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NONINTERSECTING BROWNIAN MOTIONS
ON THE UNIT CIRCLE

BY KARL LIECHTY AND DONG WANG1

DePaul University and National University of Singapore

We consider an ensemble of n nonintersecting Brownian particles on the
unit circle with diffusion parameter n−1/2, which are conditioned to begin at
the same point and to return to that point after time T , but otherwise not to
intersect. There is a critical value of T which separates the subcritical case,
in which it is vanishingly unlikely that the particles wrap around the circle,
and the supercritical case, in which particles may wrap around the circle. In
this paper, we show that in the subcritical and critical cases the probability
that the total winding number is zero is almost surely 1 as n→ ∞, and in the
supercritical case that the distribution of the total winding number converges
to the discrete normal distribution. We also give a streamlined approach to
identifying the Pearcey and tacnode processes in scaling limits. The formula
of the tacnode correlation kernel is new and involves a solution to a Lax
system for the Painlevé II equation of size 2 × 2. The proofs are based on
the determinantal structure of the ensemble, asymptotic results for the related
system of discrete Gaussian orthogonal polynomials, and a formulation of the
correlation kernel in terms of a double contour integral.

1. Introduction. The probability models of nonintersecting Brownian mo-
tions have been studied extensively in last decade; see Tracy and Widom (2004,
2006), Adler and van Moerbeke (2005), Adler, Orantin and van Moerbeke (2010),
Delvaux, Kuijlaars and Zhang (2011), Johansson (2013), Ferrari and Vető (2012),
Katori and Tanemura (2007) and Schehr et al. (2008), for example. These models
are closely related to random matrix theory and (multiple) orthogonal polynomials;
see Bleher and Kuijlaars (2004, 2007), Aptekarev, Bleher and Kuijlaars (2005) and
Kuijlaars (2010), for example. One interesting feature is that as the number of par-
ticles n→ ∞, under proper scaling the nonintersecting Brownian motions models
converge to universal processes, like the sine, Airy, Pearcey and tacnode processes.
These processes are called universal since they appear in many other probability
problems; see Okounkov and Reshetikhin (2003, 2007), Johansson (2005), Baik
and Suidan (2007), Adler, van Moerbeke and Wang (2013), Adler, Ferrari and van
Moerbeke (2013) and Adler, Johansson and van Moerbeke (2014), for example.
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Usually the models of nonintersecting Brownian motions turn out to be the most
convenient ones to use for study of these universal processes. In particular, the
Airy process appears ubiquitously in the Kardar–Parisi–Zhang (KPZ) universal-
ity class [Corwin (2012)], an important class of interacting particle systems and
random growth models. The analysis of nonintersecting Brownian motions greatly
improves the understanding of the Airy process and the KPZ universality class;
see Corwin and Hammond (2014). Here, we remark that if we consider the nonin-
tersecting Brownian motions on the real line, in the simplest models the Pearcey
process does not occur, and the tacnode process only occurs in models with so-
phisticated parameters. Thus, the analysis of these universal processes becomes
increasingly more difficult.

Due to technical difficulties, most studies of the limiting local properties of
the nonintersecting Brownian motions concern models defined on the real line.
A model of nonintersecting Brownian motions on a circle was considered by
Dyson as a dynamical generalization of random matrix models [Dyson (1962)],
and physicists and probabilists have been interested in the nonintersecting Brow-
nian motions on a circle and their discrete counterparts for various reasons; see
Forrester (1990), Hobson and Werner (1996) and Cardy (2003), for example. The
simplest model of nonintersecting Brownian motions on a circle such that the par-
ticles start and end at the same common point is shown to be related to Yang–Mills
theory on the sphere [Forrester, Majumdar and Schehr (2011), Schehr et al. (2013)]
and the partition function (a.k.a. reunion probability) shows an interesting phase
transition phenomenon closely related to the Tracy–Widom distributions in ran-
dom matrix theory.

In this paper, we show that the Pearcey and (symmetric) tacnode processes men-
tioned above occur as the limits of the simplest model of nonintersecting Brownian
motions on a circle, and give a streamlined method to analyze them. We also con-
sider the total winding number of the particles, a quantity that has no counterpart
in the models defined on the real line, and show that its limiting distribution in
the nontrivial case is the discrete normal distribution [Szabłowski (2001)], a natu-
ral through perhaps not well-known discretization of the normal distribution. We
also show that in the supercritical case, the Pearcey process occurs if the model is
conditioned to have fixed total winding number. Although the sine and Airy pro-
cesses also naturally occur, we omit the discussion on them to shorten the paper.
A detailed discussion can be found in the preprint [Liechty and Wang (2013)].

Technically, the study of nonintersecting Brownian motions has been carried
out in two distinct ways: by double contour integral formula, and by the Riemann–
Hilbert problem. In the present work, we introduce a mixed approach, using both
a double integral formula and the interpolation problem for discrete Gaussian or-
thogonal polynomials [Liechty (2012)], which are discrete orthogonal polynomials
analogous to Hermite polynomials. In this paper, we analyze the dependence of the
discrete Gaussian orthogonal polynomials on the translation of the lattice, which
encodes the information of the winding number of the Brownian paths.
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1.1. Statement of main results. Let T = {eiθ ∈ C} be the unit circle. Suppose
x1, x2, . . . , xn are n particles in independent Brownian motions on the unit circle
with continuous paths and diffusion parameter n−1/2, that is,

xk(t)= eiBk(t)/
√
n, i = 1,2, . . . , n,(1)

whereBk(t) are independent Brownian motions with diffusion parameter 1 starting
from arbitrary places. The nonintersecting Brownian motions on the circle with n
particles, henceforth denoted as NIBM in this paper, is defined by the particles
x1, . . . , xn conditioned to have nonintersecting paths, that is, x1(t), . . . , xn(t) are
distinct for any t between the starting time and the ending time. In this paper, we
concentrate on the simplest model of NIBM, such that the n particles start from the
common point ei·0 at the starting time t = 0, and end at the same common point
ei·0 at the ending time t = T . We denote this model as NIBM0→T .

Throughout this paper, we represent a point in T by an angular variable θ ∈ R

with θ = θ + 2πk (k ∈ Z) if there is no possibility of confusion, and use θ ∈
[−π,π) as the principal value of the angle. Let P(a;b; t) be the transition prob-
ability density of one particle in Brownian motion on T with diffusion parameter
n−1/2, starting from point a ∈ T and ending at point b ∈ T after time t > 0, which
is

P(a;b; t)=
√
n

2πt

∑
k∈Z
e−n(b−a+2πk)2/(2t).(2)

Now consider the transition probability density of NIBM. Let An = {a1, . . . , an}
and Bn = {b1, . . . , bn} be two sets of n distinct points in T such that −π ≤ a1 <

a2 < · · ·< an < π and −π ≤ b1 < b2 < · · ·< bn < π , and denote by P(An;Bn; t)
the transition probability density of NIBM with the particles starting at the points
An and ending at the points Bn after time t . Note that we do not require that the
particle which started at point ak ends at point bk , but only that it ends at point bj
for some j = 1, . . . , n. For τ ∈ R, introduce the notation

P(a;b; t; τ) :=
√
n

2πt

∑
k∈Z
e−n(b−a+2πk)2/(2t)e2kπτ i,(3)

which reduces to (2) when τ = 0. Introduce also the notation

ε(n)=
{0, if n is odd,

1
2 , if n is even.

(4)

A determinantal formula for P(An;Bn; t) is then given in the following proposi-
tion.

PROPOSITION 1.1. The transition probability density function P(An;Bn; t)
is given by the determinant of size n× n,

P(An;Bn; t)= det
(
P
(
ai;bj ; t; ε(n)))ni,j=1.(5)
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This proposition follows immediately from the Karlin–McGregor formula in the
case that n is odd. If n is even then more care must be taken to derive the formula,
and in the limited knowledge of the current authors it has not appeared before in
the literature. The proof is presented in Section 2.1.

Now we consider the model NIBM0→T . At a given time t ∈ [0, T ], the joint
probability density function for the n particles in NIBM0→T at distinct points
−π ≤ θ1 < θ2 < · · ·< θn < π is given by

lim
a1,...,an→0
b1,...,bn→0

P(An;�n; t)P (�n;Bn;T − t)
P (An;Bn;T ) ,(6)

where An = {a1, . . . , an}, Bn = {b1, . . . , bn}, and �n = {θ1, . . . , θn} describe the
locations of the n particles at time 0, T and t , respectively. It is not difficult to see
that such a limit exists, and so that our model is well defined (see Section 2.2).

The model NIBM0→T is a determinantal process, meaning that the correlation
functions of the particles may be described by a determinantal formula [Soshnikov
(2000)]. To define the determinantal structure, fixm times 0< t1 < t2 < · · ·< tm <
T , and to each time ti , fix ki points on T, −π ≤ θ(i)1 < θ

(i)
2 < · · ·< θ(i)ki < π . The

multi-time correlation function is then defined as

R
(n)
0→T

(
θ
(1)
1 , . . . , θ

(1)
k1

; . . . ; θ(m)1 , . . . , θ
(m)
km

; t1, . . . , tm)
:= lim

�x→0

1

(�x)k1+···+km P
(
there is a particle in

[
θ
(i)
j , θ

(i)
j +�x)(7)

for j = 1, . . . , ki at time ti
)
.

Then there exists some kernel function Kti,tj (x, y) such that

R
(n)
0→T

(
θ
(1)
1 , . . . , θ

(1)
k1

; . . . ; θ(m)1 , . . . , θ
(m)
km

; t1, . . . , tm)
(8)

= det
(
Kti,tj

(
θ
(i)
li
, θ
(j)

l′j

))
i,j=1,...,m,li=1,...,ki ,l′j=1,...,kj

;
see Section 2.3.

Intuitively, one can imagine the scenario of the model NIBM0→T as follows.
When the total time T is small, it is very unlikely that the particles will wrap
around the circle before returning to ei·0, and so the model is very close to the
model of nonintersecting Brownian bridges on the real line. For large T , the parti-
cles which initially move in the positive direction and those which initially move
in the negative direction will eventually meet on the far side of the circle, and the
behavior of the model is very different. In this paper, this heuristic argument is con-
firmed, and the critical value of T which separates these two cases is pinpointed to
be

Tc = π2.(9)
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FIG. 1. Typical configurations of nonintersecting paths in the subcritical (left), critical (middle)
and supercritical (right) cases. Time is on the vertical axis, and the angular variable θ on the hor-
izontal axis. At the initial time t = 0 and the terminal time t = T , the particles are at θ = 0, which
is at both the left and right ends of the figures. The far side of the circle, θ = ±π , is marked by a
light vertical line through the center of the figures. The particles tend to stay within the thick curved
lines. In the supercritical case, the critical time tc is marked, when the “leftmost” and “rightmost”
particles meet on the far side of the circle.

Accordingly, we divide the NIBM0→T model into the subcritical, critical and su-
percritical cases, for T < π2, T = π2, and T > π2, respectively, as shown in Fig-
ure 1.

In the subcritical case T < Tc, the model is described asymptotically by ele-
mentary functions. In the critical case T = Tc and the supercritical case T > Tc,
the model is described asymptotically by special functions: functions related to
the Painlevé II equation for T = Tc, and elliptic integrals for T > Tc. Let us define
those functions.

Critical case: The Painlevé II equation, and the related Lax pair. In the critical
case, we consider the model NIBM0→T in the scaling limit

T = π2(1 − 2−2/3σn−2/3),(10)

where σ ∈R is a parameter. In this case, the results of this paper involve a particu-
lar solution to the Painlevé II equation, and a solution to a related Lax system. Let
us review these objects. The Hastings–McLeod solution [Hastings and McLeod
(1980)] to the homogeneous Painlevé II equation (PII) is the solution to the differ-
ential equation

q ′′(s)= sq(s)+ 2q(s)3,(11)

which satisfies

q(s)= Ai(s)
(
1 + o(1)) as s→ +∞,(12)
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where Ai(s) is the Airy function. Let q(s) be this particular solution to PII, and
consider the 2 × 2 matrix-valued solutions to the differential equation

d

dζ
�(ζ ; s)=

(−4iζ 2 − i(s + 2q(s)2
)

4ζq(s)+ 2iq ′(s)
4ζq(s)− 2iq ′(s) 4iζ 2 + i(s + 2q(s)2

))�(ζ ; s).(13)

This 2 × 2 system was originally studied by Flaschka and Newell (1980). The
differential equation (13), together with another one given in (340), form a Lax
pair for the PII equation, that is, the compatibility of the two differential equations
implies that q(s) solves PII. We will consider the particular solution to (13) which
satisfies

�(ζ ; s)ei((4/3)ζ 3+sζ )σ3 = I +O(
ζ−1), ζ → ±∞.(14)

The asymptotics (14) extend into the sectors −π/3 < arg ζ < π/3, and 2π/3 <
arg ζ < 4π/3. Here, we note that the uniqueness of the boundary value prob-
lem (13) and (14) implies


i,j (−ζ )=
3−i,3−j (ζ ), i, j = 1,2.(15)

Supercritical case: Elliptic integrals. In the supercritical case where T > Tc =
π2, we define a tc < T/2. To simplify the notation, we parametrize T > π2 by
k ∈ (0,1). For each k, we have the elliptic integrals

K := K(k)=
∫ 1

0

ds√
(1 − s2)(1 − k2s2)

,

(16)

E := E(k)=
∫ 1

0

√
1 − k2s2

√
1 − s2

ds.

We further define

k̃ := 2
√
k

1 + k ,(17)

and denote

K̃ := K(k̃)=
∫ 1

0

ds√
(1 − s2)(1 − k̃2s2)

,

(18)

Ẽ := E(k̃)=
∫ 1

0

√
1 − k̃2s2
√

1 − s2
ds.

T is then parametrized as

T = 4K̃Ẽ = 4
∫ 1

0

ds√
(1 − s2)(1 − k̃2s2)

∫ 1

0

√
1 − k̃2s2
√

1 − s2
ds,(19)
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where the well-definedness of the parametrization is given in Lemma 3.2, and tc

is expressed as

tc = 4

k̃2
Ẽ
(
Ẽ − (

1 − k̃2)K̃) = 4
∫ 1

0

√
1 − k̃2s2
√

1 − s2
ds

∫ 1

0

√
1 − s2√

1 − k̃2s2
ds.(20)

The fundamental group of T has a canonical identification with Z, and so for
any closed path on T we can define the winding number of the path as the inte-
ger representative of its homotopy class. For a set of n particles with continuous
paths on T that come back the initial position after some time, we can define their
total winding number as the sum of the winding numbers of the paths of the parti-
cles. The following theorem concerns the total winding number of the particles in
NIBM0→T . Let q be defined in terms of the complete elliptic integral of the first
kind as

q := exp
(
−πK(

√
1 − k2)

2K(k)

)
= exp

(
−πK(

√
1 − k̃2)

K(k̃)

)
,(21)

where k and k̃ are related to T via (16)–(19).

REMARK 1.1. Note that we use the notation q in two different meanings.
In the context of the critical asymptotics, q is the Hastings–McLeod solution to
PII and is always written with its argument q(σ ). In the context of the supercritical
asymptotics, q is written with no argument and represents the elliptic nome defined
in (21). These are both standard notation, and it should be clear throughout the
paper to which object q refers.

THEOREM 1.2. In the NIBM0→T , as the number of particles n→ ∞:

(a) In the subcritical case T < Tc = π2, the winding number is zero with a
probability that is exponentially close to 1. That is,

P(Total winding number equals 0)= 1 −O
(
e−cn

)
,(22)

where the constant c > 0 may depend on T .
(b) In the critical scaling (10), for any fixed σ ,

P(Total winding number equals 0)= 1 − q(σ )

21/3n1/3 + q(σ )2

22/3n2/3 +O
(
n−1),

P(Total winding number equals 1)= P
(
Total winding number equals (−1)

)
(23)

= q(σ )

24/3n1/3 − q(σ )2

25/3n2/3 +O
(
n−1),

P
(|Total winding number|> 1

) = O
(
n−1).
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FIG. 2. The shape of contours �P and �P . The upper part of �P consists of the ray from 2 + 2i
to eπi/4 · ∞, the line segment from to 2 + 2i to −2 + 2i, and the ray from −2 + 2i to e3πi/4 · ∞.
The lower part of �P is the reflection of the upper part about the real axis. �P is the horizontal line
{z= x + i|x ∈R}. Their orientations are shown in the figure.

(c) For T > Tc and for any ω ∈ Z,

P(Total winding number equals ω)= qω2

√
π

2K̃
+O

(
n−1).(24)

The limiting distribution of the total winding number in the supercritical case
is the discrete normal distribution defined in Kemp (1997), and the formula in the
right-hand side of (24) appears in Szabłowski (2001). See also Johnson, Kemp and
Kotz (2005), Section 10.8.3.

The Pearcey process is defined by the extended Pearcey kernel [Tracy and
Widom (2006), Section 3],

K
Pearcey
s,t (ξ, η)= K̃Pearcey

s,t (ξ, η)− φs,t (ξ, η),(25)

where

φs,t (ξ, η)=
⎧⎨
⎩

0, if s ≥ t ,
1√

2π(t − s)e
−(ξ−η)2/(2(t−s)), if s < t ,(26)

and

K̃
Pearcey
s,t (ξ, η)= i

4π2

∮
�P

dz

∮
�P

dw
ez

4/4+sz2/2+iξz

ew
4/4+tw2/2+iηw

1

z−w,(27)

where �P and �P are infinite, disjoint contours such that the upper part of �P is
from eπi/4 · ∞ to e3πi/4 · ∞, the lower part of �P is from e5πi/4 · ∞ to e7πi/4 ·
∞, and �P is the leftward horizontal line. See Figure 2 for the exact description.
Our definition of the Pearcey kernel is the same as that in Adler, Orantin and van
Moerbeke (2010), Formula 1.2, up to a change of variables.
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FIG. 3. The shape of contour �T . The upper part of �T consists of the ray from
√

3 + i to
eπi/6 · ∞, the line segment from

√
3 + i to −√

3 + i, and the ray from −√
3 + i to e5πi/6 · ∞.

The lower part of �T is the reflection of the upper part about the real axis. The orientation is shown
in the figure.

We now define the tacnode kernel. Denote by 
ij (ζ ; s) the (i, j) entry of the
matrix �(ζ ; s) defined in (13) and (14). It is convenient to also define the func-
tions

f (u; s) :=
{−
12(u; s), if Imu > 0,

11(u; s), if Imu < 0,

(28)

g(u, s) :=
{−
22(u; s), if Imu > 0,

21(u; s), if Imu < 0.

We then define the tacnode kernel as

K tac
s,t (ξ, η;σ)= K̃ tac

s,t (ξ, η;σ)− φs,t (ξ, η),(29)

where φs,t (ξ, η) is as in (26), and

K̃ tac
s,t (ξ, η;σ) :=

1

2π

∮
�T

du

∮
�T

dvesu
2/2−tv2/2e−i(uξ−vη)

(30)

× f (u;σ)g(v;σ)− g(u;σ)f (v;σ)
2πi(u− v) .

Here, �T is a contour consisting of two pieces. One piece of �T lies en-
tirely above the real line, and goes from eπi/6 · ∞ to e5πi/6 · ∞. The other
piece lies entirely below the real line and goes from e7π/6 · ∞ to e11π/6 · ∞.
See Figure 3 for the exact description. The convergence of the integrals in
(30) follows from the asymptotics (14). Let us note that we could deform
the two parts of the contour �T to the real line, and write (30) as the sum
of four double integrals on R. We prefer to write the integral on the con-
tour �T because the integrand of (30) is in fact an L1 function on �T ,
whereas convergence of the integral over R is the result of rapid oscilla-
tions.

The convergence of NIBM0→T to the universal processes described above is
described in the following theorem.



NONINTERSECTING BROWNIAN MOTIONS 1143

THEOREM 1.3. In the NIBM0→T :

(a) Assume T > Tc. There exists d > 0 defined in (235) such that when we scale
ti and tj close to tc, and x and y close to −π as

ti = tc + d2

n1/2 τi, tj = tc + d2

n1/2 τj ,

(31)

x = −π − d

n3/4 ξ, y = −π − d

n3/4η,

the correlation kernel Kti,tj (x, y) has the limit

lim
n→∞Kti,tj (x, y)

∣∣∣∣dydη
∣∣∣∣ =KPearcey

−τj ,−τi (η, ξ).(32)

(b) Let T be scaled close to Tc = π2 as in (10) with σ fixed, and let

d = 2−5/3π.(33)

When we scale ti and tj close to T/2, and x and y close to −π as

ti = T

2
+ d2

n1/3 τi, tj = T

2
+ d2

n1/3 τj ,

(34)

x = −π − d

n2/3 ξ, y = −π − d

n2/3η,

the correlation kernel Kti,tj (x, y) has the limit

lim
n→∞Kti,tj (x, y)

∣∣∣∣dydη
∣∣∣∣ =K tac

τi ,τj
(ξ, η;σ)=K tac−τj ,−τi (η, ξ ;σ).(35)

REMARK 1.2. The identity K tac
τi ,τj

(ξ, η;σ)=K tac−τj ,−τi (η, ξ ;σ) in (35) is due

to the symmetry of the kernel K tac
s,t (ξ, η), which can be checked by (15).

