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NOISE-STABILITY AND CENTRAL LIMIT THEOREMS FOR
EFFECTIVE RESISTANCE OF RANDOM ELECTRIC NETWORKS1

BY RAPHAËL ROSSIGNOL

Université Grenoble Alpes

We investigate the (generalized) Walsh decomposition of point-to-point
effective resistances on countable random electric networks with i.i.d. resis-
tances. We show that it is concentrated on low levels, and thus point-to-point
effective resistances are uniformly stable to noise. For graphs that satisfy
some homogeneity property, we show in addition that it is concentrated on
sets of small diameter. As a consequence, we compute the right order of the
variance and prove a central limit theorem for the effective resistance through
the discrete torus of side length n in Z

d , when n goes to infinity.

1. Introduction. Consider a piece of conductive material whose resistivity
possesses some microscopic disorder. One way to account for this disorder is to
suppose that the material is an electric network made of tiny random resistances.
Once this model is assumed, one typically wants to understand the behaviour of
the macroscopic resistivity of the material. To make the picture more accurate,
imagine that each edge of the lattice Z

d is equipped with a resistance r(e) belong-
ing to some interval [1,�] (we shall not prescribe any resistance unit). Suppose
in addition that all resistances are random, independent and identically distributed.
Our macroscopic piece of material is now the box Bn = {0, . . . , n}d , two sides of
which we distinguish: An = {x ∈ Bn s.t. x1 = 0} and Zn = {x ∈ Bn s.t. x1 = n}.
The effective resistance of the box Bn is then defined as

Rn = inf
θ

∑
e∈En

r(e)θ2(e),

where the sum is over the set En of edges inside Bn and the infimum is taken
over all unit flows on En from An to Zn (all precise definitions are postponed
until Section 2). In the literature, the effective conductivity is more often the main
character. It is simply the reciprocal value of the effective resistance and can also
be defined as

Cn = inf
v

∑
e∈En

c(e)
(
dv(e)

)2
,(1)
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where the infimum is over all functions v on Bn having value 0 on An and 1 on
Zn, c(e) = 1/r(e) is the conductance of edge e, and dv(e) := v(e−)−v(e+) is the
difference of v along edge e. The unique minimizer in the definition of Cn is the
function that is 0 on An and 1 on Zn and is discrete harmonic on Bn \ {An,Zn}. It
is worth mentioning that the setting above is also relevant to describe the pressure
field of a fluid through a weakly porous medium when the circulation of the fluid
can be modelled with Poiseuille’s law. The central problem is now to understand
the asymptotic behaviour of Rn (or, equivalently, of Cn) as n goes to infinity.

A first step in this direction was accomplished in the setting of stochastic ho-
mogenization theory (cf. [19], Chapter 7). It is shown in [21], Section 3, that a law
of large numbers holds (see also [22, 29] and [6] for related results). Namely, there
is some positive constant μ such that

1

nd−2Cn
a.s.−→

n→∞μ that is nd−2Rn
a.s.−→

n→∞
1

μ
.

To understand the scaling, notice that the function vhom :x �→ x1/n gives an up-
per bound of order nd−2 on the value of Cn, and a flow θ satisfying θ(e) =

1
(n+1)d−1 dvhom gives an upper bound of order n2−d on the value of Rn.

A second step is to understand the fluctuations of Cn and Rn. If the optimal
function in the definition of Cn were vhom, then Cn would merely be a sum of
�(nd) i.i.d. random variables, each of variance �(n−4). The variance of Cn would
thus be of order �(nd−4), and that of Rn of order �(n4−3d). A lower bound of
this order was given by Wehr (cf. [31]) under some technical assumptions (see also
Section 3.2 below). More recently, an upper bound of the same order was obtained
by [16] for a different, but closely related quantity. We shall present in more details
the work of Gloria and Otto at the end of this introduction.

The main purpose of the present paper is to derive the right order of the vari-
ances of Cn and Rn and in addition to make a step further in the understanding of
their fluctuations by deriving Gaussian central limit theorems for these quantities.
However, for technical reasons we shall only be able to do this in a translation
invariant setting, namely for the effective resistance through the torus; cf. Theo-
rem 5.2. This is the main result of the article. Our approach to obtain this result is
however quite general and not restricted to graphs like Z

d . Indeed, we shall study
in Section 3 the generalized Walsh decomposition of point-to-point effective re-
sistance on general infinite networks. This decomposition, sometimes called the
Efron–Stein decomposition, is an extension of the Fourier–Walsh decomposition
on the discrete cube and is related to a notion of noise sensitivity introduced in [2].
From now on, we shall drop the term “generalized” for simplicity. The Walsh de-
composition of a square integrable function f of the resistances reads

f = ∑
S

fS,
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where the sum runs over all finite subsets of the set of edges, fS is a function of
(r(e))e∈S for any S and fS is orthogonal to fS′ whenever S �= S′. This decom-
position has two immediate interesting features. First, the variance of f may be
expressed as

Var(f ) = ∑
S �=∅

‖fS‖2
2.

Second, if f ε is obtained from f by resampling independently each input r(e)

with probability ε, the correlation between f and its ε-noised version f ε equals
(see Proposition 3.3 for further details)

Corr
(
f,f ε) =

∑
S �=∅(1 − ε)|S|‖fS‖2∑

S �=∅ ‖fS‖2 .

Thus, if f is nonconstant one may associate a “spectral probability measure” Qf

to f on the set of nonempty finite subsets of the set of edges:

Qf (S) = ‖fS‖2
2

Var(f )
,

and we see that understanding the distribution of |S| under Qf allows to control
the noise-sensitivity of f . Our first result, Theorem 3.5, shows that the second mo-
ment of |S| under Qf when f is a point-to-point effective resistance, is bounded
above by a constant depending only on �. This implies, loosely speaking, that
the Walsh decomposition of the effective resistance is always concentrated on low
levels. More precisely, consider the set of distributions of |S| under Qf when f

runs over all possible point-to-point resistances on graphs equipped with inde-
pendent resistances in [1,�] with � fixed. Then our first result implies that this
set of probability measures is tight. It implies also that effective resistances are
always uniformly stable to noise in the sense of [2] (cf. Corollary 3.6) and that
the Efron–Stein inequality is always sharp for estimating the variance of the ef-
fective resistance; cf. Corollary 3.7. Then we shall improve this result on a class
of graphs which possess some homogeneity property. These graphs that we shall
qualify as having homogeneous currents contain all quasi-transitive graphs; cf.
Corollary 3.11. On those graphs we shall show that the Walsh decomposition is,
loosely speaking, concentrated on sets of small diameter. This is the key to obtain
a central limit theorem since the sets of resistances with bounded diameter exhibit
only finite range dependence; cf. Section 4.

In Section 5, we shall adapt this general approach to the effective resistance
through the discrete torus, deriving the optimal variance estimate and the Gaussian
central limit theorem already mentioned.

We end this introduction by giving more details on the work [16], and compar-
ing our results to theirs. Their work is close to the homogenization theory frame-
work. Consider the discrete elliptic differential operator d∗(cd(·)) corresponding
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to random, translation invariant and ergodic conductances c = (c(e))e∈Ed on Z
d .

Precise definitions of d∗ and d are given in Section 2.1, but let us just mention that
it gives, for a function v on Z

d :

d∗(cdv)(x) = ∑
y∼x

c(x, y)
(
v(x) − v(y)

)
.

Then, using the words of [16], homogenization theory (namely [22]) shows that
there exists a constant matrix A such that the solution operator of ∇∗(A∇(·)) de-
scribes the large scale behaviour of the solutions operator of d∗(cd(·)). Further-
more, A can be characterized by the so called corrector: for any ξ in R

d , there ex-
ists a unique function φξ on Z

d (which is a function also of the conductances) such
that ∇φξ is stationary, φξ (0) = 0, E(∇φξ ) = 0 and such that gξ :x �→ ξ.x + φξ (x)

is discrete harmonic for d∗(cd(·)) on Z
d . Then A is characterized by

ξ.Aξ = E[∇gξ .A∇gξ ].
When the conductances are i.i.d., A equals μ times the identity matrix, and the
constant μ is the same as in the law of large numbers of Cn stated above. We
shall fix ξ = (1,0, . . . ,0) in the sequel. When one is interested in computing μ,
Gloria and Otto remark that the preceding characterization is not computation-
ally tractable. Thus, one has to find a way to efficiently estimate μ. The quantity
Cn/nd−2 is therefore a reasonable estimator for μ. Putting aside for a moment the
problem of controlling its bias, this is where the knowledge of its variance, and
even of a central limit theorem, may be useful. Unfortunately, Cn lacks stationar-
ity. This is a handicap for error analysis, as Gloria and Otto noticed in [16] for a
quantity very similar to Cn. Next, they introduce a stationary approximation of the
voltage, namely φT solving

1

T
φT + d∗(c(ξ + dφT )

) = 0 in Z
d .

Let ηL be an averaging cutoff function with support in (0, n)d (and some extra
regularity condition). When T is large with respect to n, they show that the quantity

An := ∑
e∈Ed

c(e)(ξ + dφT )(e)2ηL(e),

is a good proxy for n2−dCn and, furthermore, they show that the variance of An is
of order at most n−d , with some extra polylogarithmic factor in T for d = 2. This
order coincides with the variance order conjectured above for n2−dCn.

What we shall obtain in Theorem 5.2 is an optimal variance estimate and a
central limit theorem for the effective conductance on the discrete torus of length
n when n goes to infinity. To compare our results to those obtained by Gloria
and Otto, we shall say that the precise quantity that we analyse is practically com-
putable and stationary. Furthermore, in some sense, the discrete tori converge to Z

d
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better than the discrete cubes since they avoid boundary effects. Thus, the effective
conductance on the torus may be a better estimator of μ. Notice, however, that the
convergence of the normalized effective conductance to μ is known (cf. [9] and
[28]) but not the rate of convergence. It would be interesting to investigate this
rate, for instance, in the spirit of [17]. Second, our method works the same way
whether d = 2 or not, and this is an advantage over Gloria and Otto’s result, which
makes a distinction between the two. Finally, the fact that we obtain a central limit
theorem is really a step forward compared to [16] which only obtains variance es-
timates. On the other hand, Gloria and Otto obtain other interesting results, that
we do not get by our method, notably concerning the integrability of the corrector
itself (Proposition 2.1 in [16]).

