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Hellinger Distance and Non-informative Priors

Arkady Shemyakin ∗

Abstract. This paper introduces an extension of the Jeffreys’ rule to the con-
struction of objective priors for non-regular parametric families. A new class of
priors based on Hellinger information is introduced as Hellinger priors. The main
results establish the relationship of Hellinger priors to the Jeffreys’ rule priors in
the regular case, and to the reference and probability matching priors for the non-
regular class introduced by Ghosal and Samanta. These priors are also studied
for some non-regular examples outside of this class. Their behavior proves to be
similar to that of the reference priors considered by Berger, Bernardo, and Sun,
however some differences are observed. For the multi-parameter case, a combina-
tion of Hellinger priors and reference priors is suggested and some examples are
considered.

Keywords: non-informative prior, Jeffreys’ rule, reference prior, matching proba-
bility prior, Hellinger distance, Hellinger information.

1 Introduction

Non-informative priors play a crucial role in objective Bayesian analysis. The most pop-
ular ways to construct non-informative priors include the Jeffreys’ rule (Jeffreys, 1961)
based on the concept of Fisher’s information; matching probability principle proposed
by many authors including Tibshirani (1989), Datta and Mukerjee (2004), and Ghosal
(1999); and reference priors introduced by Bernardo (1979) and developed in such works
as Berger and Bernardo (1989, 1992), Berger, Bernardo and Sun (2009). For a more
comprehensive review of these and other approaches, see, e.g., Kass and Wassermann
(1996). The main purpose of the present paper is to introduce an extension of the Jef-
freys’ rule to the construction of objective priors in such cases when Fisher’s information
might not be defined. We introduce a class of non-informative priors based on Hellinger
information. The priors of this class (dubbed Hellinger priors) are attractive due to rel-
ative technical simplicity of their derivation. It is also interesting that in many (but not
all!) staple examples of Ghosal (1997, 1999), Ghosal and Samanta (1997), and Berger,
Bernardo and Sun (2009), the Hellinger prior directly coincides with reference and prob-
ability matching priors, which often require much more mathematical sophistication to
derive.

In the next section we first remind the reader of the conventional definition of
Hellinger distance and mention some of its useful properties. Then we define Hellinger
information, which was introduced in Shemyakin (1992) in a much different context of
information inequalities for the Bayes risk. Then we define Hellinger priors as suggested
in Shemyakin (2011, 2012).

∗University of St. Thomas a9shemyakin@stthomas.edu

© 2014 International Society for Bayesian Analysis DOI:10.1214/14-BA881

mailto:a9shemyakin@stthomas.edu


924 Hellinger Distance

It is still an open question whether the Hellinger prior can be derived as the solution
of some information-optimization problems similar to the way the reference priors are
obtained in Berger, Bernardo and Sun (2009). One possible motivation to consider
Hellinger priors is related to information-theoretic principles. The single-parameter
family of distributions endowed with the Hellinger information metric defines a one-
dimensional Riemann manifold. The Hellinger prior is natural from an information-
geometric viewpoint, following Kass and Wasserman (1996), since it can be treated
as the volume element on this manifold. However, the Riemann geometric framework
is less appropriate for multi-dimensional non-regular parametric families, which rather
exhibit Finsler manifold structure.

Section 3 is dedicated to the formulation of the main results. Here we establish
the relationship of Hellinger priors to the Jeffreys’ rule priors in the regular case, and
to the reference and probability matching priors for the non-regular class introduced
in Ghosal and Samanta (1997). Some related results were formulated in Shemyakin
(2012) without specifying regularity conditions. The complete original proofs are rele-
gated to Appendix A. In order to illustrate both the similarity and differences between
Hellinger and reference priors, in Section 4 we consider examples used in Ghosal (1997,
1999), Ghosal and Samanta (1997), and Berger, Bernardo and Sun (2009). We begin
with examples from the Ghosal-Samanta class, for which Hellinger priors coincide with
reference and probability matching priors. Then we proceed with non-regular models
outside of the Ghosal-Samanta class, for which some discrepancies may be observed.
Some detailed derivations of Hellinger priors are placed in Appendix B mostly in order
to demonstrate their technical simplicity. Section 5 is dedicated to the multi-parameter
case, for which a combination of Hellinger and reference priors is suggested. Section 6
contains conclusions and proposes some directions for future development.

