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An optimal combination of risk-return and naive hedging
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Abstract. Taking an approach contrary to the mean–variance portfolio, re-
cent studies have appealed to an older wisdom, “the naive rule provides
the best solution,” to improve out-of-sample performance in portfolio selec-
tion. Naive diversification, which invests equally across risky assets, is such
an example of this simple rule. Previous studies also show that a portfolio
combining naive diversification with the mean–variance strategy based on
minimizing expected quadratic utility losses may show strong out-of-sample
performance. Using the mean squared error, this paper derives an optimal
combination of nonstochastic allocation and the mean–variance portfolio. We
find that this design is equivalent to the combination of the naive rule and
mean–variance strategy based on minimizing the expected utility losses. As
an application of this finding, we propose a regression-based combination of
maximal risk-return hedging and naive hedging. Our illustration also shows
out-of-sample performance of a combined hedging that is superior to that of
other methods.

1 Introduction

It is widely known that Markowitz’s mean–variance efficient portfolio (1952) is
a constrained optimization problem of the first two statistical moments. The first
moment is the expected value, which measures the expected excess return of a
portfolio, and the second moment is the variance (or the standard deviation), which
describes the risk of the portfolio’s excess return. Specifically, the mean–variance
optimization is a tradeoff between expected return and risk, where the mathemat-
ical formulation attempts to maximize the portfolio’s expected return conditional
on a given level of portfolio risk or, equivalently, minimize risk for a given ex-
pected return by efficiently choosing the allocations across various assets (Merton
(1972), Jobson and Korkie (1980)).

Despite its theoretical importance in the financial industry, critics of the mean–
variance efficient portfolios challenge whether it is an ideal investing strategy
when investors do not accurately consider model uncertainty. The two most widely
discussed model uncertainties in determining the optimal portfolio selection are
parameter sensitivity and estimation errors. First, in particular, sensitivity due to
changes in the equilibrium parameters results in mean–variance uncertainty (Best
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and Grauer (1991), Chopra and Ziemba (1993)). Second, the mean–variance effi-
cient portfolio weights are expressed in terms of the expected return and the covari-
ance matrix of assets, and these parameters are not directly observed. The investors
must use the sample information to estimate assets’ return and volatility, and such
estimators often fail to consider estimation errors where the historical data were
generated (Black and Litterman (1992), Kan and Zhou (2007)).

Many impetuses to translate the theoretical restrictions into a practical portfolio
construction have been advocated by introducing constrained and unconstrained
procedures to the literature. For example: (1) Previous studies have shown that in-
stabilities in mean–variance analysis disappear when a regularizing constraint is
incorporated into the optimization procedure (Green and Hollifield (1992), Jagan-
nthan and Ma (2003), Wang (2005), DeMiguel et al. (2009a)). (2) A handful of
Bayesian approaches or nonstandard Bayesian frameworks have attempted to in-
corporate expert knowledge into the data-generating process. These studies draw
on the combination of investors’ subjective opinion and the expected return vec-
tor as well as the covariance matrix in the long run (Jorion (1986), Black and
Litterman (1992), MacKinlay and Pástor (2000)). (3) Some authors assert that
the minimum-variance portfolio shows superior out-of-sample performance in the
presence of estimation errors (Haugen and Baker (1991), Ledoit and Wolf (2004)).
(4) Recently, Hirschberger et al. (2013) propose a posteriori way to balance a clas-
sical mean–variance optimization with a given nonstochastic portfolio. In this ap-
proach, we are allowed to include an additional criterion than mean–variance in
the optimization, where we may calculate the entire set of theoretically attainable
and optimal portfolios for investors, irrespective of their risk aversion.

Contrary to the optimal tangency portfolio, recent studies have proposed a rather
simple alternative to the mean–variance efficient portfolios, so-called naive diver-
sification, which invests equally across k risky assets. For example: (1) DeMiguel
et al. (2009b) and Duchin and Levy (2009) report that naive diversification dom-
inates mean–variance optimization in out-of-sample asset allocation tests. Some
evidence indicates that a long estimation horizon is needed for the mean–variance
efficient portfolio to outperform naive diversification. (2) However, Kirby and Ost-
diek (2012) find that volatility timing and reward-to-risk timing mean–variance
strategies outperform naive diversification in the presence of high transaction costs.
(3) Specifically, Tu and Zhou (2011) characterize an optimal combination of the
naive rule and the mean–variance efficient portfolio under the minimal expected
loss of mean–variance utility criterion, which considers both estimation error (vari-
ance) and error resulting from model misspecification (bias). This combination is
not theoretically unbiased, where the naive weight is obviously a biased estimator
of the true tangency portfolio, but there is a low expected loss of mean–variance
utility. Empirical studies show that this strategy may successfully improve a port-
folio’s out-of-sample performance.

In this article, we deliver a setting similar to but more general than that of Tu
and Zhou (2011). Rather than deriving our combination coefficient in terms of the
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investor’s utility function, we solve the optimization from a combined forecasts
perspective (Bates and Granger (1969), Clemen (1989)). We use the mean squared
error criterion, which allows us to derive an analytic expression for the optimal
combination of any nonstochastic weight and mean–variance portfolio without
considering the investor’s utility preferences. Among the interesting properties of
the constructed design are the following: (1) We obtain an analytic solution for the
optimal combination between a nonstochastic allocation and the mean–variance
efficient portfolio. From a multicriteria decision making perspective, it falls in the
category of a priori methods (Hwang and Masud (1979)), where the risk aversion
of the investor is given, and a single optimal portfolio for the investor is being com-
puted. (2) The optimal design is equivalent to the Tu and Zhou’s model. Moreover,
naive diversification may be replaced by any nonstochastic allocation that is biased
but does not depend on the sample information. (3) We use this result to obtain an
optimal combination of risk-return hedging and naive hedging. The hedging strate-
gies using Chiu’s (2013) regression-based procedures are further analyzed. (4) We
find that this optimal design appears to include as a special case the combination
of the naive rule and the optimal mean–variance strategy based on minimizing
the combined variance. (5) An example is presented to investigate the hedging ef-
fectiveness. We demonstrate that the combined rules not only have a significant
impact in improving the mean–variance strategies but also outperform the naive
portfolio in our studies.

