assignment, and compliers
will follow their assignment. We exclude the possibility of defiers in the popu-
lation, though the general version of the problem allows for them.

Assume that a participant’s binary response is Y (0) if treatment is not taken,
and Y (1) if treatment is taken, regardless of treatment assignment. Then a
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participant’s observable response is Y = (1 − X)Y (0) + XY (1), where X in-
dicates receipt of treatment. Against this, let Z indicate randomization to
treatment, with the possibility that X 6= Z. For compliance type indicated by
C ∈ {NT,AT,CO}, let γC,i be the mean of Y (i) amongst the sub-population
of that type. We consider inference about the population average causal effect
(ACE), given as

ψ = ωNT (γNT,1 − γNT,0) + ωAT (γAT,1 − γAT,0) + ωCO(γCO,1 − γCO,0).

It is easy to verify that the present set-up gives a nonidentified model, with p =
8, q = 6, θ = (ωNT , ωAT , γ), and φ = (ωNT , ωAT , γNT,0, γAT,1, γCO,0, γCO,1).
Particularly, the form of the invertible map from φ to the (Y,X |Z) cell proba-
bilities is readily established (see Appendix A for details). Unsurprisingly, the
parameters absent from φ, namely γNT,1 and γAT,0, are the intuitively unes-
timable quantities: the mean outcomes for never-takers who take treatment and
for always-takers who don’t take treatment.

It is also straightforward to verify that this model is partially identified when
the ACE is the inferential target. Defining

a(φ) = ωCO(γCO,1 − γCO,0) + ωNT (1/2− γNT,0) + ωAT (γAT,1 − 1/2), (1)

b(φ) = (ωNT + ωAT )/2, (2)

the identification interval for the ACE is I(φ) = (a(φ)−b(φ), a(φ)+b(φ)). Thus,
unless the population happens to contain only compliers, uncertainty about the
ACE will remain no matter how much data accumulates. We will investigate
the limiting behavior of Bayesian inference for the ACE in Section 3.1.

1.3. Example: Inferring gene-environment interaction

As another example of a partially identified model, consider binary disease sta-
tus Y , binary environmental exposure X , and binary genotype G. As a variant
of a problem studied by Gustafson [10] and Gustafson and Burstyn [13], inter-
est lies in the (Y |X,G) relationship when only (Y,G) data are available, but
certain assumptions can be invoked. The first of these is the gene-environment
independence assumption, that X and G are independent in the source popula-
tion. Second, the disease risk amongst the unexposed is assumed to not vary by
genotype, i.e., any impact of genotype is only via modification of the exposure
effect, a so-called gene-environment interaction. Third, while (Y,X,G) data are
not available, information about the X prevalence in the population is presumed
to be available. So the problem can be viewed as one of “ecological inference,” as
we wish to infer a property of the joint (Y,G,X) distribution from information
about the (Y,G) and X marginals. As one example of an inferential target, say
the task is to estimate ψ = Pr(Y = 1|X = 1, G = 1)−Pr(Y = 1|X = 0, G = 1),
the risk difference associated with exposure amongst those with genotype G = 1.

To gain a foothold in this problem, let θ = (µ0, µ10, µ11) parameterize the dis-
tribution of (Y |X,G), according to µ0 = Pr(Y = 1|X = 0) = Pr(Y = 1|X = 0,
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G = g), for g = 0, 1, and µ1g = Pr(Y = 1|X = 1, G = g), for g = 0, 1. We
take r = Pr(X = 1) as a fixed constant, and define φg = Pr(Y = 1|G = g) =
(1 − r)µ0 + rµ1g, for g = 0, 1. Thus the likelihood arising from the (Y |G) data
depends on θ only through φ = (φ0, φ1). Hence we have a nonidentified model
with p = 3 and q = 2. (Note that here we have left the marginal distribution of
G unmodeled, but it makes no material difference if we include Pr(G = 1) as a
further parameter and then have a nonidentified model with p = 4 and q = 3.)
In Section 3.2 we will determine the identification interval I(φ) for the target
parameter ψ = µ11 −µ0, and we will consider the limiting behavior of Bayesian
inference in this setting.

1.4. Inferential approaches to partially identified models

There is a considerable literature on non-Bayesian approaches to partially iden-
tified models. See, for instance, Manski [21], Imbens and Manski [15], Romano
and Shaikh [27], Vansteelandt et al. [29], Zhang [30], Tamer [28]. Typically the
endeavor is split into two tasks. For a given problem, first one determines the
form of the identification interval. Then the interval endpoints are viewed as
the parameters of interest. Inference is considered as a separate exercise, com-
prised of estimating the endpoints and/or reporting a confidence set for the
identification interval. As a side note, there is an interesting distinction between
confidence sets designed to have nominal or better coverage for the true value of
the target versus those designed to have nominal or better coverage of the whole
identification interval. More importantly for present purposes, these approaches
do not naturally lend themselves to a sense of some target values being more
plausible than others in light of the data. Conceptually, if the investigator were
handed an infinite number of datapoints, and hence perfect knowledge of the
distribution of observables and the value of φ, then the identification interval
I(φ) would simply be reported as “the answer.”