2 Notations and Definitions

2.1 Hellinger Distance

Hellinger distance, which should be more accurately referred to as Bhattacharyya-
Hellinger distance, since it was first defined in its modern version in Bhattacharyya
(1943), may be used to quantify the distance between two points of a parametric family.
Under certain regularity conditions, its limit behavior as the difference in the param-
eter values goes down to 0 is closely related to Fisher information. Hellinger distance
can also be used to study information properties of the parametric set in non-regular
situations (e.g., when Fisher information does not exist) as suggested in Birge (1985),
Ibragimov and Has’minskii (1981), and Le Cam (1986). Satisfying properties of a dis-
tance (symmetry, triangle inequality), it promises certain advantages relative to such
alternative information measures as Kullback-Leibler divergence. This explains a nat-
ural way in which Hellinger information (the limit of Hellinger distance between two
adjacent points of the parametric set) serves to provide the lower bounds for Bayes risk
in non-regular situations. Its role is similar to the role played by Fisher information in
the regular case. It is also natural to apply Hellinger information to derive priors similar
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to Jeffreys’ rule priors which would be the least informative for non-regular cases. We
will derive Hellinger priors based on the concept of Hellinger information and compare
their behavior with the Jeffreys’ rule prior and reference prior as defined by Berger,
Bernardo, and Sun (2009). It should be mentioned that in the regular case Hellinger
priors generalize the constructions already known, while under the loss of regularity
they can reveal somewhat different behavior.

Suppose that a parametric family of probability measures
{
Pθ, θ ∈ Θ

}
is defined

on a measurable space
(
X ,B

)
so that all the measures from the family are absolutely

continuous with respect to some σ-finite measure λ on B. Throughout Sections 2-4 we
will consider the single real parameter case Θ ⊂ R , which in Section 5 will be extended
to Θ ⊂ Rm,m = 1, 2, ... . Then Hellinger distance between any two parameter values

can be defined in terms of densities p(x; θi) =
dPθi
dλ as

dH(θ1, θ2) =
(∫
X

(√
p(x; θ1)−

√
p(x; θ2)

)2
dλ
)1/2

.

Thus one can use Hellinger distance to quantify the distance between measures from
the same family indexed by different parameters. It does not depend on the choice
of the dominating measure λ and is defined for all points of the parametric family.
It is a true metric, satisfying the symmetry property and triangle inequality. Further
properties of Hellinger distance were reviewed in multiple studies, e.g., Gibbs and Su
(2002). Hellinger distance is closely related to other quantities which serve to measure
divergence between the points of parametric space, such as Kullback-Leibler divergence

dKL(θ1, θ2) =

∫
supp(Pθ1 )

p(x; θ2) log
(p(x; θ2)

p(x; θ1)

)
dλ,

where integration is carried out over the support of the distribution, chi-square distance

dχ2(θ1, θ2) =

∫
supp(Pθ1 )

⋃
supp(Pθ2 )

(
p(x; θ1)− p(x; θ2)

)2
p(x; θ1)

dλ,

or total variation distance

dTV (θ1, θ2) = sup
A∈B

Pθ1(A)− Pθ2(A)
.

Kullback-Leibler divergence plays a very important role in information theory and
finds many natural applications in Bayesian parametric estimation. However, neither
Kullback-Leibler nor chi-square divergence measures are symmetric. These two diver-
gence measures also cannot be defined for all possible pairs of values of parameter in
the case of parameter-dependent density support.

One attractive feature of Hellinger distance used in the sequel is provided by the
following formula. For the product measures µ = µ1 × µ2 and ν = ν1 × ν2 , it is true
that

1− 1

2
d2
H(µ, ν) =

(
1− 1

2
d2
H(µ1, ν1)

)
·
(
1− 1

2
d2
H(µ2, ν2)

)
,
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from where we can first derive a useful expression for the case of i.i.d. finite samples

x(n) = (x1, ..., xn)and p(n)(x; θ) =
dP

(n)
θ

dλn :

d2
H

(
p(x(n); θ1), p(x(n); θ2)

)
= 2
[
1−

(
1− 1

2
d2
H

(
p(x; θ1), p(x; θ2)

))n]
,

which helps to reduce many considerations to the case of sample size 1.

