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TESTING FOR PURE-JUMP PROCESSES
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of Science and Technology

Pure-jump processes have been increasingly popular in modeling high-
frequency financial data, partially due to their versatility and flexibility. In
the meantime, several statistical tests have been proposed in the literature
to check the validity of using pure-jump models. However, these tests suf-
fer from several drawbacks, such as requiring rather stringent conditions and
having slow rates of convergence. In this paper, we propose a different test
to check whether the underlying process of high-frequency data can be mod-
eled by a pure-jump process. The new test is based on the realized character-
istic function, and enjoys a much faster convergence rate of order O(n1/2)

(where n is the sample size) versus the usual o(n1/4) available for existing
tests; it is applicable much more generally than previous tests; for example, it
is robust to jumps of infinite variation and flexible modeling of the diffusion
component. Simulation studies justify our findings and the test is also applied
to some real high-frequency financial data.

1. Introduction. Itô’s semimartingales are widely used in modeling the log
prices of an asset since they fit many stylized features of asset returns, and in option
pricing due to absence of arbitrage in efficient market. Mathematically, they consist
of two parts: a continuous local martingale term and a pure-jump process with both
big and small jumps. Itô’s semimartingale with a continuous local martingale is in
common use in the literature, for example, the Black and Scholes (1973) model
(geometric Brownan motion), the Merton (1976) model and Kou (2002) model
(geometric Brownan motion plus finitely many jumps).

On the other hand, in recent years pure-jump processes have also been accepted
as an alternative model for log price processes or even the latent spot volatil-
ity process to the classic models mentioned earlier; see, for example, Todorov
and Tauchen (2010, 2014) and references therein. The idea behind the pure-jump
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modeling is that small jumps can eliminate the need for a continuous martin-
gale. Pure-jump models are also very flexible. They include the normal inverse
Gaussian [Rydberg (1997); Barndorff-Nielsen (1997, 1998)], the variance gamma
[Madan, Carr and Chang (1998)], the CGMY model of Carr et al. (2003b), the
time-changed Lévy mdoels of Carr et al. (2003a), the non-Gaussian Ornstein–
Uhlenbeck-based models of Barndorff-Nielsen and Shephard (2001) and the Lévy-
driven continuous-time moving average (CARMA) models of Brockwell (2001)
for the stochastic volatility. Pure-jump models have been extensively used for gen-
eral option pricing [Huang and Wu (2004); Broadie and Detemple (2004); Leven-
dorskiı̆ (2004); Schoutens (2006); Ivanov (2007)] and for foreign exchange option
pricing [Huang and Hung (2005); Daal and Madan (2005); Carr and Wu (2007)].
Other applications of pure-jump models include reliability theory [Drosen (1986)],
insurance valuation [Ballotta (2005)] and fianancial equilibrium analysis [Madan
(2006)].

Statistically, this forces us to reconsider the necessity of including the local
martingale part driven by Brownian motion in modeling high-frequency data. This
begs the following question: “Is it sufficient to model high frequency data by pure-
jump process alone,” or equivalently, “is it necessary to add a Brownian force
underlying the high frequency data?” The answer to this question serves as a model
selection purpose. For more motivation and explanation, we refer to Aït-Sahalia
and Jacod (2010) and Jing, Kong and Liu (2012).

For ease of presentation, let Xt be a semimartingale defined on some filtered
probability space (�,F,P ),

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + Xd

t ,

where X0 is the initial value,
∫ t

0 bs ds is the drift term with bs being the time-
varying drift coefficient which is an optional and càdlàg process,

∫ t
0 σs dWs is a

continuous local martingale with σs being an adapted process and Ws a standard
Brownian motion and the last term is a pure-jump component with the jump activ-
ity index β defined by

β = inf
{
r; ∑

0≤s≤T

|�sX|r ≤ ∞
}
,(1.1)

where �sX = Xs − Xs−; see Aït-Sahalia and Jacod (2009) and Jing et al. (2012).
Then the above question can be formulated as a hypothesis testing problem as

H0 :
∫ T

0
σ 2

s ds > 0 v.s. H1 :
∫ T

0
σ 2

s ds = 0,(1.2)

where T is the time span of the high-frequency data.
The testing problem (1.2) was studied by several authors. For instance, Cont

and Mancini (2007), Aït-Shalia and Jacod (2010) used threshold power variation
to construct their test statistics. However, there are two main drawbacks with the
threshold power variation method:
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• First, their tests require that Xd be of finite variation, which rules out many in-
teresting models in finance since empirical evidences in some real data analysis
show that the jumps are of infinite variation; see, for example, Aït-Sahalia and
Jacod (2009) and Zhao and Wu (2009).

• Second, their tests are not very powerful, even when β (0 ≤ β < 2) is close to 0.
This is rather counterintuitive since probabilistically the smaller the value of β

is, the farther Xd is from a continuous semimartingale.

Interestingly, Todorov and Tauchen (2011) invented a test based on the point
estimator of the JAI cleverly constructed as the smallest power for which the real-
ized power variation (without thresholding) does not explode. Surprisingly, a test
based on this estimator for the presence of Brownian motion has the property that
it has more power for lower level of activity. However, since it is from realized
power variation, once more, one has to assume that Xd is of finite variation when
CT = ∫ T

0 σ 2
s ds does not vanish in order to have available central limit theorem. It

is also worth noticing that Todorov and Tauchen (2014) test for presence of Brown-
ian motion by checking whether “devolatilized” truncated returns are i.i.d. normal
assuming finite activity jumps present in the underlying log price processes.

Testing the existence of a nonvanishing continuous local martingale is chal-
lenging when the jumps are of infinite variation. Jing, Kong and Liu (2012) used
the number of small increments to propose a test, which mitigates the above-
mentioned difficulties, and can handle jumps of infinite variation. However, it still
has the following deficiencies:

• First, the local volatility model is too restrictive. For example, it does not even
cover the Heston model under H0.

• Second, the spot volatility of the continuous component is assumed to be posi-
tive almost everywhere in time t . So if H0 is rejected, it is quite possible that the
continuous component vanishes only in certain subintervals, but is still present
in other subintervals; see the simulation in Section 4 for more illustration.

In this paper, we develop a novel test to (1.2) to overcome the difficulties en-
countered in previous approaches. The convergence rate of our new test under
H0 is of order n−1/2 when the jump component is of infinite variation, which is
faster than that of all existing tests. The idea of the test is based on the realized
characteristic function, which was introduced in Todorov and Tauchen (2012) to
investigate the distributional property of volatilities at different time points; see
also Todorov, Tauchen and Grynkiv (2011) and Jacod and Todorov (2014). With
observable i.i.d. increments of a class of Lévy process with either finite activity
or infinite activity jumps, Chen, Delaigle and Hall (2010) proposed a regression
method based on the empirical characteristic function to estimate the parameters
of the drift, scale, stable index and the distribution of the jump size of a compound
Poisson process, while in our paper, we assume a flexible Itô semimartingale with
stochastic volatility and stochastic coefficient of jump measures, and assume that
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the time lag of successive observations shrinks to 0 (high-frequency data) rather
than fixed, as implicitly assumed in Chen, Delaigle and Hall (2010). However, we
remark that direct application of the realized characteristic function does not work
in testing (1.2), and some other novel statistical techniques are needed.

The paper is organized as follows. In Section 2, we give some assumptions and
introduce our test statistics. Main results are presented in Section 3. Section 4 gives
some simulation studies and real data analysis. The main proofs are postponed to
the Appendix, and the proofs of some lemmas are provided in the supplementary
material [Kong, Liu and Jing (2015)] to this paper.

Throughout the paper, we assume that the available data set is {Xti ;0 ≤ i ≤ n}
which is discretely sampled from X, and is equally spaced in the fixed interval
[0, T ], that is, ti = i�n with �n = T/n for 0 ≤ i ≤ n. Denote the j th one-step
increment by

�n
jX = Xtj − Xtj−1, 1 ≤ j ≤ n.

2. Methodology. The key idea behind our test statistic is that the character-
istic function of the increments of the Itô’s semimartingale is dominated by the
continuous local martingale part.

For illustration, let us take the following simple example:

Xt = σWt + γ Yt ,

where σ ≥ 0 is a constant spot volatility, γ is some constant and Yt is a symmetric
β-stable process. Then the logarithm of the characteristic function is

logψn(u) ≡ logE
[
e
√−1u�n

i X/
√

�n
]= −1

2σ 2u2 − |γ |βuβ�1−β/2
n .(2.1)

As �n → 0, the last term in (2.1) induced by the jump part decreases at a rate
of �

1−β/2
n . Note that when β < 1 (i.e., Yt is of finite variation), in the context of

estimating σ (or its functionals), the bias caused by the jump part is of negligible
size o(�

1/2
n ). This implies that an estimator of σt (or its functionals) for a general

semimartingale based on the characteristic function would very likely be robust
to jumps of finite variation, which is confirmed in Todorov and Tauchen (2012)
and Jacod and Todorov (2014). On the other hand, the problem becomes more
challenging when β > 1 since the last term in (2.1) is no longer a negligible bias
term. In testing (1.2), under H0, the right-hand side of (2.1) is a nonvanishing
constant while under H1 it is almost zero. This is a major feature we will explore
later to differentiate the null and the alternative hypotheses.