After this paper was submitted for publication, we learned the existence of two
preprints which address essentially the same question. Nolen [27] defines a contin-
uous version of the effective conductance on the torus (but with discrete random-
ness) and shows a Gaussian approximation. He uses essentially two arguments:
a second-order Poincaré inequality due to Chatterjee [11], and the results of Glo-
ria and Otto on the boundedness in Lp of the corrector. The drawbacks of this
approach are twofold. First, the bound obtained by Nolen in dimension 2 is subop-
timal, because in dimension 2, integrability results of Gloria and Otto are weaker.
Then the use of Chatterjee’s inequality forces the elliptic conductances to have
a special form of distribution (notably, it must be absolutely continuous with re-
spect to the Lebesgue measure). In return, Nolen obtains a bound on the variation
distance between the normalized effective conductance and the standard Gaussian
distribution, which is of course a stronger conclusion than ours. The other preprint
is by Biskup, Salvi and Wolff [4]. It shows a central limit theorem for the effective
conductance on the grid with linear boundary condition. One serious limitation of
their approach is that they require a small ellipticity contrast (i.e., � close enough
to 1 in our setting). On the other hand, this paper has the advantage of giving an
asymptotic equivalent of the variance of the effective conductance.

2. Preliminaries.

2.1. Effective resistance and minimal current. An excellent reference for
background on electric networks is the book [23], Chapters 2 and 9 and we shall
try to stick to its notation.

In the sequel, G = (V,E) will be a countable, locally finite, oriented, symmetric
and connected graph. Symmetric means that E is a symmetric subset of V2, that
is, each edge of G occurs with both orientations in E, countable means here that
both V and E are at most countable and locally finite means that every vertex has
finite degree. When e ∈ E, we let e− denote the tail of e and e+ its head, we denote
by −e := (e+, e−) the edge e with reversed direction and let E1/2 be a subset of E
such that for every edge e, exactly one of e and −e belongs to E1/2.
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For every collection r ∈ (0,∞)E1/2 , one may define the electric network (G, r):
it must be understood as a resistive network, where each edge e is a resistor with
resistance r(e). We shall sometimes use the notation c(e) to denote the conduc-
tance of edge e, that is, c(e) = 1/r(e). We define the co-boundary operator d

from R
V to R

E by

dv(e) = v(e−) − v(e+),

and the boundary operator d∗ from R
E to R

V by

d∗θ(x) = ∑
e−=x

θ(e).

Notice that dv plays the role of a gradient and d∗θ the role of a divergence.
For a fixed collection r , we define 	2−(E, r) as the Hilbert space of antisymmetric

functions on the edges that have bounded energy:

	2−(E, r) = {
θ ∈ R

E s.t. Er (θ) < ∞ and ∀e ∈ E, θ(e) = −θ(−e)
}
,

where

Er (θ) := ∑
e∈E1/2

r(e)θ2(e),

endowed with the scalar product:(
θ, θ ′)

r = ∑
e∈E1/2

r(e)θ(e)θ ′(e).

We shall denote by ‖θ‖r := (θ, θ)
1/2
r the norm associated to this scalar product.

Thus, Er (θ) is the square of the norm in 	2−(E, r) of θ and it is called the energy
of θ . In the main part of the present paper (from Section 3.3 on), we shall be
interested in elliptic networks, that is, networks (G, r) for which there is a finite
constant � ≥ 1 such that r ∈ [1,�]E. In the whole article, C(�) [resp., C(�,G)]
will denote a constant, depending only on � (resp., on � and G), that may vary
from time to time. Of course, all the sets 	2−(E, r) for r ∈ [1,�]E1/2 are the same,
and we shall define this common set as 	2−(E):

	2−(E) :=
{
θ ∈ R

E s.t.
∑

e∈E1/2

θ2(e) < ∞ and ∀e ∈ E, θ(e) = −θ(−e)

}
.(2)

Let I be a nonnegative real number, and u and v two distinct vertices of G.
A member θ of 	2−(E, r) is called a flow of intensity I from u to v if:

d∗θ = I (1u − 1v).(3)

This means θ satisfies the node law on the network, except at u where a net flow of
value I enters the network, and at v where a net flow of value I leaves the network.
When θ is a flow from u to v, we say that θ is a unit flow if its intensity is 1. Among
flows, some are particular important: the currents, which satisfy Kirchhoff’s cycle
law as stated precisely in the following definition.
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DEFINITION 2.1. For any e ∈ E, let χe = 1{e} − 1{−e} denote the unit flow
along e. A current i ∈ 	2−(E, r) from u to v is a flow from u to v which satisfies
Kirchhoff’s cycle law: if e1, . . . , en is an oriented cycle in G, then(

n∑
i=1

χek , i

)
r

= 0.

Currents are the flows which derive from a potential: if i is a current, there exists
a function v on V such that r(e)i(e) = dv(e) for any edge e ∈ E.

We may now define the effective resistance between two points u and v on the
network (G, r) as the minimal energy of a unit flow between u and v:

Ru,v(r) := inf
{ ∑

e∈E1/2

r(e)θ2(e) s.t. θ ∈ 	−(E, r) is a unit flow from u to v

}
.

Since one minimizes a Hilbert norm on a nonempty closed convex set (nonempty
because it contains the flows induced by the paths from u to v), the infimum above
is attained by a unique flow (cf. Proposition 9.2 of [23]). It turns out that this flow
has the additional property of being a current. It is called the minimal unit current
from u to v and we shall denote it by iu,v

r . The term minimal stems from the fact
that it minimizes the energy among all unit currents from u to v.

It is important to notice that currents from u to v of prescribed intensity may
or may not be unique depending on the particular network; see Chapter 9 in [23].
On finite networks, however, it is well known that currents are unique (see, e.g.,
Chapter 2 in [23]). A useful fact about minimal currents is that they are limits of
currents on finite graphs. Let us be more precise. Let (Gn)n≥0 be a sequence of
finite subgraphs of G that exhausts G, that is, such that Gn ⊂ Gn+1 and such that
G = ⋃

n≥0 Gn. Suppose that u and v belong to G0 and denote by GW
n the “wired”

network obtained from G by identifying all vertices outside Gn as a single vertex.
Notice that one may identify the edges of Gn and GW

n as subsets of E. Let iWr,n be
the (unique) current from u to v on GW

n and see it as an element of 	−(E, r) by
putting zero flow on edges not in GW

n . Then iWr,n converges in 	−(E, r) (and thus
pointwise) as n goes to infinity (see Proposition 9.2 in [23]).

We finish this section with a useful lemma: the absolute value of a minimal unit
current is at most one on any edge. This is intuitively clear since it must carry a
unit mass from u to v and also minimize the energy.

LEMMA 2.2. For any distinct vertices u and v on a network (G, r), and any
edge e, ∣∣iu,v

r (e)
∣∣ ≤ 1.
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PROOF. Suppose first that G is finite. Let e be any edge of G and suppose,
without loss of generality, that ir (e) > 0. Let f denote the voltage associated to ir
with value zero at v (see Chapter 2 in [23]). It satisfies, for any edge e′:

df
(
e′) = ir

(
e′),

notably f is discrete harmonic on V \ {u, v}, that is,

∀x ∈ V \ {u, v}, ∑
y∼x

c(x, y)
(
f (x) − f (y)

) = 0,

and f (u) > 0 (see, e.g., equation (2.3) in [23]). Furthermore, it satisfies the max-
imum principle on V \ {u, v} (see Section 2.1 in [23]): for any W ⊂ V \ {u, v} let
∂W be the set of vertices which are adjacent to a vertew in W . Then the maximum
and the minimum of f on W = W ∪ ∂W are attained on ∂W . Now, consider the
set

A = {
x ∈ G s.t. f (x) > f (e+)

}
.

A is a connected set of vertices containing u and e−, and not containing v nor e+.
Indeed, A clearly contains u and e−. Furthermore, if A had a connected component
W not containing u, then from the maximum principle, the maximum of f on W

would be obtained at some x ∈ ∂W , showing that there is y ∈ W such that x ∼ y

and f (x) ≥ f (y), but then x would be in A, contradicting the fact that W is a
connected component of A.

Let � be the set of edges with the tail in A and the head in Ac. Thus, e belongs
to �. Because of the node law,∑

x∈A

d∗ir (x) = d∗ir (u) = 1,

and on the other hand, ∑
x∈A

d∗ir (x) = ∑
x∈A

∑
e′∈E

ir
(
e′)1e′−=x

= ∑
e′∈E

ir
(
e′) ∑

x∈A

1e′−=x

= ∑
e′∈E

ir
(
e′)1e′−∈A

= ∑
e′∈�

ir
(
e′),

since ir is antisymmetric, but of course, ir (e
′) ≥ 0 for any e′ in A. Thus,

0 < ir(e) ≤ ∑
e′∈�

ir
(
e′) = 1.

This shows the result on finite graphs. It implies the general result since the mini-
mal unit current between u and v is the pointwise limit of a sequence of minimal
unit currents between u and v on finite graphs. �
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2.2. Partial derivatives of the effective resistance and the minimal current.
The functions r �→ iu,v

r and r �→ Ru,v(r) are smooth functions, as the next lemma
shows. In the sequel, ∂ef denotes the partial derivative with respect to r(e) of a
function f on (0,∞)E1/2 and ∂2

e,e′f denotes ∂e ∂e′f .

LEMMA 2.3. The functions r �→ iu,v
r (e), for any edge e, and r �→ Ru,v(r)

admit partial derivatives of all orders. In addition, for any distinct vertices u, v

and edges e, e′:

(i) ∀e′ �= e, ∂e′iu,v
r (e) = i

u,v
r (e′)
r(e′) ie

′
r (e) = i

u,v
r (e′)
r(e)

ier (e
′).

(ii) ∀e, ∂ei
u,v
r (e) = i

u,v
r (e)
r(e)

(ier (e) − 1).

(iii) ∀e, ∂eRu,v(r) = (iu,v
r (e))2.

PROOF. Let us first suppose that G is finite. Then it is well known that iu,v
r (e)

and Ru,v(r) are rational functions of r with no positive pole. See, for instance,
[7], Theorem 2, page 46. The idea goes back to Kirchhoff (see [20] for an en-
glish translation of the original paper). The fact that ∂eRu,v(r) = (iu,v

r (e))2 is also
known; cf., for instance, [23], Exercise 2.69. One easy way to see it is as follows.
Let r ′ be a collection of resistance differing from r only on edge e. Then, using
the minimality of iu,v

r ,

Er ′
(
i
u,v
r ′

) − Er

(
i
u,v
r ′

) ≤ (
Ru,v(r ′) −Ru,v(r)

) ≤ Er ′
(
iu,v
r

) − Er

(
iu,v
r

)
,

and thus(
r ′(e) − r(e)

)(
i
u,v
r ′ (e)

)2 ≤ (
Ru,v(r ′) −Ru,v(r)

) ≤ (
r ′(e) − r(e)

)(
iu,v
r (e)

)2
.(4)

Letting r ′(e) go to r(e) shows that ∂eRu,v(r) = (iu,v
r (e))2.

To compute the partial derivatives of r �→ iu,v
r (e), let us differentiate the flow

condition (3) and Kirchhoff’s cycle law of Definition 2.1 with respect to r(e′). We
obtain

∀x ∈ V, d∗[∂e′iu,v
r

]
(x) = 0,

and for every cycle γ on G,∑
e∈γ

[
r(e) ∂e′iu,v

r (e) + iu,v
r

(
e′)χe′(e)

] = 0.