In the supercritical case, we have finer result for the NIBM0→T conditioned
to have fixed total winding number. Analogous to (7), we define the multi-time
correlation function for the NIBM0→T with total winding number ω as(

R
(n)
0→T

)
ω

(
a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km

; t1, . . . , tm)
(36)

:= lim
�x→0

1

(�x)k1+···+km P

⎛
⎜⎝ there is a particle in

[
a
(i)
j , a

(i)
j +�x)

for j = 1, . . . , ki at time ti ,
and the total winding number is ω

⎞
⎟⎠ .

If we consider the conditional NIBM0→T such that the total winding number is
fixed to be ω, then the multi-time correlation function of the conditional process
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should be(
R
(n)
0→T

)∼
ω

(
a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km

; t1, . . . , tm)
(37)

:= (R
(n)
0→T )ω(a

(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km

; t1, . . . , tm)
P(Total winding number equals ω)

.

Note that if the total winding number is fixed, then the conditional NIBM0→T is
no longer a determinantal process. (The reason is as follows: In a determinantal
process over time [0, T ], the movement of particles between two times t1 < t2 ∈
(0, T ) only depends on the positions of the particles at times t1 and t2, but not
the trajectories on (0, t1) or (t2, T ). The conditional NIBM0→T with fixed total
winding number does not have this property.) Nevertheless, we have results for the
limiting k-correlation functions of the process. The following theorem shows that
with the condition of fixed total winding number, the conditional NIBM0→T has
the same local limiting properties as the NIBM0→T with free winding number.

THEOREM 1.4. Assume T > Tc = π2. Let ω be a fixed integer, t1, . . . , tm ∈
(0, T ) be times, and at each time ti , let x(i)1 , . . . , x

(i)
ki

be locations on T such

that k1 + · · · + km = k. We consider the correlation function (R
(n)
0→T )

∼
ω =

(R
(n)
0→T )

∼
ω (x

(1)
1 , . . . , x

(1)
k1

; . . . ;x(m)1 , . . . , x
(m)
km

; t1, . . . , tm) in the conditional
NIBM0→T with winding number ω. Let

ti = tc + d2

n1/2 τi, x
(i)
j = −π − d

n3/4 ξ
(i)
j ,(38)

where d is the same as in Theorem 1.3(a). The multi-time correlation function has
the limit

lim
n→∞

(
R
(n)
0→T

)∼
ω

(
d

n3/4

)k
(39)

= det
(
K

Pearcey
−τj ,−τi

(
ξ
(j)
lj
, ξ
(i)

l′i

))
i,j=1,...,m,li=1,...,ki ,l′j=1,...,kj

.

1.2. Comparison ofK tac with other tacnode kernels. The tacnode process was
first studied by three different groups [Adler, Ferrari and van Moerbeke (2013),
Johansson (2013), Delvaux, Kuijlaars and Zhang (2011)], each using different
methods and obtaining different formulas for the tacnode process. The formulas
obtained in Adler, Ferrari and van Moerbeke (2013) and Johansson (2013) each
involve Airy functions and related operators, whereas the formula of Delvaux,
Kuijlaars and Zhang (2011) involves a Lax system for the Painlevé II equation
of size 4 × 4. As it turns out, the various matrix entries of the 4 × 4 Lax system
appearing in Delvaux, Kuijlaars and Zhang (2011) can be explicitly expressed in
terms of Airy functions and related operators [Delvaux (2013)] [see also Kuijlaars
(2014)], and the equivalence of the formulas in Johansson (2013) and Delvaux,
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Kuijlaars and Zhang (2011) was recently proven by Delvaux [Delvaux (2013)].
The equivalence of the two different Airy formulas obtained in Johansson (2013)
and Adler, Ferrari and van Moerbeke (2013) was proved in Adler, Johansson and
van Moerbeke (2014), although the proof is somewhat indirect in that it relies on
computing the limiting kernel from a particular model in two different ways.

Indeed the formula for the tacnode kernel obtained in the NIBM0→T is equiva-
lent to the existing formulas. In order to state this equivalence precisely, we define
the kernel Ltac obtained in Johansson (2013), using some notation which was in-
troduced in Delvaux (2013) and Baik, Liechty and Schehr (2012). Let Bs be the
integral operator defined in Baik, Liechty and Schehr (2012), Formula (3), which
is denoted asAσ in Delvaux (2013), Formula (4.1), acting on L2[0,∞)with kernel

Bs(x, y)= Ai(x + y + s),(40)

and let As := B2
s be the Airy operator, which is defined in Baik, Liechty and

Schehr (2012), Formula (17) and is denoted as KAi,σ in Delvaux (2013), For-
mula (4.2). Define the functionsQs and Rs as in Baik, Liechty and Schehr (2012),
Formula (18)

Qs := (1 − As)−1Bsδ0, Rs := (1 − As)−1Asδ0,(41)

where the delta function δ0 is defined such that∫
[0,∞)

f (x)δ0(x) dx = f (0),(42)

for functions f (x) which are right-continuous at zero. Define also the function

bτ,z,σ (x) := e−(2/3)τ 3−τz−21/3τx−2−2/3τσAi
(
21/3x + z+ 2−2/3σ + τ 2),(43)

which was introduced in Delvaux (2013), Formula (2.16). Note that our bτ,z,σ (x)
is equivalent to bτ,z(x)= b̃τ,−z(x) in Delvaux (2013), Formula (2.16) with λ= 1.
Then the symmetric tacnode kernel obtained in Johansson (2013) is given by

Ltac(u, v;σ, τ1, τ2)= L̃tac(u, v;σ, τ1, τ2)− φ2τ1,2τ2(u, v),(44)

where φs,t (u, v) is defined in (26) and by Delvaux (2013), Formula (2.29),

L̃tac(u, v;σ, τ1, τ2)

= 1

22/3

∫ ∞
σ

(
p̂1(u; s, τ1)p̂1(v; s,−τ2)(45)

+ p̂1(−u; s, τ1)p̂1(−v; s,−τ2)
)
ds,

and the function p̂1(z; s, τ ) is equivalent to p̂1(z; s, τ ) and p̂2(−z; s, τ ) defined in
Delvaux (2013), Formula (2.26), with λ= 1, and by Delvaux (2013), Lemmas 4.2
and 4.3, it has the expression,

p̂1(z; s, τ ) := 〈bτ,−z,s,Rs + δ0〉0 − 〈bτ,z,s,Qs〉0,(46)

where 〈·, ·〉0 is the inner product onL2[0,∞). The kernels Ltac andK tac are related
in the following proposition.
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PROPOSITION 1.5.

K tac
τi ,τj

(ξ, η;σ)= 2−2/3Ltac
(
2−2/3ξ,2−2/3η;σ,2−7/3τi,2

−7/3τj
)
.(47)

The proof of this proposition is given in Appendix B.

1.3. Organization of the paper. In Section 2, we derive the exact formulas
for the transition probability density of NIBM, the so-called reunion probability
of NIBM0→T , and the correlation kernel of NIBM0→T . We also derive the τ -
deformed version of the formulas to analyze the conditional NIBM0→T with fixed
total winding number. In Section 3, we summarize the results about discrete Gaus-
sian orthogonal polynomials that are necessary for the asymptotic analysis in this
paper. In Section 4, we prove Theorem 1.2. In Section 5, we prove Theorems 1.3
and 1.4. Section 6 is on the interpolation problem and Riemann–Hilbert problem
associated to Gaussian discrete orthogonal polynomials, and we prove there the
technical results stated in Section 3. Appendix A contains technical results needed
in the asymptotic analysis of Section 5, and Appendix B gives a proof of Proposi-
tion 1.5.

2. Nonintersecting Brownian motion on the unit circle and discrete Gaus-
sian orthogonal polynomials. In this section, we derive the transition probabil-
ity density of NIBM, and the joint correlation function and the correlation kernel
of NIBM0→T . For all the probabilistic quantities, we derive the τ -deformed ver-
sions, which have no direct probabilistic meaning, but are generating functions of
the corresponding probabilistic quantities with fixed offset/winding number.

2.1. τ -deformed transition probability density of NIBM. Let P(a;b; t) be the
transition probability density of one particle in Brownian motion on T with dif-
fusion parameter n−1/2, starting from point a and ending at point b after time t
as given in (2). For n labeled particles in NIBM starting at �a = (a1, . . . , an) and
ending at �b= (b1, . . . , bn) after time t , we denote the transition probability density
P(�a; �b; t). By labeled particles, we mean that the particle beginning at the point aj
must end at the point bj for each j = 1, . . . , n. Since the Brownian motion on T is
a stationary strong Markov process with continuous transition probability density,
we apply the celebrated Karlin–McGregor formula [Karlin and McGregor (1959),
Theorem 1 and assertion D], and have∑

σ∈Sn
sgn(σ )P

(�a; �b(σ ); t) = det
[
P(ai;bj ; t)]ni,j=1

(48)
where �b(σ )= (bσ(1), . . . , bσ(n)).

Below we assume that −π ≤ a1 < a2 < · · ·< an < π and −π ≤ b1 < b2 < · · ·<
bn < π . Then P(�a; �b(σ ); t) is nonzero only if σ is a cyclic permutation. For � ∈
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{1, . . . , n}, we use the notation [�] to denote the cyclic permutation which shifts
by �. That is, [�] ∈ Z/nZ ⊆ Sn acts on the set {1, . . . , n} as [�](k) = k + � or
k+ �− n in {1, . . . , n}. Hence, (48) becomes∑

[�]∈Z/nZ⊆Sn
sgn

([�])P (�a; �b([�]); t) = det
[
P(ai;bj ; t)]ni,j=1.(49)

Now let An = {a1, . . . , an} and Bn = {b1, . . . , bn} be two unlabeled sets of points
in T, and let P(An;Bn; t) be the transition probability for NIBM on T with the
particles starting at the points An and ending at the points Bn, as described in the
paragraph preceding (3). Then P(An;Bn; t) is obtained from P(�a; �b(σ ); t) via the
relation

P(An;Bn; t)=
∑
σ∈Sn

P
(�a; �b(σ ); t) = ∑

[�]∈Z/nZ⊆Sn
P
(�a; �b([�]); t).(50)

In the case that n is odd, we have sgn([�])= 1 for all [�] ∈ Z/nZ, and then (50)
and (49) yield

P(An;Bn; t)= det
[
P(ai;bj ; t)]ni,j=1.(51)

In the case that n is even, the situation is more complicated. The determinantal
formula of P(An;Bn; t) has not appeared before in the literature as far as the
current authors can tell, but a discrete analogue was solved by Fulmek (2004/07).
We summarize Fulmek’s result below, and take the continuum limit to obtain the
result for NIBM.

Consider the cylindrical lattice ZM × Z = {([m], n)|m = −M/2, . . . ,M/2 −
1, n ∈ Z}, whereM is assumed to be even, and we take the canonical representation
for ZM to be the integers between (and including) −M/2 andM/2 − 1. We define
a step to the left as the edge from ([m], n) to ([m− 1], n+ 1), and a step to the
right as the edge from ([m], n) to ([m+ 1], n+ 1). We assign weight the x to each
step to the left and weight y to each step to the right, so that

w(e) :=
{
x, if e= [([m], n) → ([m− 1], n+ 1

)]
is a step to the left,

y, if e= [([m], n) → ([m+ 1], n+ 1
)]

is a step to the right.
(52)

A path on the lattice is defined as a sequence of adjacent steps, either to the left
or to the right. We define the weight of a path as the product of the weights of its
edges, so that

w
(
p = (e1, . . . , eN)

) :=
N∏
i=1

w(ei),(53)

and for an arbitrary n-tuple of paths (p1, . . . , pn), define its weight as w((p1, . . . ,

pn))= ∏n
i=1w(pi). Furthermore, for a set of objects whose weights are defined,
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we define the generating function of these weighted objects as the sum of their
weights, so that

GF(A) := ∑
a∈A

w(a).(54)

Let −M/2 ≤ α1 < α2 < · · ·< αn <M/2 and M/2 ≤ β1 < β2 < . . . < βn <M/2
such that αi, βi are all even, and N be an even integer. We denote P(αi;βj ;N)
as the set of paths connecting ([αi],0) and ([βj ],N). For any σ ∈ Sn, denote
P(�α; �β(σ);N) as the set of the n-tuples of nonintersecting paths (p1, . . . , pn) such
that pi connects ([αi],0) and ([βσ(i)],N).

The celebrated Lindström–Gessel–Viennot formula [Lindström (1973), Gessel
and Viennot (1985)] yields that∑

σ∈Z/nZ⊆Sn
sgn(σ )GF

(
P
(�α; �β(σ);N))

= ∑
[�]∈Sn

sgn
([�])GF

(
P
(�α; �β([�]);N))

(55)

= det
(
GF

(
P(αi;βj ;N)))ni,j=1,

where in the first identity we have used that there are no nonintersecting paths
connecting ([αi],0) and ([βσ(i)],N) for all i unless σ is a cyclic permutation.

With the weights x = y = 1/2, we find that GF(P(αi;βj ;N)) is the probabil-
ity that a random walker on ZM that starts at [αi] will end at [βj ] after time N .
Similarly GF(P(�α; �β(σ);N)) is the probability that n labeled vicious walkers
(i.e., their paths do not intersect) on ZM which start at [α1], . . . , [αn] will end at
[βσ(1)], . . . , [βσ(n)], respectively. By Donsker’s theorem [Durrett (2010)] the path
of a random walk converges to the path of Brownian motion in the sense of weak
convergence as the step length becomes small and the number of steps becomes
large. Similarly, the paths of n vicious walkers on the circle converge to the paths
of NIBM in the weak sense. A rigorous proof of this intuitively clear convergence
result, together with a bound of convergence rate, is given by Baik and Suidan
(2007) in the setting of nonintersecting Brownian motion on the real line. We do
not repeat the proof here. One consequence of the convergence is the following
convergence of the transition probability density. Let M,N → ∞ such that

αi

M
→ ai

2π
,

βi

M
→ bi

2π
,

N

M2 → t

4π2n
,(56)

and the arrays of ai ’s and bi ’s are distinct, respectively. Then

M

4π
GF

(
P(αi;βj ;N)) → P(ai, bj ; t) and

(57) (
M

4π

)n
GF

(
P
(�α; �β(σ);N)) → P

(�a; �b(σ ); t),
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and the discrete identity (57) implies (49) as the continuous limit.
We now introduce the phase parameter τ , and consider

x = 1

2
e−(2πi/M)τ , y = 1

2
e(2πi/M)τ .(58)

To analyze the information carried by τ , we recall the offset of the trajectory of a
particle moving on T. Suppose a particle θ moves on T such that θ(t1)= eai and
θ(t2) = ebi where a, b ∈ [−π,π), and the trajectory of θ is expressed as θ(t) =
eix(t) where x(t) : [t1, t2] → R is continuous for t ∈ [t1, t2]. Then the offset of the
trajectory of θ is defined as [(x(t2)− x(t1))− (b− a)]/(2π). If a = b, the offset
is more commonly called the winding number. To consider the path on the lattice
ZM ×Z, we identity the first coordinate [m1] ∈ ZM as the discrete point e2m1πi/M

on T, and consider the second coordinatem2 ∈ Z as the discrete time 4π2nm2/M
2.

Then a path on the lattice connecting ([αi],0) and ([βj ],N) is identified as a tra-
jectory of a particle θ on T such that θ(0)= e2αiπi/M , θ(4π2nN/M2)= e2βjπi/M ,
and θ(t) = eix(t) where x(t) is continuous on [0,4π2nN/M2]. Furthermore, we
can require x(0)= 2αiπ

M
and x(4π2nN/M2)= 2βjπ

M
+ 2πo where o ∈ Z. Then we

say that o is the offset of the path.
Express

P(αi;βj ;N)=
⋃
o∈Z

Po(αi;βj ;N),(59)

where

Po(αi;βj ;N)= {
paths connecting

([αi],0) and
([βj ],N)

with offset o
}
.(60)

Then the paths in Po(αi;βj ;N) on the lattice ZM × Z have a canonical 1–1 cor-
respondence with paths on Z × Z that connect (αi,0) and (βj + oM,N) and are
made of adjacent steps either to the left or to the right. Here, by steps to the left
(resp., to the right), we mean edges connecting (m1,m2) and (m1 − 1,m2 + 1)
[resp., edges connecting (m1,m2) and (m1 + 1,m2 + 1)].

Letting

Po(αi;βj ;N) := transition probability of random walk on Z from αi
(61)

to βj + oM after time N,

we have that

GF
(
P(αi;βj ;N)) = ∑

o∈Z
GF

(
Po(αi;βj ;N))

(62)
= ∑
o∈Z

Po(αi;βj ;N)e(βj−αi)2τπi/M+2oτπi .

Consider n nonintersecting paths that connect ([αi],0) to ([βi],N), respec-
tively, for i = 1, . . . , n. We find that the total offset of these paths has to be kn
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(k ∈ Z), since all the paths have the same offset. Similarly, letting σ = [�] ∈ Z/nZ,
the total offset of n nonintersecting paths that connect ([αi],0) to [βσ(i)],N), re-
spectively, for i = 1, . . . , n has to be kn+ � (k ∈ Z). Similar to (59), we write for
σ = [�],

P
(�α; �β([�]);N) = ⋃

o∈nZ+�
Po

(�α; �β([�]);N)
,(63)

where

Po
(�α; �β([�]);N)

:= {
n-tuples of nonintersecting paths connecting

([αi],0) to
([β[�](i)],N)

(64)

(i = 1, . . . , n) with total offset o
}
.

Then, similar to the paths in Po(αi;βj ;N), the n-tuples of nonintersecting paths
in Po(α1, . . . , αn;β[�](1), . . . , β[�](n);N) on the lattice ZM ×Z have the canonical
1–1 correspondence with the n-tuples of paths (x1(t), . . . , xn(t)) on Z × Z such
that they connect (α1,0) to (β�+1 + knM,N), . . . , (αn−�,0) to (βn + knM,N),
(αn−�+1,0) to (β1 + k(n+ 1)M,N), . . . , (αn,0) to (β�+ k(n+ 1)M,N), respec-
tively, and satisfy xn(t)− x1(t) < M for all t = 0, . . . ,N . Similar to (61), let us
denote

Po
(�α; �β([�]);N) := transition probability of n vicious walkers x1(t), . . . , xn(t)

on Z such that xi(0)= αi , xi(N)= β[�](i) +
[
o+ i − 1

n

]
M(65)

and xn(t)− x1(t) <M for all t = 0, . . . ,N.

Then, similar to (62), we have that

GF
(
P
(�α; �β([�]);N)) = ∑

o∈nZ+�
GF

(
Po

(�α; �β([�]);N))
(66)

= ∑
o∈nZ+�

Po
(�α; �β([�]);N)

e
∑n
k=1(βk−αk)2τπi/M+2oτπi .

Note that if n is even and [�] ∈ Z/nZ ⊆ Sn, then for any k ∈ Z, sgn([�]) =
(−1)kn+�. Thus, by (62) and (66), the determinantal identity (55) implies

e
∑n
k=1(βk−αk)(2τπi/M)

∑
o∈Z

Po
(�α; �β([o mod n]);N)

(−1)oe2oτπi

= ∑
o∈Z
(−1)oGF

(
Po

(�α; �β([o mod n]);N))
(67)

= det
(∑
o∈Z

Po(αi;βj ;N)e(βj−αi)(2τπi/M)+2oτπi
)n
i,j=1

.
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In the scaling limit M,N → ∞ given in (56) with distinct arrays of ai ’s and bi ’s,
respectively, the random walk converges to Brownian motion with diffusion pa-
rameter n−1/2. Therefore, analogous to (57) we obtain

M

4π
Po(αi;βj ;N)→

√
n√

2πt
e−n(bj−ai+2oπ)2/(2t) and

(68) (
M

4π

)n
Po

(�α; �β([o mod n]);N) → Po(An;Bn; t),

where Po(An;Bn; t) is the transition probability of NIBM with fixed offset o, de-
fined as

Po(An;Bn; t)
(69)

:= lim
�x→0

1

(�x)n
P

⎛
⎝ n particles in NIBM start at a1, . . . , an

and after time t end in
[b1, b1 +�x), . . . , [bn, bn +�x) with total offset o

⎞
⎠ .

Denote

P(An;Bn; t; τ) := det
(
P(ai;bj ; t; τ))ni,j=1,(70)

where P(a;b; t; τ) is defined in (3). We now take (67) in the scaling limit (56),
and derive that if n is even

e
∑n
k=1(bk−ak)τ i

∑
o∈Z
Po(An;Bn; t)(−1)oe2oτπi

(71)
= e

∑n
k=1(bk−ak)τ iP (An;Bn; t; τ).