2.2 Hellinger Information and Lower Bounds for Bayes Risk

From this point on until further notice we assume Θ ⊂ R . Extensions for vector
parameter cases are deferred to Section 5 for the sake of simplicity. If for almost all θ
from Θ there exists such α ≥ 0 that

lim
ε→0

ε−αd2
H(θ, θ + ε) = j(θ),

we define Hellinger information as

IH(θ) = j2/α(θ).

The role of the exponent α is that of the proper normalizing order of magnitude
in the limiting behavior of the Hellinger distance. The following side-trip will serve to
reveal the reasons why Hellinger information is introduced in this slightly unnatural
way.

Let us define the least-square Bayes risk for an independent identically distributed
sample X(n) = (X1, ..., Xn) of size n and prior π(θ) as

R
(
θ̂(X(n))

)
=

∫
X (n)×Θ

(
θ̂(X(n))− θ

)2
p(x(n); θ)π(θ)dx(n)dθ.

We will consider an integral version of the classical Cramer-Frechet-Rao inequal-
ity (Cramer, 1946), which under certain standard regularity conditions leads to the
following asymptotic lower bound for the Bayes risk in terms of Fisher information

I(θ) = E
(
∂
∂θ log p(X; θ)

)2
:

R
(
θ̂(X(n))

)
≥ n−1

∫
Θ

I−1(θ)π(θ)dθ + o(n−1).

This lower bound was obtained by Borovkov and Sakhanienko (1980). See also
Bobrovsky et al. (1987) for a different form of the lower bound, and Brown and Gajek
(1990) for an alternative method of proof. The order of the last term on the right hand
side can be improved to O(n−2) under additional regularity conditions. However, we
will rather take the opposite direction: release the regularity conditions following the
general setup of Ibragimov and Has’minskii (1981). This bound can be extended to the
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case when Fisher information may not exist. One such extension gives the following
asymptotic lower bound for Bayes risk.

Theorem 1 (Hellinger information inequality). Let Hellinger information IH be
strictly positive for some α ∈ (0, 2], almost surely continuous and bounded on any com-
pact subset of Θ , where Θ is an open subset of real numbers, and

∫
Θ
I−1
H (θ)π(θ)dθ <∞.

Then

inf
θ̂(X(n))

R
(
θ̂(X(n))

)
≥ C(α)n−2/α

∫
Θ

I−1
H (θ)π(θ)dθ + o(n−2/α),

where C(α) is a constant depending on α only.

The statement of Theorem 1 directly follows from more general results obtained in
Shemyakin (1991, 1992) for the multi-parameter case.

This inequality suggests that Hellinger information can be used as a substitute for
Fisher information when the latter does not exist. Notice the role of the exponent 2/α ,
which appears in the definition of Hellinger information and also determines the asymp-
totic order of magnitude of the risk with respect to the sample size. The regular case
(asymptotic normality) corresponds to α = 2 . The non-regular case of densities with
jumps (density support depending on parameter) corresponds to α = 1 . Intermediate
cases (smooth transition from finite discontinuity of the density to differentiability) cor-
respond to α ∈ (1, 2) . Similar bounds can be obtained in terms of chi-square distance
or Kullback-Leibler distance, but they require additional assumptions. While the exact
value of C(α) is related to the technical details of the proof and is not necessarily tight,
the lower bound in Theorem 1 has the correct order of magnitude with respect to the
sample size. It is very tempting to try to justify Hellinger priors as the least favorable
under the least-square risk following the arguments of Clarke and Barron (1994) for
the entropy risk, but it is just a suggestion for future studies. For further discussion of
specific examples, see Shemyakin (2012).

2.3 Hellinger Priors

We will define the Hellinger prior for the parametric set Θ as

πH(θ) ∝
√
IH(θ) = j1/α(θ).

Our goal is to compare Hellinger priors with other objective priors. The follow-
ing theorems demonstrate that in many cases the Hellinger prior coincides with priors
obtained by other approaches: namely, Jeffreys’ rule prior, reference priors, and prob-
ability matching priors. A special role might be played by the Hellinger prior in the
case when Fisher information is not defined, therefore it cannot be used in construction
of objective priors. We will define the Jeffreys’ rule prior in the one-parameter case
being equal (to within a constant multiple) to the square root of Fisher information. A
probability matching prior is a prior distribution under which the posterior probability
of certain regions coincides with their coverage probabilities, either exactly or approx-
imately. For the exact definition that we will assume in the sequel see Ghosal (1999).
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The reference prior according to Berger, Bernardo, and Sun (2009) will be understood
as a permissible prior maximizing the missing information (expected Kullback-Leibler
distance between the prior and the posterior) with respect to the prior.