This article is organized as follows. In Section 2, we briefly investigate the
framework between the CARA utility and the mean–variance utility. According
to this equivalence, we extend Tu and Zhou’s results to a statistical perspective.
In Section 3, we employ the optimal combination of an unbiased estimator and a
biased estimator to derive the Tu–Zhou optimal combination coefficient under the
mean squared errors criterion. Finally, a regression-based application of the opti-
mal combination of risk-return hedging and naive hedging is presented. Section 4
concludes.

2 The preliminaries

2.1 CARA investor’s portfolio choice

We consider a two-period framework populated by risk-averse investors. In the
first period, a budget-constrained investor forms a portfolio by allocating her or
his wealth into a risk-free asset with a rate r , Q1 shares of risky asset 1 with a
price P1,t per share and a payoff P1,t+1 in the second period, Q2 shares of risky
asset 2 with a price P2,t per share and a payoff P2,t+1 in the second period, and
likewise for (Q3,P3,t , P3,t+1), . . . , (Qk,Pk,t , Pk,t+1).
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The investor’s first- and second-period wealth must satisfy the budget con-
straints,

Wt =
k∑

i=1

QiPi,t +
(
Wt −

k∑
i=1

QiPi,t

)
,

(1)

Wt+1 =
k∑

i=1

QiPi,t+1 +
(
Wt −

k∑
i=1

QiPi,t

)
(1 + r).

The constraints in equation (1) implies that the investor’s excess return of portfolio
wp at t + 1 is given by

Rp,t+1 = Wt+1 − (1 + r)Wt =
k∑

i=1

QiPi,t

(
Pi,t+1 − Pi,t

Pi,t

− r

)
= w′

pRt+1, (2)

where wp = (w1,w2, . . . ,wk), and Rt+1 = (R1,t+1,R2,t+1, . . . ,Rk,t+1) represent
the portfolio allocation vector and excess returns vector, respectively, k risky assets
at time t + 1. Moreover, this portfolio has the expected excess return E(Rp,t+1)

and the variance of the excess return Var(Rp,t+1). For the investor, we further em-
ploy the assumption that the values of the k excess returns vector are multivariate
and normally distributed random variables with unknown expected mean vector μ

and covariance �. Moreover, we assume that the sample data of n periods excess
returns {R1,R2, . . . ,Rn,Rn+1} are independent and identically distributed over
time. That is,

R1,R2, . . . ,Rn+1
i.i.d.∼ MN(μ,�). (3)

Tu and Zhou (2004) show that to incorporate the uncertainty of a data-generating
process into portfolio performance, the normality assumption works well in eval-
uating a mean–variance portfolio. Moreover, assume that the profit-maximizing
investor has a negative exponential utility function (or, in terms of the constant ab-
solute risk aversion utility, CARA) with a given risk aversion coefficient parameter
γ > 0. In other words, the investor’s utility function is of the form

U(Wt+1) = − exp(−γWt+1). (4)

Grossman and Stiglitz (1980) have motivated the exponentially normal framework
to different applications in financial documents. Khoury and Martel (1985) and
Kirilenko (2001), among others, use the model to evaluate an investment project
given different types of investor behavior.

According to assumption (4), the investor will determine her optimal portfolio
allocation by maximizing the expected utility of the liquidation period net return,

max
w

E
{− exp(−γ�W)

} = max
w

E
{− exp

[−γ (Rp,t+1)
]}

,
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where �W = Wt+1 − (1 + r)Wt (positive or negative) is her net wealth increment
in the form of excess return at the second period for some risk-aversion parameter
γ > 0. Because the expected utility function is the moment-generating function
of a multivariate normal random vector under assumption (3), the functional and
normal assumptions jointly imply that the investor’s expected utility is

E
(
U(Wt+1)

) = − exp
[
−γ

(
E(Rp,t+1)

) + γ 2(Var(Rp,t+1))

2

]
.

Therefore, we may translate the CARA investor’s portfolio choice into a mean–
variance utility optimization as follows:

max
wp

U(w) = max
wp

[
E(Rp,t+1) − γ

2
Var(Rp,t+1)

]
(5)

= max
wp

[
w′

pμ − γ

2
w′

p�wp

]
.

The maximum mean–variance utility in model (5) is a standard criterion that Kan
and Zhou (2007), DeMiguel et al. (2009b), Das et al. (2010), Tu and Zhou (2011),
among others, use to establish an optimal portfolio rule. It is trivial to derive the
optimal mean–variance portfolio

wo = �−1μ

γ
. (6)

Substituting equation (6) into equation (5), the expected mean–variance utility rel-
ative to wo at time t + 1 is reduced to the form

U(wo) = E
(
w′

oRt+1
) − γ

2
V

(
w′

oRt+1
) = w′

oμ − γ

2
w′

o�wo = μ′�−1μ

2γ
, (7)

where
√

μ′�−1μ is the Sharpe ratio relative to the optimal tangency portfolio.