We shall now introduce our test statistic. To start with, we split the data into mn

nonoverlapping blocks with each block length equal to 2vn consisting of 2kn inter-
vals of length �n, where kn is some integer depending on n. Motivated by (2.1),
and in view of Xt+s − Xt ≈ σt (Wt+s − Wt) + γ +

t−(Y+
t+s − Y+

t ) + γ −
t−(Y−

t+s − Y−
t )

where Y± are two independent “stable like” Lévy processes and γ ± are two càdlàg
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processes that will be specified later in Assumption 3.1. When s is close to 0, we
can estimate σ 2

2jvn
(0 ≤ j ≤ mn − 1) locally by

c0
j (u) = − 1

u2 log
(
L0

j (u) ∨ 1√
kn

)
,(2.2)

where

L0
j (u) = 1

kn − 1

kn−1∑
l=1

cos
(
u
(
�n

2jkn+2l+1X − �n
2jkn+2lX

)
/�1/2

n

)
.(2.3)

Summing over c0
j (u) for all j ≤ mn and properly normalizing it, one easily gets an

estimator of the integrated volatility process,

Ct ≡
∫ t

0
σ 2

s ds.

Jacod and Todorov (2014) introduced a bias-corrected estimator of Ct as

Ĉ0(un) = 2vn

[t/(2vn)]−1∑
j=0

(
c0
j (un) − 1

u2
n(kn − 1)

(
sinh
(
u2

nc
0
j (un)

))2)
,(2.4)

and further showed that

Ĉ0(un) = Ct + A0(un)
n
t + Op

(
�1/2

n

)
,(2.5)

where

A0(u)nt = 2uβ−2�1−β/2
n

∫ t

0
as ds

with as = χ(β)(|γ +
s |β + |γ −

s |β) and χ(β) = ∫∞
0 y−β siny dy. Then a natural test

statistic which can differentiate the null and alternative hypotheses is

T ′
n ≡ Ĉ0(2un) − Ĉ0(un)

Ĉ0(un)
−→p

{
0, on {CT > 0},
2β−2 − 1 < 0, on {CT = 0}.

The problem with T ′
n is that no central limit theorem is available as β > 1, so that

one cannot find the rejection region when jumps are of infinite variation. We will
fix this problem with some manipulations to T ′

n below.
To do this, we replace Ĉ0(u) by a similarly defined quantity. Let the c1

j ’s and

Ĉ1(u) be similarly defined as the c0
j ’s and Ĉ0(u) with �n

2jkn+2l+1X − �n
2jkn+2lX

replaced by �n
2jkn+2lX − �n

2jkn+2l−1X, for l = 1, . . . , kn − 1. A seemingly better
test statistic is then

T ∗
n = (Ĉ0(2un) − Ĉ1(un)) − (Ĉ0(2un) − Ĉ0(un))

Ĉ1(un)
= Ĉ0(un) − Ĉ1(un)

Ĉ1(un)
,(2.6)
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which works under H0 because the numerator is equal to[(
Ĉ0(2un) − Ct − A0(2un)

n
t

)− (Ĉ1(un) − Ct − A0(un)
n
t

)]
−[(Ĉ0(2un) − Ct − A0(2un)

n
t

)− (Ĉ0(un) − Ct − A0(un)
n
t

)]
(2.7)

= Op

(
�1/2

n

)− op

(
�1/2

n

)
.

The second term in (2.7) is op(�
1/2
n ) since Ĉ0(2u) and Ĉ0(u) are calculated in the

same way, except for using different arguments, and are asymptotically perfectly
correlated as u = un → 0; see also (a) in Theorem 1 of Jacod and Todorov (2014).
However, the first term in (2.7) is Op(�

1/2
n ) since Ĉ1(un) uses the data points one

grid after those in Ĉ0(2un), which decreases the overlap of the data and hence has
lower dependency between the terms with argument 2un and un; see Theorem 3.2
below.

Although T ∗
n /�

1/2
n is tight under H0, it can be close to zero with a large prob-

ability under H1 since the signal in the numerator is swept away in the bias cor-
rection. This causes difficulty in successfully detecting pure-jump processes under
H1 and hence results in a low power. This difficulty can be remedied by adding a
bias of order o(�

1/2
n ) onto the numerator of T ∗

n .
Our final test statistic is

Tn = Ĉ0(un) − Ĉ1(un) − γn�
1/2
n

Ĉ1(un)
,(2.8)

where γn is some chosen constant satisfying γn → 0 of which the explicit form
will be given in Section 3.3. It can be shown that

Tn/�
1/2
n

{= Op(1), on {CT > 0},
→P −∞ on {CT = 0}.(2.9)

This means that Tn/�
1/2
n can be used to differentiate H0 and H1.

3. Main results.

3.1. Model assumptions. We need the following assumptions.

ASSUMPTION 3.1.

Xd
t =
∫ t

0
γ +
s− dY+

s +
∫ t

0
γ −
s− dY−

s +
∫ t

0

∫
R

δ(s, z)p(ds, dz),

where Y+ and Y− are two independent Lévy processes with positive jumps and
Lévy triplet equal to (0,0,F±), γ ± are two càdlàg adapted processes and p is
a Poisson random measure on R+ × R with intensity q(dt, dx) = dt ⊗ dx. We
assume further that, for some β > 1 > r , the Lévy measure satisfies∣∣∣∣F±

(x) − 1

xβ

∣∣∣∣=
∣∣∣∣F±((x,∞)

)− 1

xβ

∣∣∣∣≤ g(x), x ∈ (0,1],
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with g(x) a decreasing function s.t.
∫ 1

0 xr−1g(x) dx < ∞, and |δ(t, x)|r ∧1 ≤ J (x)

with J (x) Lebesgue integrable on R.

ASSUMPTION 3.2. σt is an Itô semimartingale of the form

σt = σ0 +
∫ t

0
bσ
s ds +

∫ t

0
Hσ

s dWs +
∫ t

0
H ′σ

s dW ′
s

+
∫ t

0

∫
{|δσ (s,x)|≤1}

δσ (s, x)(p − q)(ds, dx)

+
∫ t

0

∫
{|δσ (s,x)|>1}

δσ (s, x)p(ds, dx),

where all the integrands are optional processes satisfying the integrable condition
in Itô’s sense, and q is the compensator of p. Assume that W and W ′ are two
independent Brownian motions that are further independent of (p,Y+, Y−).

ASSUMPTION 3.3. We have a sequence τn of stopping times increasing to
infinity, a sequence an of numbers and a nonnegative Lebsgue-integrable function
J on R, such that the processes b, Hσ , γ ± are càdlàg adapted, the coefficients δ,
δσ are predictable, the processes bσ , H ′σ are progressively measurable and

t < τn ⇒ ∣∣δ(t, z)∣∣r ∧ 1 ≤ anJ (z),
∣∣δσ (t, z)

∣∣2 ∧ 1 ≤ anJ (z),

t < τn,V = b, bσ ,Hσ ,H ′σ , γ ± ⇒ |Vt | ≤ an,

V = b,Hσ , γ ± ⇒ ∣∣E(V(t+s)∧τn − Vt∧τn |Ft )
∣∣+ E

(∣∣V(t+s)∧τn − Vt∧τn |2
∣∣Ft

)≤ ans.

Assumption 3.1 is the same as the Assumption (A) given in Jacod and Todorov
(2014). It essentially states that Xd can be decomposed into two components: ac-
tive and less active jumps. Here, the first two components are the stable-like jumps
assumed to have the jump activity index β > 1. (This can be extended to cover the
case for r < β ≤ 1 with extra efforts and possibly more stringent conditions. How-
ever, if we have a priori that β < 1, more straightforward tests will be possible.)
Another reason we restrict attention to β > 1 is because this is more interesting
and challenging statistically. The last term consists of jumps with finite variation
(but possibly of infinite activity) which is expected to disappear in a limiting sense
as inspired by the finding following (2.1). In Aït-Sahalia and Jacod (2010), it is as-
sumed that β < 1 since otherwise no asymptotic distribution theory could be used
under H0 to calculate the rejection region.

Assumption 3.2 is a standard assumption in the literature which allows for the
“leverage” effect due to the common driving forces in X and σ . In Assumption 3.2,
the jumps of σt are assumed, without restriction, to be driven by the same Poisson
measure as X.