Bayesian inferences in partially identified settings, and nonidentified mod-
els in general, have received considerable attention recently. In part this is
due to needs arising in observational epidemiology. Study and data limitations
which preclude identification are commonplace in this field. Works promulgat-
ing Bayesian or Bayes-like inference in such settings includes Joseph et al.
[17], Dendukuri and Joseph [5], Greenland [7], Hanson et al. [14], Greenland
[8], MacLehose et al. [20]. One theme in the broader literature is that identifi-
cation and inference are very integrated under a Bayesian analysis (see, for in-
stance, Barankin [1], Kadane [18], Dawid [4], Neath and Samaniego [23], Poirier
[25], Gustafson [9]). Based on a sample of size n, the investigator carries out
prior-to-posterior updating, yielding a marginal posterior distribution on the
target parameter. As n increases, this distribution converges to a non-degenerate
distribution with support equal to the identification interval. Given an infinite
number of datapoints then, “the answer” is this limiting posterior distribution,
which constitutes a relative weighting of points in the identification interval.

Thus there is a fundamental discrepancy between non-Bayesian and Bayesian
inference in partially identified models. This discrepancy is more extreme than
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for identified models, where the identification interval is typically a single point,
and therefore does not admit a weighting of its elements. As an example of
this, Gustafson [12] considers the large-sample limit of frequentist coverage for
Bayesian (1−α) credible intervals, in the partially identified context. He shows
this limit is one over a large subset of the parameter space, and zero over its
complement, where large means having prior probability 1− α. More generally,
both Liao and Jiang [19] and Gustafson [10] suggest that obtaining a posterior
distribution across the identification interval is a strength of the Bayesian ap-
proach. In contrast Moon and Schorfheide [22], who draw some large-sample
comparisons between Bayes and non-Bayes procedures, are much more guarded
about the prospect of reporting a posterior distribution across an identification
interval as opposed to simply estimating the interval. None of these authors,
however, attempt any sort of quantification of the potential utility of the shape
of the posterior distribution over the identification interval.

It might be tempting to intuit that the force of the data is completely used
up in determining the identification interval, so that the shape of the limiting
posterior distribution across the interval is driven exclusively by the choice of
prior distribution. Indeed, this is the case in some problems. In the simple
example of Section 1.1, for instance, the relationship between φ and I(φ) is
clearly bijective. Consequently, with a fixed prior distribution over Θ, knowledge
of the identification interval for the target completely determines the limiting
posterior distribution over the interval.

We can quickly establish, however, that other problems, such as the examples
in Sections 1.2 and 1.3, exhibit more complex behavior. There can be distinct
points φ1 and φ2 in s[Θ] such that I(φ1) = I(φ2), but, starting with the same
prior distribution over Θ, the limiting posterior distribution arising for true
values of θ such that s(θ) = φ1 differs from that arising if s(θ) = φ2. This
directly corresponds to the data having a say in the shape of the limiting pos-
terior distribution of the target, as well as having a say in the support of this
distribution. In turn this gives a sense in which there can be more to take away
from an (infinite-sized) dataset than just the identification interval, whereas
non-Bayesian approaches seem to suppose the opposite. Thus the situation is
nuanced, and warrants investigation.

In the remainder of the paper we investigate the inferential utility of the shape
of the posterior distribution, by taking a decision-theoretic view. In the large-
sample limit, we focus on the typical height of the marginal posterior density
for the target parameter, at the true value of the target. This can be compared
to the typical height of other densities over the identification interval. More
technically, we consider the expected score for a probabilistic forecast of the
target parameter, under a logarithmic scoring rule. The difference in expected
score between the Bayesian forecast and an ad-hoc choice of distribution over
the identification interval can be decomposed into two terms. The first term
speaks to the value of Bayesian processing of the information in the data about
the identification interval. The second term reflects the additional information
that can be recovered from using all the data. This decomposition is worked
out for both the trial compliance example and the gene-environment interaction
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example. It is hoped that this will be found relevant by researchers from both
Bayesian and non-Bayesian backgrounds. For the Bayesian, it seems important
to recognize that the usual decision-theoretic optimality of Bayesian procedures
has a different “look-and-feel” in the partially identified case, particularly as
the relevant posterior distributions are not converging to point masses. For the
non-Bayesian, it seems important to recognize that there may be a sense in
which the data speak beyond just estimating the identification interval.

2. Methodology

Starting with the parameter vector θ, say the investigator is willing to specify a
prior distribution having a smooth density function π(θ) over Θ. With respect
to an appropriate measure we write the density of data given parameters as
π(d|θ), also assumed to be a smooth function of θ. Thus we can unambiguously
refer to the joint density π(d, θ) = π(d|θ)π(θ) induced by the prior and model.
In what follows, when useful we will write dn to emphasize observable data
comprised of n observations which are independent and identically distributed
given θ. Also, we occasionally use upper-case notation for functions of data and
parameters when it is helpful to stress random variable interpretations, e.g.,
inside expectations.

We frame our discussion in terms of how well we can generate a probabilistic
forecast for the target parameter ψ = g(θ). For a finite sample of size n, say a
family of density functions h(·; ·) is used, such that h(·; dn) is the probabilistic
forecast of the value of ψ, based on observing data Dn = dn. We summarize
the utility of the forecasting procedure by the expected score (ES) under a
logarithmic scoring rule,

ES
(n)
π,h = Eπ{log h(Ψ;Dn)}. (3)

Note here that by taking the expectation with respect to π, we are evaluating
what would happen on average across repeated instantiations of both parameter
and data values, with this ensemble of parameter values distributed according
to the prior distribution. Note also that (3) is following the well-studied path
of preferring forecasts with the highest expected score, which is essentially the
same idea as preferring inferential schemes with the highest expected utility.