Thus, if one defines

j (e) = ∂e′ iu,v
r (e) + iu,v

r (e′)
r(e′)

χe′(e),

we get

∀x /∈ {
e′−, e′+

}
, d∗j (x) = 0,
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and, for every cycle γ on G, ∑
e∈γ

r(e)j (e) = 0.

Thus, j is a current from e− to e+ or from e+ to e−, depending on the sign of
d∗j (e′−). Its intensity is deduced from

d∗j
(
e′−

) = d∗[∂e′iu,v
r

]
(e−) + iu,v

r (e′)
r(e′)

= iu,v
r (e′)
r(e′)

.

Thus, from the unicity of currents on finite graphs, one gets

j = iu,v
r (e′)
r(e′)

ie
′

r .

Consequently,

∀e′ �= e, ∂e′iu,v
r (e) = iu,v

r (e′)
r(e′)

ie
′

r (e)

and

∀e′, ∂e′ iu,v
r

(
e′) = iu,v

r (e′)
r(e′)

j
(
e′) = iu,v

r (e′)
r(e′)

(
ie

′
r

(
e′) − 1

)
.

Finally, for any e �= e′,

∂2
e′,eRu,v(r) = ∂e′

(
iu,v
r (e)

)2 = 2iu,v
r (e)

iu,v
r (e′)
r(e′)

ie
′

r (e).

But since ∂2
e′,eRu,v(r) = ∂2

e,e′Ru,v(r), we obtain

iu,v
r (e)

iu,v
r (e′)
r(e′)

ie
′

r (e) = iu,v
r

(
e′) iu,v

r (e)

r(e)
ier
(
e′).

Now, take (u, v) = e and (u, v) = e′ and notice that ier (e) and ie
′

r (e′) are always
different from zero. We obtain

ier (e
′)ie′

r (e)

r(e′)
= (ier (e

′))2

r(e)

and

ier (e
′)ie′

r (e)

r(e)
= (ie

′
r (e))2

r(e′)
.

Thus, one deduces that ier (e
′) = 0 if and only if ie

′
r (e) = 0 and in any case,

ier (e
′)

r(e)
= ie

′
r (e)

r(e′)
.(5)
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This last relation is called the reciprocity law. See [23], Chapter 2 for another
proof. This concludes the proof of the lemma on finite graphs.

Now, let G be infinite, r belong to (0,∞)E1/2 and e, e′ in E1/2. As explained
in Section 2.1, for any u and v, iu,v

r is the limit, in 	2−(E, r) of a sequence iWr,n
of unit currents from u to v on “wired” finite graphs GW

n . Notably, iu,v
r (e) is the

pointwise limit of iWr,n(e). From the formulas of the derivatives on finite graphs and
Lemma 2.2, one sees that r(e′) �→ iWr,n(e) form an equi-continuous family of func-
tions on any compact interval I of (0,∞). It follows from Arzela–Ascoli’s theo-
rem that the convergence of iu,v

r,n (e) to iu,v
r (e) is uniform when r(e′) runs over I .

Notably, this implies the continuity of r(e′) �→ iu,v
r (e) for any e, e′. Then, from

the formulas (i) and (ii) of the derivative ∂e′iu,v
r,n (e) one sees that the derivative

itself converges uniformly when r(e′) runs over I . Then r(e′) �→ iu,v
r (e) is differ-

entiable on (0,∞) and its derivative is the limit of the derivatives ∂e′ iu,v
r,n (e). This

shows the formulas for ∂e′iu,v
r,n (e). Formula (iii) is then a consequence of (4), since

r(e) �→ iu,v
r (e) is continuous. �

REMARK 1. A similar formula, relating the partial derivative of the volt-
age drop through e with respect to the conductance c(e′) to the voltage induced
through e′ by a voltage source between e− and e+ was used in [26], Proposition 1,
in [16], Lemma 2.4 and in [4], Proposition 2.5.

The formula satisfied by the partial derivatives of r �→ iu,v
r in Lemma 2.3 al-

lows us to control iu,v
r after a finite number of modifications of the individual

resistances.

LEMMA 2.4. For any subset S ⊂ E1/2, define rS←r ′
by:

rS←r ′
(e) =

{
r ′(e), if e ∈ S,

r(e), else.

Then:

(i) For any e ∈ E1/2, if r ′(e) ≤ r(e),

∣∣iu,v
r (e)

∣∣ ≤ ∣∣iu,v

re←r′ (e)
∣∣ ≤ r(e)

r ′(e)
∣∣iu,v

r (e)
∣∣.

(ii) Let g(x, y) = max{x
y
,

y
x
} for x and y in (0,+∞). For any nonempty, finite

subset S ⊂ E1/2, any edge e ∈ E1/2, and any distinct vertices u and v, if e /∈ S,

∣∣iu,v

rS←r′ (e)
∣∣ ≤ ∣∣iu,v

r (e)
∣∣ + (∑

e′∈S

∣∣iu,v
r

(
e′)∣∣) ∏

e′∈S

g
(
r
(
e′), r ′(e′)),

and if e ∈ S, ∣∣iu,v

rS←r′ (e)
∣∣ ≤ (∑

e′∈S

∣∣iu,v
r

(
e′)∣∣) ∏

e′∈S

g
(
r
(
e′), r ′(e′)).
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PROOF. First, let us prove (i). Let e ∈ E1/2 and consider {r(e′), e′ �= e} fixed
in (0,∞)E1/2 . To simplify notation, for x > 0, define

f (x) := i
u,v
re←x (e)

and

g(x) := iere←x (e).

Then one gets from Lemma 2.3,

f ′(x) = f (x)

x

(
g(x) − 1

)
.

This is a homogeneous differential equation of order 1 on (0,∞) which implies
that f is of constant sign: either it is zero on (0,∞), or it is positive on (0,∞), or
it is negative on (0,∞). Suppose that it is not identically zero and orient e so that
f is positive. Notice that g(x) ∈]0,1] for every x > 0. Then f ′ is negative, which
shows that for any x0 ≤ x1,

f (x1) ≤ f (x0).

But also,

(− lnf )′(x) ≤ 1

x

and thus

f (x0) ≤ x1

x0
f (x1).

This shows (i), and notably implies the following:

∣∣i
re←r′ (e)

∣∣ ≤ ∣∣ir (e)∣∣max
{

1,
r(e)

r ′(e)

}
.(6)

Now, let e′ and e be distinct edges in E1/2. Using Lemma 2.3, and dropping the
superscript u, v,

∂i
re′←x (e)

∂x
= i

re′←x (e
′)

x
ie

′
re′←x (e).

Recall from Lemma 2.2 that |ie′
re′←x

(e)| is not larger than one, and from inequal-
ity (6),

∣∣i
re′←x

(
e′)∣∣ ≤ ∣∣ir(e′)∣∣max

{
1,

r(e′)
x

}
.
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Thus,

∣∣i
re′←r′ (e) − ir (e)

∣∣ ≤ ∣∣ir(e′)∣∣∣∣∣∣
∫ r(e′)

r(e)

1

x
max

{
1,

r(e′)
x

}
dx

∣∣∣∣
≤ ∣∣ir(e′)∣∣max

{
r
(
e′), r ′(e′)}∣∣∣∣ 1

r(e′)
− 1

r ′(e′)

∣∣∣∣
= ∣∣ir(e′)∣∣(g(r(e′), r ′(e′)) − 1

)
.

Thus, ∣∣i
re′←r′ (e)

∣∣ ≤ ∣∣ir (e)∣∣ + ∣∣ir(e′)∣∣(g(r(e′), r ′(e′)) − 1
)
.(7)

Notice that we have now established (ii) for sets S of size 1. Now, let us prove the
first part of (ii) by induction on the size of the set S. Let e /∈ S. Using inequality (7),∣∣i

rS←r′ (e)
∣∣ = ∣∣i

(rS\{e′}←r′ )e′←r′ (e)
∣∣

≤ ∣∣i
rS\{e′}←r′ (e)

∣∣ + ∣∣i
rS\{e′}←r′

(
e′)∣∣(g(r(e′), r ′(e′)) − 1

)
.

From the induction hypothesis,

∣∣i
rS\{e′}←r′ (e)

∣∣ ≤ ∣∣ir (e)∣∣ +
( ∑

e′′∈S\{e′}

∣∣ir(e′′)∣∣) ∏
e′′∈S\{e′}

g
(
r
(
e′′), r ′(e′′))

and
∣∣i

rS\{e′}←r′
(
e′)∣∣ ≤ ∣∣ir(e′)∣∣ + ( ∑

e′′∈S\{e′}

∣∣ir(e′′)∣∣) ∏
e′′∈S\{e′}

g
(
r
(
e′′), r ′(e′′)).

Gathering terms, and noting that g is not smaller than 1 allows to complete the
induction step. Finally, the second part of (ii) is a consequence of the first part and
inequality (7). Indeed, if e ∈ S,∣∣i

rS←r′ (e)
∣∣ = ∣∣i

(rS\{e}←r′ )e′←r′ (e)
∣∣

≤ ∣∣i
rS\{e}←r′ (e)

∣∣g(r(e), r ′(e)
)

≤
(∣∣ir (e)∣∣ + ∑

e′∈S\{e}

∣∣ir(e′)∣∣ ∏
e′∈S\{e}

g
(
r
(
e′), r(e′)))g

(
r(e), r ′(e)

)

≤ ∑
e′∈S

∣∣ir(e′)∣∣ ∏
e′∈S

g
(
r
(
e′), r(e′)).

�

2.3. The random setting. For any e ∈ E1/2, we let μe denote some probability
measure on (0,∞). The collection of resistances r will be supposed to be ran-
dom with distribution P := ⊗

e∈E1/2
μe. Furthermore, in the sequel, r ′ will usually

denote an independent copy of r .
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We shall always suppose that the resistances are square integrable. Recall that
the network is said to be elliptic if there is a constant � > 1 such that r ∈ [1,�]E1/2 .
This will be a crucial assumption from Section 3.3 on. Finally, we will use the
notation:

∀e ∈ E, mp(e) = E
[∣∣r(e) −E

(
r(e)

)∣∣p]1/p
.

3. The Walsh decomposition.

3.1. Definition and basic properties. For any e ∈ E1/2 let �e be the following
operator on L2(RE1/2,P):

�ef (r) = f (r) −
∫

f (r) dμe

(
r(e)

)
.

From now on, S ⊂ E1/2 will always mean that S is a finite subset of E1/2. For S ⊂
E1/2, we shall denote by rS the collection (r(e))e∈S of random variables (which is
empty if S is empty). Let f be in L2(RE1/2,P) and notice that

E
[
f (r)|rS] =

∫
f (r)

⊗
e∈Sc

dμe

(
r(e)

)
.