With τ = 1/2, (71) implies

P(An;Bn; t)=
∑
o∈Z
Po(An;Bn; t)= P

(
An;Bn; t; 1

2

)
,(72)

for n even. For n odd, we have a similar formula in (51), which can be written as

P(An;Bn; t)=
∑
o∈Z
Po(An;Bn; t)= P(An;Bn; t;0).(73)

The two formulas (72) and (73) are combined to give Proposition 1.1.
In what follows we consider P(An;Bn; t; τ) for a general τ ∈ R. To get the

transition probability density for NIBM, we simply let τ = 0 or τ = 1/2 de-
pending on the parity of the number of particles. One advantage of working with
P(An;Bn; t; τ) with general τ is that P(An;Bn; t; τ) is a generating function for
Po(An;Bn; t). We call P(An;Bn; t; τ) the τ -deformed transition probability den-
sity of NIBM.
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2.2. τ -deformed reunion probability. Now we consider the limiting case that
a1, . . . , an are close to 0 and/or b1, . . . , bn are close to 0. In the case that ai → 0
and bi are fixed and distinct, by l’Hôpital’s rule,

P(An;Bn; t; τ)=
∏

1≤j<k≤n(ak − aj )∏n−1
j=0 j !

(74)

× det
(
dj−1

dxj−1P(x;bk; t; τ)
∣∣∣∣
x=0

)(
1 +O

(
max

(|ai |))).
Similarly, in the case that bi → 0 and ai are fixed and distinct,

P(An;Bn; t; τ)=
∏

1≤j<k≤n(bk − bj )∏n−1
j=0 j !

(75)

× det
(
dj−1

dxj−1P(ak;x; t; τ)
∣∣∣∣
x=0

)(
1 +O

(
max

(|bi |))).
In the case that both ai → 0 and bi → 0, we define

Rn(t; τ)= det
(
dj+k−2

dxj+k−2P(0;x; t; τ)
∣∣∣∣
x=0

)
,(76)

and have the τ -deformed reunion probability

P(An;Bn; t; τ)
(77)

=
∏

1≤j<k≤n(aj − ak)(bk − bj )∏n−1
j=0 j !2

Rn(t; τ)(1 +O
(
max

(|ai |, |bi |))).
The transition probability density P(An;Bn; t; ε(n)) of the particles in NIBM with
starting point ai → 0 and ending point bi → 0 is called the reunion probability
in Forrester, Majumdar and Schehr (2011). In Forrester, Majumdar and Schehr
(2011), the normalized reunion probability is defined in the setting of our paper as

G̃n(L)= (2π/L)2n
2
Rn(4π2n/L2, ε(n))

limt→0 tn
2
Rn(nt, ε(n))

.(78)

Note that the normalized reunion probability is not real probability since it can
exceed 1.

In our paper, we are interested in the τ -deformed transition probability
P(An;Bn; t; τ) and Rn(t; τ) because they contain information on the total wind-
ing number in NIBM with common starting point and the same common ending
point. By (77), as a1, . . . , an → 0 and b1, . . . , bn → 0,

Pω(An;Bn; t)=
∏

1≤j<k≤n(aj − ak)(bk − bj )∏n−1
j=0 j !2

e2πε(n)ωiRn,ω(t)

(79)
× (

1 +O
(
max

(|ai |, |bi |))),
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where Rn,ω(t) is defined as

Rn,ω(t)=
∫ 1

0
Rn(t; τ)e−2ωτπi dτ.(80)

Note that the ratio

e2πε(n)ωiRn,ω(t)

Rn(t; ε(n)) = lim
a1,...,an→0
b1,...,bn→0

Pω(An;Bn; t)
P (An;Bn; t) ,(81)

is the probability that the total winding number of the n particles in NIBM starting
at a common point and ending at the same common point is ω.

To evaluate Rn(t; τ) and the determinants on the right-hand sides of (74)
and (75), we consider the Fourier series of entries of these determinants. Intro-
duce the lattice

Ln,τ :=
{
k+ τ
n

∣∣∣∣k ∈ Z

}
.(82)

By the Poisson resummation formula, we find

P(a; θ; t; τ)=
√
n√

2πt

∑
l∈Z
e−n(θ−a+2lπ)2/(2t)e2lπτ i

=
√
n√

2πt

∑
k∈Z

∫ ∞
−∞
e−n(θ−a+2ξπ)2/(2t)e−2πiξ(k−τ) dξ

(83)

= 1

2π

∑
k∈Z
e−t (k−τ)2/(2n)ei(θ−a)(k−τ)

= 1

2π

∑
x∈Ln,τ

e−tnx2/2e−inx(θ−a).

It follows that

dj

dθj
P (a; θ; t; τ)= (−ni)j

2π

∑
x∈Ln,τ

xj e−tnx2/2e−inx(θ−a).(84)

Similarly,

P(θ;b; t; τ)= 1

2π

∑
x∈Ln,τ

e−tnx2/2einx(θ−b),(85)

dj

dθj
P (θ;b; t; τ)= (ni)j

2π

∑
x∈Ln,τ

xj e−tnx2/2einx(θ−b),(86)
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and in particular

dj

dθj
P (0; θ; t; τ)

∣∣∣∣
θ=0

= (−ni)j
2π

∑
x∈Ln,τ

xj e−tnx2/2.(87)

Now setting t = T , we find that

Rn(T ; τ)= (−1)n(n−1)/2 nn
2

(2π)n
Hn(T ; τ)

(88)

where Hn(T ; τ) := det
(

1

n

∑
x∈Ln,τ

xj+k−2e−T nx2/2
)n
j,k=1

.

Note that Hn(t; τ) is the Hankel determinant with respect to the discrete measure
on the lattice Ln,τ ,

1

n

∑
y∈Ln,τ

e−T nx2/2δ(x − y).(89)

REMARK 2.1. Formula (88) was obtained in Forrester, Majumdar and Schehr
(2011) and Schehr et al. (2013) with τ = 0 and more recently in Castillo and Dupic
(2014) with τ = ε(n). We note that the NIBM0→T model is related to Yang–Mills
theory on the sphere, as shown in Forrester, Majumdar and Schehr (2011), and
a similar formula was derived in the Yang–Mills theory setting in Douglas and
Kazakov (1993) with τ = ε(n).

By a standard result for Hankel determinants, we can express Hn(T ; τ) using
the discrete Gaussian orthogonal polynomials. Let p(T ;τ)

n,j (x) be the monic poly-
nomial of degree j that satisfies

1

n

∑
x∈Ln,τ

p
(T ;τ)
n,j (x)p

(T ;τ)
n,k (x)e−T nx2/2 = 0 if j �= k.(90)

We then have [see e.g., Bleher and Liechty (2014), Proposition 2.2.2],

Hn(T ; τ)=
n−1∏
j=0

h
(T ;τ)
n,j ,(91)

where

h
(T ;τ)
n,k := 1

n

∑
x∈Ln,τ

p
(T ;τ)
n,k (x)2e−T nx2/2.(92)

The orthogonal polynomials (90) satisfy the three term recurrence equation [see
Szegő (1975)],

xp
(T ;τ)
n,j (x)= p(T ;τ)

n,j+1(x)+ β(T ;τ)
n,j p

(T ;τ)
n,j (x)+ (

γ
(T ;τ)
n,j

)2
p
(T ;τ)
n,j−1(x),(93)
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where {β(T ;τ)
n,j }∞j=0 is a sequence of real constants, and

γ
(T ;τ)
n,j :=

( h(T ;τ)
n,j

h
(T ;τ)
n,j−1

)1/2

.(94)

2.3. τ -deformed multi-time correlation functions. Next, we consider the joint
probability density of n-particles in NIBM at times t1, . . . , tm such that 0 < t1 <
· · · < tm < T with the initial condition that they start from the common position
0 ∈ [−π,π)= T at time 0 and end at the same common position at T . That is, we
consider the joint probability density in NIBM0→T . We also want to extract the
information of joint probability density for each fixed total offset/winding num-
ber of the n-particles. Thus, we consider the τ -deformed joint probability density
function for the Brownian particles. This density function is the one given in (6)
in the physical setting. In order to get the τ -deformed version, we start with the
discrete model as in Section 2.1.

Let N0 = 0 < N1 < · · · < Nm < Nm+1 = N be even integers and α(k)i be even
integers for k = 0, . . . ,m+ 1 and i = 1, . . . , n such that for all k = 0, . . . ,m+ 1,

−M
2

≤ α(k)1 < α
(k)
2 < · · ·< α(k)n <

M

2
.(95)

Let σ1, . . . , σm+1 ∈ Sn be permutations. Denote P(�α(0); �α(1)(σ1); . . . ;
�α(m+1)(σm+1);N1; . . . ;Nm+1) be the set of n-tuples of nonintersecting paths
(p1, . . . , pn) such that pi connects ([α(0)i ],0), ([α(1)σ1(i)

],N1), . . . , ([α(m+1)
σm+1(i)

],
Nm+1) successively, and denote P(σ )(�α(0); . . . ; �α(m); �α(m+1);N1; . . . ;Nm+1) as
the union of P(�α(0); �α(1)(σ1); . . . ; �α(m)(σm); �α(m+1)(σ );N1; . . . ;Nm+1) for all
σ1, . . . , σm ∈ Sn. Note that we only need to consider cyclic permutations σk ∈
Z/nZ ⊆ Sn due to the nonintersecting assumption. Using the Lindström–Gessel–
Viennot formula repeatedly, we have, as a generalization of (55),∑

[�]∈Z/nZ⊆Sn
sgn

([�])GF
(
P [�](�α(0); �α(1); . . . ; �α(1); �α(m+1);N1; . . . ;Nm+1

))

= ∑
σ1,...,σm,[�]∈Z/nZ⊆Sn

sgn
([�])GF

(
P
(�α(0); �α(1)(σ1); . . . ; �α(m)(σm);

(96)
�α(m+1)([�]);N1; . . . ;Nm+1

))

=
m+1∏
k=1

det
(
GF

(
P
(
α
(k−1)
i ;α(k)j ;Nk −Nk−1

)))n
i,j=1.

Let the weight for each step in (52) be given by x = e−2πτi/M/2 and y =
e2πτi/M/2 as in (58). Similar to (65), suppose o= kn+ � where �= 0, . . . , n− 1,



1156 K. LIECHTY AND D. WANG

we denote

Po
(�α(0); . . . ; �α(m); �α(m+1);N1; . . . ;Nm;Nm+1

)
:= transition probability of n vicious walkers

x1(t), . . . , xn(t) on Z such that xi(0)= α(0)i ,
(97)

xi(Nm+1)= α(m+1)
[�](i) +

[
o+ i − 1

n

]
M ,

xi(Nj )= α(j)l + c(j)l M for some l = 1, . . . , n and c(j)l ∈ Z,

and xn(t)− x1(t) <M for all t = 0, . . . ,N .

Then, similar to (66), we have

GF
(
P [�](�α(0); �α(1); . . . ; �α(1); �α(m+1);N1; . . . ;Nm+1

))
= ∑
o∈nZ+�

Po
(�α(0); . . . ; �α(m); �α(m+1);N1; . . . ;Nm+1

)
(98)

× e
∑n
k=1(α

(m+1)
k −α(0)k )(2τπi/M)+2oτπi .

In the limit that M,N → ∞ such that analogous to (56),

α
(j)
i

M
→ a

(j)
i

2π
,

Nj

M2 → tj

4π2n
,(99)

where 0 = t0 < t1 < · · · < tm+1 = T , and −π ≤ a(j)1 < · · · < a(j)n < π for each
j = 0, . . . ,m+ 1, we obtain, similar to (68),(

M

4π

)mn
Po

(�α(0); . . . ; �α(m); �α(m+1);N1; . . . ;Nm+1
)

(100)
→ Po

(
A(0); . . . ;A(m+1); t1; . . . ; tm+1

)
,

where

Po
(
A(0); . . . ;A(m+1); t1; . . . ; tm+1

)
:= lim

�x→0

1

(�x)mn
(101)

× P

⎛
⎜⎝ n particles in NIBM start at a(0)1 , . . . , a

(0)
n at time 0,

stay in
[
a
(k)
1 , a

(k)
1 +�x), . . . , [a(k)n , a(k)n +�x) at time tk

(k = 1, . . . ,m+ 1) with total offset o at time tm+1.

⎞
⎟⎠ .

Thus, similar to (71), equations (98) and (96) imply that the τ -deformed joint tran-
sition probability density of n particles in NIBM is [here ε(n) accommodates both
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even and odd n]∑
o∈Z
Po

(
A(0); . . . ;A(m+1); t1; . . . ; tm+1

)
e2πε(n)oie2oτπi

(102)

=
m+1∏
j=1

P
(
A(j−1);A(j); tj − tj−1; τ ),

where P(A(j−1);A(j); tj − tj−1; τ) is defined by (70) with An,Bn replaced by
A(j−1),A(j). Letting τ = ε(n), we have the joint transition probability density in
NIBM, which is the sum of all Po(A(0); . . . ;A(m+1); t1; . . . ; tm+1), expressed as∑

o∈Z
Po

(
A(0); . . . ;A(m+1); t1; . . . ; tm+1

)
(103)

=
m+1∏
j=1

P
(
A(j−1);A(j); tj − tj−1; ε(n)).

In the limiting case a(0)i → 0 and/or a(m+1)
i → 0, we have the result sim-

ilar to (74), (75) and (77). For NIBM0→T we are interested in the ratio be-
tween the τ -deformed transition probability density of the particles from A(0)

to A(1), . . . ,A(m+1) successively and the τ -deformed transition probability (i.e.,
the τ -deformed reunion probability) of the particles from A(0) to A(m+1), as
a
(0)
i → 0, a(m+1)

i → 0. After changing the notation tm+1 into T , we have the τ -
deformed joint probability density in NIBM0→T ,

P0→T

(
A(1), . . . ,A(m); t1, . . . , tm; τ )

:= lim
a
(0)
i →0,a(m+1)

i →0

∏m+1
j=1 P(A

(j−1);A(j); tj − tj−1; τ)
P (A(0);A(m+1); tm+1; τ)

= 1

Rn(T ; τ) det
(
dj−1

dxj−1P
(
x;a(1)k ; t1; τ )

∣∣∣∣
x=0

)n
j,k=1

(104)

× det
(
dj−1

dxj−1P
(
a
(m)
k ;x;T − tm; τ )∣∣∣∣

x=0

)n
j,k=1

×
m∏
j=2

P
(
A(j−1);A(j); tj − tj−1; τ ).

Note that for any τ , the denominator Rn(T ; τ) is a nonzero real number, by (88)
and (92). With τ = ε(n), P0→T (A

(1), . . . ,A(m); t1, . . . , tm; ε(n)) gives the joint
transition probability density of particles in NIBM0→T . With the help of Fourier



1158 K. LIECHTY AND D. WANG

expansion, P0→T (A
(1), . . . ,A(m); t1, . . . , tm; τ) yields the conditional joint transi-

tion probability density with fixed total winding number. To be precise, we have

Rn(T ; τ)
Rn(T , ε(n))

P0→T

(
A(1), . . . ,A(m); t1, . . . , tm; τ )

(105)
= ∑
ω∈Z
(P0→T )ω

(
A(1), . . . ,A(m); t1, . . . , tm)e2πω(τ−ε(n))i ,

where

(P0→T )ω
(
A(1), . . . ,A(m); t1, . . . , tm)

(106)

= lim
�x→0

1

(�x)mn
P

⎛
⎜⎝
n particles in NIBM0→T with total winding

number ω, there is a particle in[
a
(i)
j , a

(i)
j +�x) at time ti

⎞
⎟⎠ .

Note that although P0→T (A
(1), . . . ,A(m); t1, . . . , tm; τ) may not be nonnegative-

valued, it is normalized in the sense that total integral over all possible positions of
a
(k)
j is 1.

By (104), we find that P0→T (A
(1), . . . ,A(m); t1, . . . , tm; τ) has properties sim-

ilar to the joint probability density function of a determinantal process, and thus
is characterized by a reproducing kernel. We apply the Eynard–Mehta theorem
[Eynard and Mehta (1998)], to P0→T (A

(1), . . . ,A(m); t1, . . . , tm; τ), following the
notational conventions in Borodin and Rains (2005).

Denote for k = 1, . . . ,m− 1 and j = 1, . . . , n,

Wk(x, y) := P(x;y; tk+1 − tk; τ),(107)

φj (x) := linear combination of
{
dl

dyl
P (y;x; t1; τ)

∣∣∣∣
y=0

}
(108)

for l = 0, . . . , j − 1,

ψj (x) := linear combination of
{
dl

dyl
P (x;y;T − tm; τ)

∣∣∣∣
y=0

}
(109)

for l = 0, . . . , j − 1,

where we suppress the dependence on τ , and the concrete formulas for φj (x)
and ψj(x) are to be fixed later in (118) and (129). Then we define the operator
� : L2(T)→ �2(n) as

�
(
f (θ)

) =
(∫ π

−π
f (θ)φ1(θ) dθ, . . . ,

∫ π

−π
f (θ)φn(θ) dθ

)T
,(110)

the operator 
 : �2(n)→ L2(T) as



(
(v1, . . . , vn)

T ) =
n∑
k=1

vkψk(θ),(111)
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and define the operator Wk :L2(T) → L2(T) by the kernel function Wk(x, y)
in (107). Furthermore, we define the operators

W[i,j) :=
⎧⎪⎨
⎪⎩
Wi · · ·Wj−1, for i < j ,
1, for i = j ,
0, for i > j ,

and

(112)
◦
W[i,j) :=

{
Wi · · ·Wj−1, for i < j ,
0, for i ≥ j .

We also define the operator M :�2(n)→ �2(n) as

M :=�W[1,m)
,(113)

which is represented by the n× n matrix

Mij =
∫

· · ·
∫
Tm
φi(θ1)W1(θ1, θ2) · · ·

(114)
×Wm−1(θm−1, θm)ψj (θm)dθ1 · · ·dθm.

Then for any k1, . . . , km ≤ n, we define the τ -deformed joint correlation function
as

R
(n)
0→T

(
a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km

; t1, . . . , tm; τ )

=
m∏
j=1

n!
(n− kj )!

(115)
×
∫
[−π,π)mn−(k1+···+km)

P0→T

(
A(1), . . . ,A(m);

t1, . . . , tm; τ )da(1)k1+1 · · ·da(1)n da
(2)
k2+1 · · ·da(m)n ,

and the Eynard–Mehta theorem gives the determinantal formula

R
(n)
0→T

(
a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km

; t1, . . . , tm; τ )
(116)

= det
(
Kti,tj

(
a
(i)
li
, a
(j)

l′j

))
i,j=1,...,m,li=1,...,ki ,l′j=1,...,kj

,

where the τ -deformed correlation kernel is defined as

Kti,tj (x, y)= K̃ti ,tj (x, y)−
◦
W[i,j) and

(117)
K̃ti ,tj (x, y)=W[i,m)
M−1�W[1,j).

REMARK 2.2. The kernel Kti,tj (x, y) depends on τ , but we suppress it for
notational simplicity. If we let τ = ε(n), we obtain the correlation kernel for
NIBM0→T in (8).
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Our next task is to find an expression for K̃ti ,tj (x, y) which is convenient for
analysis. We note that by (83), (84) and (85),

φj (x)=
∑
k∈Z+τ

fj−1(k)e
−t1k2/(2n)e−ikx,

(118)
ψj(x)=

∑
k∈Z+τ

gj−1(k)e
−(T−tm)k2/(2n)eikx,

where fi, gi are polynomials of degree exactly i (with possibly complex co-
efficients). Note that Wj(x, y) depends only on x − y, and so we can write
Wj(x, y)= hj (x − y). Thus, we see that Wj is a convolution operator,

(Wjf )(x)=
∫ π

−π
hj (x − y)f (y) dy =: (hj ∗ f )(x),(119)

where by (107) and (83),

hj (x)=
∑
k∈Z+τ

ĥj (k)e
ikx, ĥj (k)= 1

2π
e−(tj+1−tj )k2/(2n).(120)

Here, and in what follows, we use the notation ĥ(k) for the kth coefficient in the
τ -shifted Fourier series, defined by the first equation in (120). As with the usual
Fourier series, we have that for i < j ,

W[i,j)(x, y)= (hi ∗ hi+1 ∗ · · · ∗ hj−1)(x − y),(121)

where hi ∗ hi+1 ∗ · · · ∗ hj−1 has the τ -shifted Fourier series

(hi ∗ · · · ∗ hj−1)
∧(k)= (2π)j−i−1

j−1∏
l=i
ĥl(k)= 1

2π
e−(tj−ti )k2/(2n).(122)

Furthermore, as W[i,m)
 is an operator from �2(n) to L2(T), it is represented by
an n-dimensional row vector. Its lth component is

(W[i,m)
)l(x)=
∫ π

−π
W[i,m)(x, y)ψl(y) dy = (hi ∗ · · · ∗ hm−1) ∗ψl(x),(123)

whose τ -shifted Fourier series is(
̂(W[i,m)
)l

)
(k)

= (
(hi ∗ · · · ∗ hm−1) ∗ψl)∧(k)= 2π(hi ∗ · · · ∗ hm−1)

∧(k)ψ̂l(k)(124)

= gl−1(k)e
−(T−ti )k2/(2n).