Assumption 3.3 is the same as the Assumption (B) in Jacod and Todorov (2014)
and a rather general assumption which is satisfied by the multifactor stochastic
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volatility models that are widely used in financial econometrics, for example, the
popular affine jump diffusion models in Duffie, Pan and Singleton (2000). As-
sumptions 3.2 and 3.3 admit a rather general Itô semimartingale as the continuous
part under H0. As a comparison, Jing, Kong and Liu (2012) require that the volatil-
ity be of form σ(Xt), a smooth function of Xt bounded away from 0. Hence our
assumptions on the continuous component is far less restrictive than that in Jing,
Kong and Liu (2012).

3.2. Main theorems. We first state a central limit theorem for the joint distri-
bution of (Ĉ0(un), Ĉ1(un)).

THEOREM 3.1. Suppose kn, un, γn and �n satisfy

kn�
1/2
n → 0, kn�

1/2−ε
n → ∞, un → 0, sup

n

kn�
1/2
n

u4
n

< ∞,

(3.1)
γn → 0,

for any ε > 0. Let cs = σ 2
s . Then on the set {Ct > 0} we have

1

�
1/2
n

(
Ĉ0(un) − A0(un)

n
t − Ct

Ĉ1(un) − A0(un)
n
t − Ct

)
(3.2)

→Ls 2

⎛
⎜⎜⎝

∫ t

0
cs dW̃s∫ t

0
csd

(
1

2
W̃s + √

3/2W̃⊥
)
⎞
⎟⎟⎠ ,

where W̃ and W̃⊥ are two mutually independent standard Brownian motions de-
fined on an extension of the original probability space and are further independent
of F , and Ls stands for stable convergence.

In Theorem 1 of Jacod and Todorov (2014), a similar multivariate central limit
theorem related to the bias corrected estimator of Ct in (2.4) with distinct argu-
ments was obtained. While in (3.10) and (3.11) of Theorem 1 of their paper, the
vector of component estimators with distinct multiples of un are formed by using
the same way of aggregating the high-frequency data, Theorem 3.1 in our paper
considers a bivariate central limit theorem for (Ĉ0(un), Ĉ1(un)), with Ĉ0(un) col-
lecting the high-frequency data one lag after Ĉ1(un). By simple application of
Theorem 3.1 and the continuous mapping theorem, we soon have the following
null distribution of Tn.

THEOREM 3.2. Under the conditions in Theorem 3.1, we have in restriction
to {Ct > 0},

�−1/2
n Tn →Ls Gt ,
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where Gt is a centered Gaussian process with conditional variance κt = 4
∫ t

0 c2
t dt

C2
t

.

It follows from Theorem 3.2 that the convergence rate of Tn is of order �
1/2
n , in

contrast to �
3/4−
/2
n in Jing, Kong and Liu (2012), where 
 > β − 1/2 is some

constant (practically 
 is taken as 3/2 since β is usually unknown) or v
β ′/2
n in

Aït-Sahalia and Jacod (2010), where β ′ < 1 and vn satisfies

vn/�
ρ−
n → 0, vn/�

ρ+
n → ∞, 0 < ρ− < ρ+ < 1/2.

Theorem 3.2 is not directly applicable in determining the rejection region since
the conditional variance is unknown. The denominator of the conditional variance
can be consistently estimated by (Ĉ1(un))

2, thanks to (2.5). Inspired by the con-
struction of Ĉk(u) (k = 0,1), we use the following linear combination of sample
variances to estimate the integral in the numerator of κT . Define

În ≡ 1
2(În,0 + În,1),(3.3)

where

În,k = 2vn

[t/(2vn)]−1∑
j=0

(
ck
j (un) − (sinh(u2

nc
k
j (un)))

u2
n(kn − 1)

)2

, k = 0,1.(3.4)

Now we have the following studentized central limit theorem.

THEOREM 3.3. Let κ̂T = 4În/(Ĉ1(un))
2. Then we have under the conditions

in Theorem 3.1, in restriction to {CT > 0},

Tn ≡ 1

�
1/2
n

Tn

κ̂
1/2
T

≡ Ĉ0(un) − Ĉ1(un) − γn�
1/2
n

2Î
1/2
n �

1/2
n

→Ls N (0,1),(3.5)

where N (0,1) is a standard normal random variable independent of F .

From Theorem 3.3, we can reject H0 if Tn < −zα where P(N (0,1) > zα) = α

for α ∈ (0,1). Now we state a result on the convergence rate of Tn under H1.

THEOREM 3.4. Suppose Assumptions 3.1 and 3.3 hold, kn�
1/2
n → 0,

kn�
1/2−ε
n → ∞ for any ε > 0, supn kn�

1/2
n /u4

n < ∞ and un is bounded. Then
on the set {Ct = 0,

∫ t
0 as ds �= 0}, we have

Ĉ0(un) − Ĉ1(un) = Op

(
u−2

n �1−β/(2(β+1−r))
n + uβ/2−2

n �1−β/4
n

)
(3.6)

and

În = 4u2β−4
n �2(1−β/2)

n

∫ t

0
a2
s ds + op

(
u2β−4

n �2(1−β/2)
n

)
.(3.7)
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The following result concerning the size and power performance of the test is a
straightforward consequence of Theorems 3.3 and 3.4.

COROLLARY 3.1. (1) Under the conditions in Theorem 3.1, we have P(Tn <

−zα|{CT �= 0}) → α;

(2) under the conditions in Theorem 3.4, if

γn

(
u2

n�
β/(2(β+1−r))−1/2
n + u2−β/2

n �β/4−1/2
n

)→ ∞,

we have P(Tn < −zα|CT = 0,
∫ T

0 as ds �= 0) → 1.

REMARK 3.1. Corollary 3.1 shows that our new test achieves asymptotic
nominal level α and the asymptotic power 1. It follows from the proof of Corol-

lary 3.1 that Tn goes to −∞ with rate Op(γn(
u2

n

�n
)(2−β)/2) under H1 and conditions

in 2. Thus the test becomes more powerful as β gets closer to 0, which will be fur-
ther confirmed by our simulation studies. This overcomes the drawbacks of the test
by Aït-Sahalia and Jacod (2010).

3.3. Choice of tuning parameters. We now study how to choose tuning pa-
rameters kn, un and γn. The major role of kn is to balance the bias and variance
of Ĉ0(un) − Ct and Ĉ1(un) − Ct . The larger the kn, the smaller the bias and the
larger the variance. Hence we could choose kn = −c′�1/2

n log�n for some con-
stant c′ > 0.

Now we turn to un. The rationale for letting un → 0 under H0 is to guarantee the
convergence in probability in (A.13). As in Jacod and Todorov (2014), we choose
un so that u2

n

∫ T
0 cs ds → 0 by setting un = c(log (1/�n))

−1/30BVT
−1/2, where

BVT = (π/2)
∑n−1

i=1 |�n
i X‖�n

i+1X| is the bipower variation, which is a consistent

estimator of
∫ T

0 cs ds. Another advantage of such choice of un is that it would be
enlarged under H1, which in turn increases the power as is seen from Corollary 3.1
and Remark 3.1. Choosing an optimal c is quite hard. In order not to incur much
approximation error in (A.13), we suggest to choose small c when n is moderate,
say c = 0.18. Simulation studies where the data is generated from a fitted model
(no guarantee of good fitting accuracy) assuming H0 given in Jacod and Todorov
(2014) show that choosing c around 0.18 would work well.