Then, for any S ⊂ E1/2 we define

fS(r) = ∑
T ⊂S

(−1)|S\T |
E
[
f (r)|rT ]

.

Notice that f∅ = E(f ). It is easy to see that an alternative definition is

fS(r) = E

[(∏
e∈S

�e

)
f (r)

∣∣∣rS
]
,

with the usual convention that when S is empty, the product of operators over S is
the identity. Then (fS)S⊂E1/2 is an orthogonal decomposition of f known as the
Efron–Stein or the (generalized) Walsh decomposition (cf. [8, 15, 18] and [25],
e.g.). The basic properties of this decomposition are gathered in the following
proposition, where infinite sums in L2(RE1/2,P) are understood as follows:

∑
S fS

is the limit in L2(RE1/2,P) of the net S �→ ∑
T ⊂S fT , defined on the set of finite

subsets of E1/2 with inclusion as partial order (in other words, this corresponds to
unconditional summability in L2).

PROPOSITION 3.1. For any f and g in L2(RE1/2,P),

f = ∑
S

fS,

E(fg) = ∑
S

E(fSgS),
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and thus

S �= S′ ⇒ E(fSgS′) = 0.

Furthermore, for any e ∈ E1/2,

�ef = ∑
S�e

fS.

As a consequence, for any integer k ≥ 1,

∑
e1,...,ek∈E1/2

∥∥∥∥∥
(

k∏
i=1

�ei

)
f

∥∥∥∥∥
2

= ∑
S

|S|k‖fS‖2
2.

PROOF. Let us first suppose that E1/2 is finite. Then Proposition 3.1 is well
known (cf. [8]) but we shall quickly recall the proof for the sake of completeness.

For a subset S any subset of E1/2, let LS be the operator on L2(RE1/2) defined
by

LSf (r) =
∫

f (r)
∏
e∈S

dμe

(
r(e)

)
.(8)

Let 1 denote the identity operator. Notice that L{e} and L{e′} commute for any e

and e′. Since �e′ = 1 − L{e}, �e′ and L{e} commute and

1 = ∏
e∈E1/2

(�{e} + L{e}) = ∑
S⊂E1/2

LSc

∏
e∈S

�{e}.

Since

fS =
(∏

e∈S

�{e}
)
f,

this shows that f∅ = E(f ) and f = ∑
S⊂E1/2

fS . Now, remark that for any edge e,

L{e}�e = 0.

Thus, for any S and any e ∈ S,

L{e}fS = 0.

This implies that �ef = ∑
S�e fS . Now, if S �= S′, suppose, for instance, that there

is some e ∈ S \ S′:

E[fSgS′ ] = LE1/2(fSgS′) = LE1/2L{e}(fSgS′) = LE1/2

(
gS′L{e}(fS)

) = 0.

This implies

E(fg) = ∑
S

E(fSgS).
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Finally,

∑
e1,...,ek∈E1/2

∥∥∥∥∥
(

k∏
i=1

�ei

)
f

∥∥∥∥∥
2

= ∑
e1,...,ek∈E1/2

∥∥∥∥ ∑
S⊃{e1,...,ek}

fS

∥∥∥∥
2

= ∑
e1,...,ek∈E1/2

∑
S⊃{e1,...,ek}

‖fS‖2

= ∑
S⊂E1/2

∑
{e1,...,ek}⊂S

‖fS‖2

= ∑
S⊂E1/2

|S|k‖fS‖2.

Now, let us suppose that E1/2 is countable, and take some exhaustion (En)n≥0
of the edges: En is finite for any n, En ⊂ En+1 and E1/2 = ⋃

n En. Denote by fn

the conditional expectation of f with respect to rEn . We have

fn = LEc
n
f

and thus,

(fn)S = fS1S⊂En,(9)

which implies

fn = ∑
S⊂En

fS and ‖fn‖2
2 = ∑

S⊂En

‖fS‖2
2.

Since (fn)n∈N converges to f in L2, we know that ‖fn‖2
2 converges to ‖f ‖2

2. It is
then standard to see that

∑
S fS forms a Cauchy net and that its limit is the same as

the limit of fn, that is f . It shows notably that E(f 2) = ∑
S E(f 2

S ), from which one
derives E(fg) = ∑

S E(fSgS). All the other properties can then easily be derived
by standard limit arguments. �

A trivial consequence of Proposition 3.1 is the Efron–Stein inequality (cf. [15]).

COROLLARY 3.2 (Efron–Stein’s inequality). For any f in L2(RE1/2,P)

Var(f ) ≤ ∑
e∈E1/2

‖�ef ‖2.

PROOF. Since the Efron–Stein decomposition is orthogonal and f∅ = E(f ),

Var(f ) = E
(
f 2) −E(f )2

= ∑
S

E
(
f 2

S

) − f 2
∅

= ∑
S �=∅

E
(
f 2

S

)
.
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On the other hand, since �ef = ∑
S�e fS ,∑

e∈E1/2

‖�ef ‖2 = ∑
e∈E1/2

∑
S�e

E
(
f 2

S

)

= ∑
S

∑
e∈S

E
(
f 2

S

)

= ∑
S

|S|E(
f 2

S

)

≥ ∑
S �=∅

E
(
f 2

S

)
.

�

It is also clear that the Efron–Stein inequality is an equality if and only if f =∑
|S|≤1 fS . This means that f is a constant plus a sum of independent random

variables. One sees also that if the variance of f is concentrated on functions fS

such that S is small, then the Efron–Stein inequality is sharp up to a multiplicative
constant.

There are a number of models of statistical physics flavour where the Efron–
Stein inequality is not sharp. Chatterjee (cf. [10]) calls this phenomenon “super-
concentration.” This holds, for instance, for the first passage percolation time be-
tween two distant points on Z

d when d ≥ 2 (cf. [1, 2]), which may be defined in
our setting as

Tr(u, v) := inf
γ : u→v

∑
e∈γ

r(e),(10)

where the infimum is over all paths from u to v. Since super-concentration implies
that some part of the variance of f is concentrated on large sets, one sees that,
informally, it is related to high complexity (or high nonlinearity) of the function f .

It is also related to some noise-sensitivity of the function. Indeed, there is a close
link between the Walsh decomposition and a notion of noise introduced by [2].
Let r and r ′ be two independent random variables with the same distribution P :=⊗

e∈E1/2
μe. Let ε ∈]0,1[ . One constructs a noisy version rε of r by replacing

with probability ε, at random and independently for any edge e, the variable r(e)

by its independent copy r ′(e).

PROPOSITION 3.3. For any f ∈ L2(RE1/2,P),

E
[
f
(
rε)|r] = ∑

S

(1 − ε)|S|fS(r),

and thus,

Cov
(
f
(
rε), f (r)

) = ∑
S �=∅

(1 − ε)|S|‖fS‖2
2.
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PROOF. Let r and r ′ be two independent copies of law P. Let Sε be the (possi-
bly infinite) random subset of E drawn at random as follows: (1e∈Sε )e∈E1/2 are i.i.d.
with distribution Bernoulli of parameter ε ∈ [0,1], independent of (r, r ′). Now, we
define the following linear operators from L2(RE1/2) to L2(RE1/2 ×R

E1/2):

Lr ′
{e}f (r) = f

(
re←r ′)

.

Then the noisy version of f (r) may be written as

f
(
rε) = ∏

e∈Sε

Lr ′
{e}f (r).

Notice that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀e �= e′, Lr ′
{e}L{e′} = L{e′}Lr ′

{e},
∀e, Lr ′

{e}L{e} = L{e},
∀e, L{e}Lr ′

{e} = Lr ′
{e}.

Thus,

Lr ′
{e}�e = Lr ′

{e} − L{e}.

Whence

f
(
rε) = ∑

S⊂E1/2

∏
e∈Sε

Lr ′
{e}fS(r)

= ∑
S⊂E1/2

∏
e∈Sε

Lr ′
{e}

∏
e∈Sc

L{e}
∏
e∈S

�ef (r)

= ∑
S⊂E1/2

∏
e∈Sc

L{e}
∏

e∈S∩Sε

(
Lr ′

{e} − L{e}
) ∏
e∈S\Sε

�ef (r).

Now, denote by L′{e} the operator on L2(RE1/2 × R
E1/2) which integrates r ′(e).

Notice that

L′{e}
(
Lr ′

{e} − L{e}
) = 0 and L′{e}�e = �e.

Then

E
[
f
(
rε)|r, Sε

] = ∏
e∈E1/2

L′{e}
((

r, r ′) �→ f
(
rε))

= ∑
S⊂E1/2

∏
e∈Sc

L{e}
∏

e∈S\Sε

�ef (r)1S∩Sε=∅

= ∑
S⊂E1/2

∏
e∈Sc

L{e}
∏
e∈S

�ef (r)1S∩Sε=∅.
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Thus,

E
[
f
(
rε)|r] = ∑

S⊂E1/2

fS(r)P(S ∩ Sε = ∅) = ∑
S⊂E1/2

(1 − ε)|S|fS(r).
�

To see another, closely related, interpretation of sensitivity to noise, called
chaos, see [10]. Contrarily to what happens to the first passage percolation times,
simulations suggest that the minimal current is extremely immune to noise. This
tends to suggest that the Efron–Stein inequality could always be sharp in this con-
text, and this is what we shall prove in the following sections. We shall in fact
prove much more in the context of current-homogeneous graphs, namely that the
Walsh decomposition is concentrated not only on sets of small size, but already on
sets of small diameter.

Finally, to end the parallel between first passage percolation and effective re-
sistance, note that there is a means to interpolate between those two quantities.
Indeed, let us define, for p ∈ [1,2]:

Ru,v
r (p) = inf

θ : u→v

∑
e∈E1/2

r(e)
∣∣θ(e)

∣∣p,

where the infimum is over all unit flows from u to v, and recall the definition (10)
of Tr(u, v), the minimum passage time from u to v. Then Ru,v

r (1) = Tr(u, v)

and Ru,v
r (2) = Ru,v(r). The quantity Ru,v

r (p) is called the p-resistance between
u and v. Since the distribution of the Walsh decomposition is dramatically differ-
ent when p equals 1 or 2, it would be interesting to investigate the evolution of the
Walsh decomposition of Ru,v

r (p) when p varies continuously from 2 to 1.

3.2. Concentration of the Walsh decomposition on low levels. First, let us
study the bound given by the Efron–Stein inequality.