Similarly, �W[1,j) is an operator from L2(T) to �2(n), and is then represented by
an n dimensional column vector. Its lth component,

(�W[1,j))l(x)=
∫ π

−π
φl(y)W[1,j)(y, x) dy,(125)
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satisfies

(�W[1,j))l(−x)= φ̃l ∗ (h1 ∗ · · · ∗ hj−1)(x)
(126)

where φ̃l(x)= φl(−x),
and the τ -shifted Fourier series is(

̂(�W[1,j))l
)
(−k)

= (
φ̃l ∗ (h1 ∗ · · · ∗ hj−1)

)∧
(k)= 2πφ̂l(−k)(h1 ∗ · · · ∗ hj−1)

∧(k)(127)

= fl−1(k)e
−tj k2/(2n).

Also for the (i, j) entry of the matrix M defined in (113), we have

Mij =
∫ π

−π

∫ π

−π
φi(x)W[1,m)(x, y)ψj (y) dx dy

= (2π)2 ∑
k∈Z+τ

φ̂j (−k)(h1 ∗ · · · ∗ hm−1)
∧(k)ψ̂j (k)(128)

= 2π
∑
k∈Z+τ

fi−1(k)gj−1(k)e
−T k2/(2n).

To simplify the expression of K̃ti ,tj (x, y), we fix the formula (118) for φj (x) and
ψj(x) as

fj (k)= gj (k)= p(T ;τ)
n,j

(
k

n

)
,(129)

where p(T ;τ)
n,j is the discrete Gaussian orthogonal polynomial defined in (90).

Then (128) yields

Mij =
{

2πnh(T ;τ)
n,j , if i = j ,

0, otherwise,
(130)

where h(T ;τ)
n,j is defined in (92). Thus,

K̃ti ,tj (x, y)=
n−1∑
l=0

( ∑
k∈Z+τ

gl(k)e
−(T−ti )k2/(2n)eikx

)

× 1

2πnh(T ;τ)
n,l

( ∑
k∈Z+τ

fl(k)e
−tj k2/(2n)e−iky

)
(131)

= n

2π

n−1∑
k=0

1

h
(T ;τ)
n,k

Sk,T−ti (x)Sk,tj (−y),
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where

Sk,a(x)= 1

n

∑
s∈Ln,τ

p
(T ;τ)
n,k (s)e−ans2/2eixns.(132)

At last, by (112), (120), (121), we have that

◦
W[i,j)(x, y)= 1

2π

∑
s∈Ln,τ

e−(tj−ti )ns2/2−in(y−x)s .(133)

After arriving at a computable formula of R(n)0→T (a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . ,

a
(m)
km

; t1, . . . , tm; τ) defined in (116), we go back to examine its probabilistic mean-
ing. The special choice that τ = ε(n) gives us the correlation function of the
NIBM0→T , namely

R
(n)
0→T

(
a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km

; t1, . . . , tm; ε(n))
= lim
�x→0

1

(�x)k1+···+km(134)

× P

(
n particles in NIBM0→T , there is a particle in[
a
(i)
j , a

(i)
j +�x) for j = 1, . . . , ki at time ti

)
.

Letting τ vary, the Fourier coefficients of R(n)0→T (a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . ,

a
(m)
km

; t1, . . . , tm; τ) encode the correlation functions of particles in NIBM0→T with
fixed total winding number, so that

Rn(T ; τ)
Rn(T ; ε(n))R

(n)
0→T

(
a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km

; t1, . . . , tm; τ )
= ∑
ω∈Z

(
R
(n)
0→T

)
ω

(
a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km
t1, . . . , tm

)
(135)

× e2πo(τ+ε(n))i ,

where
(
R
(n)
0→T

)
ω

(
a
(1)
1 , . . . , a

(1)
k1

; . . . ;a(m)1 , . . . , a
(m)
km

; t1, . . . , tm)
= lim
�x→0

1

(�x)k1+···+km(136)

× P

⎛
⎜⎝

n particles in NIBM0→T with total
winding number ω, there is a particle in[
a
(i)
j , a

(i)
j +�x) for j = 1, . . . , ki at time ti

⎞
⎟⎠ .



NONINTERSECTING BROWNIAN MOTIONS 1163

3. Asymptotic results for discrete Gaussian orthogonal polynomials. In
this section, we state the asymptotic results for the discrete Gaussian orthogonal
polynomials (90) which will be used in Sections 4 and 5. The results are derived
from the interpolation problem and the corresponding Riemann–Hilbert problem
associated with the discrete orthogonal polynomials, and the proofs are outlined in
Section 6 unless otherwise stated.

3.1. The equilibrium measure and the g-function. A key ingredient in the
Riemann–Hilbert analysis of orthogonal polynomials is the equilibrium measure
associated with the weight function. The equilibrium measure associated with the
weight e−nT x2/2 for the discrete Gaussian orthogonal polynomials defined on the
lattice Ln,τ is the unique probability measure which minimizes the functional,

H(ν)=
∫ ∫

log
1

|x − y| dν(x) dν(y)+
∫
T x2

2
dν(x),(137)

over the set of probability measures ν on R satisfying

dν(x)≤ dx,(138)

where dx denotes the differential with respect to Lebesgue measure. It is well
known [Kuijlaars (2000)] that there is a unique solution to (137) satisfying (138),
and we call it the equilibrium measure for the discrete Gaussian orthogonal poly-
nomials. The upper constraint (138) implies that the equilibrium measure is abso-
lutely continuous with respect to Lebesgue measure and, therefore, has an associ-
ated density. Let us denote this density by ρT (x).

We define the g-function associated with the discrete Gaussian orthogonal poly-
nomials as the log transform of the equilibrium measure:

g(z) :=
∫

log(z− x)ρT (x) dx,(139)

where we take the principal branch for the logarithm. Then the Euler–Lagrange
variational conditions for the equilibrium problem (137) are

g+(x)+ g−(x)− T x2

2
− l

⎧⎪⎨
⎪⎩

= 0, if 0< ρT (x) < 1,
≤ 0, if ρT (x)= 0,
≥ 0, if ρT (x)= 1,

(140)

where g+ and g− refer to the limiting values from the upper and lower half-planes,
respectively, and l ∈ R is a constant Lagrange multiplier. Since the external poten-
tial T x2/2 is convex and even, the equilibrium measure is supported on a single
interval [−β,β]. We have for all x ∈ (−∞, β),

g+(x)− g−(x)= 2πi
∫ β

x
ρT (x).(141)
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Without the upper constraint (138), it is well known that the solution νT to the
minimization problem (137) is given by the Wigner semicircle law [Deift (1999),
Section 6.7]. That is, νT is supported on a single interval [−β,β] and

dνT (x)= ρT (x)χ [−β,β](x) dx
(142)

where β = 2√
T
,ρT (x)= T

2π

√
4

T
− x2.

Clearly, this ρT (x) has its maximum value at x = 0 and ρT (0)=
√
T /π . It follows

that (142) satisfies the variational problem (137) with constraint (138) if and only
if 0 < T ≤ π2. We therefore denote the critical value Tc := π2 as in (9), and we
have the following proposition.

PROPOSITION 3.1. For T ≤ Tc = π2, the equilibrium measure for the discrete
Gaussian orthogonal polynomials is given by the Wigner semicircle law (142).

For T > Tc, the probability measure given by the Wigner semicircle law (142)
does not satisfy the constraint (138). In this case the equilibrium measure is still
supported on a single interval [−β,β], but now there is a saturated region [−α,α],
where 0< α < β , on which the density ρT (x) is identically 1. Since ρT (x) is an
even function and has total integral 1, (141) then implies that for x ∈ (−α,α) we
have

g+(x)− g−(x)= iπ − 2πix.(143)

To present the solution of the minimization problem (137) and (138), we introduce
a parameter k ∈ (0,1) and use elliptic integrals with parameter k, defined as

F(z;k)=
∫ z

0

ds√
(1 − s2)(1 − k2s2)

, E(z;k)=
∫ z

0

√
1 − k2s2

√
1 − s2

ds.(144)

In the definitions of F(z;k) and E(z;k) we assume z ∈ C \ {(−∞,1) ∪ (1,∞)}.
We also use the complete elliptic integrals K and E defined in (16). Given any
k ∈ (0,1), we express the endpoints of the support and saturated region of the
equilibrium measure α and β as

β = β(k)= (
2E − (

1 − k2)K)−1
, α = α(k)= kβ(k).(145)

Note that by Erdélyi et al. (1981), Table 4 on page 319, and notation defined
in (18),

K̃ = K
(

2
√
k

1 + k
)

= (1 + k)K(k),
(146)

Ẽ = E
(

2
√
k

1 + k
)

= 2E(k)− (1 − k2)K(k)
1 + k ,
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and so we have

β = 1

(1 + k)Ẽ .(147)

Using (146), we parametrize T by k as in (19),

T = T (k)= 4Kβ−1 = 4K̃Ẽ.(148)

By the following lemma, the parametrization is well defined.

LEMMA 3.2. K(k)E(k) is a strictly increasing function of k ∈ [0,1) and

lim
k→0+

K(k)E(k)= Tc = π2, lim
k→1

K(k)E(k)= +∞.(149)

Now we can state the result of the equilibrium measure for T > Tc.

PROPOSITION 3.3. For T > Tc = π2, T = T (k) is parametrized by k ∈ (0,1)
as in (148), and the equilibrium measure for the discrete Gaussian orthogonal
polynomials is supported on a single interval [−β,β] with a saturated region
[−α,α] where β = β(k) and α = α(k) are defined in (145). The density ρT (x)
for the equilibrium measure is given by the formula

ρT (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if x ∈ [−α,α],
2

πα

[
E
∫ β

x

ds√
(α−2s2 − 1)(1 − β−2s2)

− K
∫ β

x

√
1 − β−2s2

√
α−2s2 − 1

ds

]
, if x ∈ (α,β),

ρT (−x), if x ∈ (−β,−α),
0, otherwise.

(150)

Note that for x ∈ (α,β), using formulas Gradshteyn and Ryzhik (2007), 3.152-
10, page 280 and 3.169-17, page 309 and Byrd and Friedman (1971), 413.01,
page 228, ρT (x) can be expressed in a more compact form

ρT (x)= 2

π

[
(E − K)F

(√
1 − x2/β2

1 − k2 ;k′
)

+ KE
(√

1 − x2/β2

1 − k2 ;k′
)]

=�0

(√
1 − x2/β2

1 − k2 ;k
)

(151)

= 2

πβx

√(
β2 − x2

)(
x2 − α2

)
�1

(
−α

2

x2 , k

)
,

where k′ = √
1 − k2, �0(x;k) is the Heuman’s Lambda function [see Byrd and

Friedman (1971), 150.03, page 36, and note that our x corresponds to sinβ in
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Byrd and Friedman (1971), 150.03, page 36], and the �1 denotes the complete
elliptic integral of the third kind [in the notational conventions of Erdélyi et al.
(1981), Section 13.8 (3), page 317],

�1(ν, k)=
∫ 1

0

dx

(1 + νx2)
√
(1 − x2)(1 − k2x2)

.(152)

The formulas (151) have appeared several times in the physics literature in the
context of Yang–Mills theory [Douglas and Kazakov (1993), Gross and Matytsin
(1995)].

In our asymptotic analysis of NIBM0→T , the function g(z) defined in (139)
plays an important role. In particular, we must use the derivative of this function to
locate critical points. The following proposition gives an explicit formula of g′(z).

PROPOSITION 3.4. For T ≤ Tc,

g′(z)= T

2

(
z−

√
z2 − 4

T

)
,(153)

and for T > Tc,

g′(z)= 2
[

K
β
z− K

α

∫ z

0

√
1 − β−2s2

√
1 − α−2s2

ds

+ E
α

∫ z

0

ds√
(1 − α−2s2)(1 − β−2s2)

∓ πi

2

]

(154)

= 2
[

K
β
z− KE

(
z

α
;k

)
+ EF

(
z

α
;k

)
∓ πi

2

]
,

for ± Im z > 0.

Note that g(z) is single valued on (β,+∞). This is clear in (153), and we may
write (154) in the form

g′(z)= 2Kz
β

− 2Eβ
∫ z

β

ds√
(s2 − α2)(s2 − β2)

− 2K
β

∫ z

β

√
s2 − β2

√
s2 − α2

ds,(155)

where the square roots are positive for s > β and have cuts on (−β,−α)∪ (α,β).
With the notation defined in this section, we rewrite tc defined in (20) for the su-

percritical case of NIBM0→T as [by (143), g′′(z) is well defined in a neighborhood
of 0]

tc := g′′(0)= T

2
− 2

α
(K − E)= 2

α

(
E − (1 − k)K)

(156)

= (1 + k)2
k

E
(

2
√
k

1 + k
)(

E
(

2
√
k

1 + k
)

−
(

1 − k
1 + k

)2

K
(

2
√
k

1 + k
))
.
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The formulas (153) and (154) can be integrated to obtain expressions for g(z),
where the constant of integration is determined by the condition g(z)∼ log(z) as
z→ ∞. Then the Lagrange multiplier l in (140) can be determined from the equal-
ity in (140). Although they are not indispensable in this paper, for completeness we
present the formulas for g(z) and l below. In the subcritical case 0< T < Tc = π2,
explicit calculations give that

g(z)= T

4
z

(
z−

√
z2 − 4

T

)
− log

(
z−

√
z2 − 4

T

)

− 1

2
+ log 2 − logT and(157)

el = 1

T e
.

In the supercritical case T > Tc, we present the formula for g(z) and the Lagrange
multiplier in the following proposition.

PROPOSITION 3.5. For T > Tc = π2 the function g(z) is given by

g(z)= zg′(z)− Kz2

β
+ K
β

√(
z2 − β2

)(
z2 − α2

)
(158)

+ log
(√
z2 − β2 +

√
z2 − α2

)+ Kβ
2

(
1 + k2)− 1 − log 2,

where g′(z) is as in (155) and the principal branches are taken for the square
roots and logarithms. The Lagrange multiplier l in the Euler–Lagrange variational
conditions (140) is given by

l = log
(
β2 − α2)+ Kβ

(
1 + k2)− 2(1 + log 2).(159)

PROOF. Using integration by parts, we have

g(z)= zg′(z)−
∫
zg′′(z) dz+ const.(160)

The second term in this formula can be integrated directly using (155), and this
determines g(z) up to the constant term, which is obtained by the condition g(z)∼
log(z) as z→ ∞. This proves (158). To obtain (159), we use (140) at x = β , which
implies

l = 2g(β)− Tβ2

2
,(161)

which we evaluate using (158). �
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3.2. Asymptotics of the discrete Gaussian orthogonal polynomials. We now
summarize the asymptotics of the discrete Gaussian orthogonal polynomials (90)
and their discrete Cauchy transforms used in this paper. For a real function f (x),
define its discrete Cauchy transform Cf on the weighted lattice Ln,τ as

Cf (z) := 1

n

∑
x∈Ln,τ

f (x)e−(nT /2)x2

z− x .(162)

In the subcritical case T < Tc, the discrete Gaussian orthogonal polynomials are
exponentially close, as n→ ∞, to the rescaled Hermite polynomials, for which
there are exact formulas. To present the asymptotics in the supercritical case, we
first fix some notation. Define the function

γ (z) :=
(
(z+ β)(z− α)
(z− β)(z+ α)

)1/4

,(163)

with a cut on [−β,−α] ∪ [α,β], taking the branch such that γ (z)∼ 1 as z→ ∞.
Recall the elliptic nome q defined in (21) for T > Tc. We will use the Jacobi theta
functions with elliptic nome q ,

ϑ3(z) := ϑ3(z;q)= 1 + 2
∞∑
j=1

qj
2

cos(2jz),

(164)

ϑ4(z) := ϑ4(z;q)= 1 + 2
∞∑
j=1

(−1)j qj
2

cos(2jz).

We will also use the notation k̃, K̃ and Ẽ defined in (17) and (18), as well as the
function

u(z) := π(α + β)
4K̃

∫ z

β

dx√
(x2 − α2)(x2 − β2)

.(165)

Fix some 0 ≤ δ < 1 and ε > 0. Define the domain D(δ, ε, n) as

D(δ, ε, n)= {
z||z± α|> ε, |z± β|> ε, | Im z|> εn−δ}.(166)

We then have the following proposition which describes the asymptotics of the
discrete Gaussian orthogonal polynomials on the domain D(δ, ε, n).

PROPOSITION 3.6. For any T > Tc, as n→ ∞, the discrete Gaussian or-
thogonal polynomials (90) satisfy

p(T ;τ)
n,n (z)= eng(z)M11(z)

(
1 + Er11(n, z)

)
,

(167)
p
(T ;τ)
n,n−1(z)

h
(T ;τ)
n,n−1

= en(g(z)−l)M21(z)
(
1 + Er21(n, z)

)
,
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(
Cp(T ;τ)

n,n

)
(z)= e−n(g(z)−l)M12(z)

(
1 + Er12(n, z)

)
,

(168)
(Cp

(T ;τ)
n,n )(z)

h
(T ;τ)
n,n−1

= e−ng(z)M22(z)
(
1 + Er22(n, z)

)
,

where

M11(z)= 1

2

(
γ (z)+ 1

γ (z)

)
ϑ3(0)ϑ3(u(z)− π/4 − π(τ − ε(n)))
ϑ3(π(τ − ε(n)))ϑ3(u(z)− π/4) ,(169)

M21(z)= 1

4π

(
γ (z)− 1

γ (z)

)
ϑ3(0)ϑ3(u(z)+ π/4 − π(τ − ε(n)))
ϑ3(π(τ − ε(n)))ϑ3(u(z)+ π/4) ,(170)

M12(z)= π
(
γ (z)− 1

γ (z)

)
ϑ3(0)ϑ3(u(z)+ π/4 + π(τ − ε(n)))
ϑ3(π(τ − ε(n)))ϑ3(u(z)+ π/4) ,(171)

M22(z)= 1

2

(
γ (z)+ 1

γ (z)

)
ϑ3(0)ϑ3(u(z)− π/4 + π(τ − ε(n)))
ϑ3(π(τ − ε(n)))ϑ3(u(z)− π/4) .(172)

These asymptotics are uniform in τ and for z ∈D(δ, ε, n) in the following sense.
There exists a constant C(ε) > 0 such that for each 0< δ < 1, the errors in (167)
and (168) satisfy

sup
z∈D(δ,ε,n)

∣∣Er∗(n, z)
∣∣<C(ε)n−(1−δ) where ∗ = 11,21,12,22.(173)

A similar result with a weaker error holds in the critical case T = Tc +
O(n−2/3). We have the following proposition.

PROPOSITION 3.7. Fix ε > 0 and 0 ≤ δ < 1/3. For T = Tc(1−2−2/3σn−2/3),
the discrete Gaussian orthogonal polynomials (90) satisfy the asymptotics (167)
in the domain {z||z ± β| > ε, | Im z| > εn−δ}, where the function g(z) is defined
in (157), the functions M11(z) and M21(z) are given by

M11(z)= 1

2

(
γ (z)+ 1

γ (z)

)
, M21(z)= 1

4π

(
γ (z)− 1

γ (z)

)
(174)

where γ (z)=
(
z+ β
z− β

)1/4

,

such that β is defined as in (142) and γ is defined with a cut [−β,β] and the branch
γ (z)∼ 1 as z→ ∞. The errors Er11(n, z),Er21(n, z) are of the order n−(1/3−δ).

In the critical case, the asymptotic formulas for the discrete Gaussian orthogo-
nal polynomials close to the origin are described in terms of the matrix function
�(ζ, s) defined in (13) and (14). We do not describe these asymptotics in full gen-
erality, but do give the following formula for the Christoffel–Darboux kernel in a
small neighborhood of the origin and a rough estimate of the orthogonal polyno-
mials.
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PROPOSITION 3.8. Fix ε > 0 and 0 < δ < 1/3, and let T = Tc(1 −
2−2/3σn−2/3). For all z,w ∈ {z ∈ C||z|< εn−δ} the following asymptotic formula
holds:

e−(nT /4)(z2+w2)
p
(T ;τ)
n,n (z)p

(T ;τ)
n,n−1(w)− p(T ;τ)

n,n−1(z)p
(T ;τ)
n,n (w)

h
(T ;τ)
n,n−1(z−w)

= 1

2πi(z−w)
(−e−iπ(nz−τ)
eiπ(nz−τ)

)T
�
(
dn1/3z;σ )−1

�
(
dn1/3w;σ )(175)

×
(
eiπ(nw−τ)
e−iπ(nw−τ)

)(
1 +O

(
n−(1/3−δ))),

where d = 2−5/3π is defined in (33). Also the following estimate holds uniformly
in {z ∈ C||z|< εn−δ}:

p(T ;τ)
n,n (z)=O

(
eng(z)

)
,

p
(T ;τ)
n,n−1(z)

h
(T ;τ)
n,n−1

= O
(
en(g(z)−l)

)
.(176)

Proposition 3.8 follows from the Riemann–Hilbert analysis of Liechty (2012).
The fomula (175) appears in a slightly different form in Liechty (2012), equa-
tion (6.12).