Remark 1. It should be emphasized that the optimal portfolio wo in equation (6)
is selected from the capital market line and depends only on the tangency portfolio
conditional on a given investor’s risk aversion. Basically, our approaches take into
account the following investment assumptions: the investor is unconstrained in her
investment decision. That is, she has no short constraints, minimum or maximum
investment requirements on single assets, and she can borrow arbitrarily at the
risk-free rate.

It is widely known the risk and excess return measures used by equations (6)
and (7) are based on expected values, indicating that they are statistical statements
about the future (the expected vector of excess returns is explicit in equation (6),
and implicit in the definition of the covariance matrix). Because these model pa-
rameters (μ,�) of the true optimal mean–variance portfolio are not directly ob-
served, in practice, investors must substitute the equilibrium parameters based on
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historical measurements of asset return and volatility for these parameters. Tradi-
tionally, under the normality assumption, the maximum likelihood estimators of
the return vector and sample covariance matrix (μ,�) are

μ̂′ =
(

1

n

n∑
t=1

R1t , . . . ,
1

n

n∑
t=1

Rkt

)
and �̃ = 1

n

n∑
t=1

(Rt − R̄)(Rt − R̄)′,

where (R1t ,R2t , . . . ,Rkt ) is the excess return vector of k risky assets at period t ,
t = 1,2, . . . , n. Therefore, a natural estimator of wo is given by

ŵo = �̃−1μ̂

γ
. (8)

The exact distribution of ŵo is derived by Okhrin and Schmid (2006). Unfortu-
nately, very often such estimates fail to consider model uncertainty relative to the
historical data. Best and Grauer (1991) indicate that such estimation errors result
in the estimator being substantially different from the true optimal portfolio wo.
With regard to the coefficient of the maximum likelihood estimator (μ̂, �̃), Kan
and Zhou (2007) obtain an unbiased estimator of wo as follows:

ŵu =
(

n

n − k − 2

)
�̃−1μ̂

γ
=

(
n�̃−1

n − k − 2

)
μ̂

γ
= �̂−1μ̂

γ
. (9)

Note that ŵu performs rather better than ŵo. Moreover, some useful properties of
μ̂, �̃, and �̂ are cited in the following remark.

Remark 2. Under the multivariate normality:

1. It is well known that �̃ and μ̂ are independent. The sample mean and sample
covariance have the following distribution:

μ̂ ∼ N

(
μ,

�

n

)
and �̃ ∼ W(n − 1,�)

n
,

where W(n − 1,�) denotes a Wishart distribution with n − 1 degrees of free-
dom and covariance matrix �.

2. (Haff’s identity (1979)) If n ≥ k + 4, then the expectation of ��̂−2� is given
by

E
(
��̂−2�

) = αIk, (10)

where α = (n−2)(n−k−2)
(n−k−1)(n−k−4)

and Ik is the k × k identity matrix.
3. Kan and Zhou (2007) use these results to derive a closed-form solution for the

out-of-sample performance of the optimal mean–variance portfolio. Equation
(9) and the independence between �̃ and μ̂ imply that the expected return of
portfolio ŵu is

E
(
ŵ′

uμ
) = E

(
μ̂′�̂−1μ

γ

)
= μ′�−1μ

γ
. (11)
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The corresponding variance of return relative to portfolio ŵu follows equa-
tion (10):

E
(
ŵ′

u�ŵu
) = E

(
μ̂′�−1/2(��̂−2�)�−1/2μ̂

γ 2

)
= αμ′�−1μ

γ 2 . (12)

2.2 The combination of sophisticated strategies and naive diversification

For the sample-based strategies, Tu and Zhou (2011) present the following combi-
nation of two portfolio rules:

wc = (1 − β)wn + βŵu,

where ŵu is the unbiased estimator based on historical data in equation (9), wn is
the naive rule that invests equally across k risky assets, and β is the combination
coefficient, 0 ≤ β ≤ 1. The implied portfolio return of wc at t + 1 is

Rc,t+1 = w′
cRt+1.

The multivariate normality assumptions of the excess returns of the k risky assets
imply that the expected utility of ŵc is given by

U
(
wc

) = w′
cμ − γ

2
w′

c�wc,

where γ is the mean–variance investor’s relative risk aversion coefficient. The ob-
jective is to find an optimal combination coefficient β such that the following ex-
pected loss is minimized:

L(wo,wc) = U(wo) − E
(
U(wc)

)
, (13)

where U(wo) is the expected utility of the equilibrium portfolio wo = �−1μ
γ

.
To facilitate further analysis, we reformulate some results from Tu–Zhou op-

timization, in which we replace wn by using an arbitrary nonstochastic portfolio
weight we. We thus form a general combination as follows:

wc = (1 − β)we + βŵu, (14)

where we is any arbitrary nonstochastic portfolio weight that does not depend on
the sample information. Consider the following theorem.

Theorem 1 (Some similar results of Tu and Zhou’s model). Under the minimal
expected loss of quadratic utility (13), the optimal choice of the combination (14)
is given by

βTZ = B(we)

V (ŵu) + B(we)
,

B(we) = E
[
(we − wo)

′�(we − wo)
] = w′

e�we + μ′�−1μ

γ 2 − 2w′
eμ

γ
, (15)

V (ŵu) = E
[
(ŵu − wo)

′�(ŵu − wo)
] = (α − 1)μ′�−1μ

γ 2 ,
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where B(we) and V (ŵu) measure the bias of w′
eRt+1 and the variance of ŵ′

uRt+1,
respectively. The corresponding optimal combination of the naive rule and optimal
mean–variance portfolio is

wTZ = (
1 − βTZ

)
we + βTZŵu.

The expected loss relative to wTZ is shown as

L(wo,wTZ) =
[

V (ŵu)

V (ŵu) + B(we)

]2

B(we) +
[

B(we)

V (ŵu) + B(we)

]2

V (ŵu).