LEMMA 3.4. For any e ∈ E1/2,

α−(e)E
[
r2(e)

(
iu,v
r (e)

)4] ≤ ∥∥�eRu,v
∥∥2

2 ≤ α+(e)E
[
r2(e)

(
iu,v
r (e)

)4]
,

where

α−(e) = E[(r(e) − r ′(e))2+ min{1,1/(r4(e))}]
E[max{r2(e),1/(r2(e))}]

and

α+(e) = E[(r ′(e) − r(e))2+ max{1,1/(r4(e))}]
E[min{r2(e),1/(r2(e))}] .
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PROOF. Let r and r ′ be two independent random variables with the same dis-
tribution P := ⊗

e∈E1/2
μe. Inequality (4) gives

∥∥�eRu,v
∥∥2

2 = E
[(
Ru,v(r) −Ru,v(re←r ′))2

+
]

≥ E
[(

r(e) − r ′(e)
)2
+iu,v

r (e)4].
Now, Lemma 2.4 allows to decouple positive functions of r(e) and powers of
|ir (e)|. Let F and G be nonnegative functions on (0,+∞) and p be a positive
real number. Then

E
[
F
(
r(e)

)∣∣iu,v
r (e)

∣∣p]
(11)

≤ E
[
G
(
r(e)

)∣∣iu,v
r (e)

∣∣p]E[F(r(e))max{1,1/(rp(e))}]
E[G(r(e))min{1,1/(rp(e))}] .

Indeed, using Lemma 2.4, for any r ,

∣∣iu,v
r (e)

∣∣ ≤ max
{

1,
1

r(e)

}∣∣iu,v

re←1(e)
∣∣.

Thus,

E
[
F
(
r(e)

)∣∣iu,v
r (e)

∣∣p] ≤ E

[
F
(
r(e)

)
max

{
1,

1

rp(e)

}∣∣iu,v

re←1(e)
∣∣p]

= E

[
F
(
r(e)

)
max

{
1,

1

rp(e)

}]
E
[∣∣iu,v

re←1(e)
∣∣p],

since r(e) and i
u,v

re←1(e) are independent. Similarly,

E
[
G
(
r(e)

)∣∣iu,v
r (e)

∣∣p] ≥ E

[
G
(
r(e)

)
min

{
1,

1

rp(e)

}∣∣iu,v

re←1(e)
∣∣p]

= E

[
G
(
r(e)

)
min

{
1,

1

rp(e)

}]
E
[∣∣iu,v

re←1(e)
∣∣p].

Thus,

∥∥�eRu,v
∥∥2

2 ≥ E[(r(e) − r ′(e))2+ min{1,1/(r4(e))}]
E[max{r2(e),1/(r2(e))}] E

[
r2(e)i

u,v

re←1(e)
4].

On the other hand,∥∥�eRu,v
∥∥2

2 = E
[(
Ru,v(re←r ′) −Ru,v(r)

)2
+
]

≤ E
[(

r ′(e) − r(e)
)2
+iu,v

r (e)4]

≤ E[(r ′(e) − r(e))2+ max{1,1/(r4(e))}]
E[min{r2(e),1/(r2(e))}] E

[
r2(e)iu,v

r (e)4]. �
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The following theorem shows that the Walsh decompositions of point-to-point
effective resistances are uniformly concentrated (in terms of the L2-norm) on sets
of small size.

THEOREM 3.5. There is a universal constant C ∈ (0,+∞) such that if one
defines in [0,+∞]:

K(μ) = C sup
e

(
E
[
r8(e)

]+E
[
r−8(e)

])6 sup
e

E[(r(e) − r ′(e))2(1/(r6(e)) + r6(e))]
E[(r(e) − r ′(e))2+ min{1,1/(r4(e))}] ,

then for any graph G and any pair of vertices (u, v),∑
S

|S|2∥∥Ru,v
S

∥∥2
2 ≤ K(μ)

∑
S �=∅

∥∥Ru,v
S

∥∥2
2.

Consequently, for any k ≥ 1, any graph G and any pair of vertices (u, v)∑
|S|≥k

∥∥Ru,v
S

∥∥2
2 ≤ K(μ)

k2

∑
S �=∅

∥∥Ru,v
S

∥∥2
2.

PROOF. We fix u and v and drop the superscript u, v. Proposition 3.1 implies∑
S

|S|2‖RS‖2
2 = ∑

e,e′
‖�e�e′R‖2

2.

The first step is to prove the following:∑
e �=e′

‖�e�e′R‖2
2 ≤ D(μ)

∑
e

∥∥�eRu,v
∥∥2

2.(12)

Suppose for the moment that (12) is true. Then∑
S

|S|2 · ∥∥Ru,v
S

∥∥2
2 = ∑

e,e′

∥∥�e�e′Ru,v
∥∥2

2

= ∑
e �=e′

∥∥�e�e′Ru,v
∥∥2

2 + ∑
e

∥∥�eRu,v
∥∥2

2

(13)
≤ (

D(μ) + 1
)∑

e

∥∥�eRu,v
∥∥2

2

= (
D(μ) + 1

)∑
S

|S|∥∥Ru,v
S

∥∥2
2.

Then, for any k ∈ N
∗,∑

|S|≥k

|S|∥∥Ru,v
S

∥∥2
2 ≤ 1

k

∑
S

|S|2∥∥Ru,v
S

∥∥2
2

≤ (D(μ) + 1)

k

∑
S

|S|∥∥Ru,v
S

∥∥2
2.
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Thus, for every k ≥ 2(D(μ) + 1),∑
S

|S|∥∥Ru,v
S

∥∥2
2 ≤ k

∑
0<|S|<k

∥∥Ru,v
S

∥∥2
2 + 1

2

∑
S

|S|∥∥Ru,v
S

∥∥2
2,

whence, for every k ≥ 2(D(μ) + 1),∑
S

|S|∥∥Ru,v
S

∥∥2
2 ≤ 2k

∑
0<|S|<k

∥∥Ru,v
S

∥∥2
2.

Notably, ∑
S

|S|∥∥Ru,v
S

∥∥2
2 ≤ 2

⌈
2
(
D(μ) + 1

)⌉ ∑
S �=∅

∥∥Ru,v
S

∥∥2
2.

Plugging this into inequality (13) ends the proof of the first inequality of the theo-
rem with

K(μ) = 2
⌈
2
(
D(μ) + 1

)⌉
.

It remains to prove (12). Let us present first the main idea in the elliptic setting.
We know from Lemma 2.3 that

∂2
e,e′R(r) = ∂e

[
ir
(
e′)]2 = 2ir

(
e′)ir (e) ier (e′)

r(e)
.(14)

Approximating �e�e′Ru,v by ∂2
e,e′R(r), one gets∑

e �=e′

∥∥�e�e′Ru,v
∥∥2

2 �
∑
e �=e′

E
[
ir
(
e′)2

ir (e)
2(ier (e′))2]

�
∑
e �=e′

E
[(

ir
(
e′)4 + ir (e)

4)(ier (e′))2]
.

The reciprocity law (5) gives that ier (e
′) and ie

′
r (e) are of the same order:∑

e �=e′

∥∥�e�e′Ru,v
∥∥2

2 �
∑
e �=e′

E
[
ir (e)

4(ier (e′))2] + ∑
e �=e′

E
[
ir
(
e′)4(

ie
′

r (e)
)2]

= 2
∑
e �=e′

E
[
ir (e)

4(ier (e′))2]

�
∑
e

E

[
ir (e)

4
∑
e′

r
(
e′)(ier (e′))2

]
,

but
∑

e′ r(e′)(ier (e′))2 is the effective resistance from e− to e+, which is of order at
most 1 [in fact at most r(e)]. Thus,∑

e �=e′

∥∥�e�e′Ru,v
∥∥2

2 �
∑
e

E
[
ir (e)

4]

�
∑
e

∥∥�eRu,v
∥∥2

2,

from Lemma 3.4.
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Now, let us enter the details of the proof of (12) in the general case. Let r and r ′
be two independent random variables with the same distribution P := ⊗

e∈E1/2
μe.

Remark that for e �= e′:
�e�e′R(r)

= E
[
R(r) −R

(
re′←r ′) −R

(
re←r ′) +R

(
r{e,e′}←r ′)|r]

= E

[∫ r(e)

r ′(e)

∫ r(e′)

r ′(e′)
∂2
e,e′R

(
r(e,e′)←(x,y))dx dy

∣∣∣r].
Thus,

‖�e�e′R‖2
2

≤ E

[(
r(e) − r ′(e)

)2(
r
(
e′) − r ′(e′))2 sup

x∈[r(e),r ′(e)]
y∈[r(e′),r ′(e′)]

(
∂2
e,e′R

(
r(e,e′)←(x,y)))2

]
,

where we make the abuse of notation of writing [a, b] for [min{a, b},max{a, b}].
Lemma 2.4 shows that for x in [r(e), r ′(e)] and y in [r(e′), r ′(e′)],∣∣i

r(e,e′)←(x,y)(e)
∣∣ ≤ [∣∣i

r(e,e′)←1(e)
∣∣ + ∣∣i

r(e,e′)←1

(
e′)∣∣]g(1, x)g(1, y),

and the same bound holds for |i
r(e,e′)←(x,y)(e)|. Furthermore, using Lemma 2.3 and

the reciprocity law (5),

1

x

∣∣ie
r(e,e′)←(x,y)

(
e′)∣∣ ≤ 1

x

∣∣ie
r(e,e′)←(x,1)

(
e′)∣∣max

{
1,

1

y

}

= ∣∣ie′
r(e,e′)←(x,1)(e)

∣∣max
{

1,
1

y

}

≤ ∣∣ie′
r(e,e′)←1(e)

∣∣max
{

1,
1

x

}
max

{
1,

1

y

}

= ∣∣ie
r(e,e′)←1

(
e′)∣∣max

{
1,

1

x

}
max

{
1,

1

y

}
.

Thus, using (a + b)4 ≤ 8(a4 + b4),

‖�e�e′R‖2
2 ≤ 2A(e)A

(
e′)

E
[(

i
r(e,e′)←1(e)

4 + i
r(e,e′)←1

(
e′)4)

ie
r(e,e′)←1

(
e′)2]

,

where

A(e) = 4E
[(

r(e) − r ′(e)
)2
(

1

r6(e)
+ r6(e)

)]
.

Then we use again the same decoupling device based on Lemma 2.4, in the spirit
of (11). We get

∣∣ie
r(e,e′)←1

(
e′)∣∣ ≤ |ier (e′)|

r(e)
max

{
1, r(e)

}
max

{
1, r

(
e′)}
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and ∣∣i
r(e,e′)←1(e)

∣∣ ≤ [∣∣ir (e)∣∣ + ∣∣ir(e′)∣∣]g(r(e),1
)
g
(
r
(
e′),1

)
.

Thus,

E
[(

i
r(e,e′)←1(e)

4 + i
r(e,e′)←1

(
e′)4)

ie
r(e,e′)←1

(
e′)2]

≤ B(e)B
(
e′)

E

[(
i4
r (e) + i4

r

(
e′)) ier (e′)2

r(e)2 r(e)r
(
e′)],

where

B(e) = 4

Emin{1/(r7(e)), r3(e)} .

Whence

‖�e�e′R‖2
2 ≤ 2A(e)A

(
e′)B(e)B

(
e′)

E

[(
i4
r (e) + i4

r

(
e′)) ier (e′)2

r(e)2 r(e)r
(
e′)].(15)

Now notice that for e fixed,∑
e′

ier
(
e′)2

r
(
e′) = Re(r) ≤ r(e).