Finally, we look at γn. On the one hand, γn should be close to 0 under H0

in order not to produce a big bias for Tn; on the other hand, γn should converge
to 0 with a rate of u−2

n �
1/2−β/2(β+1−r)
n + u

β/2−2
n �

1/2−β/4
n so that the test has

good power. This is easily achieved by setting γn = c∗/ log (u2
n/�n) when un is

determined by the aforementioned method. To be conservative, one can choose
small c∗ when n is moderate, say c∗ = 0.2.
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TABLE 1
Empirical sizes and the empirical powers of the new test; the nominal level is 5%;

(n = 1170, kn = 50); (n = 2340, kn = 78); (n = 4680, kn = 100)

Empirical sizes Empirical power

β n = 1170 n = 2340 n = 4680 n = 1170 n = 2340 n = 4680

1.0 0.0610 0.0586 0.0574 0.9988 0.9998 1.0000
1.1 0.0616 0.0624 0.0610 0.9984 0.9990 1.0000
1.2 0.0640 0.0635 0.0634 0.9936 0.9986 0.9996
1.3 0.0604 0.0601 0.0608 0.9596 0.9948 0.9986
1.4 0.0522 0.0616 0.0616 0.6508 0.8414 0.9650
1.5 0.0566 0.0624 0.0610 0.2902 0.3810 0.5290
1.6 0.0612 0.0514 0.0524 0.1328 0.1698 0.2138
1.7 0.0594 0.0624 0.0554 0.0942 0.1068 0.1208
1.8 0.0578 0.0550 0.0594 0.0776 0.0804 0.0804
1.9 0.0572 0.0568 0.0558 0.0748 0.0790 0.0728

4. Numerical experiments.

4.1. Simulation studies. In this section, we conduct simulation studies to
check the performance of the new test and make comparisons with the test given in
Jing, Kong and Liu (2012). We first consider the performance on control of type I
error probability. As in Jacod and Todorov (2014), we generate simulation data for
5000 times from the following stochastic volatility model:

Xt = X0 +
∫ t

0

√
cs dWs + 0.5Yt , 0 ≤ t ≤ T ,(4.1)

ct = c0 +
∫ t

0
0.03(1.0 − cs) ds + 0.15

∫ t

0

√
cs dW ′

s,(4.2)

for 0 ≤ t ≤ 3T/4 and ct ≡ 0 if 3T/4 ≤ t ≤ T . In order to incorporate the leverage
effect, we set corr(dW,dW ′) = −0.5. The parameters in the volatility dynamic are
specified by fitting actual financial data in the same reference paper. The volatility
ct is a square root diffusion process which is widely used in financial applications.
We tuned kn, un and γn as in Section 3.3 with c = 0.18 and c∗ = 0.2. We consider
n = 1170,2340,4680 which corresponds to sample the data per 20,10,5 seconds,
respectively. In the simulation, we let T be one day consisting of 6.5 trading hours.

Table 1 displays the empirical sizes of the new test. Clearly, they are slightly
higher than the nominal level but acceptable across the board due to the small bias
added artificially. Figure 1 gives the QQ-plot of the test statistics for n = 2340 and
β = 1.2,1.5, showing that the normal approximation works well.

For comparison, we choose β = 1.2 and n = 2340 and carry out the test given in
Jing, Kong and Liu (2012), referred to as JKL’s test below. No comparisons will be
made with the test given in Aït-Sahalia and Jacod (2010) (AJ’s test), since it was
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FIG. 1. QQ-plot of the test statistics under H0 for β = 1.2 (left panels), 1.5 (right panels); from
top to bottom, c = 0.15,0.18,0.2; n = 2340.

outperformed by the JKL’s test in extensive simulation studies given in Jing, Kong
and Liu (2012). Table 2 lists the empirical sizes of JKL’s test where δ∗ is a tuning
parameter determining how many small increments are used to compute the test
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TABLE 2
Empirical sizes of JKL’s test; β = 1.2, n = 2340; the nominal level is 5%; Empirical sizes∗ stand

for the empirical sizes when cs follows the same square root process for 3/4T ≤ t ≤ T

δ∗ 0.50 0.75 1.00 1.25 1.50 1.75

Empirical sizes 0.3032 0.4442 0.5916 0.7312 0.8532 0.9402
Empirical sizes∗ 0.0298 0.0400 0.0358 0.0406 0.0402 0.0436

statistics. Clearly, the JKL’s test is too liberal since the type I error probabilities
are out of control, showing that the JKL’s test fails when the continuous process
vanishes in some subintervals. The reason for the failure is that the JKL’s test
statistic has a nonnegligible bias, even for large enough n.

It seems that choosing δ∗ small would have satisfactory control of type I error.
However, when δ∗ is small, the normal approximation is actually no longer reli-
able. For δ∗ = 0.05, there are roughly 5 small increments (effective data) used in
calculation of the test statistics, which affects the accuracy of the normal approx-
imation. Figure 2 gives the QQ-plot for the test statistics given in Jing, Kong and
Liu (2012) for δ∗ = 0.05 (left panel), 0.5 (right panel) when β = 1.2 and n = 2340.
From the left panel, we see a clear concavity pattern, which implies that the distri-
bution of the test statistic is left-skewed, yet the empirical size is 0.07. Apparent
improvement in skewness could be seen in the right panel for δ∗ = 0.5 since more
effective data (roughly 40) were added in calculation of the test statistics. However,
we see a clear bias in the QQ-plot.

Next we investigate the power of the new test. We generate the data for 5000
times from the above model, except that cs ≡ 0. The empirical powers for various
β values are given in Table 1. We make the following observations:

FIG. 2. QQ-plot of the test statistics given in Jing et al. (2012) for δ∗ = 0.05 (left panel), 0.5 (right
panel) under H0 when β = 1.2; n = 2340.



860 X.-B. KONG, Z. LIU AND B.-Y. JING

TABLE 3
Empirical sizes and the empirical powers of the new test for different pairs of (c, kn); the nominal

level is 5%; n=2340

Empirical sizes Empirical power

β (0.15,50) (0.15,78) (0.2,78) (0.15,50) (0.15,78) (0.2,78)

1.0 0.0630 0.0604 0.0634 0.9986 0.9994 0.9992
1.1 0.0604 0.0604 0.0608 0.9984 0.9986 0.9992
1.2 0.0634 0.0618 0.0624 0.9970 0.9982 0.9982
1.3 0.0558 0.0592 0.0638 0.9842 0.9896 0.9968
1.4 0.0580 0.0562 0.0618 0.7432 0.7708 0.8786
1.5 0.0584 0.0560 0.0614 0.3148 0.3242 0.4146
1.6 0.0576 0.0613 0.0608 0.1670 0.1498 0.1814
1.7 0.0558 0.0496 0.0568 0.0908 0.0906 0.1102
1.8 0.0558 0.0540 0.0582 0.0780 0.0778 0.0788
1.9 0.0542 0.0544 0.0566 0.0702 0.0702 0.0744

• the power of the new test decreases as β increases since, as β increases to 2, the
pure-jump process fluctuates more like a Brownian motion;

• as the sample size increases, the empirical power increases overall, as can be
expected.

We also did a sensitivity study to kn when it is chosen in the proposed range.
In the sensitivity study we take c∗ = 0.2 and kn = 50,78, c = 0.15 or 0.2 when
n = 2340. The results on both the size and power performance are reported in
Table 3, where we can see that the empirical sizes and power do not change much.
We also conducted other sensitivity studies for c ≈ 0.18 and n = 1170 with kn

in the corresponding range and reached similar conclusions (hence not presented
here).

4.2. Real data analysis. In this section, we implement our test on some real
data sets. We first investigate the stock price records of Microsoft (MFST) in two
trading days, December 1, and 12, 2000, which were also included in Jing, Kong
and Liu (2012). All data sets are from the TAQ database. As in Jing, Kong and
Liu (2012), to weaken the possible effect from microstructure noise, we sample
observations every 1/3 minutes. Finally, we use logarithms of the sampled prices
to calculate the test statistics.

We set T = 1 (day) consisting of 6.5 hours of trading time. As in the simulation
studies, we set kn = 50 and γn = 0.2/ log (u2

n/�n). To be on the safe side, let un

take values in the grid points in (0,1] with step length equal to 0.01. Figure 3 plots
the test statistics against un for two data sets. We see from the figure that for all
configurations of un, the test statistics are far lower than −1.645, hence providing
significant evidence against the existence of a Brownian force. This confirms the
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FIG. 3. Observed test statistics for the trading date, December 1 (middle panel) and December 12
(upper panel), in 2000, and the 5-mins S&P 500 index (lower panel) data during January 4–29,
2010. The horizontal line has level −1.645.

empirical results in Jing, Kong and Liu (2012) and in the meantime rules out the
possibility that Brownian force exists in some subintervals.

Next we implement our test the S&P 500 index data which are sampled every 5
minutes during January 4–29, 2010. The tuning parameters are used as given above
for those two stock data. The observed test statistics are plotted against u in the
lower panel of Figure 3. We obtain the same conclusion that during the specified
time period, the underlying log price should be modeled by a pure-jump process.

5. Conclusion and discussion. In this paper, we have developed a new test
based on the realized characteristic function to check whether the underlying pro-
cess of a high frequency data set can be modeled as a pure-jump process, and
shown its advantages over existing tests. Here are some future problems worth
pursing in future research work:

• The effect of the microstructure noise, in the testing problem (1.2) or even in
estimating the functionals of the volatility, is unclear and worthy of investigation
in both theory and practice. Here we could explore the two-time-scale technique
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or multi-time-scale technique [Aït-Sahalia, Mykland and Zhang (2005), Zhang
(2006)] or the pre-averaging approach [Jacod et al. (2009)].

• In the present paper, our inference is with the price process. It is of interest to
make inference on the volatility process which, as recommended in Todorov
and Tauchen (2014), could be modeled by a pure-jump process. The challenge
of this problem is that the volatility process is unobservable. Studies on this
topic is still undergoing.