3 Main Results

The following relationship between Fisher information and Hellinger distance was es-
tablished in Borovkov (1998) for non-specified regularity conditions and without men-
tioning Hellinger information explicitly. We suggest our version of sufficient (probably,
not necessary) conditions.

Theorem 2. If p(x; θ) is twice continuously differentiable w.r.t. θ for almost all

x ∈ X w.r.t. λ, E
(
∂2

∂θ2 p(X; θ)
)2
< ∞, Fisher information I(θ) = E

(
∂
∂θ log p(X; θ)

)2
is

continuous, strictly positive and finite for almost all θ from Θ, then:

α = 2, IH(θ) =
1

4
I(θ).

Corollary 1. In the assumptions of Theorem 2, πH(θ) is the Jeffreys’ rule prior
and is, therefore, invariant to re-parameterization.

The statement of the corollary follows directly from the definitions of the Jeffreys’
rule and Hellinger priors. The next result deals with the models generalizing the class
of non-regular distributions described by Ghosal and Samanta (1997).

Theorem 3. If (1) probability density p(x; θ) = dPθ
dθ with support S(θ) =

[
a1(θ), a2(θ)

]
is strictly positive on S(θ), bounded and continuous on any compact set in Θ, (2) both
functions a1(θ) and a2(θ) are continuously differentiable and

∣∣a′k(θ)
∣∣ > 0, k = 1, 2, (3)

right limit q1(θ) = limx↘a1(θ) p(x; θ) and left limit q2(θ) = limx↗a2(θ) p(x; θ) are finite,
uniform on compact subsets of Θ, and qk grow at most polynomially, (4) log p(x; θ) is
twice continuously differentiable w.r.t. θ on the interior of the support intS(θ) and for
any θ for small enough ε

sup
θ−ε<u<θ+ε

∣∣∣ ∂2

∂u2
log p(x;u)

∣∣∣ ≤ Hθ(x),

where EHθ(X) <∞ is continuous, then:

a = 1, IH(θ) =
a′1(θ)

 · q1(θ) +
a′2(θ)

 · q2(θ).

Corollary 2. For the non-regular class discussed in Ghosal, Ghosh, and Samanta
(1995) and defined by Ghosal and Samanta (1997),πH(θ) coincides with the probability
matching prior (Ghosal, 1999) and also with the reference prior derived in Berger,
Bernardo, and Sun (2009).

Proof of Corollary 2 : Corollary 2 follows from the fact that the non-regular class
defined in Ghosal and Samanta (1997) is a particular case of the class of probability
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measures defined by the conditions of Theorem 3. Conditions (1)-(4) of Theorem 3 are
weaker than conditions (A1)-(A5) of Ghosal and Samanta (1997) and Ghosal (1999).
Additional monotonicity of the support suggested for Ghosal-Samanta class is related
to the use of Kullback-Leibler divergence and is not required by Theorem 3.

4 Single-parameter Examples

The following examples illustrate in what ways Hellinger priors are similar (or, possibly,
different) to reference and matching probability priors. We will begin with several
single-parameter examples. Apparently, due to Theorem 2 and Corollary 1, regular
cases (continuous Fisher information) do not present anything new: we end up with the
Jeffreys’ rule prior. Therefore we will concentrate on the non-regular class of Ghosal
and Samanta (1997) and some non-regular models outside of this class. One important
advantage of the Hellinger information approach (as discussed in Section 2) is that it
allows for the analysis of a single observation x ∈ X so that for i.i.d. samples the results
are invariant of the sample size.

Example 1. Uniform with parameter-dependent support Unif(0, θ), θ ∈ (0,∞).
We will assume ε > 0, which due to the symmetry of Hellinger distance does not lead
to loss of generality, and perform integration

d2
H(θ, θ + ε) =

∫ (√
p(x; θ)−

√
p(x; θ + ε)

)2
dx

= 2− 2

∫ θ

0

1√
θ(θ + ε)

dx = 2

(
1− 1√

1 + ε/θ

)
=
ε

θ
+ o(ε),

which follows from the property
√

1 + δ = 1 + 1
2δ + o(δ) as δ → 0.