But we can also think more prosaically simply in terms of exp(ES
(n)
π,h) being the

typical height of the forecast density at the true value, with typical being in the
sense of a geometric mean. For a general discussion of scoring rules for density
forecasts, see Gneiting and Raftery [6]. Also, Bernardo [2] gives a sense in which
all members of a class of scoring rules with desirable properties are equivalent
to a logarithmic scoring rule.

The usual decision-theoretic optimality of Bayesian procedures applies here,
despite the fact that this optimality is more commonly seen expressed for es-
timators than for probabilistic forecasts. The choice of family of densities h
which maximizes (3) is the marginal posterior density of the target, h(ψ; dn) =
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π(ψ|dn). This can be seen as an immediate consequence of the non-negativity
of Kullback-Leibler divergence.

Because we are studying partially identified problems in which the posterior
distribution of the target converges to a non-degenerate distribution as the sam-
ple size grows, the limiting version of (3) is immediate. Observation of an infinite
amount of data corresponds to knowledge of φ, so in the limit we are concerned
with a family of density functions of the form h(·;φ), and the corresponding
expected score:

ES∞

π,h = Eπ{log h(Ψ;Φ)}. (4)

Bear in mind here that ψ and φ are both functions of θ, and the expectation
is with respect to the prior density π(θ). Again the non-negativity of Kullback-
Leibler divergence immediately implies that (4) is maximized by h(ψ;φ) =
π(ψ|φ). That is, the optimal probabilistic forecast is the conditional prior dis-
tribution of ψ given the value of φ that is gleaned from the data. Equivalently,
this is the limit of the marginal posterior distribution of ψ, as the sample size
goes to infinity. Thus the optimality of the marginal posterior distribution on
the target extends smoothly in the limit. Note also that the lack of full iden-
tification typically implies that π(ψ|φ) is not degenerate, hence the maximized
value of (4) will be finite. Continuing to work in the large-sample limit, we can
use (4) as a starting point for understanding the “information flow” in the par-
tially identified model. Henceforth it is useful to write the identification interval
explicitly as I(φ) = (φ∗L(φ), φ

∗

R(φ)), so that the two-component parameter φ∗ is
itself the identification interval.

Much of the non-Bayesian literature on partial identification treats the iden-
tification interval as the bivariate target of inference, with the consequent notion
that knowledge of this interval is either all that should be gleaned, or all that
can be gleaned, upon observation of an infinite-sized dataset. Thus it might be
viewed that knowledge of φ∗ is just as good as knowledge of φ, even if the map
from φ to φ∗ is not invertible. Bearing this in mind, we term a family of densi-
ties indexed by φ∗ to be an ad-hoc probabilistic forecast for the target, in the
limiting case.

To fix ideas, one example of an ad-hoc scheme would be

h(ψ;φ∗) =
I{φ∗L ≤ ψ ≤ φ∗R}

φ∗R − φ∗L
,

corresponding to a uniform distribution over the identification interval. This
would arise as the large-sample limit of forecasting a uniform distribution be-
tween estimates of the identification interval endpoints φ∗. Or, given that per-
formance is measured on average with respect to prior π, an ad-hoc attempt to
“do better where it counts” would involve truncating the prior distribution to
the identification interval, i.e.,

h(ψ;φ∗) =
π(ψ)I{φ∗L < ψ < φ∗R}

∫ φ∗

R

φ∗

L

π(s)ds
.
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Again, this could be thought of as the large-sample limit arising from truncating
the prior distribution according to estimated values for φ∗.

For a given ad-hoc procedure h(ψ;φ∗), let ES∞

π,AH = Eπ{log h(Ψ;Φ∗)} be
the expected score with respect to prior π. In contrast, let ES∞

π,B be the optimal
expected score arising from h(ψ;φ) = π(ψ|φ), with the subscript B reminding
us that this is the limit of the Bayesian procedure. We want to decompose
ES∞

π,B −ES∞

π,AH ≥ 0 in a way that sheds light on the utility of the shape of the
limiting posterior distribution over the identification interval.

In investigating ad-hoc schemes, we are considering taking only information
about φ∗ from the data, which may “leave behind” some information about
φ. We can easily elucidate that the best possible ad-hoc scheme is h(ψ;φ∗) =
π(ψ|φ∗), i.e., the same argument used above immediately reveals that the prior
conditional distribution of the target given φ∗ maximizes Eπ{log h(Ψ;Φ∗)}. We
refer to this as the coarsened Bayes (CB) procedure, and denote its expected
score as ES∞

π,CB.
Note that in some problems it may literally be possible to regard the CB

procedure as arising in the limit when Bayesian inference is applied only to a
coarsened version of the data. That is, there might exist a function t such that
coarsened data D∗

n = t(Dn) have the following properties: (i), the distribution
of D∗

n depends on φ only through φ∗, and (ii), the distribution of D∗

n given φ∗

supports
√
n-consistent estimation of φ∗. By construction then, using only data

D∗

n suffices to estimate the identification interval for the target, and the poste-
rior distribution of (Ψ|D∗

n) must converge to the conditional prior distribution
given by π(ψ|φ∗). However, regardless of whether we can actually exhibit such
a function t(), we can interpret π(ψ|φ∗) as the limiting Bayesian knowledge
about the target were we to extract just enough of the data to estimate the
identification interval, and not an iota more.