APPENDIX: PROOFS OF MAIN THEOREMS

This appendix contains the proofs of main theorems. The proofs of Lem-
mas A.4–A.6 as well as some interesting supplemental lemmas are given in Kong,
Liu and Jing (2015), a supplementary material [Kong, Liu and Jing (2015)] to this
paper that is not for purpose of publication. By the standard localization procedure,
it is enough to prove the main results under the following strengthened assumption.

ASSUMPTION A.1. b, σ , γ +, γ −, bσ , Hσ and H ′σ are bounded.

Before we prove the theorems, we introduce some notation and give an outline
of our proof. Let Ut(u) = exp (−u2ct − 2�

1−β/2
n uβat ) where at = χ(β)(|γ +

t |β +
|γ −

t |β) with χ(β) = ∫∞
0 y−β sin(y) dy. For ease of notation, Uj(u) ≡ U2jvn(u)

and sometimes we write EFt Vs = E(Vs |Ft ) for a stochastic process Vt . Let
ξk,j (u) = Lk

j (u)/Uj (u) − 1, k = 0,1. Let �(k,n, t) = {ω,maxk,j |ξk,j (u,ω)| ≤
1/2}. By Lemma 7 of Jacod and Todorov (2014),

P
(
�c(k,n, t)

)→ 0,(A.1)

irrespective of whether the continuous component exists or not.

A.1. Proof of results under H0. Assuming the continuous local martingale
exists, our proof depends heavily on the following decomposition:

ck
j (u) = c2jvn +2uβ−2�1−β/2

n a2jvn − 1

u2 ξk,j (u)+ 1

2u2 ξ2
k,j (u)+rk,j (u),(A.2)

where rk,j (u) represents the remaining term which will be shown to be negligible.
By summing up the terms in (A.2) over j , one soon has

Ĉk(u) =
[t/(2vn)]−1∑

j=0

2vnc2jvn +
[t/(2vn)]−1∑

j=0

2vn

(
2uβ−2�1−β/2

n a2jvn

)

−
[t/(2vn)]−1∑

j=0

2vnξk,j (u)/u2(A.3)

+
[t/(2vn)]−1∑

j=0

2vn

(ξ2
k,j (u)

2u2 − 1

(kn − 1)u2

(
sinh
(
u2ck

j (u)
))2)+ Rk(u).



TESTING FOR PURE-JUMP PROCESSES 863

We will first show that the first and second term converge to some limits, and the
fourth and last term in (A.3) are op(�

1/2
n ), while the third term is Op(�

1/2
n ) and

converges to a conditionally centered Gaussian random variable stably. This proves
the univariate central limit theorem in Theorem 3.1. After that we proceed with the
proof of the bivariate central limit theorem by investigation into the covariation of
those two marginal sequences, which ends up with Theorem 3.1. Theorem 3.2 is a
consequence of Theorem 3.1 and the continuous mapping theorem. Theorem 3.3
can be proved by showing that κ̂T is consistent to κT . In the sequel, K will be a
constant that has different values at different appearances.

We now cite three lemmas from Jacod and Todorov (2014), whose proof can
be found in the same reference paper. Lemma A.1 is concerned with the first and
second term in (A.3), that is, the discretization error terms. Lemma A.2 gives the
stochastic order of ξk,j (un), k = 0,1, while Lemma A.3 shows that the fourth term
and the remainder term in (A.3) are asymptotically negligible.

LEMMA A.1 [Lemma 8 in Jacod and Todorov (2014)]. Under Assump-
tions 3.1–A.1 and assuming (3.1), we have

[t/(2vn)]−1∑
j=0

2vnc2jvn −
∫ t

0
cs ds = op

(
u2

n�
1/2
n

)
,(A.4)

[t/(2vn)]−1∑
j=0

2vn

(
2uβ−2

n �1−β/2
n a2jvn

)− A0(un)
n
t = op

(
u2

n�
1/2
n

)
.(A.5)

LEMMA A.2 [Lemma 14 in Jacod and Todorov (2014)]. Under Assump-
tions 3.1–A.1 and assuming (3.1), we have, for k = 0,1,∣∣EF2jvn

ξk,j (un)
∣∣≤ Ku4

n�
1/2
n φn,(A.6)

∣∣∣∣EF2jvn
ξ2
k,j (un) − Uj(2un) + Uj(0) − 2U2

j (un)

2(kn − 1)U2
j (un)

∣∣∣∣≤ Ku4
n�

1/2
n φn,(A.7)

and for q ≥ 2,

EF2jvn

∣∣ξk,j (un)
∣∣q ≤ K

(
u2q

n /kq/2
n + u4

nvn

)
,(A.8)

where φn is some sequence of numbers converging to 0.

LEMMA A.3 [Lemma 9 in Jacod and Todorov (2014)]. Under Assump-
tions 3.1–A.1 and assuming (3.1), we have Rk(u) = op(u2

n�
1/2
n ) k = 0,1 and

[t/(2vn)]−1∑
j=0

2vn

(ξ2
k,j (un)

2u2
n

− 1

(kn − 1)u2
n

(
sinh
(
u2

nc
k
j (un)

))2)= op

(
u2

n�
1/2
n

)
.(A.9)
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The following lemma provides a formula for the limit of the conditional real
part of the characteristic function of a linear combination of three successive in-
crements. The proof can be found in the supplementary material [Kong, Liu and
Jing (2015)] to this paper.

LEMMA A.4. Let u∗
n = |an,0| ∨ |an,1| ∨ |an,2|, under Assumptions 3.1–A.1,

and assume (3.1) with u∗
n replacing un, so we have∣∣∣∣∣EF(i−1)�n

cos

( 2∑
l=0

an,l

�n
i+lX

�
1/2
n

)

− exp

(
−1

2
σ 2

(i−1)�n

2∑
l=0

a2
n,l

+ �1−β/2
n χ(β)

2∑
l=0

(∣∣an,lγ
+
(i−1)�n

|β + |an,lγ
−
(i−1)�n

∣∣β))(A.10)

× cos

(
�1−β/2

n χ ′(β)

2∑
l=0

({
an,lγ

+
(i−1)�n

}β + {an,lγ
−
(i−1)�n

}β))∣∣∣∣∣
≤ Ku∗4

n �1/2
n φn,

where {x}β = sign (x)|x|β and χ ′(β) = ∫∞
0

1−cos(y)

yβ dy.

PROOF OF THEOREM 3.1. By Lemmas A.1, A.3 and (A.3), it suffices to prove
that

1

�
1/2
n

([t/(2vn)]−1∑
j=0

2vnξ0,j (un)/u
2
n,

[t/(2vn)]−1∑
j=0

2vnξ1,j (un)/u
2
n

)

converges to the right-hand side of (3.2) stably. By Lemma A.2, we have
[t/(2vn)]−1∑

j=0

2vnE
(
ξk,j (un)/u

2
n|F2jvn

)= op

(
u2

n�
1/2
n

)
, k = 0,1.

Hence it is enough to prove the bivariate central limit theorem with stable con-
vergence for the following centered discrete bivariate martingale with respect to
(F2jvn)

[t/(2vn)]−1
j=0 :

2vn

�
1/2
n

([t/(2vn)]−1∑
j=0

(
ξ0,j (un)/u

2
n − E

(
ξ0,j (un)/u

2
n|F2jvn

))
,

(A.11) [t/(2vn)]−1∑
j=0

(
ξ1,j (un)/u

2
n − E

(
ξ1,j (un)/u

2
n|F2jvn

)))
.
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Let

χ
n,0
j = 2vn

�
1/2
n

(
ξ0,j (un)/u

2
n − E

(
ξ0,j (un)/u

2
n|F2jvn

))
,

χ
n,1
j = 2vn

�
1/2
n

(
ξ1,j (un)/u

2
n − E

(
ξ1,j (un)/u

2
n|F2jvn

))
.

By Theorem 7.28 in Chapter IX of Jacod and Shiyayev (2003), we only need to
prove that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
t

∣∣∣∣∣
[t/(2vn)]−1∑

j=0

E
(
χ

n,k
j |F2jvn

)∣∣∣∣→P 0; k = 0,1,

[t/(2vn)]−1∑
j=0

EF2jvn

(
χ

n,k
j

)2 →P 4
∫ t

0
c2
s ds; k = 0,1,

[t/(2vn)]−1∑
j=0

EF2jvn

(
χ

n,0
j χ

n,1
j

)→P 2
∫ t

0
c2
s ds;

[t/(2vn)]−1∑
j=0

EF2jvn

(
χ

n,k
j

)2
I{|χn,k

j |>ε} →P 0; k = 0,1,

[t/(2vn)]−1∑
j=0

EF2jvn

(
χ

n,k
j (M2(j+1)vn − M2jvn)

)→P 0; k = 0,1,

(A.12)

for any square-integrable martingale M . The first equation holds automatically
since (χ

n,k
j )

[t/(2vn)]−1
j=0 form a sequence of F2(j+1)vn -martingale differences.