Therefore α = 1, πH(θ) ∝ j(θ) = θ−1, which is consistent with well-known results
for reference priors. We can also use Theorem 3.

Example 2. Uniform from Ghosal-Samanta class Unif(θ−1, θ), θ ∈ (1,∞). In this
case,

α = 1, πH(θ) ∝ j(θ) =
(θ2 + 1)

θ(θ2 − 1)
.

This result can be obtained directly from Theorem 3 with a1(θ) = θ−1, a2(θ) =
θ, p(x; θ) = θ/(θ2 − 1). The same prior can be constructed as a probability matching
prior (Ghosal, 1999) or reference prior (Berger, Bernardo, and Sun, 2009).

Example 3. Uniform not belonging to Ghosal-Samanta class Unif(θ, θ2), θ ∈
(1,∞). Due to the lack of monotonicity of support (neither S(θ) ⊆ S(θ + ε), ε > 0
nor S(θ) ⊆ S(θ + ε), ε < 0 ), this model lies outside of the non-regular class defined in
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Ghosal and Samanta (1997). The reference prior

πH(θ) ∝ 2θ − 1

θ(θ − 1)
exp
{
ψ
( 2θ

2θ − 1

)}
,

where ψ(z) is the digamma function (poly-gamma function of order 0) defined as ψ(z) =
d
dz log Γ(z), z > 0 was obtained by Berger, Bernardo, and Sun (2009). The Hellinger
prior obtained directly from Theorem 3 with a1(θ) = θ, a2(θ) = θ2, p(x; θ) = 1/(θ(θ −
1)) is different:

πH(θ) ∝ 2θ + 1

θ(θ − 1)
.

However, we can see that both priors are relatively close numerically, because the
digamma function for 1 ≤ θ <∞ changes monotonically and

1

3
exp
{
ψ(2)

}
≤ πR(θ)

πH(θ)
=

2θ − 1

2θ + 1
exp
{
ψ
( 2θ

2θ − 1

)}
≤ exp

{
ψ(1)

}
,

so that the ratio of two priors increases monotonically with respect to θ and is bounded
both from above and below:

1

3
exp
{

1− γ
}
≤ πR(θ)

πH(θ)
≤ exp

{
−γ
}
,

where γ ≈ .5772 is the Euler’s constant, or numerically as .5087 ≤ πR(θ)
πH(θ) ≤ .5615.

Example 4. Non-symmetric standard triangular distribution.

For this distribution with density

p(x; θ) =

{ 2x
θ , 0 ≤ x ≤ θ
2(1−x)
θ , θ ≤ x ≤ 1

the Fisher information function cannot be properly defined, and Jeffreys’ rule prior does
not exist. The beta prior π(θ) ∝ θ−1/2(1− θ)−1/2 is the reference prior which was first
suggested by numerical approximations and then proved analytically (Berger, Bernardo,
and Sun, 2009). This is also the Hellinger prior as demonstrated in Appendix B.

Example 5. Shifted Gamma distribution.

For the case of x ∼ Gamma(β, ϕ, θ) on the semi-interval
[
θ,∞)

p(x;β, ϕ, θ) =
(x− θ)β−1 exp{−(x− θ)/τ}

ϕβ · Γ(β)
, x ∈

[
θ,∞),

if the parameter of interest is the threshold (location) while the shape β ∈ [1, 2] and the
scale τ can be treated as known,

d2
H(θ, θ + ε) =

∫ θ

0

(√
p(x;β, ϕ, θ)−

√
p(x;β, ϕ, θ + ε)

)2

dx
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=
γ(β, ε)

Γ(β)
∼ε→0

εβ

β · Γ(β)
,

where

γ(β, ε) =

∫ ε

0

tβ−1 exp
{
−t
}
dt

is the lower incomplete gamma-function, so that α = β and π(θ) ∝ j(θ) = const, which
is consistent with the general form of reference priors for location parameters. This
example demonstrates the range of non-regularities in terms of α.

