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Comment on Article by Finegold and Drton

François Caron∗ and Luke Bornn†

The authors should be commended for their creation of a flexible yet computationally
efficient approach to robust graphical models. The framework proposed by the authors
opens up many opportunities for generalizations and extensions. In this comment, we
highlight several such ideas which we feel might be useful to practitioners.

Extensions to other scale mixtures of Gaussians and to skew distributions. The mod-
els proposed by the authors can be easily extended beyond the Student-t case to other
classes of scale mixtures of Gaussians. In particular, the class of generalized hyperbolic
distributions (Barndorff-Nielsen and Shephard 2001) generalizes the Student-t and leads
to tractable inference.

Let GiGauss(ν, δ, γ) be the generalized inverse Gaussian distribution of pdf

(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−1

2
(δ2x−1 + γ2x)

)
, x > 0. (1)

This distribution admits as special cases the gamma, inverse gamma and inverse Gaus-
sian distributions. The classical (multivariate) generalized hyperbolic (GH) distribution
can be constructed in the following way:

X ∼ Np(0,Ψ), Y = µ+X/
√
τ

with 1/τ ∼ GiGauss(ν, δ, γ). Its marginal density is

(γ/δ)ν

(2π)p/2γν−p/2Kν(δγ)
qy(µ,Ψ)ν−p/2Kν−p/2(γqy(µ,Ψ))

where Kν(x) is the modified Bessel function of the third kind, and qy(µ,Ψ) = (y −
µ)TΨ−1(y − µ). This multivariate GH distribution admits as a special case the (clas-
sical) multivariate Student-t (ν < 0 and γ = 0), as well as multivariate versions of the
Laplace (Kyung et al. 2010; Bornn et al. 2010), Cauchy, normal-gamma and normal
inverse Gaussian distributions. The three parameters of the GH distributions allow for
more flexibility, in particular for modeling the tails, as shown in Figure 1.

This model has conjugacy properties, as the conditional distribution of τ given the
other variables is still generalized inverse Gaussian (e.g. Caron et al. 2012). Alternative
GH and Dirichlet GH can be constructed in the same way:

X ∼ Np(0,Ψ)

� Classical GH distribution

Y = µ+X/
√
τ with 1/τ ∼ GiGauss(ν, δ, γ)
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Figure 1: [Figure reproduced from (Caron et al. 2012) with permission] Probability
density functions of the generalized hyperbolic distribution for several values of (ν, δ, γ)
correspond to a Laplace, Normal inverse Gaussian and Student t distribution. The pdf
of the normal distribution is also shown for comparison. (a) Behavior around 0 and (b)
Tail behavior.

� Alternative GH distribution

Yj = µj +Xj/
√
τj with 1/τj

iid∼ GiGauss(ν, δ, γ)

� Dirichlet GH distribution

Yj = µj +Xj/
√
τj with 1/τj |P

iid∼ P, P ∼ DP(α,GiGauss(ν, δ, γ))

Another line of research would be to extend these models to handle asymmetry
in the data, a topic of great interest, see e.g. Frühwirth-Schnatter and Pyne (2010).
The recent works of Capitanio et al. (2003) or Zareifard et al. (2013) on skew normal
graphical models could be extended to the family of Student-t distributions proposed
in the paper of Finegold and Drton. Example draws from a classical skew-t, alternative
skew-t and skew Dirichlet-t bivariate distributions are given in Figure 2.

Alternative models for the precision parameters τj. The classical, alternative, and
Dirichlet-t formulations presented in the paper are some of many possible specifications
for the prior on the precision parameters τj . We now highlight some other possible
models, plotting simulations of them along the way in Figure 3. Aside from the alter-
native model which draws independent gamma random variates (Figure 3, row 1) and
the Dirichlet-t model (Figure 3, row 2) presented in the paper, one could also specify a
spike and slab model, whereby apriori

τij ∼

{
δ1, if bij = 1

Γ(ν/2, ν/2), if bij = 0
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(a) t (b) skew t

Figure 2: (a) Multivariate t (b) Skew multivariate t

where bij are independent Bernoulli draws (Figure 3, row 3). This allows one to induce
most of the τij to be equal to one, corresponding to a normal noise model. The remaining
contaminated observations and/or variables would fall under the independent Gamma
(alternative Student-t) regime.

If one wishes to induce correlation within an observation or variable, we feel it is
more appropriate to correlate the presence or absence of contamination rather than
the actual level of contamination as represented by the value of τij . In most cases,
contamination is either present or not, and if it is present, the degree to which it affects
the observation will be variable-dependent. Because of this, we feel it is natural to
induce dependence in bij , rather than τij . This could be done using an autologistic
model, a probit model (Figure 3, row 4), or any of a variety of methods for creating
correlated Bernoulli draws.

Alternatives also exist for correlating the τij while maintaining gamma marginals.
Specifically, one could use a copula to maintain the correct Student-t structure marginally
while inducing correlation across variables or observations (Figure 3, row 5). Closer to
the authors’ method, one could alternatively build more complex DP-based models; see
e.g. MacEachern (2000).

Alternative priors over decomposable graphs. The authors assume a simple model on
decomposable graphs that does not try to induce any structure in the graph. Alternative
priors over decomposable graphs, where one can control the clustering of the nodes into
cliques and separators, could also be considered in the same framework (Bornn and
Caron 2011; Byrne and Dawid 2014).
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Figure 3: Prior simulations from different model specifications for τj . Each of the 5
rows is a different model, and the 3 large columns show separate draws. Within each
row/column block, the p = 20 rows represent variables and the n = 30 columns represent
observations. Row 1 is indendent samples from a Γ(1, 1) distribution. Row 2 extends
this using the Dirichlet-t formulation proposed by Finegold and Drton, using α = 5.
Row 3 shows independent draws from the spike and slab model with P (bij = 1) = 0.9,
and a slab distribution Γ(1, 1). Row 4 correlates bij by drawing them from a probit
model where the underlying Gaussian distribution (truncated at 0) has correlation 0.8
within observations and 0.8 within variables. Lastly, row 5 has Γ(1, 1) marginals tied
together with a pairwise Gaussian copula with parameter ρ = 0.9.
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