Now we calculate the conditional variances of the marginal sequences. By (3.1),

Lemma A.2 and the fact that |Uj(un) − e
−u2

nσ 2
(i−1)�n | ≤ K�

1−β/2
n u

β
n , we have

4v2
n

�nu4
n

[t/(2vn)]−1∑
j=0

E
((

ξk,j (un) − E
(
ξk,j (un)|F2jvn

))2|F2jvn

)

= 4v2
n

�nu4
n

[t/(2vn)]−1∑
j=0

(
E
[
ξ2
k,j (un)|F2jvn

]− (E[ξk,j (un)|F2jvn

])2)

= 4v2
n

�nu4
n

[t/(2vn)]−1∑
j=0

E
(
ξ2
k,j (un)|F2jvn

)+ op(1)

= 4v2
n

2(kn − 1)�nu4
n

[t/(2vn)]−1∑
j=0

Uj(2un) + 1 − 2U2
j (un)

U2
j (un)

+ op(1)(A.13)
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= (1 + op(1))

u4
n

[t/(2vn)]−1∑
j=0

(
Uj(2un) + 1 − 2U2

j (un)
)
2vn + op(1)

= (1 + op(1))

u4
n

[t/(2vn)]−1∑
j=0

(
e−4u2

nc2jvn + 1 − 2e−2u2
nc2jvn

)
2vn + op(1)

=
∫ t

0 (e−4u2
ncs + 1 − 2e−2u2

ncs ) ds

u4
n

+ op(1) →P 4
∫ t

0
c2
s ds,

where in obtaining the convergence in probability, we used the Taylor expansion
of ex when x is near 0. This proves the second equation in (A.12).

Next, we are going to check the third equation in (A.12). By Lemma A.2, we
have

4v2
n

�nu4
n

[t/(2vn)]−1∑
j=0

EF2jvn

(
ξ0,j (un) − EF2jvn

ξ0,j (un)
)

×(ξ1,j (un) − EF2jvn
ξ1,j (un)

)

= 4v2
n

�nu4
n

[t/(2vn)]−1∑
j=0

(
EF2jvn

ξ0,j (un)ξ1,j (un)(A.14)

− EF2jvn
ξ0,j (un)EF2jvn

ξ1,j (un)
)

= 4v2
n

�nu4
n

[t/(2vn)]−1∑
j=0

EF2jvn
ξ0,j (un)ξ1,j (un) + op(1).

Now we investigate the summand in (A.14). Let

ζk(j, l) = cos
(
un

�n
2jkn+2l−k+1X − �n

2jkn+2l−kX

�
1/2
n

)

− EF(2jkn+2l−k−1)�n
cos
(
un

�n
2jkn+2l−k+1X − �n

2jkn+2l−kX

�
1/2
n

)

and

ζ ′
k(j, l) = cos

(
un

�n
2jkn+2l−k+1X − �n

2jkn+2l−kX

�
1/2
n

)
− Uj(un),

k = 0,1. By (6.22) and (6.29) in Jacod and Todorov (2014), we have∣∣ζ ′
k(j, l) − ζk(j, l)

∣∣
(A.15)

≤ Ku4
n�

1/2
n φn + ∣∣U2jvn+(2l−k−1)�n(un) − Uj(un)

∣∣,
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which, together with Lemma A.2 and the property of Ut(un), shows that∣∣∣∣EF2jvn
ξ1,j (un)

(
(1/(kn − 1))

∑kn−1
l=1 (ζ ′

0(j, l) − ζ0(j, l))

Uj (un)

)∣∣∣∣
≤
√

EF2jvn
ξ2

1,j (un)

√√√√
EF2jvn

(
(1/(kn − 1))

∑kn−1
l=1 |ζ ′

0(j, l) − ζ0(j, l)|
Uj(un)

)2

(A.16)

≤ K
u2

n√
kn

(
u4

n�
1/2
n φn +

√
max

l
EF2jvn

(
U2jvn+(2l−1)�n − Uj(un)

)2)

≤ K
u4

n

√
vn√

kn

.

Similarly, by the property of Ut(un), (6.22) and (6.29) in Jacod and Todorov
(2014), and Hölder’s inequality, we have∣∣∣∣EF2jvn

∑kn−1
l=1 ζ0(j, l)

(kn − 1)Uj (un)

(
(1/(kn − 1))

∑kn−1
l=1 (ζ ′

1(j, l) − ζ1(j, l))

Uj (un)

)∣∣∣∣

≤
√√√√√
∑kn−1

l=1 EF2jvn
ζ 2

0 (j, l)

(kn − 1)2U2
j (un)

(A.17)

×
√√√√

EF2jvn

(
(1/(kn − 1))

∑kn−1
l=1 |ζ ′

0(j, l) − ζ0(j, l)|
Uj(un)

)2

≤ K
u4

n

√
vn√

kn

.

Equations (A.16) and (A.17) yield

EF2jvn
ξ0,j (un)ξ1,j (un)

(A.18)

= EF2jvn

(1/(kn − 1))
∑kn−1

l=1 ζ0(j, l)(1/(kn − 1))
∑kn−1

l=1 ζ1(j, l)

Uj (un)Uj (un)
+ rj ,

where rj satisfies |rj | ≤ K
√

vnu
4
n/

√
kn. By the definition of ζk(j, l), we have

EF2jvn

(1/(kn − 1))
∑kn−1

l=1 ζ0(j, l)(1/(kn − 1))
∑kn−1

l=1 ζ1(j, l)

Uj (un)Uj (un)

= 1

(kn − 1)2Uj(un)Uj (un)

kn−1∑
l=1

EF2jvn
ζ0(j, l)ζ1(j, l)(A.19)

+
kn−2∑
l=1

EF2jvn
ζ0(j, l)ζ1(j, l + 1).
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By Lemmas 11–12 in Jacod and Todorov (2014), we have

EF2jvn
ζ0(j, l)ζ1(j, l)

= EF2jvn
ζ0(j, l) cos

(
un

�n
2jkn+2lX − �n

2jkn+2l−1X

�
1/2
n

)

= EF2jvn
cos
(
un

�n
2jkn+2l+1X − �n

2jkn+2lX

�
1/2
n

)
(A.20)

× cos
(
un

�n
2jkn+2lX − �n

2jkn+2l−1X

�
1/2
n

)

− Uj(un)Uj (un) + r2j ,

where r2j satisfies |r2j | ≤ Ku2
n

√
vn. Since cos(x) cos(y) = 1

2(cos(x + y) +
cos(x − y)), we have by Lemma A.4,

EF2jvn
cos
(
un

�n
2jkn+2l+1X − �n

2jkn+2lX

�
1/2
n

)
cos
(
un

�n
2jkn+2lX − �n

2jkn+2l−1X

�
1/2
n

)

= 1

2
EF2jvn

(
cos
(
un

�n
2jkn+2l+1X

�
1/2
n

− un

�n
2jkn+2l−1X

�
1/2
n

)

+ cos
(
un

�n
2jkn+2l+1X

�
1/2
n

− 2un

�n
2jkn+2lX

�
1/2
n

+ un

�n
2jkn+2l−1X

�
1/2
n

))
(A.21)

= 1

2
EF2jvn

(
exp
(−u2

nc2jvn+(2l−2)�n

)+ exp
(−3u2

nc2jvn+(2l−2)�n

))+ r3,j

= 1

2

(
exp
(−u2

nc2jvn

)+ exp
(−3u2

nc2jvn

))+ r3,j + r4,j ,

where |r3,j | ≤ K�
1−β/2
n and |r4,j | ≤ Ku2

nvn by second-order Taylor expansion on
ex for x around the origin and (S.1.3) with V = c. Now substituting (A.21) back
into (A.20), we have

EF2jvn
ζ0(j, l)ζ1(j, l) = 1

2

(
exp
(−u2

nc2jvn

)+ exp
(−3u2

nc2jvn

))
(A.22)

− exp
(−2u2

nc2jvn

)+ r5,j ,

where |r5j | ≤ K(
√

vn + �
1−β/2
n ). Similarly, we have

EF2jvn
ζ0(j, l)ζ1(j, l + 1)

= 1
2

(
exp
(−u2

nc2jvn

)+ exp
(−3u2

nc2jvn

))
(A.23)

− exp
(−2u2

nc2jvn

)+ r6,j ,
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where |r6,j | ≤ K(
√

vn + �
1−β/2
n ). Substitute (A.22) and (A.23) into (A.19), and

then substitute the latter into (A.18), and we have

EF2jvn
ξ0,j (un)ξ1,j (un)

= exp (−u2
nc2jvn) + exp (−3u2

nc2jvn) − 2 exp (−2u2
nc2jvn)

(kn − 1)U2
j (un)

+ r∗
j(A.24)

= u4
nc

2
2jvn

+ r7j

(kn − 1)U2
j (un)

+ r∗
j = u4

nc
2
2jvn

+ r8j

kn − 1
+ r∗

j ,

where |r7j | ∨ |r8j | ≤ Ku6
n, |r∗

j | ≤ |rj | + |r2j |+|r3j |+|r4j |+|r5j |+|r6j |
kn−1 + 1

(kn−1)2 . Now a
combination of (A.24) and (A.14) yields

4v2
n

�nu4
n

[t/(2vn)]−1∑
j=0

EF2jvn

(
ξ0,j (un) − EF2jvn

ξ0,j (un)
)

(A.25)

× (ξ1,j (un) − EF2jvn
ξ1,j (un)

)→p 2
∫ t

0
c2
s ds.