5 Multi-parameter models

Let us extend the definitions of Section 2 to the multi-parameter case Θ ⊂ Rm,m =
1, 2, ... in such a way that the newly defined Hellinger information matrix may be nat-
urally reduced to the Fisher information matrix in the regular case and Hellinger pri-
ors may be reduced to Jeffreys’ rule priors, but also making sure that the following
non-regular examples are properly addressed. We will introduce the Hellinger distance
matrix following Shemyakin (1992) as a matrix with elements

Dij(θ, U) =

∫
X

(√
p(x; θ)−

√
p(x; θ + ui)

)(√
p(x; θ)−

√
p(x; θ + uj)

)
dλ,

where U is an m × m matrix with columns ui. Then define vectors α = (α1, ..., αm)
and δ = (δ1, ..., δm) with components δi = ε2/αi such that for all i = 1, ...,m there exist
finite non-degenerate limits

0 < lim
ε→0

ε−2
Dii(θ, δ1) <∞,

where 1 is an m×m unit matrix.

The Hellinger information matrix IH will be defined by its components

(IH)ij(θ) = lim
ε→0

ε−2
D

(1/αi+1/αj)
ij (θ, δ1).

The following two examples illustrate possible multi-parameter non-regularities. Let
us restrict ourselves for simplicity to the two-parameter case. The shifted uniform
model in Example 6 addresses non-regularity in two parameter components, while the
truncated Weibull model in Example 7 suggests a combination of regular and non-
regular parameters. For both examples we develop two approaches. The first requires
elicitation of ”full” Hellinger priors πFH similar to ”full” Jeffreys’ rule priors based on
the Hellinger information matrix defined above:

πFH(θ) ∝
√detIH(θ)

.
Notice that while in most natural examples the matrix IH is positive definite and

detIH(θ) > 0, this statement is not proven in the general case, thus the definition of
the full Hellinger prior also allows for the possibility detIH(θ) < 0.



932 Hellinger Distance

The second derives the joint priors πJH based on conditional priors using the method-
ology of Sun and Berger (1998): we begin with identifying the order of parameter com-
ponents as θ = (θ1, θ2), then derive the conditional prior using the conditional Fisher
information or conditional Hellinger information if Fisher information cannot be defined:

πH(θ1

∣∣θ2) ∝ j1/α1

1 (θ1

∣∣θ2).

Then we calculate the integrated one-dimensional likelihood using the conditional
prior obtained at the first stage:

p2(x; θ2) =

∫
Θ1

p(x; θ)πH(θ1

∣∣θ2)dθ1,

obtain the marginal prior

πH(θ2) ∝ j1/α2

2 (θ2)

by calculating Fisher or Hellinger information for the integrated one-dimensional likeli-
hood, and finally derive the joint Hellinger prior as

πJH(θ1, θ2) ∝ πH(θ1

∣∣θ2)πH(θ2).

The ”novelty” of this second approach in our case consists just in the calculation of
conditional Hellinger information

j1(θ1

∣∣θ2) = lim
ε→0

∣∣ε∣∣−α1
d2
H(θ1, θ1 + ε

∣∣θ2)

= lim
ε→0

∣∣ε∣∣−α1

∫
X

(√
p(x; θ1, θ2)−

√
p(x; θ1 + ε, θ2)

)
dλ,

j1(θ2) = lim
ε→0

∣∣ε∣∣−α2
d2
H,2(θ2, θ2 + ε) = lim

ε→0

∣∣ε∣∣−α2

∫
X

(√
p2(x; θ2)−

√
p2(x; θ2 + ε)

)
dλ

instead of conditional Fisher information. The main advantage of Hellinger informa-
tion is revealed in non-regular cases when Fisher information is not available, which
sometimes helps to avoid the technicalities of other approaches. Notice that for the sec-
ond approach we do not need to define Hellinger distance or information for the vector
parameter.

Example 6. Shifted uniform distribution (see also Example 2) Unif(µ + τ−1, µ +
τ), τ ∈ (1,∞), µ ∈ (−∞,∞), θ = (µ, τ). Full Hellinger prior is

πFH(τ, µ) ∝
√

2τ2 + 1
(
τ2 − 1)−2.

However, for any order of parameterization (θ = (µ, τ) or θ = (τ, µ)), the second

approach yields πJH(θ) ∝ τ2+1
τ(τ2−1) . It is demonstrated in Appendix B.