We obtain

∑
e �=e′

‖�e�e′R‖2
2 ≤ 2 sup

e′

{
A
(
e′)B(

e′)}∑
e

A(e)B(e)E

[
i4
r (e)

r2(e)

]

≤ 2 sup
e

{
A2(e)B2(e)

}∑
e

A(e)B(e)C(e)E
[
r2(e)i4

r (e)
]
,

where C(e) is given by (11):

C(e) = E[1/(r2(e))max{1,1/(r4(e))}]
E[min{r2(e),1/(r2(e))}] .

Thus, using Lemma 3.4, where

D(μ) = 2 sup
e

{
A2(e)B2(e)

}
sup

e

A(e)B(e)C(e)

α−(e)
.

Finally, elementary calculus shows that

D(μ) ≤ C sup
e

(
E
[
r8(e)

]+E
[
r−8(e)

])6 sup
e

E[(r(e) − r ′(e))2(1/(r6(e)) + r6(e))]
E[(r(e) − r ′(e))2+ min{1,1/(r4(e))}] ,

for some universal constant C. �
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REMARK 2. K(μ) is finite if the resistances are elliptic, or alternatively if

sup
e

{
E
(
r8(e)

) +E
(
r−8(e)

)}
< ∞

and

inf
e
E
∣∣r(e) −E

(
r(e)

)∣∣ > 0.

Indeed, in this case, Cauchy–Schwarz inequality shows that

inf
e
E

[(
r(e) − r ′(e)

)2
+ min

{
1,

1

r4(e)

}]
< 0.

An easy consequence is that point-to-point effective resistances are uniformly
stable to noise.

COROLLARY 3.6. On any random network with independent uniformly ellip-
tic resistances, or more generally with K(μ) finite, point-to-point effective resis-
tances are uniformly stable to noise:

inf
u,v∈V

Corr
(
Ru,v(r),Ru,v(rε))−→

ε→0
1.

PROOF. Let us fix u and v, and let f denote the function r �→ Ru,v(r). From
Proposition 3.3,

Cov
(
f (r), f

(
rε)) = ∑

S �=∅

(1 − ε)|S|‖fS‖2

= Var(f ) − ∑
S �=∅

(
1 − (1 − ε)|S|)‖fS‖2

≥ Var(f ) − log
1

1 − ε

∑
S �=∅

|S|‖fS‖2

≥ Var(f )

(
1 − K(μ) log

1

1 − ε

)
.

This shows that Corr(Ru,v(r),Ru,v(rε)) tends uniformly (in u and v) to 1 when ε

tends to zero. �

A trivial consequence of Theorem 3.5 is that the Efron–Stein inequality, Corol-
lary 3.2, is always tight for point-to-point effective resistances.

COROLLARY 3.7. For any graph G and any pair of vertices (u, v),

Var
(
Ru,v) ≤ ∑

e∈E1/2

∥∥�eRu,v
∥∥2

2 ≤ K(μ)Var
(
Ru,v).
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To finish this section, we shall recall the setting of the effective resistance
through a box in Z

d , which was described in the Introduction. Let Bn = {0, . . . , n}d
be equipped with random resistances r on its set of edges En, and let us define
An = {x ∈ Bn s.t. x1 = 0} and Zn = {x ∈ Bn s.t. x1 = n}. Then consider the graph
with vertex set Bn, where all the vertices of An are identified to a single vertex on
one side, and all the vertices of Zn are identified on the other side. The effective
resistance through the box Bn is defined as

Rn =RAn,Zn
r .

In [31], it is shown that under some hypotheses on the distribution of the resis-
tances,

Var(Cn) ≥ Cnd−4,(16)

where Cn = 1/Rn, and C is some positive constant, depending on d and the com-
mon distribution of the conductances. Let us show how one can recover (16) in our
setting. One could work directly on Cn, but will we rather show that

Var(Rn) ≥ Cn4−3d,(17)

and then translate this bound on Var(Cn). Let us suppose that

sup
n

sup
e∈En

{
E
[
r(e)

] +E
[
r−1(e)

]}
< ∞.(18)

Then one may see that E[Rn] = �(n2−d), and E[Cn] = �(nd−2) (cf. the argument
in Section 5 of [3]).

Let us call ir the unit current in the definition of RAn,Zn
r , and order the edges in

En in some arbitrary fixed way. We have the following martingale representation:

Rn −E[Rn] = ∑
e∈En

E
[
Rn(r)|(re′)e′≥e

] −E
[
Rn(r)|(re′)e′>e

]

= ∑
e∈En

E
[
�eRn(r)|(re′)e′≥e

]
.

Thus,

Var(Rn) = ∑
e∈En

E
[
E
[
�eRn(r)|(re′)e′≥e

]2]

= 1

2

∑
e∈En

E
[
E
[
Rn(r) −Rn

(
re←r ′)|(re′)e′≥e, r

′(e)
]2]

= 1

2

∑
e∈En

E
[
E
[
Rn(r) −Rn

(
re←r ′)

+|(re′)e′≥e, r
′(e)

]2]

+ 1

2

∑
e∈En

E
[
E
[
Rn(r) −Rn

(
re←r ′)

−|(re′)e′≥e, r
′(e)

]2]
,
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since the sign of (Rn(r) − Rn(r
e←r ′

)) is the sign of r(e) − r ′(e). Using inequal-
ity (4),

Var(Rn) ≥ 1

2

∑
e∈En

E
[(

r(e) − r ′(e)
)2
+E

[
i2
r (e)|r(e), r ′(e)

]2]

+ 1

2

∑
e∈En

E
[(

r(e) − r ′(e)
)2
−E

[
i2
re←r′ (e)|r(e), r ′(e)

]2]

= ∑
e∈En

E
[(

r(e) − r ′(e)
)2
E
[
i2
r (e)|r(e)]2]

≥ ∑
e∈En

E

[(
r(e) − r ′(e)

)2 min
{

1,
1

r4(e)

}
E
[
i2
re←1(e)|r(e)]2

]

= ∑
e∈En

E

[(
r(e) − r ′(e)

)2 min
{

1,
1

r4(e)

}]
E
[
i2
re←1(e)

]2

≥ ∑
e∈En

E[(r(e) − r ′(e))2 min{1,1/(r4(e))}]
E[max{r(e),1/(r(e))}]2 E

[
r(e)i2

r (e)
]2

,

where the inequalities follows from Lemma 2.4 as in the proof of (11). Define

α̃ := inf
n

inf
e∈En

E[(r(e) − r ′(e))2 min{1,1/(r4(e))}]
E[max{r(e),1/(r(e))}]2 .

Then, using Jensen’s inequality,

Var(Rn) ≥ α̃
∑
e∈En

E
[
r(e)i2

r (e)
]2

≥ α̃#(En)

(
1

#(En)

∑
e∈En

E
[
r(e)i2

r (e)
])2

= α̃
1

#(En)
E[Rn]2

≥ Cα̃n4−3d .

This shows inequality (17) under the condition α̃ > 0. Now, suppose that for some
p > 2,

sup
n

sup
e∈En

E
[
r(e)p

]
< ∞,(19)

and let us show how one may recover (16) from (17). Notice first that bounding
Rn by the energy of the deterministic flow which splits uniformly on An and goes
straight to Zn, there is a constant cd such that

Rn ≤ cd

∑
e∈En

r(e)

n2d−2 =: Sn.
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Using Rosenthal’s inequality (see [30], Theorem 3), there is a finite positive con-
stant k(p) such that for any c > 1 and p > 2,

P
(
Rn ≥ cE[Sn]) ≤ P

(
Sn ≥ cE[Sn])

≤ E[|Sn −E(Sn)|p]
(c − 1)pE[Sn]p

= E[|∑e∈En
(r(e) −E[r(e)])|p]

(c − 1)pE[∑e∈En
r(e)]p

≤ k(p)max{∑e∈En
E[r(e)p], (∑e∈En

E[r(e)2])1/2}
(c − 1)pE[∑e∈En

r(e)]p

≤ k′(p)nd(1−p)

(c − 1)p
.

Now,

Var(Cn) ≥ E

[(
1

Rn

− 1

E[Rn]
)2]

= E

[
(Rn −E[Rn])2

R2
nE[Rn]2

]

≥ Var(Rn)

c2E[Rn]2E[Sn]2 −E

[
(Rn −E[Rn])2

R2
nE[Rn]2 1Rn>cE[Sn]

]

≥ Cα̃
n4−3d

c2n8−4d
−E

[
(Rn −E[Rn])2

R2
nE[Rn]2 1Rn>cE[Sn]

]

≥ Cα̃
nd−4

c2 − P(Rn ≥ cE[Sn])
E[Rn]2

≥ Cα̃
nd−4

c2 − C′n2d−4 k′(p)ndnd(1−p)

(c − 1)p

≥ C′nd−4,

for n large enough, since p > 2. This shows inequality (16) when α̃ is finite and
(18) and (19) hold. To state a simple moment condition, for i.i.d. resistances with
positive variance, one gets (16) under the condition that E[rp(e)] + E[c(e)] < ∞
for some p > 2. Notice that the moments of order p > 2 are used only to go from
the bound on Var(Rn) to a bound on Var(Cn). Alternatively, one could work di-
rectly on Cn, thanks to the formula (1). One would need (this is not difficult) to
establish the analogs of Lemma 2.3 and 2.4 for vr , the minimizer in (1), instead
of ir . Then the line of proof which gave (17) would lead to (16). To state a sim-
ple moment condition, for i.i.d. conductances with positive variance, one would
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obtain (16) under the condition that E[r(e)] + E[c(e)2] < ∞. In any case, our
conditions seem to be much weaker than the conditions in [31]. For instance, no
power-law distribution satisfies Wehr’s assumption, and he requires absolute con-
tinuity w.r.t. the Lebesgue measure. We record the result of our calculations in the
following lemma, for the neat case where the resistances are i.i.d.

LEMMA 3.8. Suppose that the resistances are i.i.d., not constant and that r(e)

and c(e) are integrable. Then

Var(Rn) ≥ Cn4−3d .

If furthermore r(e) has a finite moment of order p > 2, then

Var(Cn) ≥ C′nd−4.

The positive constants C and C′ depend only on the common distribution of the
resistances.

Finally, let us emphasize the fact that we are unfortunately unable to show that

E

[∑
e∈En

r2(e)i4
r,n(e)

]
≤ Cn4−3d .(20)

Otherwise, we would obtain from Corollary 3.7 the correct order for the variance
of Rn. Notice that (20) does not necessarily hold when the resistances are not
supposed to have identical distribution, even in the elliptic case. To understand
why, let vr be the discrete harmonic function on Bn \ (An ∪ Zn) with value 1 on
An and 0 on Zn. Discrete harmonic at x means that

d∗(c.dvr)(x) = 0.