Now we are in a position to try to understand the worth of the shape of the
limiting posterior distribution of the target across the identification interval. For
a given ad-hoc procedure, we immediately have

ES∞

π,B − ES∞

π,AH = (ES∞

π,CB − ES∞

π,AH) + (ES∞

π,B − ES∞

π,CB), (5)

where both terms on the right-hand side of (5) are guaranteed to be nonnegative.
This follows trivially from the optimality of the CB procedure amongst AH pro-
cedures, and the global optimality of the Bayesian procedure. So the first term
on the right in (5) reflects the value of Bayesian processing of information about
the identification interval, relative to ad-hoc processing of this information. The
second term represents the value of using all the information in the data, not
just the information about the identification interval. Put another way, the sec-
ond term reflects information “left on the table” by supposing that the data can
only speak to the location of the identification interval. The second term is of
particular interest, since non-Bayesian approaches to partially identified models
are predicated on the idea that knowledge of the identification interval is indeed
all that can be obtained in the limit of infinite sample size.

Yet another interpretation is that the second term in (5) reflects the utility of
the fact that multiple θ values in Θ can lead to the same identification interval
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but different limiting posterior distributions over this region. In the special case
that the map from φ to φ∗ is invertible, there is only one limiting posterior
distribution corresponding to a given identification interval, and the second
term in (5) is zero. However, when there is indeed coarsening (i.e, the map from
φ to φ∗ is not invertible), there is no general reason to expect the second term
to be zero.

In the next section, we simply compute the decomposition (5) in the examples
from Sections 1.2 and 1.3. In doing so, we will refer to the first term as describ-
ing the first-order Bayes advantage. In particular, exp(ES∞

π,CB − ES∞

π,AH) is
interpreted as the typical density ratio comparing the coarsened posterior den-
sity to the ad-hoc density, at the true value of the target parameter. Thus we
can think of the first-order advantage as follows. Presuming that we choose to
measure performance by averaging across the parameter space with respect to
π(θ), and presuming that we are only allowed to take information about I(φ)
from the data, then we are quantifying the gain from doing a Bayesian analysis
with π(θ) as the prior. Similarly, we can view exp(ES∞

π,B −ES∞

π,CB) as quanti-
fying the second-order Bayes advantage, again on the density ratio scale. This
gives us the further gain achieved if we allow ourselves to hear all that the data
have to say, rather than just taking the information about the identification
interval.

3. Examples

3.1. Imperfect compliance in a randomized trial, continued

Continuing the example of Section 1.2, recall that the model is parameterized by
θ = (ωNT , ωAT , γ) having p = 8 components, while the distribution of the data
depends on θ only through φ = (ωNT , ωAT , γNT,0, γAT,1, γCO,0, γCO,1) having
q = 6 components. Also, as mentioned earlier, the identification interval for the
ACE takes the form φ∗ = (a(φ) − b(φ), a(φ) + b(φ)), with a() and b() given in
(1) and (2) respectively.

We consider Bayesian inference under a uniform prior distribution; particu-
larly, a prior under which ω ∼ Dirichlet(1, 1, 1) and independently each of the
six components of γ follow a Unif(0, 1) distribution. Under this prior, Gustafson
[11] shows that the limiting posterior distribution of the target, π(ψ|φ), has a
trapezoidal-shaped density. In particular, whereas the bottom edge of the trape-
zoid is the identification interval a(φ) ± b(φ), the top edge of the trapezoid is
a(φ) ± c(φ), where c(φ) = |ωNT − ωAT |/2 ≤ b(φ). Commensurately, the height
of the density over ψ ∈ a(φ)±c(φ) is {b(φ)+c(φ)}−1. In this problem it is read-
ily apparent that multiple values of φ ∈ s[Θ] can produce the same values of
a() and b() but different values of c(). Or, put another way, the mapping from
φ to φ∗ is not invertible. An explicit illustration of this appears in Figure 1.
While for this problem the form of π(ψ|φ) is very simple to characterize, de-
termination of the coarsened limiting posterior distribution, π(ψ|φ∗), is rather
more involved, as described in Appendix A. The coarsened distribution is also
depicted in Figure 1.



Posterior distributions in partially identified models 485

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4

ACE

D
e

n
s
it
y

B

CB

PRI

Fig 1. Prior, limiting coarsened posterior, and limiting full posterior distributions for the
ACE. In all cases ωCO = 0.6 and a(φ) = 0.5, hence the identification interval is 0.5 ± 0.2.
Of the two full posterior distributions, the less (more) concentrated distribution arises from
ωAT = 0.05 (ωAT = 0.15).

The various limiting expected scores for this problem are reported in Table 1.
These are computed in a direct Monte Carlo fashion. That is, we generate m
independent and identically distributed realizations θ(1), . . . , θ(m) according to
the prior π(θ). Then, for each realization we determine the information available
from an infinite-sized dataset, φ(i) = s(θ(i)), and the target value ψ(i) = g(θ(i)).
For any probabilistic forecast then, the expected score is numerically approx-
imated by the Monte Carlo average m−1

∑m

i=1 log h(ψ
(i);φ(i)). Moreover, the

numerical error involved is easily quantified by the standard error associated
with this average, and similarly the error involved in computing the difference
in two expected scores is described by the standard error arising from averaging
m differences.