Example 7. Truncated Weibull distribution. Let us consider the case of truncated
Weibull distribution with density

p(x;β, ϕ, τ) = βϕβxβ−1 exp
{
−ϕβ(xβ − τβ)

}
, x ∈ [τ,∞),
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when the parameters of interest are the threshold τ (location) and ϕ > 0 , while the
shape β > 0 is treated as known.

Full Hellinger prior is πFH(θ) ∝ ϕβ−1τβ−1, which coincides with the reference prior
for vector parameter θ = (τ, ϕ) derived in Ghosal (1997). However, with the second
approach for any order of parameterization we arrive at πJH(θ) ∝ ϕ−1τβ−1, which
coincides with the reference priors obtained in Ghosal (1997) when either τ or ϕ is the
main parameter of interest, and also with the probability matching priors from Ghosal
(1999). The details are offered in Appendix B.

6 Conclusions

The examples considered above give the evidence that for many one-parameter non-
regular models Hellinger priors bring about the same results as the reference and the
probability matching approaches. However, Example 3 reveals an intriguing deviation
demonstrating that there is no equivalence between Hellinger and reference priors out-
side of the Ghosal-Samanta non-regular class. In the multi-parameter case as illustrated
by Examples 6 and 7, substituting Hellinger information instead of Fisher information
provides a technical means to treat non-regular models in the same fashion as regular
ones for the derivation of reference priors. Here the most attractive feature of Hellinger
priors is the relative technical simplicity of their derivation.

It is still not clear whether there is a better justification of Hellinger priors than the
invariance argument and Corollaries 1 and 2. It is possible that either the information-
geometric approach discussed in the introduction or the information-theoretic discussion
of the least favorable priors in Subsection 2.2 can bring about more definitive results.
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Appendix A

Proof of Theorem 2 : Let us denote L(ε) = d2
H(θ, θ + ε) and study its behavior in the

vicinity of 0. We will use the Taylor expansion

L(ε) = L(0) + ε
d

dε
L(ε) +

1

2
ε2 d

2

dε2
L(ε) + o(ε2).

Evidently,
L(0) = 0;

dL(ε)

dε
=

∫
X

(
1−

√
p(x; θ)

p(x; θ + ε)

)
∂p(x; θ + ε)

∂ε
dλ;

d2L(ε)

dε2
=

∫
X

(
1−

√
p(x; θ)

p(x; θ + ε)

)
∂2p(x; θ + ε)

∂ε2
dλ

+
1

2

∫
X

(
p(x; θ)

p(x; θ + ε)

)3/2
1

p(x; θ)

(
∂p(x; θ + ε)

∂ε

)2

dλ.

Taking into account that L(ε) has a local minimum at 0, ∂p(x;θ+ε)
∂ε

∣∣
ε=0

= ∂p(x;θ)
∂θ and

p(x;θ)
p(x;θ+ε)

→
ε→0

1, we obtain

d

dε
L(ε) = 0,

d2

dε2
L(ε)→ 1

2
E
( 1

p(x; θ)

∂

∂θ
p(x; θ)

)2

=
1

2
I(θ).

Therefore, L(ε) = 1
4ε

2I(θ) + o(ε2), Q.E.D.

Proof of Theorem 3 : Let us split d2
H(θ, θ + ε) into two integrals:

d2
H(θ, θ + ε) = I1(θ, ε) + I2(θ, ε),

I1(θ, ε) =

∫
S(θ)∩Sc(θ+ε)

p(x; θ) dλ+

∫
Sc(θ)∩S(θ+ε)

p(x; θ) dλ;

I2(θ, ε) =

∫
S(θ)∩S(θ+ε)

(√
p(x; θ)−

√
p(x; θ + ε)

)2
dλ.

Due to conditions (1)-(3),

I1(θ, ε) ≤ K
(∣∣a′1(θ)

∣∣ · q1(θ) +
∣∣a′2(θ)

∣∣ · q2(θ)
)
·
∣∣ε∣∣,

and due to condition (4)
I2(θ, ε) ≤ 4

∣∣ε∣∣EHθ(X).

Furthermore,

I1(θ, ε) =
(∣∣a′1(θ)

∣∣ · q1(θ) +
∣∣a′2(θ)

∣∣ · q2(θ)
)
·
∣∣ε∣∣+ o(ε),
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and due to condition (4)
I2(θ, ε) = o(ε).

