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Abstract. Scale mixtures of normals have been discussed extensively in the liter-
ature as heavy-tailed alternatives to the normal distribution for robust modeling.
They have been used either as error models to handle outliers or as prior distri-
butions to provide more reasonable shrinkage of model parameters. The proposed
method by Finegold and Drton goes beyond the existing literature both in terms of
application (graphical models) and methodology (Dirichlet t) for outlier handling.
While this approach can be applied to many other problems, in this discussion I
will focus on its application in Bayesian modeling of high throughput biological
data.
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1 Background

I would like to congratulate the authors for their excellent paper, which nicely combines
ideas from graphical modeling, robust Bayesian inference, and Bayesian nonparamet-
rics. Although the proposed method is presented in the context of Bayesian graphical
modeling, its application of course is not limited to these models. In this discussion, I
mainly focus on what the authors call Dirichlet ¢-distributions. This is a generalization
of standard t¢-distribution, which itself can be presented as a scale mixture of normals.
In general, the random variable Y = X o has a scale mixture of normal distribution if X
has a standard normal distribution, and ¢ > 0 has some distribution with a continuous
or discrete density h(c) (Andrews and Mallows 1974; West 1984). When o2 has Inv-
Gamma(v/2,v/2) distribution, Y has a t-distribution with v degrees of freedom. The
distribution of Y will become Laplace or horseshoe (Carvalho et al. 2010) if instead of
Inv-Gamma we use exponential or half-Cauchy respectively.

Scale mixtures of normals are commonly used as heavy-tailed alternatives to the
normal distribution for a better handling of outliers as discussed in this current paper
by Finegold and Drton. However, they are also used as prior distributions to provide
more reasonable shrinkage of model parameters (e.g., Gelman 2006; Carvalho et al.
2010). Indeed, West (1984) used them both as a model for the error term and as the
prior for parameters in regression models. Finegold and Drton explore an interesting
extension of these models, i.e., Dirichlet t-distributions, for handling outliers. In the
next section, I will discuss the application of Dirichlet ¢ as a prior for model parameters
in high dimensional problems.
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2 Dirichlet t Prior in High Dimensional Problems

High throughput biological studies typically involve simultaneous assessments of many
factors (e.g., genes, proteins). In general, it is expected that only a small number of
these factors are directly associated with the outcome of interest (e.g., disease); that is,
most of the factors have very small effects (i.e., close to zero). In such problems, the
t-distribution might be a more reasonable prior, compared to the normal distribution,
for the effects: it properly shrinks small effects to zero while allowing for some large
effects in the tails.

Shen (2013) examines the shrinkage effect of the ¢ prior in genome-wide association
studies (GWAS) and shows that the following alternative specification performs very
well compared to normal and Student-t models:

vi = &ivr/ug
£ ~ N(0,%)

This is similar to what the authors in this paper call the “alternative t-distribution.”
Here, ; is the effect of i*" Single Nucleotide Polymorphism (SNP), and u; is a SNP-
specific scale parameter. Note that there is a separate scale parameter for each SNP, as
opposed to using a common scale parameter, u, for all SNPs. It would be interesting to
see whether a Dirichlet ¢ prior for SNP effects could further improve the performance
of this model.

We previously explored a similar idea in the context of gene expression data analysis
by using the following model (Shahbaba and Johnson 2012):

Yij |, i ~ N(o; + Bizij,of)
Bilm? ~ N(0,7})
TZ-Q\G ~ G
G ~ ID(G077)

Here, y;; denotes the j observed gene expression value for gene i, x;; is a binary indica-
tor for disease status (O=healthy, 1=diseased), and f; is the corresponding gene effect.
Note that in our model, the hyperparameter 77 (as opposed to ¢7) has an unknown
distribution G with a Dirichlet process prior, D(Gg,7). The model was simplified for

gene-level summary statistics, z;,
zilr? ~ N(0,77)
G ~ G
G ~ D(G07 ’7)
We proposed this model as an alternative to the method of Guindani et al. (2009).
Although we found that our method performs well especially when the underlying model
is misspecified, we could not clearly describe its properties as Finegold and Drton did in

their paper. An open problem is to provide a theoretical basis for improved performance
under Dirichlet-t priors.
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3 Extension to Other Scale Mixtures of Normals

In our proposed model for gene expression data, we did not limit our choice of Gy to
conjugate priors. By using other distributions instead of Inv-Gamma, it is possible to
create alternative prior distributions besides Dirichlet ¢. Figure 1 shows the result of
using a half-Cauchy (Gelman 2006; Carvalho et al. 2010) distribution as Gy. It would be
interesting to examine the properties of such distributions as priors in high dimensional
problems.

Normal . Classical Horseshoe

, . Dirichlet Horseshoe

Figure 1: Using a half-Cauchy distribution instead of Inv-Gamma as the baseline dis-
tribution in the method of Finegold and Drton.
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