We will also need asymptotic results for the discrete Gaussian orthogonal poly-
nomials on R outside of the support of the equilibrium measure. The following
proposition extends the asymptotics of Proposition 3.6 to this region. The Cauchy
transforms in (168) have poles on Ln,τ , so we must exclude the points in this lattice
from the formulation of the asymptotic result. Define the regions

E(ε)= {
(−∞,−β − ε] ∪ [β + ε,∞)}× [−iε, iε],

(177)

E(ε;n, τ)= E(ε)
∖ ⋃
x∈Ln,τ

{
z
∣∣∣|z− x|< ε

n

}
.

Then we have a result parallel to Proposition 3.6.

PROPOSITION 3.9. Fix ε > 0. Then the asymptotics (167) are valid on E(ε),
and the asymptotics (168) are valid on E(ε;n, τ). In both cases, the errors are of
the order n−1.

The functions M11(z),M21(z),M12(z), and M22(z) in Proposition 3.6 are en-
tries of the 2 × 2 matrix

(1
0

0
−2πi

)−1M(z)
(1

0
0

−2πi

)
as in (316), where M(z) in

defined in Section 6.2.1; see formula (314). By the Riemann–Hilbert problem sat-
isfied by M(z), we have that det M(z)= 1, and so

M11(z)M22(z)−M12(z)M22(z)= 1,(178)
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for all z where they are defined. The jump condition for the 2×2 matrix Riemann–
Hilbert problem for M(z) given in Section 6.2.1 implies that for x ∈ (−α,α),

(M11)+(x)= (M11)−(x)e2πi(τ+ε(n)),
(179)

(M21)+(x)= (M21)−(x)e2πi(τ+ε(n)),
(M12)+(x)= (M12)−(x)e−2πi(τ+ε(n)),

(180)
(M22)+(x)= (M22)−(x)e−2πi(τ+ε(n)).

We now summarize the asymptotic formulas for the recurrence coefficients and
the normalizing constants. In (183), we use the Jacobi elliptic function dn(u, k̃);
see, for example, Whittaker and Watson (1996).

PROPOSITION 3.10. As n→ ∞ the recurrence coefficients (γ (T ;τ)
n,n )2 in (93)

satisfy the following asymptotic formulas:

(a) In the subcritical case T < Tc = π2,

(
γ (T ;τ)
n,n

)2 = 1

T
+O

(
e−cn

)
,(181)

where c > 0 is a constant which depends on T .
(b) In the critical case T = Tc(1 − 2−2/3σn−2/3), as n→ ∞,

(
γ (T ;τ)
n,n

)2 = 1

T

(
1 − 25/3

n1/3 q(σ ) cos
(
2π

(
τ + ε(n)))

(182)

+ 24/3

n2/3 q(σ )
2 cos(4πτ)+O

(
n−1)).

(c) In the supercritical case T > Tc = π2,

(
γ (T ;τ)
n,n

)2 = dn2(2K̃(τ + 1/2 + ε(n)), k̃)
4Ẽ2

+O
(
n−1).(183)

The formula (181) states that in the subcritical case, the recurrence coefficients
are exponentially close as n→ ∞ to the recurrence coefficients for the rescaled
Hermite polynomials; see, for example, Liechty (2012), Appendix B. The asymp-
totic formula (182) was proved in Liechty (2012), and formula (183) follows from
the Riemann–Hilbert analysis presented in Section 6.

4. Distribution of winding numbers. In this section, we prove Theorem 1.2.
For the proof of this theorem, we will use the formulas (80) and (81). They state
that the total winding number for n particles in NIBM0→T is given by the formula

P(Total winding number equals ω)= e2πiωε(n)
∫ 1

0

Rn(T ; τ)e−2πiωτ

Rn(T ; ε(n)) dτ,(184)
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which according to (88) is

P(Total winding number equals ω)= e2πiωε(n)
∫ 1

0

Hn(T ; τ)e−2πiωτ

Hn(T ; ε(n)) dτ

(185)

=
∫ 1

0

Hn(T ; τ − ε(n))e−2πiωτ

Hn(T ; ε(n)) dτ.

In order to evaluate this integral, we will use the following deformation equation
for Hn(T ; τ) with respect to τ .

PROPOSITION 4.1. The Hankel determinant Hn(T ; τ) satisfies the differen-
tial equation

∂2

∂τ 2 logHn(T ; τ)= T 2(γ (T ;τ)
n,n

)2 − T ,(186)

where the recurrence coefficient γ (T ;τ)
n,n is defined in (93).

PROOF. Introducing a linear term into the exponent of the symbol for the Han-
kel determinant, we define

Hn(T ; τ ; t) := det
(

1

n

∑
x∈Ln,τ

xj+k−2e−(nT /2)(x2+2tx/n)
)n
j,k=1

,(187)

and the monic orthogonal polynomials

1

n

∑
x∈Ln,τ

p
(T ;τ ;t)
n,j (x)p

(T ;τ ;t)
n,l (x)e−(nT /2)(x2+2tx/n) = h(T ;τ ;t)

n,j δjl.(188)

It is well known then [see, e.g., Bleher and Liechty (2014), Theorem 2.4.3] that
this Hankel determinant satisfies

∂2

∂t2
logHn(T ; τ ; t)= T 2h

(T ,τ ;t)
n,n

h
(T ,τ ;t)
n,n−1

= T 2(γ (T ;τ ;t)
n,n

)2
,

(189)

where γ (T ;τ ;t)
n,j :=

(h(T ;τ ;t)
n,j

h
(T ;τ ;t)
n,j−1

)1/2

.

Completing the square in (187), we find that

Hn(T ; τ ; t)= det
(
eT t

2/(2n)

n

∑
x∈Ln,τ

xj+k−2e−(nT /2)(x+t/n)2
)n
j,k=1

(190)
= eT t2/2Hn(T ; τ + t;0).
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Taking the logarithm and differentiating twice with respect to t , we obtain

∂2

∂t2
logHn(T ; τ ; t)= T + ∂2

∂t2
logHn(T ; τ + t;0),(191)

and combining (189) with (191) gives

∂2

∂t2
logHn(T ; τ + t;0)= T 2(γ (T ;τ ;t)

n,n

)2 − T .(192)

Now replacing ∂2/∂t2 with ∂2/∂τ 2 on the left-hand side of (192) and plugging in
t = 0 gives (186), and the proposition is proved. �

We can now use this proposition to write an integral equation for the ratio in
equation (185). For ε(n)= 0 or ε(n)= 1/2, it is clear that Hn(T , τ ) satisfies the
symmetries

Hn
(
T ; ε(n)+ τ ) = Hn

(
T ; ε(n)− τ ) =Hn

(
T ; τ − ε(n)).(193)

Therefore, we have

∂

∂τ
logHn(T ; τ)

∣∣∣∣
τ=ε(n)

= 0,(194)

and then Proposition 4.1 implies the integral formula

log
Hn(T ; τ − ε(n))
Hn(T ; ε(n)) = log

Hn(T ; ε(n)+ τ)
Hn(T ; ε(n))

(195)

=
∫ ε(n)+τ
ε(n)

∫ u

ε(n)

(
T 2(γ (T ;v)

n,n

)2 − T )dv du.
Subcritical case. In the subcritical case T < Tc we can apply the asymptotic

formula (181) for (γ (T ;v)
n,n )2. Then combining (185) and (195) gives (22).

Supercritical case. In the supercritical case T > Tc, We will use the notation k̃,
K̃ and Ẽ introduced in (17) and (18), as well as the elliptic nome q introduced
in (21). We apply the asymptotic formula (183) to the integral equation (195),
giving

log
Hn(T , τ − ε(n))
Hn(T , ε(n))

=
∫ ε(n)+τ
ε(n)

∫ u

ε(n)

(
T 2

4Ẽ2
dn2

(
2K̃

(
v+ 1

2
+ ε(n)

)
, k̃

)
− T

)
dv du+O

(
n−1)

(196)

=
∫ τ

0

∫ u

0

(
T 2

4Ẽ2
dn2

(
2K̃

(
v+ 1

2
+ 2ε(n)

)
, k̃

)
− T

)
dv du+O

(
n−1)

=
∫ τ

0

∫ u

0

(
T 2

4Ẽ2
dn2

(
2K̃

(
v+ 1

2

)
, k̃

)
− T

)
dv du+O

(
n−1),
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where we use that dn(u, k̃) has period 2K̃ as a function of u [Erdélyi et al. (1981),
Table 5 on page 341]. Let us discuss how to compute the integral∫ τ

0

∫ u

0
dn2

(
2K̃

(
v+ 1

2

)
, k̃

)
dv du.(197)

The inner integral can be written as

1

2K̃

[∫ 2K̃u+K̃

0
dn2(t, k̃) dt −

∫ K̃

0
dn2(t, k̃) dt

]
.(198)

The above integrals can be written in terms of the Jacobi Zeta function Z(u, k̃)
[Erdélyi et al. (1981), Section 13.16], which can be expressed by the Jacobi theta
function as [Whittaker and Watson (1996), Sections 22.731, 21.11, 21.62],

Z(t, k̃)= ∂

∂t
log�(t) where �(t)= ϑ4

(
πt

2K̃

)
.(199)

Using Erdélyi et al. (1981), Section 13.16, Formulas (12) and (14), we have∫ u

0
dn2(t, k̃) dt = Z(u, k̃)+ Ẽ

K̃
u,(200)

and then ∫ u

0
dn2(2K̃(v + 1/2), k̃

)
dv = 1

2K̃

[
Z(2K̃u+ K̃, k̃)+ 2Ẽu

]
,(201)

where we have used that Z(K̃, k̃) = 0 by (199) and that ϑ ′
4(π/2) = 0 [see

Whittaker and Watson (1996), Section 21.11]. The integral (197) is thus∫ τ

0

∫ u

0
dn2(2K̃(v + 1/2), k̃

)
dv du

(202)

= 1

2K̃

[
1

2K̃

∫ 2K̃τ+K̃

K̃
Z(t, k̃) dt +

∫ τ

0
2Ẽudu

]
.

Integrating the right-hand side of (202), we obtain∫ τ

0

∫ u

0
dn2(2K̃(v + 1/2), k̃

)
dv du

(203)

= 1

2K̃

[
1

2K̃
log

(
�(2K̃τ + K̃)

�(K̃)

)
+ Ẽτ 2

]
.

Combining with (195) and (196), we obtain

log
Hn(T , τ − ε(n))
Hn(T , ε(n))

(204)

= T 2

8K̃Ẽ2

[
1

2K̃
log

(
�(2K̃τ + K̃)

�(K̃)

)
+ Ẽτ 2

]
− T

2
τ 2 +O

(
n−1).
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The parametrization T = 4K̃Ẽ in (148) then implies [Whittaker and Watson
(1996), Section 21.11],

log
Hn(T , τ − ε(n))
Hn(T , ε(n))

= log
(
�(2K̃τ + K̃)

�(K̃)

)
+O

(
n−1)

(205)

= log
(
ϑ3(πτ)

ϑ3(0)

)
+O

(
n−1).

Then the Fourier series (164) for the function ϑ3 and the identity [Whittaker and
Watson (1996), Section 21.8],

ϑ3(0)
2 = 2K̃

π
,(206)

imply (24).
Critical case. We now consider the critical case T = Tc(1 − 2−2/3σn−2/3). In

this part of the proof, we use the notation q(s) for the Hastings–McLeod solution
to the Painlevé equation (11) and (12). Inserting the asymptotic formula (182) into
this integral equation (195) yields

log
Hn(T ; τ − ε(n))
Hn(T ; ε(n))

= T 24/3
∫ ε(n)+τ
ε(n)

∫ u

ε(n)

(
21/3

n1/3 q(σ ) cos
(
2π

(
v+ ε(n)))(207)

+ 1

n2/3 q(σ )
2 cos(4πv)+O

(
n−1))dv du,

which is integrated to obtain

log
Hn(T ; τ − ε(n))
Hn(T ; ε(n))

= T 24/3
(
−21/3q(σ )

4π2n1/3

(
1 − cos(2πτ)

)
(208)

+ q(σ )2

16π2n2/3

(
1 − cos(4πτ)

))+O
(
n−1).

Using the scaling (10) for T , we find

log
Hn(T ; τ − ε(n))
Hn(T ; ε(n))

(209)

= − q(σ )

21/3n1/3

(
1 − cos(2πτ)

)+ 21/3q(σ )2

8n2/3

(
1 − cos(4πτ)

)+O
(
n−1),
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which we exponentiate to obtain
Hn(T ; τ − ε(n))
Hn(T ; ε(n))

(210)

= 1 − q(σ )

21/3n1/3

(
1 − cos(2πτ)

)+ q(σ )2

22/3n2/3

(
1 − cos(2πτ)

)+O
(
n−1),

and the formulas (23) follow immediately from (185).
Theorem 1.2 is thus proved.

5. Correlation function of particles. In this section, we do asymptotic anal-
ysis to the τ -deformed correlation kernel Kti,tj (x, y) in (131), and prove Theo-
rems 1.3 and 1.4 for the limiting behavior of NIBM0→T in the critical and super-
critical cases. In the critical case, we simply let τ = ε(n) and the asymptotics of
Kti,tj (x, y) gives Theorem 1.3(b); see Remark 2.2. In the supercritical case, we
need the following technical result.

THEOREM 5.1. Assume T > Tc. There exists d > 0 defined in (235) such that
when we scale ti and tj close to tc, and x and y close to −π as in (31), the
τ -deformed correlation kernel Kti,tj (x, y) has the limit independent of the param-
eter τ

lim
n→∞Kti,tj (x, y)

∣∣∣∣dydη
∣∣∣∣ =KPearcey

−τj ,−τi (η, ξ).(211)

Theorem 5.1 yields Theorem 1.3(a) as τ = ε(n), while in Section 5.4 it is shown
that Theorem 1.4 also follows from Theorem 5.1.

In Section 5.1, we lay out the contour integral formulas to do asymptotic analy-
sis, and the supercritical and critical cases are undertaken in Sections 5.2 and 5.3,
respectively. Throughout this section, we simplify the notation for the orthogonal
polynomials (90) a bit, writing pk(x) for p(T ;τ)

n,k (x) when there is no possibility of
confusion.

5.1. Contour integral formula of the τ -deformed correlation kernel. First, we
express the function Sk,a(x) defined in (132) in contour integral formulas that are
convenient for asymptotic analysis. Under some circumstances, it is convenient to
express Sk,a(x) by an integral over an infinite contour. Consider the function

Pk,a(z;x)= πpk(z)e−anz2/2 e
i(x−π)nz+iτπ

sin(πnz− τπ) .(212)

It is straightforward to check that Pk,a(z;x) has poles only at lattice points of Ln,τ ,
and

Res
z=s∈Ln,τ

Pk,a(z;x)= 1

n
pk(s)e

−ans2/2eixns.(213)

Since a is assumed to be positive, Pk,a(z;x) vanishes exponentially fast as z→ ∞
in the direction 0 or direction π . Thus, if �+ is a contour in the upper half-plane
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and from e0 · ∞ to eπi · ∞, and �− is a contour in the lower half-plane and from
eπi · ∞ to e0 · ∞, we have

Sk,a(x)= 1

2πi

∮
�
Pk,a(z;x)dz=

∮
�
pk(z)e

−anz2/2 eixnz

e2πinz−2τπi − 1
dz

(214)
where � =�+ ∪�−.

Under some other circumstances, it is convenient to express Sk,a(x) as the sum
of a contour integral and a remainder that is negligible in the asymptotic analysis.
For any M > 0 such that ±M are not lattice points in Ln,τ , we write

Sk,a(x)= 1

n

∑
s∈Ln,τ
|s|≤M

pk(s)e
−ans2/2eixns + s(M)k,a (x)

(215)

where s(M)k,a (x)=
1

n

∑
s∈Ln,τ
|s|>M

pk(s)e
−ans2/2eixns.

Recall the discrete Cauchy transform Cpk(z) defined in (162). Let � be a closed
contour such that the part of Ln,τ , {s ∈ Ln,τ ||s| ≤M} is enclosed in � while the
rest of Ln,τ is outside of �. By the calculation of residues,

Sk,a(x)= 1

2πi

∮
�
Cpk(z)e

(T−a)nz2/2eixnz dz+ s(M)k,a (x).(216)

Therefore, by (214) and (216), we can write (131) as

K̃ti ,tj (x, y)=Kmajor
ti ,tj

(x, y)+Kminor
ti ,tj

(x, y)
(217)

=Kmajor
ti ,tj

(x, y;M)+Kminor
ti ,tj

(x, y;M),
where Kmajor

ti ,tj
(x, y;M) and Kminor

ti ,tj
(x, y;M) depend on the positive constant M

which we suppress if there is no possibility of confusion. They are defined as

K
major
ti ,tj

(x, y)= n

4π2i

∮
�
dz

∮
�
dw

(
n−1∑
k=0

1

h
(T ;τ)
n,k

Cpk(z)pk(w)

)
etinz

2/2−tj nw2/2

(218)

× −eixnz−iynw
1 − e2πinw−2τπi ,

Kminor
ti ,tj

(x, y)= n

2π

∮
�
dw

(
n−1∑
k=0

1

h
(T ;τ)
n,k

s
(M)
k,T−ti (x)pk(w)

)
e−tj nw2/2

× −e−iynw
1 − e2πinw−2τπi(219)
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= 1

2π

∮
�
dw

∑
s∈Ln,τ
|s|>M

(
n−1∑
k=0

1

h
(T ;τ)
n,k

pk(s)pk(w)

)
e−(T−ti )ns2/2−tj nw2/2

× −eixns−iynw
1 − e2πinw−2τπi .

In (218) and (219), we assume that the contour � is the same as in (216), � is the
same as in (214), and � and � are disjoint.

Recall the well-known Christoffel–Darboux formula [Szegő (1975), Chap-
ter 3.2]

n−1∑
k=0

1

h
(T ;τ)
n,k

pk(z)pk(w)

(220)

= 1

h
(T ;τ)
n,n−1

pn(z)pn−1(w)− pn−1(z)pn(w)

z−w .

We derive its straightforward variation

n−1∑
k=0

1

h
(T ;τ)
n,k

Cpk(z)pk(w)

=
n−1∑
k=0

1

nh
(T ;τ)
n,k

∑
s∈Ln,τ

pk(s)e
−T ns2/2

z− s pk(w)

= ∑
s∈Ln,τ

1

n

e−T ns2/2

z− s
n−1∑
k=0

1

h
(T ;τ)
n,k

pk(s)pk(w)

= ∑
s∈Ln,τ

1

h
(T ;τ)
n,n−1

pn(s)pn−1(w)− pn−1(s)pn(w)

n(z− s)(s −w) e−T ns2/2

= 1

h
(T ;τ)
n,n−1

1

z−w
∑
s∈Ln,τ

1

n

pn(s)e
−T ns2/2

z− s pn−1(w)

− 1

n

pn(s)e
−T ns2/2

w− s pn−1(w)

− 1

n

pn−1(s)e
−T ns2/2

z− s pn(w)

+ 1

n

pn−1(s)e
−T ns2/2

w− s pn(w)(221)
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= 1

h
(T ;τ)
n,n−1

(
Cpn(z)pn−1(w)−Cpn−1(z)pn(w)

z−w

− Cpn(w)pn−1(w)−Cpn−1(w)pn(w)

z−w
)
.

Using (221) and (220) and noting that
∮
�
dz
z−w(Cpn(w)pn−1(w) −

Cpn−1(w)pn(w))= 0 for w ∈�, we simplify (218) and (219) as

K
major
ti ,tj

(x, y)= n

4π2i

∮
�
dz

∮
�
dw

1

h
(T ;τ)
n,n−1

Cpn(z)pn−1(w)−Cpn−1(z)pn(w)

z−w
(222)

× etinz2/2−tj nw2/2 −eixnz−iynw
1 − e2πinw−2τπi ,

Kminor
ti ,tj

(x, y)= 1

2π

∮
�
dw

∑
s∈Ln,τ
|s|>M

1

h
(T ;τ)
n,n−1

pn(s)pn−1(w)− pn−1(s)pn(w)

s −w
(223)

× e−(T−ti )ns2/2−tj nw2/2 −eixns−iynw
1 − e2πinw−2τπi .

These formulas are convenient in the derivation of the Pearcey kernel. For the
tacnode kernel, however, it is more convenient to write (131) in the form

n

2π

∮
�
dz

∮
�
dw e−(n/2)[tjw2+(T−ti )z2]ein(xz−yw)

(
n−1∑
k=0

pk(z)pk(w)

h
(T ;τ)
n,k

)

× e2πi(nz−τ)

(e2πi(nz−τ) − 1)(e2πi(nw−τ) − 1)

= n

2π

∮
�
dz

∮
�
dw e−(n/2)[tjw2+(T−ti )z2]ein(xz−yw)(224)

×
(
pn(z)pn−1(w)− pn−1(z)pn(w)

h
(T ;τ)
n,n−1(z−w)

)

× e2πi(nz−τ)

(e2πi(nz−τ) − 1)(e2πi(nw−τ) − 1)
,

by (214) and (220), noting that the term eixnz can be replaced by eixnz+2πi(nz−τ)
in (214).