Combining the last two expressions we obtain the statement of the theorem.

Appendix B

Review of Example 4.

The main purpose of this proof is to demonstrate that Hellinger priors can be often
obtained by means of elementary calculus. In a standard way, split Hellinger distance
into three integrals:

d2
H(θ, θ + ε) = I1 + I2 + I3,

where

I1 =

∫ θ

0

(√
2x

θ
−
√

2x

θ + ε

)2

dx = 2
(√1

θ
−
√

1

θ + ε

) ∫ θ

0

xdx

=
(√
θ + ε−

√
θ
)2 1

1 + ε/θ
=

ε2(√
θ + ε+

√
θ
)2 · 1

1 + ε/θ
' ε2

4θ
.

Similarly,

I2 =

∫ 1

θ+ε

(√
2(1− x)

1− θ
−
√

2(1− x)

1− θ − ε

)2

dx

=
(√

1− θ −
√

1− θ − ε
)2

(1 + o(1)) =
ε2(√

1− θ − ε+
√

1− θ
)2 · (1 + o(1)) ' ε2

4
(
1− θ)

.

The integral over the middle of the interval is negligible

I3 =

∫ θ+ε

θ

(√
2x

θ
−
√

2(1− x)

1− θ − ε

)2

dx ≤ Kε3, as

∣∣∣∣
√

2x

θ
−
√

2(1− x)

1− θ − ε

∣∣∣∣ ≤K1ε.

Combining asymptotical expressions for the first two integrals yields

d2
H(θ, θ + ε) =

ε2

4θ
+

ε2

4(1− θ)
+ o(ε2) =

ε2

4θ(1− θ)
+ o(ε2),

and thus α = 2 and j(θ) = 1/4θ(1− θ); πH(θ) ∝ j1/2(θ) = 1/
√
θ(1− θ).

Review of Example 6.

First, we will use the ”full Hellinger” approach and calculate the matrix of Hellinger
information. Using notation θ = (µ, τ), we take into account that µ = θ1 is a location
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parameter and then follow Example 2 to obtain α1 = α2 = 1, δ1 = δ2 = ε2, and

D(θ, δ1) = ε2

[
τ

τ2−1
τ

τ2−1
τ

τ2−1
τ2+1

τ(τ2−1)

]

so that

IH(θ) =

[
τ2

(τ2−1)2
τ2

(τ2−1)2

τ2

(τ2−1)2

(τ2+1)2

τ2(τ2−1)2

]

and πFH(µ, τ) ∝
√

2τ2+1
τ(τ2−1)2 . For the second approach we will also assume the order of

parameterization µ = θ1 and τ = θ2. Here also α1 = 1, πH(µ
∣∣τ) is a uniform improper

prior for the location parameter. Integrating out the location parameter, we obtain
p2(x; τ) = τ/(τ2−1), and finally, the joint Hellinger prior (leading to a proper posterior
for sample sizes n ≥ 2 with not all sample elements identical) can be expressed as

πJH(θ) ∝ τ2 + 1

τ(τ2 − 1)
.

We can also reverse the order of treatment of parametric components τ = θ1 and
µ = θ2 with the same result.

Review of Example 7.

We will begin with the calculation of the matrix of Hellinger information. Using
notation θ = (τ, ϕ), we take into account that θ2 is a regular parameter and we can
substitute Fisher information for the second diagonal element of the matrix below. So
we obtain α1 = 1, α2 = 2, δ1 = ε2, δ2 = ε, and

D(θ, δ1) =

[
ε2ϕβτβ−1 o(ε3)
o(ε3) ε2ϕ−2

]
so that

IH(θ) =

[
ϕ2βτ2β−2 0
0 ϕ−2

]
and πFH(τ, ϕ) ∝ ϕβ−1τβ−1. This result coincides with the prior obtained in Ghosal
(1997) for the case when both parameters are important. However, the second approach
leads to a different result for any order of parameterization. If, for instance, we assume
τ = θ1 and ϕ = θ2, α1 = 1, πH(τ

∣∣ϕ) ∝ τβ−1. Integrating out the threshold parameter
τ , we obtain p2(x;ϕ) = xβ−1 exp{−ϕβxβ}, and using Fisher information for parameter
ϕ, we express the joint Hellinger prior as

πJH(τ, ϕ) ∝ τβ−1ϕ−1.
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