Moreover, the optimal wTZ dominates both the naive rule and optimal mean–
variance portfolio with probability one. That is,

L(wo,wTZ) ≤ min
[
L(wo, ŵu),L(wo,we)

]
with probability one.

Proof. It suffices to prove the optimality relative to βTZ in equation (15). First, we
derive the optimal combination coefficient. The expected loss of utility function is

E
[
L(wo,wc)

]
= μ′�−1μ

2γ
− E

[
(1 − β)w′

e + βŵ′
u
]
μ

+ γ

2
E

[(
(1 − β)we + βŵu

)′
�

(
(1 − β)we + βŵu

)]

= μ′�−1μ

2γ
− (1 − β)w′

eμ − β
μ′�−1μ

γ

+ 2γ (1 − β)βE[(we − wo)
′�(ŵu − wo)]

2
+ 2γβE[(ŵu − wo)

′�wo]
2

+ 2γ (1 − β)(we − wo)
′�wo

2
+ γE[w′

o�wo]
2

+ γ (1 − β)2E[(we − wo)
′�(we − wo)]

2
+ γβ2E[(ŵu − wo)

′�(ŵu − wo)]
2

= γ

2

[
(1 − β)2E

[
(we − wo)

′�(we − wo)
] + β2E

[
(ŵu − wo)

′�(ŵu − wo)
]]

= γ

2

[
(1 − β)2B(we) + β2V (ŵu)

]
.

Substituting the components of wo and ŵu into the B(we) and V (ŵu) will lead to
the following result when we determine the optimal combination coefficient:

B(we) = w′
e�we − 2w′

e�wo + w′
o�wo = w′

e�we − 2w′
eμ

γ
+ μ′�−1μ

γ 2 ,
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and

V (ŵu) = E
(
ŵ′

u�ŵu
) − w′

o�wo =
[

(n − 2)(n − k − 2)

(n − k − 1)(n − k − 4)
− 1

]
μ′�−1μ

γ 2 .

Second, take the first-order and second-order derivatives of E[L(wo,wc)] with
respect to β; the first-order condition of optimality is

dE[L(wo,wc)]
dβ

= γ
[−(1 − β)B(we) + β Var(ŵu)

] = 0.

Therefore, the optimal combination coefficient of this optimization is

βTZ = B(we)

V (ŵu) + B(we)
.

In addition, the second-order condition of optimality holds, as

d2E[L(wo,wc)]
dβ2 = γ

[
B(we) + V (ŵu)

]
> 0

with probability one. This completes the proof. �

There are some interesting implications in Theorem 1. First, Tu and Zhou adopt
a minimal expected loss of mean–variance utility that consider both estimation er-
ror (V (ŵu), the variance of the mean–variance portfolio) and error resulting from
model misspecification (B(we), the bias of the naive rule). Note that the combina-
tion coefficient βTZ in equation (15) measures the trade-off between the bias and
the variance. Second, this combination is not theoretically unbiased, as the naive
weight is obviously a biased estimator of the true mean–variance efficient portfo-
lio, but there is a low expected loss of mean–variance utility. Third, Tu and Zhou
observe that the combination rule always converges and is theoretically designed
to be better than either the naive rule or ŵu.

3 Main results

In this section, we briefly introduce a statistical perspective of Tu and Zhou’s
model. In combined forecast theory, two standard criteria of determining the opti-
mal combination coefficient are the local minimum-variance (LMV) criterion and
the mean squared error (MSE) criterion. The fundamental difference between the
MSE criterion and the LMV criterion is that the MSE criterion highlights the co-
movement between the combined portfolio and the true mean–variance portfolio
compared to the LMV criterion, which focuses solely on risk reduction.
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3.1 The optimal combinations under the MSE and LMV criteria

With respect to the linear combination wc = (1 − β)we + βŵu, we now introduce
a statistical perspective of Tu and Zhou’s model under minimizing the MSE crite-
rion. The mean squared error of wc, denoted by MSE(wc), is defined as

MSE(wc) = E
[
(1 − β)w′

eRn+1 + βŵ′
uRn+1 − w′

oRn+1
]2

= E
[
β(ŵu − we)

′Rn+1 + (we − wo)
′Rn+1

]2

(16)
= β2E

[
(ŵu − we)

′�(ŵu − we)
] + (we − wo)

′�(we − wo)

+ 2βE
[
(ŵu − we)

′�(we − wo)
]
.

For the optimization (16) to exist, a sufficient condition that describes the permis-
sible combination coefficient must hold. The following theorem shows that the
equivalence between the economic view (the minimal expected loss of the mean–
variance utility) and the statistical perspective (the minimal mean squared errors
criterion).

Theorem 2 (The equivalence between the minimal expected loss of the mean–
variance utility and the minimal mean squared errors criterion).

βMSE = E(w′
e�we) − E(ŵ′

e�ŵu) + [E(ŵ′
u�wo) − E(w′

e�wo)]
E(w′

e�we) + E(ŵ′
u�ŵu) − 2E(w′

e�ŵu)
= βTZ.

Proof. The first-order condition of optimality in equation (16) is

2βE
[
(ŵu − we)

′�(ŵu − we)
] + 2E

[
(ŵu − we)

′�(we − wo)
] = 0.

To solve this equation, we obtain that the optimal combination coefficient of equa-
tion (16) is

βMSE = −E[(ŵu − we)
′�(we − wo)]

E[(ŵu − we)′�(ŵu − we)]
= E(w′

e�we) − E(w′
e�ŵu) + [E(ŵ′

u�wo) − E(w′
e�wo)]

E(w′
e�we) + E(ŵ′

u�ŵu) − 2E(w′
e�ŵu)

= w′
e�we − w′

eμ/γ + (E(ŵ′
uμ) − E(w′

eμ))/γ

w′
e�we + αμ′�μ/γ 2 − 2w′

eμ/γ

= w′
e�we + μ′�μ/γ 2 − 2w′

eμ/γ

w′
e�we + αμ′�μ/γ 2 − 2w′

eμ/γ

= βTZ.