Table 1

Expected scores in the imperfect compliance example. These are computed as Monte Carlo
averages across 10,000 realized values of θ drawn from the prior distribution. Simulation

standard errors are given in parentheses. The labels AH(TP) and AH(U) refer to the ad-hoc
truncated prior and ad-hoc uniform procedures respectively

ES∞

π,B
0.6127 (0.0063)

ES∞

π,B − ES∞

π,CB 0.0235 (0.0023)

ES∞

π,CB
−ES∞

π,AH(TP )
0.1409 (0.0052)

ES∞

π,CB −ES∞

π,AH(U)
0.0880 (0.0036)
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From Table 1 we see that the first-order Bayes advantage is appreciable in this
problem. Using only information about the identification interval, the coarsened
posterior density over this interval is typically considerably higher at the true
value than an ad-hoc density (with a typical density ratio of exp(0.14) ≈ 1.15
compared to the truncated prior density and 1.09 compared to a uniform den-
sity). Finally, we see there is a modest second-order Bayes advantage. By us-
ing all the information rather than just the information about I(φ), the fully
Bayesian posterior garners a further 2.4% improvement over the coarsened pos-
terior, on the density ratio scale. Moreover, this improvement is calculated with
simulation-significance, i.e., we have computed with sufficient accuracy to be
convinced that ES∞

π,B > ES∞

π,CB. Generally then we see the shape of the pos-
terior distribution is helpful in this problem. The magnitude of the first-order
effect corresponds to a practical advantage in an applied statistics sense. The
second-order effect is much more modest in magnitude, but the important point
here is that the data can make a helpful contribution beyond the direct infor-
mation they convey about the identification interval.

3.2. Inferring gene-environment interaction, continued

Recall that the initial parameterization for this problem introduced in Sec-
tion 1.3 is in terms of θ = (µ0, µ10, µ11) ∈ (0, 1)3, where µ0 = Pr(Y = 1|X = 0)
and µ1g = Pr(Y = 1|X = 1, G = g), for g = 0, 1. Also recall that the
likelihood depends on θ only through φ = (φ0, φ1), where φg = Pr(Y = 1|
G = g) = (1− r)µ0 + rµ1g, for g = 0, 1, and the inferential target is ψ = g(θ) =
µ11 − µ0.

In this problem it is easy to see that (φ, ψ) = (φ0, φ1, ψ) constitutes a linear
reparameterization of θ = (µ0, µ10, µ11), with the inverse of the mapping given
as





µ0

µ10

µ11



 = r−1





0 r −r2
1 −(1− r) r(1 − r)
0 r r(1 − r)









φ0
φ1
ψ



 . (6)

Thus for given φ the identification interval is all values of ψ under which (6)
yields a value in [0, 1]3, i.e., the identification interval endpoints are:

φ∗L = −min

{

φ1
r
,
1− φ1
1− r

,
φ0 − (1− r)φ1

r(1 − r)
, 1

}

, (7)

and

φ∗R = min

{

φ1
r
,
1− φ1
1− r

,
r + (1 − r)φ1 − φ0

r(1 − r)
, 1

}

. (8)

As we will demonstrate explicitly below, the mapping from φ to φ∗ is not in-
vertible, which leaves open the possibility that ES∞

π,B > ES∞

π,CB.
We consider Bayesian inference using the prior distribution having (µ0, µ10,

µ11) independent and identically distributed as Beta(k1, k2). In what follows,



Posterior distributions in partially identified models 487

bk1,k2
() is used to denote the density of this Beta distribution. The linear

map between θ and (φ, ψ) immediately gives the joint prior density of (φ, ψ)
as

π(φ0, φ1, ψ) = r−1bk1,k2
(φ1 − rψ) bk1,k2

(φ1 + (1− r)ψ) ×
bk1,k2

(r−1(φ0 − (1− r)φ1 + r(1 − r)ψ)), (9)

with support restricted to (φ, ψ) such that ψ ∈ I(φ). The limiting posterior
distribution for the target is given by the conditional prior π(ψ|φ), with con-
ditioning on the true value of φ. At least up to a normalizing constant, this
conditional density can be read off from the joint density (9), by regarding this
expression as a function of ψ for fixed φ.

An obvious choice of prior specification for this problem is (k1, k2) = (1, 1),
corresponding to a uniform distribution on each of the three outcome proba-
bilities. In this special case, it is immediate from (9) that for every φ ∈ s[Θ],
π(ψ|φ) is the uniform distribution on the identification interval I(φ). The lim-
iting posterior is therefore always the same as the coarsened limiting posterior,
and there can be no second-order Bayes advantage.

For other choices of prior distribution, the situation is more nuanced. As
an example, in Appendix B we examine in detail the specification k1 = k2 = 2,
which gives slightly more prior weight to mid-range values of the response prob-
abilities. Using f() to denote the map from φ to φ∗, we prove that for every
value of φ∗ ∈ s[Θ] there is either (i), two distinct point solutions to f(φ) = φ∗,
which we denote as φA, φB , or (ii), a line-segment of solutions of the form
{φ : φA0L < φ0 < φA0R, φ1 = φA1 } plus one further point solution φB. Conse-
quently, in case (i),

π(ψ|φ∗) = (1− w)π(ψ|φ = φA) + wπ(ψ|φ = φB),

where w = π(φB)/{π(φA) + π(φB)}. In case (ii),

π(ψ|φ∗) ∝
∫ φA

0R

φA

0L

π(ψ|φ = (s, φA1 ))π(s, φ
A
1 )ds. (10)

Note that as one of infinitely many solutions, the further point solution φB does
not contribute to (10). We are then able to compute π(ψ|φ∗) for a given φ∗.