5.2. Limiting Pearcey process. In this subsection, we assume that ti , tj , x, y
are defined by (31), and the parameter d in (31) is to be determined later in (239).
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To evaluate Kmajor
ti ,tj

(x, y) in (222), we define some notation. We denote for any
z ∈C \ (−∞, β)

I (z)= g(z)− tcz
2

2
+ iπz,

(225)

Ĩ (z)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g(z)− tcz

2

2
+ iπz= I (z), if Im z > 0,

g(z)− tcz
2

2
− iπz, if Im z < 0.

Although I (z) and Ĩ (z) are generally not well defined on the real line, we define

I (x)= lim
y→0+ I (x + iy), Ĩ (x)= lim

y→0+ Ĩ (x + iy) for x ∈ R.(226)

Note that by the relation (143) of g+(x) and g−(x) for x ∈ (−α,α), the g-function
defined on C+ can be analytically continued to C− through the interval (−α,α).
This analytic continuation is well defined on C \ ((−∞,−α) ∪ (α,∞)), and we
denote it as g̃(z). By (143), we have

g̃(z)=
{
g(z), if Im z > 0,
g(z)+ iπ − 2πiz, if Im z < 0.

(227)

Thus, we can express Ĩ (z) as

Ĩ (z)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g̃(z)− tcz

2

2
+ iπz, if Im z > 0,

g̃(z)− tcz
2

2
+ iπz− iπ, if Im z < 0.

(228)

We also define the function F(z,w) for z,w ∈C \R as

F(z,w)= en(g(z)−g(w))

h
(T ;τ)
n,n−1

(
Cpn(z)pn−1(w)−Cpn−1(z)pn(w)

)
(229)

× −1

1 − e2πinw−2τπi .

Then we write (222) as

K
major
ti ,tj

(x, y)= n

4π2i

∮
�
dz

∮
�
dwe−nI (z)+nĨ (w)

(230)

× en
1/2(d2/2)(τiz2−τjw2)−in1/4 d(ξz−ηw)

z−w F(z,w).

In Appendix A, we construct the contour �̃ that intersects the real axis at 0 and
lies above the real axis elsewhere, such that Re I (z) attains its global maximum
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FIG. 4. �upper and �upper are deformed from �̃ and �̃, respectively. The circled region is the
neighborhood {z ∈C||z|< 4d−1n−1/4}.

on �̃ uniquely at 0, and construct the contour �̃ that lies above or on the real axis,
passes through 0, overlaps with the real axis in the vicinity of 0, starts at M and
ends at −M , where M > β such that Re I (z) attains its global minimum on �̃
uniquely at 0. We define �upper by a deformation of �̃ such that �upper is identical
to �̃ outside of the region {z ∈C||z|< 4d−1n−1/4}, and in this region the corner of
�̃ is leveled to be a horizontal base that is above 0 by 2d−1n−1/4. We also define
�upper by a deformation of �̃ as follows. First, we shift �̃ upward by d−1n−1/4,
and then connect the two end points of the shifted �̃, namely ±M + id−1n−1/4, to
±M , respectively, by vertical bars of length d−1n−1/4. �upper is the result of the
deformation. At last, we construct �lower and �lower by a reflection of �upper and
�upper, respectively, about the real axis, and define

� =�upper ∪�lower, � = �upper ∪ �lower,(231)

with the orientation prescribed for � and �. See Figures 4 and 5. We assume,
without loss of generality, that ±M defined in Appendix A are not lattice points of
Ln,τ , otherwise we deform the contour around ±M by O(n−1).

Then we denote

�local = � ∩Nn−2/9(0), �local =� ∩Nn−2/9(0)
(232)

where Nn−2/9(0)= {
z ∈ C||z|< n−2/9},

FIG. 5. Schematic figures of � and �. They are close at 0 but do not intersect.
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and divide �local and �local into upper and lower parts, respectively, as

�
upper
local = �local ∩C+, �lower

local = �local ∩C−,
(233)

�
upper
local =�local ∩C+, �lower

local =�local ∩C−.

By (167), (168), (178), (179) and (180), we have that for z ∈ �local and w ∈�local,

F(z,w)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 +O

(
n−3/4))(1 +O

(|z|)+O
(|w|)),

if z ∈ �upper
local and w ∈�upper

local ,(−e2τπi +O
(
n−3/4))(1 +O

(|z|)+O
(|w|)),

if z ∈ �lower
local and w ∈�lower

local ,(
(−1)n +O

(
n−3/4))(1 +O

(|z|)+O
(|w|)),

if z ∈ �upper
local and w ∈�lower

local ,(
(−1)ne4τπi +O

(
n−3/4))(1 +O

(|z|)+O
(|w|)),

if z ∈ �lower
local and w ∈�upper

local .

(234)

Note that for z in the upper half-plane around 0, 0 is a triple zero of I ′(z) by
Lemma A.2, and the Taylor expansions of I (z) and Ĩ (z) are

I (z)= Ĩ (z)= I (0)+ 1
24 g̃

(4)(0)z4 +O
(
z5),(235)

where g̃(z) is defined as the analytic continuation of g(z) across (−α,α) as defined
in (227); see Lemma A.2. By (154),

g̃(4)(0)= 1

α3

((
1 + k2)E − (

1 − k2)K)
(236)

= k2

α3

∫ 1

0

(1 − s2)+ (1 − k2s2)√
(1 − s2)(1 − k2s2)

ds > 0.

For z in the lower half-plane around 0, the Taylor expansion of I (z) and Ĩ (z) are,
by (228) and (227),

Ĩ (z)= I (0)− πi + 1
24 g̃

(4)(0)z4 +O
(
z5),

(237)
I (z)= I (0)− πi + 2πiz+ 1

24 g̃
(4)(0)z4 +O

(
z5).

We make the change of variables

z= (1
6g
(4)(0)

)−1/4
n−1/4u, w = (1

6g
(4)(0)

)−1/4
n−1/4v,(238)

and let

d = (1
6g
(4)(0)

)1/4
.(239)
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Then by the Taylor expansions (235) and (237), for z ∈ �upper
local and w ∈�upper

local ,

Ĩ (w)= I (0)+ 1

4n
v4 +O

(
v5

n5/4

)
,

(240)

I (z)= I (0)+ 1

4n
u4 +O

(
u5

n5/4

)
,

and for z ∈ �lower
local and w ∈�lower

local , noting that Im z= −d−1n−1/4 for z ∈ �lower
local ,

Ĩ (w)= I (0)+ 1

4n
v4 +O

(
v5

n5/4

)
− πi,

(241)

I (z)= I (0)+ 2π

dn1/4 + 1

4n
u4 +O

(
u5

n5/4

)
+ (2π Re z− π)i.

By the asymptotics (240), (241) and (234), together with (27), we have that

∮
�

upper
local

dz

∮
�local

dwe−nI (z)+nĨ (w) e
n1/2(d2/2)(τiz2−τjw2)−in1/4 d(ξz−ηw)

z−w F(z,w)

= dn1/4
∮
�

upper
local

dz

∮
�local

dw
ev

4/4−(τj /2)u2+iηv

eu
4/4−(τi/2)u2+iξu

× 1 +O(u/n1/4)+O(v/n1/4)

u− v(242)

= 1

dn1/4

(∮
�P

du

∮
�P

dv
ev

4/4−(τj /2)u2+iηv

eu
4/4−(τi/2)u2+iξu

1

u− v +O
(
n−1/4))

= 4π2i

dn1/4

(
K̃

Pearcey
−τj ,−τi (η, ξ)+O

(
n−1/4)).

On the other hand, from the comparison of formulas (240) and (241), the formula
of Re I (z) on �lower

local has a term 2π/(dn1/4) that does not appear in the formula of
Re I (z) on �upper

local , we have

∮
�lower

local

dz

∮
�local

dwe−nI (z)+nĨ (w) e
n1/2(d2/2)(τiz2−τjw2)−in1/4 d(ξz−ηw)

z−w F(z,w)

(243)

= 4π2i

dn1/4O
(
e−2πn4/3/d).

For z ∈ �upper \ �upper
local and w ∈ �upper \ �upper

local , by the property that Re I (z)
attains its global minimum on �̃ at 0 and Re Ĩ (z)= Re I (z) attains its global max-
imum on �̃ at 0, and the local behavior of I (z)= Ĩ (z) at 0 in the upper half-plane,
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we have that

Re I (z) > Re I (z0)+ εn−8/9 for z ∈ z ∈ �upper \ �upper
local ,(244)

Re Ĩ (w) < Re I (z0)− εn−8/9 for w ∈ z ∈�upper \�upper
local .(245)

For z ∈ �lower and w ∈�lower, on the other hand, by the formula (225) of I (z) and
Ĩ (w) and the property that Reg(z)= Reg(z̄) that follows from the definition (139)
of g(z), we obtain that

Re I (z) > Re I (z̄), Re Ĩ (w)= Re Ĩ (w̄) for z,w ∈ C−,(246)

and it applies for all w ∈ �lower and z ∈ �upper except for z = ±M . Also
we have the estimate for F(z,w) that for all z ∈ D(δ, ε, n) ∪ E(ε;n, τ) and
w ∈ D(δ, ε, n) ∪ E(ε), where δ ∈ [0,1), ε > 0 is a small positive number, and
D(δ, ε, n),E(ε),E(ε;n, τ) are defined in (166) and (177), by Propositions 3.6
and 3.9,

F(z,w)= O(1)
(247)

if z ∈D(δ, ε, n)∪E(ε;n, τ) and w ∈D(δ, ε, n)∪E(ε).
Then using (244), (245), (246) and (247), we have that for some ε > 0

∮
�
dz

∮
�
dwe−nI (z)+nĨ (w) e

n1/2(d2/2)(τiz2−τjw2)−in1/4 d(ξz−ηw)

z−w F(z,w)

=
∮
�local

dz

∮
�local

dwe−nI (z)+nĨ (w)(248)

× en
1/2(d2/2)(τiz2−τjw2)−in1/4 d(ξz−ηw)

z−w F(z,w)+ 1

dn1/4 o
(
e−εn1/9)

.

Next, we estimate Kminor
ti ,tj

(x, y). Using the fact that Re I (z) attains its global

minimum on �̃ at 0 and ±M are the ends of �̃, there is a c1 > 0 such that

Re Ĩ (0)= Re I (0)= Re I (M)− c1 = Re I (−M)− c1.(249)

By the approximation (237) for w ∈ �local of Ĩ (w), the estimate (245) and (246)
for w ∈ � \ �local, and (249), using the asymptotic formula (167) of pn(s), we
have that for all w ∈� and ti , tj , x, y expressed by (31),

pn(w)e
−tj nw2/2 −e−iynw

1 − e2πinw−2τπi
(250)

= e(T−2tc)nM2/4O
(
en(g(M)−TM2/4−c1+ε)),
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where ε is an arbitrarily small positive number. Similarly, for s ∈ R \ [−M,M],
using the asymptotics formula (167) of pn−1(s) and Proposition 3.9, we have

1

h
(T ;τ)
n,n−1

pn−1(s)e
−(T−ti )ns2/2eixns

(251)
= e−(T−2tc)ns2/4O

(
en(Reg+(s)−T s2/4−l+ε′)),

where ε′ is an arbitrarily small positive number. By the inequalities (140),

Reg+(s)− T s2

4
≤ l

2
for s ∈R \ [−M,M].(252)

Hence, for all w ∈� and s ∈R \ [−M,M],
1

h
(T ;τ)
n,n−1

pn−1(s)pn(w)e
−(T−ti )ns2/2−tj nw2/2 −eixns−iynw

1 − e2πinw−2τπi

(253)
= O

(
en(−c1+ε+ε′)).

If the factor pn−1(s)pn(w) in (253) is changed into pn(s)pn−1(w), the esti-
mate (253) still holds. So for all w ∈� and s ∈ R \ [−M,M],

1

h
(T ;τ)
n,n−1

pn(s)pn−1(w)− pn−1(s)pn(w)

s −w e−(T−ti )ns2/2−tj nw2/2

× −eixns−iynw
1 − e2πinw−2τπi(254)

= O
(
en(−c1+ε+ε′)).

Note that the integrand in (219) vanishes rapidly as w ∈ ∞ along �. Thus, we
have

Kminor
ti ,tj

(x, y)=O
(
en(−c1+ε+ε′)).(255)

The asymptotics (242), (243), (248) and (255), together with (230) and (217), yield

K̃ti ,tj (x, y)=
n3/4

d

(
K̃

Pearcey
−τj ,−τi (η, ξ)+O

(
n−1/4)).(256)

At last,
◦
W[i,j)(x, y) is defined in (112) with explicit formula given in (133).

It is 0 when tj ≤ ti and when tj > ti , a standard approximation technique gives
that

◦
W[i,j)(x, y)= n3/4

d

1√
2π(τj − τi)

e−(η−ξ)2/(2(τj−τi ))
(
1 +O

(
n−1/4)).(257)
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FIG. 6. Schematic figure of �.

Comparing (256) and (257) with (25) and (26), we obtain (211).

5.3. Limiting tacnode process. With notation defined in (34), we write (224)
as

K̃ti ,tj (x, y)=
n

2π

∮
�
dz

∮
�
dwJ(z,w),(258)

where

J (z,w)=
(
e−(nT /4)(z2+w2) pn(z)pn−1(w)− pn−1(z)pn(w)

h
(T ;τ)
n,n−1(z−w)

)

× en2/3(d2/2)(τiz2−τjw2)e−in1/3 d(ξz−ηw)(259)

× eπi(nz−τ)eπi(nw−τ)

(e2πi(nz−τ) − 1)(e2πi(nw−τ) − 1)
.

In this section, we define the shape of � as follows. First, the part of � in the
first quadrant consists of a horizontal ray from ∞ · e0 to 1 + i, a line segment
from

√
3 + i to (

√
3 + i)d−1n−1/3, and a line segment from (

√
3 + i)d−1n−1/3

to id−1n−1/3. The part of � in the second quadrant is a reflection of that in the
first quadrant about the imaginary axis, and the part of � in the lower half-plane
is a reflection of that in the upper half-plane about the real axis. � ∩ C+ is ori-
ented from right to left, and � ∩C− is from left to right. See Figure 6. We denote
�local,�

upper
local ,�

lower
local as

�local =� ∩ {
z ∈ C||z|< n−1/4}, �

upper
local =�local ∩C+,

(260)
�lower

local =�local ∩C−.

To make the discussion about the apparent singularity (z−w)−1 easier, we inte-
grate z on � and w on � + i

2d
−1n−2/3 that is obtained by shifting � above by

i
2d

−1n−1/3; see Figure 7.
Applying the asymptotic formula (175) to the integrand of (258) and taking the

change of variables

z= u

dn1/3 , w = v

dn1/3(261)
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FIG. 7. Locally around 0 with scaling n−1/3. The solid curve is � and the dashed curve is
� + i

2d
−1n−2/3.

we have
n

2π

∮
�local

dz

∮
�local+(i/2)d−1n−2/3

dwJ(z,w)

= n2/3

4π2id

∮
�∗
T

du

∮
�∗
T+i/2

dv
e1/2(τiu2−τj v2)−i(ξu−ηv)

u− v
(262)

×
⎛
⎜⎝

1

1 − e2πi(nz−τ)
1

1 − e−2πi(nz−τ)

⎞
⎟⎠
T

�(u;σ)−1�(v;σ)

×
⎛
⎜⎝

1

1 − e−2πi(nw−τ)
−1

1 − e2πi(nw−τ)

⎞
⎟⎠(

1 +O
(
n−1/4)),

where �∗
T is the large but finite contour

�∗
T =�T ∩Ndn1/12(0) where Ndn1/12(0)= {

z||z|< dn1/12},(263)

and �T is shown in Figure 3. Note that for z ∈�upper
local , or equivalently, u ∈�∗

T ∩
C+,

1

1 − e2πi(nz−τ) = 1 +O
(
e−2n2/3/d),

(264)
1

1 − e−2πi(nz−τ) = O
(
e−2n2/3/d),

and for z ∈�lower
local , or equivalently, u ∈�∗

T ∩C−,

1

1 − e2πi(nz−τ) = O
(
e−2n2/3/d),

(265)
1

1 − e−2πi(nz−τ) = 1 +O
(
e−2n2/3/d).

For w ∈�upper
local + i

2d
−1n−2/3 or�upper

local + i
2d

−1n−2/3, we have analogous result for
(1 − e±2πi(nw−τ))−1, and omit the explicit formulas. Substituting (264) and (265)
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and their counterparts for w into (262) and using the fact that det�(ζ ;σ)≡ 1, we
find that

n

2π

∮
�local

dz

∮
�local+(i/2)d−1n−2/3

dwJ(z,w)

= n2/3

4π2id

∮
�∗
T

du

∮
�∗
T+i/2

dve((τi/2)u
2−(τj /2)v2)−i(ξu−ηv)

(266)

× f (u;σ)g(v;σ)− g(u;σ)f (v;σ)
(u− v)

(
1 +O

(
n−1/4))

= n2/3

d
K tac
τi ,τj

(ξ, η)
(
1 +O

(
n−1/4)),

where f (u;σ) and g(u;σ) are defined in (28).
By the estimates of pn(z) and pn−1(z)/h

(T ;τ)
n,n−1 in Proposition 3.7 and (176) in

Proposition 3.8, we have that for all z ∈� and w ∈� + i
2d

−1n−2/3

pn(z)pn−1(w)− pn−1(z)pn(w)

h
(T ;τ)
n,n−1(z−w) = eng(z)+ng(w)−nlO(

n2/3),(267)

where g(z) is defined in (157) and the n2/3 factor comes from (z−w)−1. Hence,
for all z ∈� and w ∈� + i

2d
−1n−2/3,∣∣J (z,w)∣∣ = en(g̃(z)−(T /4)z2+πiz)+n(g̃(w)−(T /4)w2+πiw)en2/3d2(τiz

2−τjw2)

(268)
× e−in1/3d(ξz−ηw)O

(
n2/3),

where g̃ is defined by g in (227). By direct calculation, we have that for z ∈ � \
�local, Re(g̃(z)− T 2z2/4 + πiz) decreases as z moves away from 0. Hence, by
standard argument of steepest-descent method and the result of (266), we have that

K̃ti ,tj (x, y)=
n

2π

∮
�
dz

∮
�+(i/2)d−1n−2/3

dwJ(z,w)

= n

2π

∮
�local

dz

∮
�local+(i/2)d−1n−2/3

dwJ(z,w)+O
(
e−cn1/4)

(269)

= n2/3

d
K̃ tac
τi ,τj

(ξ, η;σ)(1 +O
(
n−1/4)),

where c is a positive constant.
At last,

◦
W[i,j)(x, y) is defined in (112) with explicit formula given in (133). It

is 0 when tj ≤ ti and when tj > ti , a standard approximation technique gives that

◦
W[i,j)(x, y)= n2/3

d

1√
2π(τj − τi)

e−(η−ξ)2/(2(τj−τi ))
(
1 +O

(
n−1/3)).(270)

Comparing (269) and (270) with (29) and (26), we prove (35).
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5.4. Proof of Theorem 1.4. For notational simplicity, we only consider the
limiting 2-correlation functions, such that t1, t2 ∈ (0, T ) are two times and x, y are
two locations on T. We assume that t1, t2, x, y are expressed by (31) with i = 1,
j = 2, and then(

R
(n)
0→T

)
ω(x;y; t1, t2)

(271)

= lim
�x→0

1

(�x)2
P

⎛
⎝ there is a particle in [x, x +�x) at time t1,

there is a particle in [y, y +�x) at time t2,
and the total winding number is ω

⎞
⎠ .

From (135), we have

lim
n→∞

∑
ω∈Z

(
R
(n)
0→T

)
ω(x;y; t1, t2)e2πω(τ+ε(n))i

(
d

n3/4

)2

(272)

= lim
n→∞

Rn(T ; τ)
Rn(T ; ε(n))R

(n)
0→T (x;y; t1, t2; τ)

(
d

n3/4

)2

,

where R(n)0→T (x;y; t1, t2; τ) is a special case of the τ -deformed joint correlation
function defined in (115).

By the determinantal formula (116) and the asymptotic result (211), we have
for all τ ∈ [0,1],

lim
n→∞R

(n)
0→T (x;y; t1, t2; τ)=

∣∣∣∣∣K
Pearcey
−τ1,−τ1(ξ, ξ) K

Pearcey
−τ2,−τ1(η, ξ)

K
Pearcey
−τ1,−τ2(ξ, η) K

Pearcey
−τ2,−τ2(η, η)

∣∣∣∣∣ ,(273)

and on the other hand by (184) and (24), we have

lim
n→∞

Rn(T ; τ)
Rn(T ; ε(n))
= lim
n→∞

∑
ω∈Z

P(Total winding number equals ω)e2πω(τ+ε(n))i(274)

= ∑
ω∈Z

qω
2

√
π

2K̃
e2πω(τ+ε(n))i .