This completes the proof. �
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Under the minimum-variance criterion of a combined portfolio, the objective is
to find an optimal combination coefficient β such that the following variance is
minimized:

Var
(
w′

cRn+1
) = (1 − β)2E

(
w′

e�we
)

(17)
+ β2E

(
ŵ′

u�ŵu
) + 2β(1 − β)E

(
w′

e�ŵu
)
.

Theorem 2 provides a simple way to reach the optimal combination coefficient of
the optimization (17) as follows.

Theorem 3. The optimal combination coefficient related to the minimum-variance
optimization (17) is given by

βLMV = E(w′
e�we) − E(w′

e�ŵu)

E(w′
e�we) + E(ŵ′

u�ŵu) − 2E(w′
e�ŵu)

(18)

= w′
e�we − w′

eμ/γ

w′
e�we + αμ′�μ/γ 2 − 2w′

eμ/γ
.

Note that the LMV combined portfolio ignores the difference between the return
of ŵu and the return of we, E(ŵ′

uμ) − E(w′
eμ). We find that the optimal design

using the MSE criterion appears to include as a special case the combination of
the naive rule and the optimal mean–variance strategy based on minimizing the
combined variance.

Because μ and � in equations (15) and (18) are not observable, to estimate βLTV
and βMSE, we replace them by the MLE sample counterpart, μ̂ and �̃. Consider
the following theorem.

Theorem 4 (The estimated combination coefficient under the LMV and MSE
criteria). The estimated optimal combination coefficient related to the βMSE is
given by

β̂MSE = γ 2w′
e�̃we + μ̂′�̃−1μ̂ − 2γw′

eμ̂

γ 2w′
e�̃we + αμ̂′�̃−1μ̂ − 2γw′

eμ̂
. (19)

The estimated optimal combination of the naive rule and optimal mean–variance
portfolio is

ŵMSE = (
1 − β̂MSE

)
we + β̂MSEŵu. (20)

Similarly, the estimated optimal combination coefficient related to the βLMV is
given by

β̂LMV = γ 2w′
e�̃we − γw′

eμ̂

γ 2w′
e�̃we + αμ̂′�̃−1μ̂ − 2γw′

eμ̂
. (21)
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The estimated optimal combination of the naive rule and optimal mean–variance
portfolio is

ŵLMV = (
1 − β̂LMV

)
we + β̂LMVŵu. (22)

3.2 An application: The optimal hedging strategies

Naive hedging is the most intuitive strategy in the futures markets and provides
a benchmark against which more sophisticated models may be compared. The
so-called naive hedging is defined as a portfolio for which an investor takes an
equal but opposite position of spot assets in futures contracts. That is, the hedging
ratio of the naive hedging is defined as h = −1. In this section, we propose an
optimal combination of naive hedging and mean–variance efficient hedging (or
the maximal risk-return hedging) as follows:

wc = (1 − β)we + βŵu = (1 − β)

[−0.5
0.5

]
+ β

[
ŵf
ŵs

]
. (23)

Or, the optimal combination may be directly implemented in the Tu and Zhou’s
framework by taking a negative returns for the futures contracts:

wc = (1 − β)we + βŵu = (1 − β)

2

[
1
1

]
+ β

[−ŵf
ŵs

]
. (24)

Because the optimal portfolio weight vector wc is unique, the relative magnitude of
portfolio weight vector we does not affect the optimal combination coefficient β .

The statistical inferences of the hedging effectiveness of this optimal combina-
tion will be made using Chiu’s (2013) regression-based approach. Assume that the
investor considers a hedged portfolio by holding wf units futures contracts and a
spot position of ws units. Let the in-sample data be substituted into an unrestricted
OLS regression as follows:

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rf1 rs1
rf2 rs2
...

...

rfn rsn

⎤
⎥⎥⎥⎦

[
wf
ws

]
+

⎡
⎢⎢⎢⎣

ε1
ε2
...

εn

⎤
⎥⎥⎥⎦ ,

(�) (R) (w) (ε)

(25)

where w = [wf ws]′ represents the portfolio weight vector, � = (1, . . . ,1)′ is the
n × 1 vector of ones, the n observations of the hedged residuals are contained in
the n × 1 vector ε and the observations of futures excess returns and spot excess
returns are contained in the n × 2 matrix R.

For the estimation procedures of this regression-based model, Chiu (2013)
shows that the unscaled OLS estimator of the portfolio weight, the unrestricted
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sum of squared residuals, and the corresponding optimal mean–variance hedging
ratio are

w̃OLS =
[
w̃f
w̃s

]
= �̃−1μ̂

1 + μ̂′�̃−1μ̂
, SSRmv = n

1 + μ̂′�̃−1μ̂
,

(26)

ĥmv = w̃f

w̃s
,

where μ̂ = [ r̄f
r̄s

]
and �̃ = [ s2

f ssf

ssf s2
s

]
represent the vector of sample means of excess re-

turns and the sample covariance matrix between excess returns, respectively. Note
that the OLS estimator, w̃OLS, is independent of the investor’s CARA parameter.
If an investor employs the naive rule where wf = −ws, the restricted in-sample
regression of the naive hedging may be represented by⎡

⎢⎢⎣
1
1
...