This proves the third equation in (A.12).
By Lemma A.2, we also have

[t/(2vn)]−1∑
j=0

EF2jvn

(
χ

n,k
j

)2
I
(∣∣χn,k

j

∣∣> ε
)

≤ 1

ε

[t/(2vn)]−1∑
j=0

EF2jvn

∣∣χn,k
j

∣∣3

≤ K

ε

[t/(2vn)]−1∑
j=0

(
2vn

�
1/2
n

)3 1

u6
n

EF2jvn

∣∣ξk,j (un)
∣∣3 → 0.

This proves the Linderberg condition [equation four in (A.12)].
Taking κ = 2 and ζ n

j = 1 in Lemma 15 of Jacod and Todorov (2014), we have

[t/(2vn)]−1∑
j=0

EF2jvn
χ

n,k
j (M2(j+1)vn − M2jvn)

=
[t/(2vn)]−1∑

j=0

2vn

u2
n�

1/2
n

EF2jvn
ξk,j (uj )(M2(j+1)vn − M2jvn) →P 0.

This proves the final equation in (A.12) and completes the proof of the bivariate
central limit theorem with stable convergence. �
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PROOF OF THEOREM 3.2. Let Tn1 = Ĉ0(un) − A0(un)
n
t − Ct − (Ĉ1(un) −

A0(un)
n
t − Ct). By (2.5),

Tn ≡ Tn1 − γn�
1/2
n

Ct + A0(un)
n
t + Op(�

1/2
n )

= Tn1

Ct + op(1)
+ op

(
�1/2

n

)
.(A.26)

Then Theorem 3.2 is a straightforward consequence of Theorem 3.1, (A.26), the
stable convergence mode and the continuous mapping theorem. �

PROOF OF THEOREM 3.3. By Theorem 3.1, Ĉ1(un) = Ct + A0(un)
n
t +

Op(�
1/2
n ) = Ct + op(1). This shows that the denominator of κ̂T converges to C2

T

in probability. By (A.2), we have

(
ck
j (un) − (sinh(u2

nc
k
j (un)))

2

(kn − 1)u2
n

)2

(A.27)
= c2

2jvn
+ c̃k

j,1(un) + c̃k
j,2(un) + c̃k

j,3(un),

where

c̃k
j,1 =

(
ξk,j (un)

u2
n

)2

+
(ξ2

k,j (un)

2u2
n

− (sinh(u2
nc

k
j (un)))

2

(kn − 1)u2
n

)2

+ (rk,j (un)
)2

,

c̃k
j,2 = 2c2jvn

(
−ξk,j (un)

u2
n

+ ξ2
k,j (un)

2u2
n

− (sinh(u2
nc

k
j (un)))

2

(kn − 1)u2
n

+ rk,j (un)

)
,

c̃k
j,3(un) = 4c2jvnu

β−2
n �1−β/2

n a2jvn + (2uβ−2
n �1−β/2

n a2jvn

)2
.

By (A.1),

[t/(2vn)]−1∑
j=0

2vnc̃
k
j,1I�c(k,n,t) = op(1),

[t/(2vn)]−1∑
j=0

2vnc̃
k
j,2I�c(k,n,t) = op(1).

By Lemma A.2,
∑[t/(2vn)]−1

j=0 2vn(
ξk,j (un)

u2
n

)2 = op(1). On �(k,n, t), | ξ
2
k,j (un)

2u2
n

−
(sinh(u2

nck
j (un)))2

(kn−1)u2
n

| is bounded by K/u2
n, hence

(ξ2
k,j (un)

2u2
n

− (sinh(u2
nc

k
j (un)))

2

(kn − 1)u2
n

)2

I�(k,n,t)

≤ K

u2
n

∣∣∣∣ξ
2
k,j (un)

2u2
n

− (sinh(u2
nc

k
j (un)))

2

(kn − 1)u2
n

∣∣∣∣I�(k,n,t)

≤ K

u2
n

(∣∣∣∣ξ
2
k,j (un)

2u2
n

− EF2jvn

ξ2
k,j (un)

2u2
n

∣∣∣∣(A.28)
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+
∣∣∣∣EF2jvn

ξ2
k,j (un)

2u2
n

− Uj(2un) + 1 − 2U2
j (u2

n)

4u2
n(kn − 1)U2

j (un)

∣∣∣∣
+
∣∣∣∣Uj(2un) + 1 − 2U2

j (u2
n)

4u2
n(kn − 1)U2

j (un)
− (sinh(u2

nc
k
j (un)))

2

(kn − 1)u2
n

∣∣∣∣
)
I�(k,n,t).

By the property of Uj(un) and the definition of ck
j (un), the expectation of the

third absolute value conditional on F2jvn is smaller than K(u
β−2
n �

1−β/2
n /kn +

u−2
n /k

3/2
n +�

1/2
n φn/kn). By Lemma A.2, the second absolute value is smaller than

Ku4
n�

1/2
n φn. By Hölder’s inequality and Lemma A.2 with q = 4, the expectation

of the first absolute value conditional on F2jvn is smaller than K(u2
n/kn + √

vn).
In summary, we conclude that

[t/(2vn)]−1∑
j=0

2vn

(ξ2
k,j (un)

2u2
n

− (sinh(u2
nc

k
j (un)))

2

knu2
n

)2

I�(k,n,t) = op(1).(A.29)

By (A.1),
∑[t/(2vn)]−1

j=0 2vn(rk,j (un))
2I�c(k,n,t) = op(1). On �(k,n, t), |rk,j | ≤

K
|ξk,j (un)|3

u2
n

. By Lemma A.2 with q = 6, we have
∑[t/(2vn)]−1

j=0 2vn(rk,j (un))
2 ×

I�(k,n,t) = op(1). Combining all the results of the terms on the right-hand side

of the decomposition of c̃k
j,1, we have

∑[t/(2vn)]−1
j=0 2vnc̃

k
j,1 = op(1). Similarly,

one easily proves that
∑[t/(2vn)]−1

j=0 2vnc̃
k
j,2 = op(1). By boundedness of c and a,∑[t/(2vn)]−1

j=0 2vnc̃
k
j,3 = op(1). This shows that

Înk =
[T/(2vn)]−1∑

j=0

2vnc
2
2jvn

+ op(1) =
∫ T

0
c2
s ds + op(1), k = 0,1.(A.30)

This shows that the numerator of κ̂T converges to 4
∫ T

0 c2
s ds in probability, and

hence κ̂T itself converges to κT in probability. On the other hand, by Theorem 3.2,
Tn/�

1/2
n converges to GT stably. By the stable convergence mode, Tn converges

to standard normal distribution stably. �

A.2. Proof of results under H1. In the sequel we assume that X is a pure-
jump process. We rewrite

ck
j (un) = − logUj(un)

u2
n

− log (1 + ξk,j (un))

u2
n

(A.31)

= 2uβ−2
n �1−β/2

n a2jvn − ξk,j (un)

u2
n

+ r̃k,j , k = 0,1,
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where |r̃k,j | ≤ Kξ2
k,j (un)/u

2
n on �(k,n, t). Recall the definition of Tn1 in (A.26),

and we have

Tn1 = 2vn

[t/(2vn)]−1∑
j=0

−ξ0,j (un) − ξ1,j (un)

u2
n

+ R̃n,t ,(A.32)

where

R̃n,t = 2vn

[t/(2vn)]−1∑
j=0

[
(r̃0,j − r̃1,j )

(A.33)

+
((sinh(u2

nc
1
j (un)))

2 − (sinh(u2
nc

0
j (un)))

2

u2
n(kn − 1)

)]
.

Similar to Lemma A.2, we have the following. The proof is provided in the
supplementary material [Kong, Liu and Jing (2015)].