For the (k1, k2) = (2, 2) case, Figure 2 compares the Bayes, coarsened Bayes,
and ad-hoc probabilistic forecasts to both the true value of the target and the
marginal prior density of the target, for some selected values of θ. Note that the
full and coarsened limiting posterior densities are virtually indistinguishable in
each case, while being quite different from both the ad-hoc forecasts (uniform
distribution over the identification interval, prior marginal distribution trun-
cated to the identification interval).

As in the previous example, the various expected scores are computed as
Monte Carlo averages across a large number of draws of θ from π(θ), with
results reported in Table 2. Again we have “simulation significance” to attest to
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Fig 2. Limiting probabilistic forecasts for the risk difference under hyperparameters (k1, k2) =
(2, 2). Each panel corresponds to a different underlying value of θ drawn from its prior distri-
bution. The true value of the target is indicated in each panel (triangle on the horizontal axis).

ES∞

π,B > ES∞

π,CB. However, the difference between these two expected scores
is so small as to be negligible in any practical sense. This jibes with the close
agreement seen between π(ψ|φ) and π(ψ|φ∗) in Figure 2. So there is a tiny,
but non-zero, second-order Bayes advantage. On the other hand, the first-order
Bayes advantage is very substantial in this example. The optimal-shaped density
over the identification interval tends to be 17% higher at the true value than
truncated marginal prior, and 21% higher compared to the uniform distribution
over the identification interval.

Table 2

Expected scores in the gene-environment example with hyperparameters k1 = k2 = 2. These
are computed as Monte Carlo averages across 10,000 realized values of θ drawn from the

prior distribution. Simulation standard errors are given in parentheses. The labels AH(TP)
and AH(U) refer to the ad-hoc truncated prior and ad-hoc uniform procedures respectively

ES∞

π,B
0.2680 (0.0055)

ES∞

π,B −ES∞

π,CB 0.00293 (0.00068)

ES∞

π,CB
−ES∞

π,AH(TP )
0.1540 (0.0046)

ES∞

π,CB −ES∞

π,AH(U)
0.1892 (0.0046)
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4. Robustness

In general the decision-theoretic optimality of any Bayesian procedure stems
from using the same distribution over the parameter space (“the prior”) to
both (i), average the procedure’s performance across possible true parameter
values, and (ii), use as an input to form the posterior distribution for a given
dataset. An obvious question to ask then is how quickly does the optimality
fade if two different distributions are used? That is, what happens if “Nature’s
prior distribution” used to average performance across the parameter space dif-
fers from the “investigator’s prior distribution” used to determine the posterior
distribution upon receipt of data.

We retain π(θ) as notation for the investigator’s prior, but consider what
happens when Nature’s prior is π∗

λ(θ) for some choice of λ. We assume the
class of possible choices for Nature’s prior is centered around the investigator’s
prior, i.e., π∗

0(θ) = π(θ). Specifically we look at the comparison between the
limiting posterior marginal distribution over the identification interval and a
uniform distribution over the identification interval, as the investigator’s prior
stays fixed but Nature’s prior moves away from it. Let

t(λ) = E∗

λ {log π(Ψ|Φ) + log (Φ∗

R − Φ∗

L)} , (11)

where the expectation is with respect to π∗

λ(θ). Clearly then t(0) = ES∞

π,B −
ES∞

π,AH(U) > 0, and the magnitude of λ required to make t(λ) ≤ 0 reflects the
stability of the Bayes advantage.

When λ has more than one component, it may become complicated to eval-
uate (11) in many different directions away from λ = 0. Thus we propose com-
puting the gradient

t′(0) = Eπ [s(Θ) {log π(Ψ|Φ) + log (Φ∗

R − Φ∗

L)}] , (12)

where s(θ) = ∂ log π∗

λ(θ)/∂λ|λ=0. Then evaluating (11) for values of λ propor-
tional to this gradient corresponds to looking along the direction in which (11)
changes most rapidly with λ, locally at zero.

Returning to the compliance example of Section 3.1, we assume that Nature
and the investigator agree on a uniform prior for the components of γ. However,
whereas the investigator uses ω = (ωCO, ωNT , ωAT ) ∼ Dirichlet(1, 1, 1), Nature
uses ω ∼ Dirichlet(1+λ1, 1+λ2, 1+λ3). Numerical evaluation of (12) indicates
that t′(0) ∝ (0, 1, 1)′. Thus we focus attention on the case that Nature’s prior
is Dirichlet(1, 1+ λ, 1+ λ), for a scalar value of λ. For selected values of λ, t(λ)
is given in Figure 3. We see that the advantage of the Bayesian procedure is
maintained even when the discrepancy between Nature’s prior and the investi-
gator’s prior is given by λ = −0.9. This suggests considerable robustness, since
in practical terms the Dirichlet(1, 0.1, 0.1) distribution is fairly extreme and far
from Dirichlet(1, 1, 1). In particular, this distribution puts considerable weight
on extremely small values of ωNT and ωAT .
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Fig 3. Robustness of the limiting posterior distribution when Nature’s prior is ω ∼

Dirichlet(1, 1 + λ, 1 + λ) and the investigator’s prior is ω ∼ Dirichlet(1, 1, 1). The differ-
ence in expected score for the Bayes procedure compared to the ad-hoc uniform procedure,
t(λ), is computed for selected values of λ. The vertical bars are 95% simulation confidence
intervals based on the 5,000 Monte Carlo realizations from Nature’s prior used to com-
pute t(λ).