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rf1 − rs1
rf2 − rs2

...

rfn − rsn

⎤
⎥⎥⎥⎦wf +

⎡
⎢⎢⎢⎣

ε1
ε2
...

εn

⎤
⎥⎥⎥⎦ . (27)

The sum of squared residuals of the naive rule is formed as

SSRnr = n

1 + n(r̄f − r̄s)2/
∑n

i=1(rfi − rsi )2 = n[(s2
f − 2sfs + s2

s ) + (r̄f − r̄s)
2]

(s2
f − 2sfs + s2

s ) + 2(r̄f − r̄s)2
.

This finding implies that

w′
e�̃we = (

s2
f − 2sfs + s2

s
) = (r̄f − r̄s)

2(n − 2SSRnr)

SSRnr − n
. (28)

As a finding of previous results, we now proceed to construct the optimal com-
bination between the risk-return hedging and naive hedging. The corresponding
hedging ratio is described as the following theorem.

Theorem 5. The regression-based optimal combination coefficient of βMSE is
given by

β̂MSE

= (
γ 2(r̄f − r̄s)

2(n − 2SSRnr)SSRmv − (n − SSRmv)(n − SSRnr)
(29)

− 2γ (r̄f − r̄s)(n − SSRnr)SSRmv
)
/
(
γ 2(r̄f − r̄s)

2(n − 2SSRnr)SSRmv

− α(n − SSRmv)(n − SSRnr) − 2γ (r̄f − r̄s)(n − SSRnr)SSRmv
)
.

The corresponding optimal combination of the naive rule and optimal mean–
variance portfolio is

ŵMSE = (1 − β̂MSE)we + β̂MSEŵu.
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The hedging ratio relative to ŵMSE is shown as

ĥMSE = (β̂MSE − 1) + β̂MSEŵf

(1 − β̂MSE) + β̂MSEŵs
= (1 − 1/β̂MSE)1/ŵs + h̃mv

(1/β̂MSE − 1)1/ŵs + 1
. (30)

Similarly, the regression-based optimal combination coefficient of βLMV is given
by

β̂LMV

= (
γ 2(r̄f − r̄s)

2(n − 2SSRnr)SSRmv − γ (r̄f − r̄s)(n − SSRnr)SSRmv
)

(31)
/
(
γ 2(r̄f − r̄s)

2(n − 2SSRnr)SSRmv − α(n − SSRmv)(n − SSRnr)

− 2γ (r̄f − r̄s)(n − SSRnr)SSRmv
)
.

The corresponding optimal combination of the naive rule and optimal mean–
variance portfolio is

ŵLMV = (1 − β̂LMV)we + β̂LMVŵu.

The hedging ratio relative to ŵLMV is shown as

ĥLMV = (β̂LMV − 1) + β̂LMVŵf

(1 − β̂LMV) + β̂LMVŵs
= (1 − 1/β̂LMV)1/ŵs + h̃mv

(1/β̂LMV − 1)1/ŵs + 1
. (32)

Proof. To obtain an unbiased estimator of the optimal mean–variance portfolio
wo, we must adjust the coefficient of the OLS weight, which may be accomplished
by combining equations (9) and (26)

ŵu = �̂−1μ̂

γ
=

[
n(1 + μ̂′�̃−1μ̂)

(n − k − 2)γ

][
�̃−1r̄

1 + μ̂′�̃−1μ̂

]
(33)

=
[

n2

γ (n − k − 2)SSRmv

]
w̃OLS.

In addition, we compute the Sharpe ratio μ̂′�̃−1μ̂ using equation (26)

μ̂′�̃−1μ̂ = n − SSRmv

SSRmv
.

For the case of minimizing the expected loss of mean–variance utility, the optimal
combination coefficient is given by

β̂TZ =
(

γ 2(r̄f − r̄s)
2(n − 2SSRnr)

SSRnr − n
+ n − SSRmv

SSRmv
− 2γ (r̄s − r̄f)

)
/(

γ 2(r̄f − r̄s)
2(n − 2SSRnr)

SSRnr − n
+ α

n − SSRmv

SSRmv
− 2γ (r̄s − r̄f)

)
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= (
γ 2(r̄f − r̄s)

2(n − 2SSRnr)SSRmv − (n − SSRmv)(n − SSRnr)

− 2γ (r̄f − r̄s)(n − SSRnr)SSRmv
)
/
(
γ 2(r̄f − r̄s)

2(n − 2SSRnr)SSRmv

− α(n − SSRmv)(n − SSRnr) − 2γ (r̄f − r̄s)(n − SSRnr)SSRmv
)
.

The Tu–Zhou combined portfolio is thus determined as

ŵMSE = (1 − β̂MSE)

[−1
1

]
+ β̂MSE

[
ŵf
ŵs

]
.

Therefore, the hedging ratio relative to ŵMSE is shown as

ĥMSE = (β̂MSE − 1) + β̂MSEŵf

(1 − β̂MSE) + β̂MSEŵs
= (1 − 1/β̂MSE)1/ŵs + h̃mv

(1/β̂MSE − 1)1/ŵs + 1
.

Similarly, to slightly modify the coefficient, we obtain the resulting properties of
the minimum-variance (LMV) hedging. This completes the proof. �

Investors may wish to assess whether the out-of-sample performance relative to
the hedging policy ĥMSE (or ĥLMV) is effective. The null hypothesis is thus stated
as follows:

H0: h = ĥMSE (or H0: h = ĥLMV). (34)

For the testing procedures of this regression-based model, the restricted out-of-
sample regression under the null hypothesis H0: h = ĥMSE, is thus reduced into a
simple regression as

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ĥMSE · rf(n+1) + rs(n+1)

ĥMSE · rf(n+2) + rs(n+2)

...