LEMMA A.5. Assume Assumptions 3.1, 3.3 and A.1, and suppose un is
bounded, so we have on the set {Ct = 0},∣∣EF2jvn

ξk,j (un)
∣∣

≤ K
(
�(1−r/2)∧((3−β)/2−ε′)∧(1−β/(2(β+1−r)))

n(A.34)

+ uβ
n�1−β/2

n vβ/2
n + u2β

n �2−β
n vn

)
,

and if further kn�
1/2−ε
n → ∞ for any ε > 0, and supn

kn�
1/2
n

u4
n

< ∞ is satisfied,

EF2jvn
ξ2
k,j (un) ≤ K

u
β
n�

1−β/2
n

kn

.(A.35)

The following lemma gives the convergence rate of the terms on the right-hand
side of (A.32). The proof can be found in the supplementary material [Kong, Liu
and Jing (2015)] to this paper.

LEMMA A.6. Assume Assumption 3.1, 3.3 and A.1, and suppose un is
bounded and kn�

1/2
n → 0, so we have on the set {Ct = 0},

(1) ∣∣∣∣∣2vn

[t/(2vn)]−1∑
j=0

EF2jvn

(
ξ0,j (un) − ξ1,j (un)

u2
n

)∣∣∣∣∣
(A.36)

≤ Ku−2
n

(
�(1−r/2)∧((3−β)/2−ε′)∧(1−β/(2(β+1−r)))

n + uβ
n�3/2−β/2

n

);
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(2) ∣∣∣∣∣
[t/(2vn)]−1∑

j=0

EF2jvn

(
ξ0,j (un) − ξ1,j (un) − EF2jvn

(ξ0,j (un) − ξ1,j (un))

u2
n/(2vn)

)2
∣∣∣∣∣

(A.37)
≤ Ku−4

n

(
uβ

n�2−β/2
n + �(2−r/2)∧((5−β)/2−ε′)

n

);
for any ε′ > 0;

(3)

R̃nt = Op

(
u

β−2
n �

1−β/2
n

kn

)
.(A.38)

PROOF OF THEOREM 3.4. We first prove the first equation. By (A.31), we
have

Ĉ0(un) − Ĉ1(un) = Tn,1
(A.39)

= 2vn

[t/(2vn)]−1∑
j=0

−ξ0,j (un) − ξ1,j (un)

u2
n

+ R̃n,t .

Now by Lemma A.6, we have

Ĉ0(un) − Ĉ1(un) = Op(δn,1 +
√

δn,2 + δn,3),(A.40)

where

δn,1 = u−2
n

(
�(1−r/2)∧((3−β)/2−ε′)∧(1−β/(2(β+1−r)))

n + uβ
n�3/2−β/2

n

)
,√

δn,2 = u−2
n

(
uβ/2

n �1−β/4
n + �(1−r/4)∧((5−β)/4−ε′/2)

n

)
,

δn,3 = uβ−2
n �1−β/2

n /kn.

Now, notice that: (1) 1 − r/4 > 1 − r/2 > 1 − β/2(β + 1 − r); (2) δn,3 >

u
β−2
n �

3/2−β/2
n ; (3) 3−β

2 <
5−β

4 ; (4) δn,3

u−2
n �

3/2−β/2−ε′
n

≤ u
β
n/(kn�

1/2−ε′
n ) ≤ K ;

(5) u−2
n �

3/2−β/2−ε′
n

u
β/2−2
n �

1−β/4
n

= u
4−β/2
n

kn�
1/2
n

u4
n

1

kn�
β/4+ε′
n

≤ K . By choosing ε′ > 0 small enough

and the conditions on un and kn, we have

Ĉ0(un) − Ĉ1(un) = Op

(
u−2

n �1−β/(2(β+1−r))
n + uβ/2−2

n �1−β/4
n

)
.

Next, we prove the second equation. By (A.31), we have

(
ck
j (un)

)2 − (2uβ−2
n �1−β/2

n a2jvn

)2 −
(

ξk,j (un)

u2
n

)2

− (r̃k,j )
2

(A.41)

= 2
(
2uβ−2

n �1−β/2
n a2jvn

)(−ξk,j (un)

u2
n

+ r̃k,j

)
− 2
(

ξk,j (un)

u2
n

)
r̃k,j .
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Now we use several steps to show that under H1 the principal term of (ck
j (un))

2 is

(2u
β−2
n �

1−β/2
n a2jvn)

2 and EF2jvn
(ck

j (un))
2 ≤ Ku

2β−4
n �

2−β
n . By Lemma A.5, we

have

EF2jvn

(
ξk,j (un)

u2
n

)2

≤ K
(
uβ−2

n �1−β/2
n

)2 kn�
1/2
n

u4
n

u
4−β
n

k2
n�

3/2−β/2
n

,(A.42)

which is op((u
β−2
n �

1−β/2
n )2) by the conditions on kn and un given in Theorem 3.4.

By Lemma A.5 and (A.42), we have on �(k,n, t) (on which |r̃k,j | ≤ Kξ2
k,j /u

2
n and

|ξk,j | is bounded),

EF2jvn
(r̃k,j )

2I�(k,n,t) ≤ KEF2jvn
|r̃k,j |I�(k,n,t)

≤ KEF2jvn

(
ξk,j (un)

u2
n

)2

(A.43)

≤ K
(
uβ−2

n �1−β/2
n

)2 kn�
1/2
n

u4
n

u
4−β
n

k2
n�

3/2−β/2
n

.

By (A.42) and (A.43), we have by Hölder’s inequality,

EF2jvn

∣∣∣∣(2uβ−2
n �1−β/2

n a2jvn

)(−ξk,j (un)

u2
n

+ r̃k,j

)∣∣∣∣I�(k,n,t)

(A.44)

≤ K
(
uβ−2

n �1−β/2
n

)2( u
4−β/2
n

k
3/2
n �

1−β/4
n

+ u2
n

k2
n�

1/2
n

)

and

EF2jvn

∣∣∣∣ξk,j (un)

u2
n

∣∣∣∣r̃k,j |I�(k,n,t) ≤ KEF2jvn

(
ξk,j (un)

u2
n

)2

(A.45)

≤ K
(
uβ−2

n �1−β/2
n

)2 kn�
1/2
n

u4
n

u
4−β
n

k2
n�

3/2−β/2
n

.

Combining (A.42)–(A.45) yields that

EF2jvn

∣∣(ck
j (un)

)2 − (2uβ−2
n �1−β/2

n

)2∣∣I�(k,n,t) = o(1),(A.46)

where o(1) holds uniformly in j .
By the form of ck

j (un), we have u2
n|ck

j (un)|I�(k,n,t) ≤ K , and hence by Taylor
expansion on the exponential function, we have

(
sinh
(
u2

nc
k
j (un)

))2
I�(k,n,t) ≤ Ku4

n

(
ck
j (un)

)2
I�(k,n,t) ≤ K.(A.47)



TESTING FOR PURE-JUMP PROCESSES 875

By virtue of (A.47), we have

EF2jvn

((sinh(u2
nc

k
j (un)))

2I�(k,n,t)

u2
n(kn − 1)

)2

≤ K

u4
nk

2
n

EF2jvn

(
sinh
(
u2

nc
k
j (un)

))2
I�(k,n,t)(A.48)

≤ K
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,

and further by the Cauchy inequality,
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Now combining (A.46), (A.48), (A.49) and (A.1), we have

În,k = (2uβ−2
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n

)2([t/(2vn)]−1∑
j=0
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2
2jvn

+ op(1)

)

= (2uβ−2
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n

)2(∫ t

0
a2
s ds + op(1)

)
,

for k = 0,1. This proves the second equation of Theorem 3.4. �

PROOF OF COROLLARY 3.1. Part 1 is a straight consequence of Theorem 3.3.
Now we prove part 2. By Theorem 3.4, we have by the condition on γn,

Tn = −γn + Op(u−2
n �

1/2−β/(2(β+1−r))
n + u

β/2−2
n �

1/2−β/4
n )

4u
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0 a2
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(A.50)

= −γn(1 + op(1))

4u
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0 a2

s ds + op(1)
.

Since γnu
2−β/2
n �

β/4−1/2
n → ∞ and u

2−β/2
n �

β/4−1/2
n

u
2−β
n �

β/2−1
n

≤ u
β/2
n �

1/2−β/4
n → 0,

−γn(1 + op(1))

4u
β−2
n �

1−β/2
n

√∫ t
0 a2

s ds + op(1)
→P −∞.

This proves part 2 on the performance of the power of the test. �

SUPPLEMENTARY MATERIAL

Supplement to “Testing for pure-jump processes for high-frequency data”
(DOI: 10.1214/14-AOS1298SUPP; .pdf). This supplement contains technical
proofs of the Lemmas A.4–A.6 as well as some interesting supplemental lemmas.

http://dx.doi.org/10.1214/14-AOS1298SUPP
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