5. Discussion

Returning to the question posed in the title of this paper, we have seen that the
shape of the posterior distribution in partially identified models is indeed useful.
Most of the benefit lies in what we have termed the first-order Bayes advantage.
If we take only the data that inform the identification interval, then processing
these data in a Bayesian way, as we have termed the coarsened Bayes procedure,
tends to yield a higher posterior density for the target, evaluated at the true
value. In the two examples, gains of 10–20% in density height were seen, relative
to ad-hoc choices of distributions across the identification interval.

We have also seen, both theoretically and empirically, that there can be a
further second-order advantage that arises from using all the data. This arises as
in some problems different datasets (in the limiting sense) can produce the same
identification interval but different posterior distributions over this interval. In
turn, this gives a tangible sense in which the data themselves speak to the
relative plausibility of different values inside the identification interval, and a
tangible sense in which the shape of the posterior distribution is not just a
consequence of the choice of prior distribution. Of course in both examples, and
particularly in the second example, the second-order advantage is small, both in
absolute terms and in comparison to the first-order advantage. Thus the impact
lies in the conceptual and theoretical understanding of how inference works in
the partially identified setting, rather then in finding hitherto inaccessible gains
in estimator performance.
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One issue arising is that the first-order Bayes advantage might in part be a
self-fulfilling prophecy, since the same prior distribution is used to both derive
the posterior distribution and weight the averaging of performance across the
parameter space. And of course this is the general underpinning of the decision-
theoretic optimality of all Bayesian procedures. While a full look at this issue is
beyond the scope of this article, a modest evaluation of “robustness” was con-
ducted in Section 4, examining what happens when two different distributions
over the parameter space are used to fulfill the two roles mentioned above.

Of course any assessment of a statistical procedure involves choices concern-
ing how performance is quantified. Arguably our choice of logarithmic scoring
of probabilistic forecasts for the target parameter has intuitive appeal. If two
forecast distributions always have the same support, then it seems appealing to
deem the one with highest average density at the true value as having the more
useful shape. Obviously other assessments could be made though, say based
on point-estimator performance. For instance, say mh(φ) =

∫

ψh(ψ;φ) is the
mean of the probabilistic forecast, reducing to the limiting posterior mean when
h(ψ;φ) = π(ψ|φ). Then performance of various schemes (Bayesian or not) could
be based on average mean-squared error Eπ[{mh(Φ) − Ψ}2]. While investiga-
tion of this is beyond the scope of the present paper, it is easy to note that
this would change things substantially in our imperfect compliance example.
Here the Bayes, coarsened Bayes, and truncated uniform procedures all yield
distributions which are symmetric about a(φ) as given in (1). Hence all three
give rise to mh(φ) = a(φ), and consequently identical performance.

A referee has also raised the question of evaluating procedures in terms of
predictive distributions. For instance, in the Bayesian case the forecast dis-
tribution of the next data point D∗ given the first n datapoints dn tends to
π(d∗|φ) =

∫

π(d∗|θ)π(θ|φ)dθ, as n goes to infinity. In general this is not so
tightly connected to the present work, since our focus is on π(λ|φ), which is only
a marginal distribution associated with π(θ|φ) required to form the predictive
distribution. In some cases the two do coincide though, particularly should (φ, ψ)
constitute a reparameterization of θ (this happens in the gene-environment in-
teraction example, but not in the imperfect compliance example). When they
do coincide, a possibility would be to shift the evaluation of performance from
(4) to Eπ{log

∫

π(D∗|Φ, λ)h(λ; Φ)dλ}.
A limitation of this work is that only the asymptotic limit is considered.

We point out, however, that this limit is often approached rather quickly, in the
following sense. For given data dn, the posterior variance of the target parameter
is

Varπ(Ψ|Dn = dn) = Eπ {Varπ(Ψ|Φ)|Dn = dn}+Varπ {Eπ(Ψ|Φ)|Dn = dn} .
The first term on the right-side will tend to Varπ(Ψ|Φ = φ) > 0, while the
second term falls off as n−1. As soon as the second term is small relative to the
first we are “near” the limit, with minimal scope for further reduction in the
width of the target posterior distribution as further data are collected. Thus we
can reasonably expect that what we learn in the limit applies at realistic sample
sizes.
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A final comment is that the general topic of inference in the absence of
identification may be perceived by some as rather esoteric. Indeed, there is
often a feeling that in order to tackle an applied problem, one needs to make
enough modeling assumptions so as to attain an identified model. Unfortunately,
in many scientific domains this can promote the use of quite dubious modeling
assumptions. Arguably then, we need to make peace with models that are only
partially identified for the target parameter, and we need to understand the
workings of inference in such settings.

Appendix A: Further details of the imperfect compliance example

The map from φ to (Y,X |Z) cell probabilities is given via

pr(X = 1|Z = 0) = ωAT

pr(X = 1, Y = 1|Z = 0) = ωATγAT,1

pr(X = 0, Y = 1|Z = 0) = ωCOγCO,0 + ωNTγNT,0

pr(X = 0|Z = 1) = ωNT

pr(X = 0, Y = 1|Z = 1) = ωNTγNT,0

pr(X = 1, Y = 1|Z = 1) = ωCOγCO,1 + ωATγAT,1.