ĥMSE · rf(n+m) + rs(n+m)

⎤
⎥⎥⎥⎦ws +

⎡
⎢⎢⎢⎣

εn+1
εn+2

...

εn+m

⎤
⎥⎥⎥⎦ , (35)

where the m observations of excess returns are contained in the m × 1 matrix.
Similarly, the ex post evaluation of the mean–variance efficient portfolio may be
conducted following the same procedures. The unrestricted out-of-sample regres-
sion of the hedged portfolio is represented by⎡

⎢⎢⎣
1
1
...

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rf(n+1) rs(n+1)

rf(n+1) rs(n+2)

...
...

rf(n+m) rs(n+m)

⎤
⎥⎥⎥⎦

[
wf
ws

]
+

⎡
⎢⎢⎢⎣

εn+1
εn+2

...

εn+m

⎤
⎥⎥⎥⎦ . (36)

Under the multivariate normality assumption (3), Chiu (2013) shows that assess-
ing the hedging effectiveness (36) is possible using the following F(OLS)-statistic:

F = (SSRr − SSRu)

SSRu/(m − 2)
∼ F(1,m − 2), (37)
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where SSRr and SSRu denote the restricted sum of squared residuals (35) and the
unrestricted sum of squared residuals (36), respectively. The test statistic F is dis-
tributed as a central F(1,m − 2) with 1 and m − 2 degrees of freedom. Similarly,
to slightly modify the coefficient, we obtain the testing properties of the minimum-
variance (LMV) hedging.

3.3 An illustration

In this section, we perform a comparative out-of-sample performance analysis of
the optimal combination approaches derived in the previous section against the ex
ante hedging ratio (ĥmv) and naive hedging ratio (h = −1) via the F -test in equa-
tion (37). The data employed in this illustration comprise 149 weekly observations
on the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and
stock index futures contract (TAIEX Futures) over the period 2010–2012 which
includes some important financial crises. Days corresponding to Taiwan public
holidays are removed from the series to avoid the computation of zero returns. The
futures contract “TAIEX Futures” is actively traded, and the underlying investment
asset is the TAIEX, issued by the Taiwan Stock Exchange Corporation (TWSE).
Data sources are the weekly percentage returns from the TEJ database, which is
maintained by the Taiwan Economic Journal.

For further statistical inferences, we divide our sample into two subsamples: the
in-sample part which includes January 2010–December 2011 (with 100 weekly
observations), is used to generate the initial expected returns and covariance esti-
mation; and the out-of-sample part, which contains January 2012–December 2012
(with 49 weekly observations), is then used as the ex post to assess the hedging
effectiveness of the estimation. Both the in-sample estimation and out-of-sample
testing are performed using weekly closing prices of TAIEX Futures and TAIEX.
Data sources are the weekly percentage returns from the TEJ database, which is
maintained by the Taiwan Economic Journal.

The statistics of the in-sample estimation are computed according to the unre-
stricted regression (25) and restricted regression (27). We first generate the esti-
mation of expected returns and covariance matrix which are displayed in panel A
of Table 1. Similarly, the summary statistics and regression results for the out-of-
sample testing (January 2012–December 2012, with 49 weekly observations) are
reported in panel B of Table 1.

In our case study of the out-of-sample performance, we consider eight portfolios
whose hedging ratios are in the second column of panel B of Table 1. Three of
these portfolios illustrate the case when the Tu–Zhou optimal MSE combination is
applied to pool the risk-return hedging and naive rule (with different risk aversion
coefficients γ = 0.5, γ = 1, and γ = 2). Three of these portfolios illustrate the
case when the minimum-variance (LMV) combination is used to pool the risk-
return hedging and naive rule (with different risk aversion coefficients (γ = 0.5,
γ = 1 and γ = 2)), while the other two portfolios illustrate the ex ante optimal
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Table 1 Summary statistics (January 2010–December 2012)

Panel A: The in-sample estimation (January 2010–December 2011)

Mean return Covariance matrix Ex ante optimal weight

μ̂in = [−0.0962
−0.1255

]
�̃in = [ 8.10 7.18

7.18 6.85
]

w̃OLS = [ 0.0601
−0.0812

]
Regression (25): SSRmv = 99.55965 Regression (27): SSRnr = 99.856778

Panel B: The out-of-sample testing (January 2012–December 2012)

Mean return Covariance matrix Ex ante optimal weight

μ̂out = [ 0.19309
0.28224

]
�̃out = [ 6.25 5.13

5.13 4.65
]

w̃out = [−0.18680
0.26405

]

Models ĥ SSR F -value Sharpe ratio Deduction

Method A(γ=1) −0.7399 47.136160 0.02058 0.196811 −0.005713
Method A(γ=2) −0.7402 47.136570 0.02099 0.196789 −0.005820
Method A(γ=1/2) −0.7394 47.135516 0.01994 0.196847 −0.005528
Method B(γ=1) −0.2870 47.893367 0.77593 0.150448 −0.239934
Method B(γ=2) −0.3391 47.815384 0.69814 0.155786 −0.212968
Method B(γ=1/2) −0.1641 48.039512 0.92172 0.139949 −0.292976
Method C −0.7405 47.137027 0.02145 0.196764 −0.005947
Method D −1.0000 48.411588 1.29290 0.109116 −0.448744
Method E −0.7074 47.115529 0.197941

Method A(γ=1): The Tu–Zhou (MSE) optimal combination (regression (35), H0: h = −0.7399).

Method A(γ=2): The Tu–Zhou (MSE) optimal combination (regression (35), H0: h = −0.7402).

Method A(γ=1/2): The Tu–Zhou (MSE) optimal combination (regression (35), H0: h = −0.7394).