Hence, a comparison of Fourier coefficients on both sides of (272) shows that

lim
n→∞

(
R
(n)
0→T

)
ω(x;y; t1, t2)

(
d

n3/4

)2

(275)

= qω2

√
π

2K̃

∣∣∣∣∣K
Pearcey
−τ1,−τ1(ξ, ξ) K

Pearcey
−τ2,−τ1(η, ξ)

K
Pearcey
−τ1,−τ2(ξ, η) K

Pearcey
−τ2,−τ2(η, η)

∣∣∣∣∣ ,
which is the desired result. Thus, we prove Theorem 1.4 in the n= 2 case.
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6. Interpolation problem and Riemann–Hilbert problem associated to dis-
crete Gaussian orthogonal polynomials.

6.1. Equilibrium measure and the g-function. In this subsection, we prove the
results presented in Section 3.1 for the supercritical case T > Tc. The existence
and uniqueness of the equilibrium measure associated to the potential T x2/2 that
satisfies the minimization problem (137) and (138) is proved in Kuijlaars (2000),
along with several analytic properties. Thus, if we find a probability measure νT
with continuous density function ρT (x) such that the associated g-function sat-
isfies the variational condition (140), then it is the unique equilibrium measure.
For T ≤ Tc = π2, it is straightforward to verify that the well-known semicircle
law (142) and the g-function (157) satisfy the variational condition (140), so the
equilibrium measure is given by (142). Thus, this subsection is dedicated to the
construction of the equilibrium measure and the derivative of the g-function for
T > Tc = π2. The g-function is then determined by its derivative up to the La-
grange multiplier l. Our strategy is to construct a probability measure νT with con-
tinuous density dνT (x)= ρT (x) dx together with the derivative of the associated
g-function, such that νT is supported on an interval [−β,β], and has a saturated
region [−α,α], that is, ρT (x)= 0 for x ∈ R \ (−β,β), ρT (x)= 1 for x ∈ [−α,α]
and 0 < ρT (x) < 1 for x ∈ (−β,α) ∪ (α,β), and then verify that the probability
measure satisfies the variational condition (140). Therefore, we conclude that the
construction of the equilibrium measure is valid.

The derivative of the g-function is expressed as

g′(z)=
∫ β

−β
1

z− x ρT (x) dx, z ∈ C \ [−β,β],(276)

and so the equilibrium measure νT = ρT (x)χ [−β,β](x) dx is given as

ρT (x)= −1

π
Img′+(x)=

1

π
Img′−(x) for x ∈ [−β,β],(277)

where g′+(x) and g′−(x) are the limiting values from the upper and lower half-
planes, respectively. That the measure νT has total measure 1 is equivalent to

g′(z)= 1

z
+O

(
z−2) as z→ ∞.(278)

The variational problem (140) implies

g′+(x)+ g′−(x)= T x for x ∈ (−β,−α)∪ (α,β),(279)

g′+(x)− g′−(x)= −2πi for x ∈ (−α,α).(280)

To construct g′(z), we use the incomplete elliptic integrals F(z;k) and E(z;k)
and the complete elliptic integrals K = K(k) and E = E(k) introduced in (144)
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and (16). They have the properties that

F+(x;k)+ F−(x;k)= 2K, E+(x;k)+E−(x;k)= 2E
(281)

for x ∈ (
1, k−1),

F+(x;k)+ F−(x;k)= −2K, E+(x;k)+E−(x;k)= −2E
(282)

for x ∈ (−k−1,−1
)
,

F+(x;k)− F−(x;k)= 2iK′, E+(x;k)−E−(x;k)= 2i
(
K′ − E′)

(283)
for x ∈ R \ (−k−1, k−1).

Here, we use the notation

K′ = K
(
k′
)
, E′ = E

(
k′
)

where k′ =
√

1 − k2.(284)

Identities (281) and (282) can be checked by straightforward computation, and
(283) can be checked with the help of Gradshteyn and Ryzhik (2007), 3.152-
9, page 280 and 3.169-17, page 209. The identity (283) also comes from the
imaginary periods of F(z;k) and E(z;k); see Erdélyi et al. (1981), Section 13.7,
page 314. For fixed α and β , let

k = α

β
.(285)

With the help of Legendre’s relation [Erdélyi et al. (1981), Section 13.8, page 320,
Formula (15)],

KE′ + K′E − KK′ = π

2
,(286)

we find that when g′(z) is given by

g′(z)=

⎧⎪⎪⎨
⎪⎪⎩
T z

2
+ 2EF

(
z

α
;k

)
− 2KE

(
z

α
;k

)
− πi, for z ∈C+,

T z

2
+ 2EF

(
z

α
;k

)
− 2KE

(
z

α
;k

)
+ πi, for z ∈C−,

(287)

it satisfies (279) and (280), and it is also well defined on (−∞,−β) ∪ (β,∞) by
analytic continuation. To make (278) hold, we need to choose the correct values
for α and β . As z→ ∞, the asymptotic behaviors of F(z;k) and E(z;k) are

F(z;k)= iK′ + 1

kz
+O

(
z−2),(288)

E(z;k)= kz+ i(K′ − E′)+ k−1 − k
2z

+O
(
z−2).(289)
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FIG. 8. The contours CR and C1,k−1 .

The constant term in (288) is obtained by

lim
z→∞
z∈C+

F(z;k)=
∫ i·∞

0

ds√
(1 − s2)(1 − k2s2)

= i
∫ ∞

0

dt√
(1 + t2)(1 + k2t2)

(290)

= iF (1;
√

1 − k2
) = iK′,

where evaluation of the elliptic integral is done by Gradshteyn and Ryzhik (2007),
3.152-2, page 279. The z−1 term in (288) follows the asymptotics of the integrand
in the defining formula (144) of F(z;k). The z term in (289) is obvious, and the
constant term is given by

lim
z→∞
z∈C+

E(z;k)− kz=
∫ i·∞

0

(√
1 − k2s2

1 − s2 − k
)
ds

(291)

= i

2

∫ ∞
−∞

(√
1 + k2t2

1 + t2 − k
)
dt.

To evaluate the integral on the right-hand side of (291), we define the pair of con-
tours (see Figure 8),

CR = [−R,R] ∪ {
Reiθ |θ ∈ [0, π]} counterclockwise,

C1,k−1 = contour starting from i, along the right-hand side of the
(292)

imaginary axis, to k−1i, and then along the left-hand side

of the imaginary axis, back to i.
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Then by the contour integral technique and Gradshteyn and Ryzhik (2007), 3.169-
17, page 309,

∫ ∞
−∞

√
1 + k2t2

1 + t2 − k dt

= lim
R→∞

∮
CR

√
1 + k2t2

1 + t2 dt =
∮
C1,k−1

√
1 + k2t2

1 + t2 dt

(293)

= 2
∫ k−1

1

√
1 − k2t2

1 − t2 dt

= 2
(
F
(
1;

√
1 − k2

)−E(1;
√

1 − k2
)) = 2

(
K′ − E′),

and we get the result. The z−1 term of (289) is obtained analogously to the z−1

term of (288).
Then as z→ ∞ in C+,

g′(z)=
(
T

2
− 2kK

α

)
z+ 2i

(
K′E + KE′ − KK′ − π

2

)
(294)

+ 2α
(

E
k

− (1 − k2)K
2k

)
1

z
+O

(
z−2).

Note that the constant term of g′(z) vanishes automatically by Legendre’s rela-
tion (286). For k = α/β , the identity (278) is satisfied when α and β are given by
(145) and (148).

By Lemma 3.2, the relation (148) is a 1–1 correspondence between T > Tc =
π2 and k ∈ (0,1). Thus, for each T = T (k) > Tc, there are well-defined α,β and
ρT given by (145) and (278). By the construction of ρT , especially (279), we have
that the measure dνT with density ρT (x)χ [−β,β](x) has total measure 1, and sat-
isfies the variational condition on [α,β] given that the Lagrange multiplier l is
properly chosen and 0 < ρT (x) < 1 for all x ∈ (α,β). By the symmetry of νT
about the origin, we finish the verification that νT is the equilibrium measure. Ad-
ditionally, we have the following lemma, which states that the equilibrium measure
is regular in the sense of Bleher and Liechty (2011).

LEMMA 6.1. (a) 0< ρT (x) < 1 for all x ∈ (α,β).
(b) g+(x)+ g−(x)− T x2

2 − l > 0 for x ∈ [0, α).
(c) 2g(x)− T x2

2 − l < 0 for x ∈ (β,∞).
(d) There exist constants c1 and c2 such that

ρT (x)= c1
√
β − x(1 +O

(
(β − x))) as x→ β from the left(295)
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and

1 − ρT (x)= c2
√
x − α(1 +O

(
(x − α)))

(296)
as x→ α from the right.

We finish this subsection by the proof of Lemmas 3.2 and 6.1.

PROOF OF LEMMA 3.2. The two limits in (149) are straightforward to check
from the integral formulas (16) of K and E. To see the monotonicity, we use Byrd
and Friedman (1971), 710.00 and 710.02, page 282, and have

d

dk

(
K(k)E(k)

) = E2 − (1 − k2)K2

k(1 − k2)
(297)

= 1

k(1 − k2)

∫ 1

0

√
1 − k2s2 − √

1 − k2√
(1 − s2)(1 − k2s2)

ds > 0,

which proves the monotonicity. �

PROOF OF LEMMA 6.1. For part (a), since ρT (x) on (0, α) is expressed by
�0(x;k) for x ∈ (0,1) in (151), we only need to show that �0(x;k) ∈ (0,1)
for x ∈ (0,1). By Byrd and Friedman (1971), 151.01, page 36, we have that
�0(0;k) = 0 and �0(1;k) = 1. We need only to show that �0(x;k) is strictly
increasing on (0,1). By Byrd and Friedman (1971), 730.04, page 284, this is im-
plied by the inequality E − (1 − k2)x2K > 0 for all x ∈ (0,1). The inequality is
proved as

E − (
1 − k2)x2K =

∫ 1

0

√
1 − k2s2 − x2

√
1 − k2√

(1 − s2)(1 − k2s2)
> 0.(298)

For parts (b) and (c), we note that since g+(x) + g−(x) − T x2/2 − l, which
becomes 2g(x)− T x2/2 − l for x > β , is a continuous function and l is chosen so
that it vanishes for x ∈ [α,β], it suffices to show the inequalities

1

4

(
g′+(x)+ g′−(x)− T x

) = EF
(
x

α
;k

)
− KE

(
x

α
;k

)
< 0,

(299)
x ∈ (0, α),

1

4

(
2g′(x)− T x) = −E

∫ x/α

k−1

ds√
(s2 − 1)(k2s2 − 1)

(300)

− K
∫ x/α

k−1

√
k2s2 − 1√
s2 − 1

ds < 0, x ∈ (β,∞).
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The inequality (300) obviously holds. To prove (299), we use Byrd and Friedman
(1971), 414.01, page 229,

EF
(
x

α
;k

)
− KE

(
x

α
;k

)

= 1

βx

√(
β − x2

)(
α2 − x2

)(
K −�1

(
−x

2

β2 ;k
))

(301)

= −1

βx

√(
β − x2

)(
α2 − x2

) ∫ 1

0

(x2/β2)s2 ds

(1 − (x2/β2)s2)
√
(1 − s2)(1 − k2s2)

,

which is clearly negative for x ∈ (0, α).
Part (d) is easy to check using formula (150). �

6.2. Interpolation problem and outline of the steepest descent analysis. The
orthogonal polynomials (90) are encoded in the following interpolation prob-
lem (IP). For a given n = 0,1, . . . , find a 2 × 2 matrix-valued function Pn(z) =
(Pn(z)ij )1≤i,j≤2 with the following properties:

1. Analyticity: Pn(z) is an analytic function of z for z ∈ C \Ln,τ .
2. Residues at poles: At each node x ∈ Ln,τ , the elements Pn(z)11 and Pn(z)21

of the matrix Pn(z) are analytic functions of z, and the elements Pn(z)12 and
Pn(z)22 have a simple pole with the residues,

Res
z=x Pn(z)j2 = 1

n
e−nT x2/2Pn(x)j1, j = 1,2.(302)

3. Asymptotics at infinity: There exists a function r(x) > 0 on Ln,τ such that

lim
x→∞ r(x)= 0,(303)

and such that as z→ ∞, Pn(z) admits the asymptotic expansion,

Pn(z)∼
(
I + P1

z
+ P2

z2 + · · ·
)(
zn 0
0 z−n

)
,

(304)

z ∈ C
∖[ ∞⋃

x∈Ln,τ
D
(
x, r(x)

)]
,

where D(x, r(x)) denotes a disk of radius r(x) > 0 centered at x and I is the
identity matrix.

The unique solution to the IP is

Pn(z)=
(

p
(T ;τ)
n,n (z)

(
Cp

(T ;τ)
n,n

)
(z)(

h
(T ;τ)
n,n−1

)−1
p
(T ;τ)
n,n−1(z)

(
h
(T ;τ)
n,n−1

)−1(
Cp

(T ;τ)
n,n−1

)
(z)

)
,(305)
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where the weighted discrete Cauchy transform C is defined in (162). The nor-
malizing constants in (92) and the recurrence coefficients (93) are encoded in the
matrices P1 and P2 in the expansion (304). Namely, we have

h(T ;τ)
n,n = [P1]12,

(
h
(T ;τ)
n,n−1

)−1 = [P1]21(306)

and

β
(T ;τ)
n,n−1 = [P2]21

[P1]21
− [P1]11.(307)

The steepest descent analysis of the IP for a general class of orthogonal poly-
nomials is described in Bleher and Liechty (2011) in the case τ = 0 [see also
Baik et al. (2007) for polynomials orthogonal on a finite lattice]. For the discrete
Gaussian orthogonal polynomials the analysis for a general τ was given in Liechty
(2012) for the case T = Tc + o(1) as n→ ∞. The analysis consists of a sequence
of transformations

Pn → Rn → Tn → Sn → Xn.(308)

The first transformation Pn → Rn reduces the IP to a Riemann–Hilbert problem
(RHP). The second transformation Rn → Tn uses the g-function to give a RHP
which approaches the identity matrix as z→ ∞. The third transformation Tn →
Sn is local and involves transformations only close to the support of the equilibrium
measure. The RHP for Sn can be approximated by RHPs for which we can write
explicit solutions in different regions of the complex plane, and Xn is uniformly
close to the identity matrix.

In the supercritical case T > Tc, one can make the reduction to a RHP in the
following way. Fix some ε > 0 and some 0 < δ < 1. Let �+ (resp., �−) be a
contour from ei0 · ∞ to eiπ · ∞ (resp., e−iπ · ∞ to ei0 · ∞) which lies in the upper
(resp., lower) half-plane and sits at a distance εn−δ from the real line except close
to the turning points ±α and ±β , where it maintains a fixed distance ε from these
points; see Figure 9. We let �± be the region bounded by the real line and �± with
|Re z|< α, and  ∇± the region bounded by the real line and �± with |Re z|> α.
We make the reduction of the IP to a RHP and the transformations to the RHP as in
Liechty (2012); see Liechty (2012), Figure 2 and equations (4.27), (4.28), (4.32).

FIG. 9. The contour �S . The horizontal line is R and the vertical segments pass through ±α and
±β . The remaining pieces of the contour are �± which pass close to R at a distance of εn−δ except
close to the turning points ±α and ±β . The regions  �± are bounded by the real line and �± with

|Re z|< α, and the regions  ∇± are bounded by the real line and �± with |Re z|> α.
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Note that the lattice shift parameter which we call τ is called (−α) in Liechty
(2012).

Let us briefly describe the explicit transformations involved in the steepest de-
scent analysis. Introduce the functions

�(z) := sin(nπz− τπ)
nπ

, G(z) := g+(x)− g−(z),(309)

where g±(z) are defined first on R as the limiting values of the g-function from
C±, and then extended to a small neighborhood of R by analytic continuation.
Notice that the function G(z) is also given by the integral formula (141). The
transformations described above involve the matrices

Du±(z)=
⎛
⎝1 −e

−(nT /2)z2

n�(z)
e±iπ(nz−τ)

0 1

⎞
⎠ ,

Dl±(z)=
(

�(z)−1 0

−ne(nT /2)z2
e±iπ(nz−τ) �(z)

)
,

(310)

j±(z)=
(

1 0
e∓nG(z) 1

)
,

A±(z)=
⎛
⎝∓ 1

2nπi
e∓iπ(nz−τ) 0

0 ∓2nπie±iπ(nz−τ)

⎞
⎠ .

After the first two transformations of the IP, the matrix Sn(z) is defined as

Sn(z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−(nl/2)σ3

(
1 0
0 −2πi

)
Pn(z)Dl±(z)

(
1 0
0 −2πi

)−1

× e−n(g(z)−l/2)σ3A±(z),
for z ∈ �±,

e−(nl/2)σ3

(
1 0
0 −2πi

)
Pn(z)Du±(z)

(
1 0
0 −2πi

)−1

× e−n(g(z)−l/2)σ3j±(z)∓1,

for z ∈ ∇± and α ≤ |Re z| ≤ β,
e−(nl/2)σ3

(
1 0
0 −2πi

)
Pn(z)Du±(z)

(
1 0
0 −2πi

)−1

× e−n(g(z)−l/2)σ3,

for z ∈ ∇± and |Re z| ≥ β,
e−(nl/2)σ3

(
1 0
0 −2πi

)
Pn(z)

(
1 0
0 −2πi

)−1

e−n(g(z)−l/2)σ3,

otherwise,

(311)

where σ3 = (1
0

0
−1

)
is the third Pauli matrix. This matrix function satisfies the

following RHP.
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• Sn(z) is an analytic function of z for z ∈ C \ �S , where �S consists R, �+,
and �−, along with the four vertical segments [±β − iε,±β + iε] and [±α −
iε,±α+ iε], oriented as shown in Figure 9.

• For z ∈�S , the function Sn(z) satisfies the jump conditions

Sn+(z)= Sn−(z)jS(z),(312)

where

jS(z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
, for z ∈ (−β,−α)∪ (α,β),(

e−i n 0
O
(
e−n1−δc(z)) ei n

)
, for z ∈ (−α,α),(

1 O
(
e−n1−δc(z))

O
(
e−n1−δc(z)) 1

)
,

for z on the rest of �S,

(313)

where

 n := π(n+ 1 − 2τ),(314)

and c(z) is a nonnegative continuous function on �S which may vanish only at
the turning points ±α and ±β .

• As z→ ∞,

Sn(z)= I + S1

z
+ S2

z2 + · · · .(315)

Notice that the errors in the off diagonal terms in (313) are subexponential, but still
smaller than any power of n. In the usual method of steepest descent [Bleher and
Liechty (2011)], these terms are exponentially small, but our analysis is slightly
different in that we have taken the contours �± to be very close to R. The reason is
that in Proposition 3.6 the asymptotic formulas are given for z ∈D(δ, ε, n), which
is the region above �+ and below �−.

6.2.1. Model RHP. The model RHP appears when we drop in the jump matrix
jS(z) the terms that vanish as n→ ∞:

• M(z) is analytic in C \ [−β,β].
• M+(z)= M−(z)jM(z) for z ∈ [−β,β], where

jM(z)=

⎧⎪⎪⎨
⎪⎪⎩

(
0 1

−1 0

)
, z ∈ (−β,−α)∪ (α,β),(

e−i n, 0
0 ei n

)
, z ∈ (−α,α).

(316)

• As z→ ∞,

M(z)∼ I + M1

z
+ M2

z2 + · · · .(317)
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The solution to this RHP is described in terms of Jacobi theta functions, and is
presented in Bleher and Liechty (2010), Section 8.