Expressed in this form, the mapping is readily seen to be invertible.
To determine the coarsened limiting posterior distribution in this example,

note that we can write ψ = µ+ ǫ, where µ = a(φ), while

ǫ = wNT (γNT,1 − 1/2) + wAT (1/2− γAT,0).

Thus the coarsened limiting posterior distribution will be distributed as the
conditional prior density π(ψ|µ, ωCO), and it suffices to determine the condi-
tional density of π(ǫ|µ,wCO), which in turn can be determined from π(µ, ǫ|wCO).
Defining λ = wNT /(1− wCO), it is easy to verify that

π(µ, ǫ|wCO) =

∫

π(µ|λ,wCO)π(ǫ|λ,wCO)π(λ)dλ.

This holds since, with λ and wCO fixed, µ and ǫ depend on disjoint subvectors
of γ, whose elements are a priori independent of one another. Thus the task
is reduced to evaluating the conditional prior densities π(µ|λ,wCO) = π(µ|ω)
and π(ǫ|λ,wCO) = π(ǫ|ω). Toward this, let gs() denote the trapezoidal density
function of s(U1 − 1/2) + (1 − s)(U2 − 1/2), when U1, U2 are independent and
identically distributed as Unif(0, 1). Then the (µ|ω) conditional has a stochastic
representation as

µ = 2ωCOZ1 + (1− ωCO)Z2,

where Z1 and Z2 are independent with Z1 ∼ g0.5, and Z2 ∼ gs with s =
wNT /(1 − wCO). Thus the (µ|ω) conditional density can be computed exactly
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Fig 4. The partition of S into sets on which φ∗

L is piecewise linear (left panel) and φ∗

U is
piecewise linear (right panel), when r = 0.35. The upper and lower dotted reference lines
appearing on both panels correspond to φ∗

L
= 0 and φ∗

R
= 0. The level set for φ∗

L
= −0.2 is

indicated on the left panel and the level set for φ∗

R
= 0.35 on the right panel.

via convolution of g0.5 and gs, where the integration is straightforward since
these are piecewise linear densities. The evaluation of π(ǫ|ω) is simpler since
convolution is not involved. Particularly, π(ǫ|ω) = (1−ωCO)

−1gs(ǫ/(1−ωCO)),
where again s = wNT /(1− wCO).

Appendix B: Details of the gene-environment model with

hyperparameters k1 = k2 = 2

Recall that f is the map from φ to φ∗. For a given c∗ in the image of f , we need
to characterize solutions to f(φ) = c∗. Note that the domain of f is the subset
of the unit square U given by S = {φ ∈ U : |φ0 − φ1| < r}. The form of (7)
and (8) is such that S can be partitioned as S = A ∪B ∪ C as depicted in the
left panel of Figure 4, with φ∗L being continuous and piecewise-linear on these
subsets. Similarly, S = D ∪ E ∪ F as in the right panel, with φ∗U being linear
on these partition sets. The two dotted reference lines on both panels are the
φ∗L = 0 and φ∗U = 0 level sets, with φ∗L > 0 above the upper reference line and
φ∗U < 0 below the lower reference line. Let S1 ⊂ S be the region between the
reference lines, for which the identification interval crosses zero. Note that the
gradient of φ∗L points straight up on B and straight down on A. Thus a level set
for a negative value of φ∗L has an open-parallelogram shape, as exemplified in
the left panel of Figure 4. We can then speak unambiguously of the “bottom,”
“spine,” and “top” of such a level set. In contrast, a level set for a positive
value of φ∗L corresponds to a line parallel to, and above, the upper reference
line. A mirror-image situation applies to φ∗U , as depicted in the right panel of
the figure.

Let φ̃ be one solution to f(φ) = c∗. (If it is helpful, one can think of φ̃ as the
true value of φ.) Then we have three possible cases.
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Case 1. Say that φ̃ ∈ S − S1, i.e., the identification region is to one side of
zero. Without loss of generality, say φ̃ lies above the upper reference line. Then
φ∗L remains constant along the line through φ̃ which is parallel to the upper
reference line. Along this line, φ∗U takes the value one at the boundary between
D and E, decreasing linearly from here in both directions. Moreover, it is simply
verified that φ∗U has a common value at both intersections of this line with the
boundary of S. Therefore, there must be exactly two point solutions to h(φ) = c∗

in total.

Case 2. Say that φ̃ ∈ S1 ∩ BC ∩ EC . By inspection, it must be that either
φ̃ ∈ A∩F ∩S1 or φ̃ ∈ D∩C ∩S1. Without loss of generality, assume the former.
Then the base of the level set for φ∗L intersects the spine of the level set for φ∗U
at φ̃. Given this, exactly one further solution is generated, as either the spine
extends up far enough to hit the top of the level set for φ∗L, or, failing this, the
top of the level set for φ∗U hits the spine for φ∗L.

Case 3. Say that φ̃ ∈ S1 ∩ (B ∪ E). Without loss of generality, say that φ̃ is
in B rather than E. Then, intersecting the tops of the level sets for both φ∗L
and φ∗U gives a horizontal line segment of solutions of the form φ0 ∈ (1− r, φ̃1),

φ1 = φ̃1. We can also see from the shape of the level sets that there will be an
additional point solution somewhere to the “southwest” of B, where the higher
of the two bases of the two level sets crosses the spine of the other.

As claimed then, for a given c∗ in the image of f , either there are two point
solutions to f(φ) = c∗, or one horizontal line segment of solutions plus an
additional point solution.
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