Then (20) is equivalent to

E

[
1

#En

∑
e∈En

(
ndvr(e)

)4
]

≤ C′.(21)

When n goes to infinity, one may compare vr to a continuous analog. Let (cx)x∈Rd

be a deterministic elliptic collection of conductance matrices. Let ṽ be the function
on [0,1]d with value 1 on {x s.t. x1 = 0}, 0 on {x s.t. x1 = 1} and satisfying on
(0,1)d :

div(c.∇ṽ) = 0.

The continuous analog of (21) is the fact that ∇ṽ belongs to L4([0,1]d). However,
it is well known that this may be false if the ellipticity constant � is not close
enough to 1. On R

2, a counterexample is given in [14]; see the discussion after
Proposition 1.1 therein.
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3.3. Further results for elliptic networks with homogeneous currents. From
now on, the networks will be elliptic: r belongs to [1,�]E1/2 for some � ≥ 1. Recall
that all sets 	2−(E, r) are the same for r in [1,�]E1/2 , since the norms with seights
r are all equivalent, the common set is denoted by 	2−(E); cf. (2) and we shall refer
to the common norm topology of the sets 	2−(E, r) as the strong topology. We shall
consider the graph distance, denoted by d , on V. Then, if e and e′ are two edges
in E, let d(e, e′) be the maximal distance between two endpoints, one of which
is in e and the other in e′. For any edge e and any collection of resistances r in
[1,�]E1/2 , the flow ier belongs to 	2−(E, r). Thus,∑

e′ : d(e′,e)≥L

r
(
e′)(ier (e′))2 −→

L→∞ 0.(22)

Below, we shall be interested in graphs where the above convergence holds uni-
formly in e and r . We shall say that such a graph has homogeneous currents.

DEFINITION 3.9. Let G = (V,E) be a countable, oriented, symmetric and
connected graph. Let � ≥ 1 be a real number, and define

α(G,L,�) = sup
{ ∑

e′ : d(e′,e)≥L

r
(
e′)(ier (e′))2 s.t. e ∈ E, r ∈ [1,�]E1/2

}
.(23)

The graph G is said to have �-homogeneous currents if

α(G,L,�) −→
L→+∞ 0.

It is natural to expect that for every � ≥ �′ strictly larger than 1, G has �-
homogeneous currents if it has �′-homogeneous currents [the other direction be-
ing trivial since α(G,L,�) is monotone in �]. However, we could not prove this.

The first fundamental observation, due to Mikaël de la Salle, is that for a fixed
edge e, the convergence in (22) always hold uniformly in r , thanks to a compact-
ness argument.

PROPOSITION 3.10. Let u and v be two vertices of G, and suppose that
(GL)L≥0 is a sequence of finite connected graphs that exhausts G and such that G0
contains u and v. Then

sup
{ ∑

e′∈Gc
L

r
(
e′)(iu,v

r

(
e′))2 s.t. r ∈ [1,�]E1/2

}
−→

L→+∞ 0.

PROOF (DUE TO MIKAËL DE LA SALLE). Let us fix u and v two vertices
of G. We equip [1,�]E1/2 with the product topology. For a fixed θ ∈ 	2−(E) and
ε > 0, let F be a finite subset of edges such that

∑
e∈Fc θ2(e) < ε. Then∣∣∣∣∑

e

r(e)θ2(e) − ∑
e

r ′(e)θ2(e)

∣∣∣∣ ≤ ∑
e∈F

∣∣r(e) − r ′(e)
∣∣θ2(e) + �ε,
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and thus the function r �→ ∑
e r(e)θ2(e) is continuous for the product topology.

Then r �→ Ru,v(r) is an infimum of continuous functions on [1,�]E1/2 , and thus,
it is upper semi-continuous on [1,�]E1/2 . Now, define

c := lim
L→+∞ sup

{ ∑
e′∈Gc

L

r
(
e′)(iu,v

r

(
e′))2 s.t. r ∈ [1,�]E

}
,

which exists by the monotonicity in L of the right-hand side.
One may find a sequence (rL)L≥1 in [1,�]E1/2 such that

c = lim
L→+∞

∑
e′∈Gc

L

rL
(
e′)(iu,v

rL

(
e′))2

.

By Lemma 2.2, the sequence (iu,v
rL

)L≥1 lies in [−1,1]E [and even in 	2−(E)] which
is compact for the product topology by Cantor’s diagonal argument. Also, the se-
quence (rL)L≥1 lies in the compact set [1,�]E1/2 . Thus, one may find an increas-
ing sequence of integers (Lk)k≥1 such that for any e ∈ E, (rLk

)k≥1(e) converges to
some value r(e) in [1,�] and (iu,v

rLk
(e))k≥1 converges to some θ(e) ∈ [−1,1]. Then

θ is a unit flow from u to v. From the upper-semi-continuity of r �→ Ru,v(r),

Ru,v(r) ≥ lim sup
k→+∞

Ru,v(rLk
)

= lim sup
k→+∞

∑
e′

rLk

(
e′)(iu,v

rLk

(
e′))2

= lim sup
k→+∞

( ∑
e′∈GLk

rLk

(
e′)(iu,v

rLk

(
e′))2 + ∑

e′∈Gc
Lk

rLk

(
e′)(iu,v

rLk

(
e′))2

)

= lim sup
k→+∞

∑
e′∈GLk

rLk

(
e′)(iu,v

rLk

(
e′))2 + c

≥ sup
L′

lim sup
k→+∞

∑
e′∈GL′

rLk

(
e′)(iu,v

rLk

(
e′))2 + c

= sup
L′

∑
e′∈GL′

r
(
e′)(θ(e′))2 + c

= ∑
e′

r
(
e′)(θ(e′))2 + c

≥ Ru,v(r) + c.

This shows that c = 0 and proves the proposition. �

Notice that in Proposition 3.10, the ellipticity hypothesis is used in a crucial
way. This proposition will allow us to find our first graphs with homogeneous
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currents: the quasi-transitive graphs. There is no univeral definition, but in this
article we shall say that a graph G = (V,E) with automorphism group Aut(G) is
quasi-transitive if its set of edges E is composed of a finite number of distinct orbits
under the natural action of Aut(G) on E.

COROLLARY 3.11. Let G = (V,E) be a countable, oriented, symmetric and
connected graph. Suppose that G is quasi-transitive. Then, for any � ≥ 1, G has
�-homogeneous currents.

PROOF. The quasi-transitivity hypothesis implies that there exists a finite set
of edges e1, . . . , er such that

α(G,L,�) = max
i=1,...,r

sup
{ ∑

e′ : d(e′,ei )≥L

r
(
e′)(iei

r

(
e′))2 s.t. r ∈ [1,�]E1/2

}
.

But, from Proposition 3.10, for any i,

sup
{ ∑

e′ : d(e′,ei )≥L

r
(
e′)(iei

r

(
e′))2 s.t. r ∈ [1,�]E1/2

}
−→

L→+∞ 0,

taking GL to be the graph whose edges are all the edges of E at distance at most L

from ei and whose vertices are the endpoints of those edges. Thus, α(G,L,�)

goes to zero as L goes to infinity, and G has �-homogeneous currents. �

A consequence of Corollary 3.11 is that Zd has homogeneous currents. This
can also be seen in a more robust way using the powerful tool of elliptic Har-
nack inequality. Indeed, let BL(e) be the vertices at distance at most L from e.
Then

∑
d(e′,e)≥L r(e′)(ier (e′))2 is upper-bounded by the oscillation on BL(e)c of the

votage induced by the flow ier . Since this voltage is a bounded function, harmonic
on Z

d \ e, one may then show, using the Harnack inequality of [13] as in [24], Sec-
tion 6, that α(Zd,L,�) decays at least as quickly as a negative power of L. This
argument can be carried out on any graph satisfying the conditions of [13] plus
the additional condition that the annuli between BL(e) and B4L(e) are connected
and may be covered by a bounded number of balls of radius L. For instance, this
shows that any graph roughly isometric to Z

d has homogeneous currents.
Now, let us give an (artificial) example of a graph which does not have homo-

geneous currents. A perfect binary tree of depth k is a rooted binary tree where
every leaf is at depth k and all other vertices have two children. For any k ∈ N

∗,
let Tk be two copies of a perfect binary trees of depth k glued at the leafs. The
result has two roots. Now, to construct our graph (see Figure 1), we start from
N

∗, with the usual notion of graph on it, and for any k ∈ N
∗, we do the follow-

ing construction. We add Tk by glueing one of its roots on the vertex x2k := 2k

of N and call the remaining root x′
2k . Then we add a copy T ′

k of Tk by gluing one
of its root on the vertex x2k+1 := 2k + 1 of N and call the remaining root x′

2k+1.
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FIG. 1. An example of a graph without homogeneous currents.

Then we join x′
2k and x′

2k+1 by an edge. We denote by G the resulting graph, let
e2k := (x2k, x2k+1), e′

2k := (x′
2k, x

′
2k+1) and equip this graph with unit resistances.

Now, the resistance between the root and the leafs of a complete binary tree of

any depth is at most 1/2. Thus, Rx2k,x
′
2k

Tk
, the resistance between x2k and x′

2k in

the graph Tk is at most 1. Similarly, Rx2k+1,x
′
2k+1

T ′
k

is at most 1. Since resistances in

series add, one sees that

ie2k
r

(
e′

2k

) = r(e2k)

Rx2k,x
′
2k

Tk
+ r(e′

2k) +Rx2k+1,x
′
2k+1

T ′
k

≥ 1

3
.

On the other hand, the graph-theoretical distance between e2k and e′
2k is 2k + 1.

Thus, for any � ≥ 1, and L ≥ 1,

α(G,L,�) ≥ ∑
e′ : d(e′,e2L)≥L

r(e)
(
ie2L
r

(
e′))2 ≥ (

ie2L
r

(
e′

2L

))2 ≥ 1

9
.

Whence G does not have homogeneous currents.
Finally, the reasoning in the proof of Proposition 3.10 allows also to obtain some

regularity of the functions r �→ iu,v
r and r �→ Ru,v(r) when [1,�]E1/2 is equipped

with the product topology (it will not be used in the sequel).

PROPOSITION 3.12. Let u and v be two vertices of G. If [1,�]E1/2 is equipped
with the product topology and 	2−(E) with the strong topology, then the following
maps are continuous:{

[1,�]E1/2 → 	2−(E),

r �→ iu,v
r ,

and

{
[1,�]E1/2 →R,

r �→ Ru,v(r).