Consider the function u(z) defined in (165). This function is analytic for z ∈
C \ [−β,β]. On that interval it satisfies certain jump conditions [see Bleher and
Liechty (2010), Section 8]. We will use the Jacobi theta functions ϑj (z), (j = 3,4)
with elliptic nome q given by (21). The solution is slightly different for n odd and
n even. Using the notation ε(n) introduced in (4), we can write the solution in the
following uniform way:

M(z)= F(∞)−1

⎛
⎜⎜⎜⎝
γ (z)+ γ−1(z)

2

ϑ3(u(z)− π/4 − π(τ − ε(n)))
ϑ3(u(z)− π/4)

γ (z)− γ−1(z)

2i

ϑ3(u(z)+ π/4 − π(τ − ε(n)))
ϑ3(u(z)+ π/4)(318)

γ (z)− γ−1(z)

−2i

ϑ3(u(z)+ π/4 + π(τ − ε(n)))
ϑ3(u(z)+ π/4)

γ (z)+ γ−1(z)

2

ϑ3(u(z)− π/4 + π(τ − ε(n)))
ϑ3(u(z)− π/4)

⎞
⎟⎟⎟⎠ ,

where

F(∞)=

⎛
⎜⎜⎝
ϑ3(π(τ − ε(n)))

ϑ3(0)
0

0
ϑ3(π(τ − ε(n)))

ϑ3(0)

⎞
⎟⎟⎠ .(319)

The entries of the matrix(
1 0
0 −2πi

)−1

M(z)
(

1 0
0 −2πi

)
,(320)

are listed in (169)–(172). Notice that the ratios of theta functions in (318) and
(319) become trivial when τ = ε(n). The coefficient M1 in the expansion of M(z)
at z= ∞ is

M1 =

⎛
⎜⎜⎜⎝

πβϑ ′
3(π(τ − ε(n)))

4K̃ϑ3(π(τ − ε(n))) −β − α
2i

ϑ3(0)ϑ4(π(τ − ε(n)))
ϑ4(0)ϑ3(π(τ − ε(n)))

β − α
2i

ϑ3(0)ϑ4(π(τ − ε(n)))
ϑ4(0)ϑ3(π(τ − ε(n))) −πβϑ

′
3(π(τ − ε(n)))

4K̃ϑ3(π(τ − ε(n)))

⎞
⎟⎟⎟⎠ ,(321)

and the (21)-entry of the coefficient M2 is

[M2]21 = πβ(β − α)ϑ3(0)ϑ ′
4(π(τ − ε(n)))

8iϑ3(π(τ − ε(n)))ϑ4(0)K̃
.(322)

Notice that according the RHP for M(z), det M(z) is entire. Since det M(∞)=
1, it follows from Liouville’s theorem that det M(z)≡ 1.
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6.2.2. The local solution at ±α and ±β . Consider small disks D(±α, ε) and
D(±β, ε) around ±α and ±β with radius ε. We seek a local parametrix U(z) in
these disks satisfying:

• U(z) is analytic in {D(±α, ε)∪D(±β, ε)} \�S .
• For z ∈ {D(±α, ε)∪D(±β, ε)}∩�S , U(z) satisfies the jump condition U+(z)=

U−(z)jS(z).
• On the boundary of the disks, U(z) satisfies

U(z)= M(z)
(
I +O

(
n−1)), z ∈ ∂D(±α, ε)∪ ∂D(±β, ε).(323)

The solution is given explicitly in terms of Airy functions, and we do not describe
it here.

6.2.3. The final transformation of the RHP. We now consider the contour �X ,
which consists of the circles ∂D(±β, ε) and ∂D(±α, ε), all oriented counterclock-
wise, together with the parts of �S \ {[−β,α] ∪ [α,β]} which lie outside of the
disks D(±β, ε), D(±α, ε). Let

Xn(z)
(324)

=
{

Sn(z)M(z)−1, for z outside the disks D(±β, ε),D(±α, ε),
Sn(z)U(z)−1, for z inside the disks D(±β, ε),D(±α, ε).

Then Xn(z) satisfies a RHP with jumps on the contour �X which are uniformly
close to the identity matrix, and Xn(∞) = I . The solution to this RHP is given
explicitly in terms of a Neumann series. Due to the fact that the contours �± and
the real line are very close to one another (at a distance of the order n−δ), we find
that Xn(z) satisfies

Xn(z)∼ I +O
(

1

n1−δ(|z| + 1)

)
as n→ ∞,(325)

uniformly for z ∈ C \�X , which is a weaker error than the O(n−1) error in Bleher
and Liechty (2011).

6.3. Proofs of Propositions 3.6, 3.9 and 3.10. We can invert the explicit
transformations of the IP in different regions of the complex plane using (324)
and (311). The asymptotic formula (325) then gives asymptotic formulas for
Pn(z). Considering z in the region D(δ, ε, n) proves Proposition 3.6. Considering
z ∈ E(ε), and taking δ = 0 proves Proposition 3.9. For Proposition 3.10, we can
invert the explicit transformations with δ = 0, and Proposition 3.10 then follows
from (306), (307), and the expansions of M(z) at z= ∞ given in (321) and (322).
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APPENDIX A: CONSTRUCTION OF STEEPEST-DESCENT CONTOURS �̃
AND �̃

In this appendix, we show that the first and second derivatives of I (z), defined
in (225), vanish at z= 0, and construct two contours �̃ and �̃ lying in the region
C+ = {z ∈ C| Im z≥ 0} and passing through 0, such that �̃ is from e0 ·∞ to eπi ·∞
and �̃ is from M to −M where M > β . We require that Re I (z) attains its unique
global maximum on �̃ at 0, and attains its unique global minimum on �̃ at 0. Since
Re I (z) is symmetric about the imaginary axis, we only need to construct �̃ ∩D
and �̃ ∩D where

D = {z ∈ C|Re z≥ 0 and Im z≥ 0}(326)

and construct the other parts of them by reflection.
To simplify the notation, we take a change of variable

u= z

α
.(327)

Then we have that, by (156), (225) and (287) [Byrd and Friedman (1971), 140.01,
page 33]

I ′(z)= −2K
(
Z(u)−

(
1 − E

K

)
u

)
(328)

where Z(u)= Z(u;k)=E(u;k)− E
K
F(u;k).

REMARK A.1. Here, the arguments of Z(u;k), the Jacobi Zeta function, are
different from those in Byrd and Friedman (1971) such that our u is equal to sinβ
for the β in Z(β, k) in Byrd and Friedman (1971), 140.02, 03. The Jacobi Zeta
function also appears in (199), where the arguments have same meaning as those
in Byrd and Friedman (1971), 140.01, but the parameter is k̃ instead of k.

Below we collect some results about Z(u).

LEMMA A.1. (a) Z(u) is analytic in D,

Z′(0)= 1 − E
K
,Z′′(0)= 0 and Z(u)= ku− πi

2K
+O

(
u−1)

(329)
as u→ ∞ in D.

(b) For x ∈ [0,1], Z(x) is a real-valued function such that

Z(0)= Z(1)= 0 and Z′′(x) < 0 for all u ∈ (0,1).(330)
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(c) For x ∈ [1, k−1], Z(x) is a pure imaginary-valued function such that

ImZ(1)= 0, ImZ
(

1

k

)
= − π

2K
and

d

dx
ImZ(x) < 0

(331)

for all x ∈
(

1,
1

k

)
.

(d) For x ∈ [k−1,∞), Z(x)+ πi/(2K) is a real-valued function such that

Z

(
1

k

)
+ πi

2K
= 0 and

d

dx

(
Z(x)+ πi

2K

)
> 0,

(332)
d2

dx2

(
Z(x)+ πi

2K

)
< 0 for all x ∈

(
1

k
,∞

)
.

(e) For y ∈ [0,∞), Z(iy) is a pure imaginary-valued function such that

Z(0)= 0 and
d

dy
ImZ(iy) > 0,

d2

dy2 ImZ(iy) > 0

(333)
for all y ∈ (0,∞).

PROOF. The linear term in the asymptotics in part (a) of Lemma A.1 is a direct
consequence of the explicit formula of Z(u) in D,

Z(u)=
∫ u

0

(1 − E/K)− k2s2√
(1 − s2)(1 − k2s2)

,(334)

which is given by (328) and (144). In the integrand of (334) the sign of the square
root is chosen as

√
(1 − s2)(1 − k2s2)∼ 1 as s approaches 0 from the regionD. To

compute the constant term, it suffices to compute the asymptotics of Z(iy)− iky =
E(iy;k)− (E/K)F (iy;k)− iky as y→ +∞. By Gradshteyn and Ryzhik (2007),
3.152-1, page 279, limy→∞F(iy;k)= iK′, and by the computation in equations
(291) and (293), limy→∞E(iy;k) − iky = i(K′ − E′). Then an application of
Legendre’s relation (286) yields the result.

From the formula (334), it is clear that: Z(0) = 0; Z(x) is real valued for x ∈
[0,1]; ReZ(x) is constant for x ∈ [1, k−1]; ImZ(x) is constant for x ∈ [k−1,∞);
and Z(iy) is pure imaginary for y ∈ [0,∞). It is also straightforward to see that

Z(1)=E(1;k)− E
K
F(1;k)= E − E

K
K = 0,(335)

and with the help of Byrd and Friedman (1971), 111.09, page 11, and the Legen-
dre’s relation (286),

Z
(
k−1) = E(k−1;k)− E

K
F
(
k−1;k) = E + i(K′ − E′)− E

K

(
K + iK′)

(336)

= i

K

(
KK′ − KE′ − EK′) = − πi

2K
.
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Thus, all the identities in (330), (331), (332), (333) are all proved.
To consider the values of Z′(0) and Z′′(0), and the inequalities of Z′(u) in

(331), (332), (333), we write from (334)

Z′(u)= (1 − E/K)− k2u2√
(1 − u2)(1 − k2u2)

ds.(337)

Note that for u≥ 1,(
1 − E

K

)
− k2u2 = 1

K

∫ 1

0

k2(s2 − u2)√
(1 − s2)(1 − k2s2)

ds < 0,(338)

we obtain the inequality parts of (331), (332), (333) and the evaluation of Z′(0)
and Z′′(0) in (329).

To consider the inequalities of Z′′(u) in (330), (332) and (333), we can write
Z′(u) as

Z′(u)= k

K

√
1 − u2

k−2 − u2

∫ 1

0

(s2 − u2)/(1 − u2)√
(1 − s2)(1 − k2s2)

ds,(339)

for u ∈ (0,1) and u ∈ (k−1,∞), where in either case the square root is taken
positive value. We observe that Z′(u) is a decreasing function on (0,1) since
(1−u2)/(k−2 −u2) and (s2 −u2)/(1−u2) are both increasing, while Z′(u) is also
a decreasing function on (k−1,∞) by exactly the same reason. Similarly, writing

d

dy
ImZ(iy)= k

K

√
1 + y2k−2 + y2

∫ 1

0

(s2 + y2)/(1 + y2)√
(1 + s2)(1 + k2s2)

ds,(340)

we observe that d
dy

ImZ(iy) is increasing for all y ∈ (0,∞). This proves the in-
equality of Z′′(u) in (330), (332) and (333). �

LEMMA A.2. The function I ′(z) has only one zero z= 0 in the region D that
is a third-order zero, and I (4)(0) > 0.

PROOF. From (329), it is clear that u = 0 is a zero of Z(u) − (1 − E/F)u
with order at least 3, and then by (328) the same holds for I ′(z). On the other
hand, I (4)(z) = g̃(4)(z), and the explicit computation (236) of g̃(4)(0) shows that
I (4)(0) > 0. Below we show that the function Z(u)− (1 − E/F)u has only one
zero u= 0 in D, and complete the proof.

We note that by the results in Lemma A.1, Z(u)− (1 − E/F)u has no zero in
either {z = x|x > 0} or {z = iy|y > 0}, and it does not vanish as u→ ∞. So to
prove that Z(u) − (1 − E/F)u has no other zero in D, we define a region (see
Figure 10)

DR(1)= {
u ∈D||u| ≤R} \ {u ∈ C|Reu < 1 and Imu < R−1},(341)
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FIG. 10. The region DR(1).

where R is a positive number, and need only to show that for however large R,
Z(u)− (1 − E/K)u has no zero in the interior of DR(1).

By the results in Lemma A.1, we have that if R is large enough, then Z is a
homeomorphic mapping on ∂DR(1). Then by a basis result for univalent functions,
Z maps the interior ofDR(1) into the region enclosed by Z(∂DR(1)) that does not
contain 0, see Figure 11. Then by a continuity argument, if Z(u)− (1 − E/K)u
has a zero in the interior of DR(1), there must be a t ∈ (0,1 − E/K) such that
Z(u)− tu has a zero on ∂DR(1), but by the results in Lemma A.1, for all such t ,
Z(u) − tu does not vanish on ∂DR(1) given that R is large enough. Thus, we
show that Z(u) − (1 − E/K)u has no zero other than 0 in D by contradiction.

�

Now we construct �̃. By (329) and (330), we know that Re(Z(u)− (1−E/K)u)
is decreasing on [0,1]. By Lemma A.1(c) and that (1 − E/K) > 0, we also have
that Re(Z(u) − (1 − E/K)u) is decreasing on [1, k−1]. By the relation (328),
Re I (z) is decreasing on the interval [0, β]. Thus, it suffices to define �̃ ∩D as the

FIG. 11. The shape of Z(∂DR(1)) with k = 0.9 and R = 7.
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FIG. 12. Schematic graphs of �̃ and �̃ in D.

interval [0, β] if we allow M = β . Practically, for the convenience of the asymp-
totic analysis in Section 5.2, we let M be slightly bigger than β and define �̃ ∩D
by a deformation of the interval [0,M] such that [0, α/2] is part of �̃ ∩ D and
(α/2,M) is lifted above slightly; see Figure 12.

In the construction of �̃ ∩D and �̃∩D, we use techniques in planar dynamical
systems. Regarding Re I (z) as a function defined on the Cartesian plane whose
coordinates are Re z and Im z, we define the gradient field

∇ Re I (z)=
(
∂

∂x
Re I (z),

∂

∂y
Re I (z)

)
(342)

where x = Re z, y = Im z.

By Lemma A.1(a), (e), we have that for y > 0, Z(iy) − (1 − E/K)iy is pure
imaginary, and its imaginary part is positive. Then by (328), we conclude that
{iy|y > 0} is an upward flow curve of ∇ Re I (z). By Lemma A.1(d) and the rela-
tion (328), we have that for all x >M > β , Im(Z(x)− (1 − E/K)x > 0 and then
the gradient field ∇ Re I (z) is transversal to the interval [M,∞) and is outward
of D.

Since by Lemma A.2, 0 is a triple zero of I ′(z) and I (4)(0) > 0, there is a
flow curve that ends at 0, with direction π/4, and we denote it as γ . Since the
gradient field ∇ Re I (z) has no singular point by Lemma A.2, this flow curve is
from either the boundary of D or ∞. As we showed above, the left edge of D
is a flow curve and at the interval [M,∞), as part of ∂D, the gradient field is
outward, so the γ cannot be from the left edge ofD or [M,∞). If γ is from (0,M),
then it crosses �̃ at a point other than 0, denoted by z0. But by the definition of
�̃, Re I (z0) > Re I (0). On the other hand, by the property of the flow curve γ ,
Re I (z0) < Re I (0), and we derive a contradiction. Thus, γ cannot be from ∂D,
but is from ∞. At last by the behavior of ∇ Re I (z) given in Lemma A.1(a), we
verify that it suffices to let �̃ ∩D = γ , as shown in Figure 12.
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APPENDIX B: PROOF OF PROPOSITION 1.5

Since �(ζ ; s) satisfies [Hastings and McLeod (1980)]

∂

∂s
�(ζ ; s)=

(−iζ q(s)

q(s) iζ

)
�(ζ ; s),(343)

it is easy to derive the identity that for u, v ∈�T ,

∂

∂s

(
f (u; s)g(v; s)− g(u; s)f (v; s)

u− v
)

(344)
= −i(f (u; s)g(v; s)+ g(u; s)f (v; s)),

where f and g are defined by � by (28). Hence, (30) can be written as

K̃ tac
τi ,τj

(ξ, η;σ)= 1

4π2

∫
�T

du

∫
�T

dveτiu
2/2−τj v2/2e−i(uξ−vη)

×
∫ ∞
σ
ds

(
f (u; s)g(v; s)+ g(u; s)f (v; s))

=
∫ ∞
σ
ds

[(
1

2π

∮
�T

dueτiu
2/2−iξuf (u; s)

)
(345)

×
(

1

2π

∮
�T

dve−τiv2/2+iηvg(v; s)
)

+
(

1

2π

∮
�T

dueτiu
2/2−iξug(u; s)

)

×
(

1

2π

∮
�T

dve−τiv2/2+iηvf (v; s)
)]
.

In order to relate formula (345) for the tacnode kernel to the other formula (45)
defined by Airy function and related operators, we consider the expressions for
the entries of �(ζ ; s) in terms of Airy functions. Introduce the functions in x with
parameters ζ and s,

E+(x)= E+(x; ζ, s) := ei((4/3)ζ 3+(s+2x)ζ ),
(346)

E−(x)= E−(x; ζ, s) := e−i((4/3)ζ 3+(s+2x)ζ ) =E+(x;−ζ, s).
Then the matrix entries of �(ζ ; s) are given by the formulas


11(ζ ; s)= 〈E−,Rs + δ0〉0, 
21(ζ ; s)= −〈E−,Qs〉0,(347)


12(ζ ; s)= −〈E+,Qs〉0, 
22(ζ ; s)= 〈E+,Rs + δ0〉0,(348)

where the inner product 〈·, ·〉0, functions Rs , Qs , and the delta function δ0 are de-
fined in Section 1.2. The derivation of (347) is essentially given in Baik, Liechty
and Schehr (2012). Note that the functions �1(ζ ; s) and �2(ζ ; s) in Baik, Liechty
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and Schehr (2012), Proposition 2.1, are the same as the functions �1(ζ ; s) and
�2(ζ ; s) in Claeys and Kuijlaars (2006), and the entries 
11(ζ ; s) and 
21(ζ ; s)
are the same as the functions�1(ζ ; s) and�2(ζ ; s) in Claeys and Kuijlaars (2006).
Using the relation given in equation (1.19) of Claeys and Kuijlaars (2006), equa-
tion (347) follows from Proposition 2.1 of Baik, Liechty and Schehr (2012). By
the relation (15), (347) implies (348).

Consider now the integrals

I±
a,b;s(x) :=

1

2π

∮
�±
T

eaζ
2+ibζE±(x; ζ, s) dζ,(349)

where�+
T (resp.,�−

T ) is the connected piece of�T which lies above (resp., below)
the real axis. A simple change of variables gives that

I+
a,b;s(x)=

1

2π

∮
�+
T

ei(4/3)ζ
3+aζ 2+i(s+2x+b)ζ dζ

(350)

= −2−2/3e−a3/24−a(s+2x+b)/4Ai
(
s + 2x + b

22/3 + a2

28/3

)
,

where we have used the integral representation of the Airy function

Ai(x)= −1

2π

∮
�+
T

e(i/3)ζ
3+ixζ dζ.(351)

Similarly,

I−
a,b;s(x)= 2−2/3e−a3/24−a(s+2x−b)/4Ai

(
s + 2x − b

22/3 + a2

28/3

)
.(352)

We can now write the expression (345) in terms of Airy functions and operators
only, since the functions f and g there are expressed by entries of � . Notice that
in the expressions (347) and (348) for the entries of the matrix � , the dependence
on ζ lies solely in the left-hand side of the inner products. Thus, by changing the
order of integration, we can write (345) in terms of the integrals I±

a,b;s(x). Indeed
we have

K̃ tac
τi ,τj

(ξ, η;σ)=
∫ ∞
σ
ds

[(〈
I−
τi/2,−ξ ;s,Rs + δ0〉0 + 〈

I+
τi/2,−ξ ;s,Qs

〉
0

)
× (−〈

I+
−τj /2,η;s,Rs + δ0〉0 − 〈

I−
−τj /2,η;s,Qs

〉
0

)
(353)

+ (−〈
I+
τi/2,−ξ ;s,Rs + δ0〉0 − 〈

I−
τi/2,−ξ ;s,Qs

〉
0

)
× (〈

I−
−τj /2,η;s,Rs + δ0〉0 + 〈

I+
−τj /2,η;s,Qs

〉
0

)]
.

Notice that in terms of the function bτ,z,σ defined in (43),

I+
τ,z;s(x)= −2−2/3πb2−4/3τ,2−2/3z,s(x),

(354)
I−
τ,z;s(x)= 2−2/3πb2−4/3τ,−2−2/3z,s(x).
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Hence, formula (353) becomes

K̃ tac
τi ,τj

(ξ, η;σ)

= 2−4/3
∫ ∞
σ
ds

[(〈b2−7/3τi ,2−2/3ξ,s,Rs + δ0〉0 − 〈b2−7/3τi ,−2−2/3ξ,s,Qs〉0
)

× (〈b−2−7/3τj ,2−2/3η,s,Rs + δ0〉0

− 〈b−2−7/3τj ,−2−2/3η,s,Qs〉0
)

(355)

+ (〈b2−7/3τi ,−2−2/3ξ,s,Rs + δ0〉0 − 〈b2−7/3τi ,2−2/3ξ,s,Qs〉0
)

× (〈b−2−7/3τj ,−2−2/3η,s,Rs + δ0〉0

− 〈b−2−7/3τj ,2−2/3η,s,Qs〉0
)]
,

which is, in terms of the function p̂1(z; s, τ ) defined in (46),

K̃ tac
τi ,τj

(ξ, η;σ)

= 2−4/3
∫ ∞
σ
ds

(
p̂1

(−2−2/3ξ ; s,2−7/3τi
)
p̂1

(−2−2/3η; s,−2−7/3τj
)

(356)
+ p̂1

(
2−2/3ξ ; s,2−7/3τi

)
p̂1

(
2−2/3η; s,−2−7/3τj

))
= 2−2/3L̃tac

(
2−2/3ξ,2−2/3η;σ,2−7/3τi,2

−7/3τj
)
,

where L̃tac is defined in (44). It is simple to see that by (26)

2−2/3(φ2·2−7/3τi ,2·2−7/3τj

(
2−2/3ξ,2−2/3η

)) = φτi,τj (ξ, η).(357)

Combining (355) and (357) gives (47), and Proposition 1.5 is proved.
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