Method B(γ=1): The minimum-variance (LMV) combination (regression (35), H0: h = −0.2870).

Method B(γ=2): The minimum-variance (LMV) combination (regression (35), H0: h = −0.3391).

Method B(γ=1/2): The minimum-variance (LMV) combination (regression (35), H0: h = −0.1641).

Method C: The ex ante mean–variance portfolio (regression (35), H0: h = −0.7405).
Method D: The naive hedging strategy (regression (35), H0: h = −1).
Method E: The benchmark, the ex post optimal mean–variance portfolio (regression (36)).
The F -value is computed according to the F -test of equation (37).

risk-return hedging and the naive diversification, respectively. We use the ex post
optimal risk-return hedging (method E) in Table 1 as a benchmark for comparison.
The regression analysis is based on comparing equation (35) against equation (36).

We summarize some important results of our discussions as follows:

1. The sums of the squared residuals of the ex ante and ex post optimal risk-return
hedging are 47.1370 and 47.1155, respectively. Using equation (35), we obtain
that the F -value (p-value) of testing the naive hedging ratio H0: h = −1 is
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given by

F = (SSRr − SSRu)

SSRu/(n − 2)
= (48.4116 − 47.1155)

47.1155/47
= 1.2929 (0.2613).

Similarly, the F -value (p-value) of testing the ex ante optimal risk-return hedg-
ing ratio H0: h = ĥLMV = −0.7405 is

F = (47.1370 − 47.1155)

47.1155/47
= 0.0215 (0.8841).

Note that the risk tolerance affects the optimal risk-return portfolio weights but
does not affect the hedging ratio. That is, the optimal hedging ratio depends on
�̂−1μ̂ only.

2. As mentioned previously, any estimation of the true optimal mean–variance
portfolio must consider the CARA investor’s risk aversion coefficient. We now
turn our focus to the adjustment and combination of the mean–variance port-
folio. For example, we first assume that the investor chooses his risk aversion
parameter γ = 1. Therefore, by using equations (20), (22) and (33), we obtain
the resulting portfolio weights:

ŵu =
[

0.0629
−0.0849

]
, ŵMSE =

[
0.0627

−0.0847

]
, ŵLMV =

[
0.0084

−0.0293

]
.

(β̂ = 1) (β̂MSE = 0.9998) (β̂LMV = 0.9488)

(ĥmv = −0.7405) (ĥMSE = −0.7399) (ĥLMV = −0.2870).

In this case, γ = 1, we test the hedging effectiveness of an MSE hedging ratio
H0: h = ĥMSE = −0.7399 via the F -statistic:

F = (47.1361 − 47.1155)

47.1155/47
= 0.02058 (0.8865).

The F -value indicates that the hedging effectiveness at the hedging ratio ĥMSE
is not significantly different from the ex post optimal risk-return hedging with
a p-value 88.65%. That is, the MSE hedging ratio −0.7399 (with γ = 1) is an
excellent estimate of the ex post optimal risk-return hedging. In addition, the
F -value (p-value) of testing the hedging effectiveness of a LMV hedging ratio
H0: h = ĥLMV = −0.2870 is:

F = (47.8934 − 47.1155)

47.1155/47
= 0.7759 (0.3829).

This shows that the hedging effectiveness at the hedging ratio ĥLMV is also
not significantly different from the ex post optimal risk-return hedging with a
p-value 38.29%. However, in terms of the Sharpe ratios, the MSE hedging is
obviously superior to the LMV hedging.
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3. Moreover, we also use two risk aversion coefficients (γ = 0.5 and γ = 2) as
a simple robustness check. It should be emphasized that the Sharpe ratios of
the MSE hedgings with respect to γ = 0.5, γ = 1, and γ = 2 are very close
to the Sharpe ratios of the ex post optimal risk-return hedging. Finally, Table 1
presents the summary statistics for the analyses of interest. For comparison,
the hedging techniques in panel B present decreases of 0.0578%, 0.0582%,
0.055%, 23.99%, 21.30%, 29.30%, 0.0595% and 44.87% in the Sharpe ratio
from the ex post optimal mean–variance efficient portfolio. It is evident that
the Sharpe ratios for both the MSE criterion and the LMV criterion are better
than the naive hedging in our studies. This indicates that all hedging techniques
outperform the naive hedging. Specifically, our illustration also shows out-of-
sample performance of a combined MSE hedging that is superior to that of other
methods. In fact, all of the MSE combination coefficients seem to be close to the
ex ante optimal hedging. This means that the out-of-sample performance of the
combined MSE hedging strategies is similar to the out-of-sample performance
of the ex ante mean–variance portfolio.

4 Conclusion

It is imperative to understand that no estimation of the mean–variance efficient
portfolio produces a consistent out-of-sample portfolio evaluation. Regardless of
the decision made, the investor is always giving something up in return. An exam-
ple of a difficult trade-off is the choice between the estimation error (the variance
of the mean–variance portfolio) and the simplicity of using the naive rule at the
cost of resulting in model misspecification (the bias of the naive rule). For this
reason, an intuitive approach to minimizing risk is to construct a combination be-
tween the mean–variance portfolio and the naive rule. According to this view, we
analytically derive an optimal combination of the unbiased mean–variance effi-
cient portfolio and the naive rule while minimizing the mean squared error crite-
rion. The presented combining estimators considerably reduce the out-of-sample
variance of the portfolio return compared to the mean–variance estimator. An em-
pirical study of the combination of optimal risk-return hedging and the naive hedg-
ing demonstrates the superiority of this approach over naive hedging and ex ante
mean–variance estimator. To incorporate the Bayesian framework and posteriori
methods into the combination procedures is for further studies.
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