PROOF. Take any r in [1,�]E and any sequence (rL) converging to r . As
in the proof of Proposition 3.10, one may extract a sequence (rLk

)k≥1 such that
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(iu,v
rLk

)k≥1 converges pointwise to some θ which is a unit flow from u to v. Then

Ru,v(r) ≥ lim sup
k→+∞

Ru,v(rLk
) ≥ lim inf

k→+∞Ru,v(rLk
)

≥ lim inf
k→+∞

∑
e′∈GLk

rLk

(
e′)(iu,v

rLk

(
e′))2

≥ ∑
e′

r
(
e′)(θ(e′))2

,

by Fatou’s lemma. Since iu,v
r is the unique minimizer of θ �→ ∑

e′ r(e′)θ(e′) over
the unit flows from u to v, this shows at once that θ = iu,v

r and that Ru,v(rLk
) con-

verges to Ru,v(r) as k goes to infinity. Since this is true for any subsequence (rLk
)k

such that (iu,v
rLk

)k converges pointwise, we deduce that iu,v
rL

converges pointwise to
iu,v
r and that Ru,v(rL) converges to Ru,v(r). Notably, r �→ Ru,v(r) is continuous

for the product topology.
Now, recall that irL is a current, thus there exists a function v such that

r(e)irL(e) = dv(e) for any e. Notice also that d∗(iu,v
rL

− iu,v
r ) = 0. This implies

that irL is orthogonal in 	2−(E, r) to iu,v
rL

− iu,v
r . Indeed, suppose first that the net-

work is finite. Then∑
e

rL(e)iu,v
rL

(e)
(
iu,v
rL

(e) − iu,v
r (e)

) = ∑
e

dv(e)
(
iu,v
rL

(e) − iu,v
r (e)

)

= ∑
x∈V

v(x)d∗(iu,v
rL

− iu,v
r

)
(x)

= 0.

This continues to hold when G is not finite since iu,v
rL

and iu,v
r are limits in 	2−(E)

(for the strong topology) of wired currents on finite graphs. Thus,

∥∥iu,v
rL

− iu,v
r

∥∥2
rL

= ∑
e′∈E1/2

rL
(
e′)(iu,v

r

(
e′))2 −Ru,v(rL).

From the dominated convergence theorem, since rL converges pointwise to r ,

lim
L→∞

∑
e′∈E1/2

rL
(
e′)(iu,v

r

)2 = Ru,v(r).

Thus,

lim
L→∞

∥∥iu,v
rL

− iu,v
r

∥∥2
rL

= 0,

which shows that r �→ iu,v
r is continuous. �
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3.3.1. Concentration on sets of small diameter. A small variation on the proof
of Theorem 3.5 allows to obtain the following result, which shows that on graphs
with homogeneous currents, the Walsh decomposition is concentrated on sets of
small diameter.

THEOREM 3.13. For any graph G, any � ≥ 1 and any L ≥ 1,∑
diam(S)≥L

∥∥Ru,v
S

∥∥2
2 ≤ C(�)α(G,L,�)

∑
S �=∅

∥∥Ru,v
S

∥∥2
2.

PROOF. Let L be a positive integer. From inequality (15), one gets∑
(e,e′) : d(e,e′)≥L

∥∥�e�e′Ru,v
∥∥2

2

≤ C(�)E

[ ∑
d(e,e′)≥L

A(e)A
(
e′)(i4

r (e) + i4
r

(
e′)) ier (e′)2

r(e)2 r(e)r
(
e′)]

= 2C(�)E

[ ∑
d(e,e′)≥L

A(e)A
(
e′)i4

r (e)
ier (e

′)2

r(e)2 r(e)r
(
e′)]

≤ 2C(�) sup
e′

A
(
e′)

E

[∑
e

1

r(e)
A(e)i4

r (e)
∑
e′s.t.

d(e,e′)≥L

ier
(
e′)2

r
(
e′)]

≤ 2C(�) sup
e′

A
(
e′)α(G,L,�)E

[∑
e

A(e)r2(e)i4
r (e)

]

≤ C′(�)α(G,L,�)
∑
S �=∅

∥∥Ru,v
S

∥∥2
2.

Then, Theorem 3.5 leads to∑
d(e,e′)≥L

∥∥�e�e′Ru,v
∥∥2

2 ≤ C(�)α(G,L,�)
∑
S �=∅

∥∥Ru,v
S

∥∥2
2.

Finally, notice that∑
d(e,e′)≥L

∥∥�e�e′Ru,v
∥∥2

2 = ∑
d(e,e′)≥L

∑
S⊃{e,e′}

∥∥Ru,v
S

∥∥2
2

= ∑
S

∑
e,e′∈S

d(e,e′)≥L

∥∥Ru,v
S

∥∥2
2

≥ ∑
diam(S)≥L

∥∥Ru,v
S

∥∥2
2. �
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3.3.2. The first level carries a significant weight. A corollary of Theorem 3.13
is that on graphs with homogeneous currents, the first level of the Walsh decom-
position carries a significant part of the L2-norm of the centered point-to-point
resistances.

COROLLARY 3.14. Suppose that G has �-homogeneous currents and degree
bounded by δ. Then there is a constant C(�, δ,G) such that∑

e

∥∥Ru,v
{e}

∥∥2
2 ≤ Var

(
Ru,v) = ∑

S �=∅

∥∥Ru,v
S

∥∥2
2 ≤ C(�, δ,G)

∑
e

∥∥Ru,v
{e}

∥∥2
2.

PROOF. Let us fix u and v two vertices of G, and let us drop the superscript
u, v to lighten the notation. Since G has �-homogeneous currents, one may find
L large enough (depending on G and �) so that∑

S �=∅

‖RS‖2
2 ≤ 2

∑
diam(S)≤L

S �=∅

‖RS‖2
2.

For L a positive integer, using Lemma 3.15 below,∑
diam(S)≤L

S �=∅

‖RS‖2
2

≤ C(�,L)
∑

diam(S)≤L

∑
e∈S

∥∥R{e}
∥∥2

2

= C(�,L)
∑
e∈E

∥∥R{e}
∥∥2

2

∣∣{S s.t. e ∈ S and diam(S) ≤ L
}∣∣

≤ C′(�,L, δ)
∑
e∈E

‖R{e}‖2
2. �

In the proof above, we used the following lemma, which allows to control
‖Ru,v

S ‖p for small sets S. It will be used again in the central limit approximation
of Theorem 4.1.

LEMMA 3.15. For any p ≥ 1,

C1(�)mp(e)
∥∥(iu,v

r (e)
)2∥∥

1 ≤ ∥∥Ru,v
{e}

∥∥
p ≤ C2(�)mp(e)

∥∥(iu,v
r (e)

)2∥∥
1.

Furthermore, for any S such that 0 < |S| ≤ L,∥∥Ru,v
S

∥∥
p ≤ C(�)L

∑
e∈S

∥∥Ru,v
{e}

∥∥
p.
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PROOF. Let r and r ′ be two independent random variables with the same dis-
tribution P := ⊗

e∈E1/2
μe. For any function F in L2(RE1/2) and any p ≥ 1,

‖F{e}‖p
p = E

[∣∣E(
�eF |r(e))∣∣p]

= E
[∣∣E(

F
(
re←r ′) − F(r)|r ′(e)

)∣∣p]
≤ E

[∣∣E(
F
(
re←r ′) − F(r)|r(e), r ′(e)

)∣∣p]
= 2E

[∣∣E([
F
(
re←r ′) − F(r)

]
1r ′(e)>r(e)|r(e), r ′(e)

)∣∣p].
Recall from (4) that

0 ≤ (
r ′(e) − r(e)

)
+i2

re←r′ (e) ≤ (
R

(
re←r ′) −R(r)

)
1r ′(e)>r(e)

≤ (
r ′(e) − r(e)

)
+i2

r (e).

Lemma 2.4 allows then to decouple (r ′(e) − r(e))+ and i2
r (e) [or (r ′(e) − r(e))+

and i2
re←r′ (e)]:

‖R{e}‖p
p ≤ 2E

[(
r ′(e) − r(e)

)p
+E

[
i2
r (e)|r(e), r ′(e)

]p]
≤ C(�)pE

[(
r ′(e) − r(e)

)p
+E

[
i2
re←1(e)|r(e), r ′(e)

]p]
= C(�)pE

[(
r ′(e) − r(e)

)p
+
]
E
[
i2
re←1(e)

]p
≤ C′(�)pmp(e)pE

(
i2
r (e)

)p
.

On the other hand, for any function F in L2(RE1/2) and any p ≥ 1∣∣E[
F
(
re←r ′) − F(r)|r(e), r ′(e)

]∣∣p
≤ (∣∣E[

F
(
re←r ′) −E(F )|r(e), r ′(e)

]∣∣ + ∣∣E[
F(r) −E(F )|r(e), r ′(e)

]∣∣)p
≤ 2p−1(∣∣E[

F
(
re←r ′) −E(F )|r(e), r ′(e)

]∣∣p
+ ∣∣E[

F(r) −E(F )|r(e), r ′(e)
]∣∣p),

and thus:

E
[∣∣E[

F
(
re←r ′)−F(r)|r(e), r ′(e)

]∣∣p] ≤ 2p
E
[∣∣E[

F
(
re←r ′)−E(F )|r(e), r ′(e)

]∣∣p].
Furthermore,

F{e} = E
[
F
(
re←r ′) −E(F )|r(e), r ′(e)

]
and

E
[∣∣E[

F
(
re←r ′) − F(r)|r(e), r ′(e)

]∣∣p]
= 2E

[∣∣E[(
F
(
re←r ′) − F(r)

)
1r(e)>r ′(e)|r(e), r ′(e)

]∣∣p].
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Thus,

‖F{e}‖p
p ≥ 1

2p−1E
[∣∣E[(

F
(
re←r ′) − F(r)

)
1r(e)>r ′(e)|r(e), r ′(e)

]∣∣p].
Now, as for the upper bound, one uses (4) and Lemma 2.4:

‖R{e}‖p
p ≥ 1

2p−1E
[
E
[(

r ′(e) − r(e)
)
+i2

re←r′ (e)|r(e), r ′(e)
]p]

≥ C(�)pE
[
E
[(

r ′(e) − r(e)
)
+i2

re←1(e)|r(e), r ′(e)
]p]

= C(�)pE
[(

r ′(e) − r(e)
)p
+
]
E
[
i2
re←1(e)

]p
≥ mp(e)pC′(�)pE

[
i2
r (e)

]p
.

This proves the first part of the lemma. Now, let S be such that 0 < |S| ≤ L and
let e ∈ S. For a subset S of E, recall the definition of LS in (8). Notice first that for
any function F in L2(RE1/2),

FS(r) = E

[( ∏
e′∈S\{e}

(1 − L{e})
)
�eF(r)

∣∣∣rS
]

= E

[( ∑
I⊂S\{e}

(−1)|I |LI

)
�eF(r)

∣∣∣rS
]

= E

[ ∑
I⊂S\{e}

(−1)|I |LI (�eF )(r)
∣∣∣rS

]
.

Thus, using Jensen’s inequality,

‖FS‖p
p ≤ 2p|S\{e}|

E
[
E
(∣∣�eF(r)

∣∣|rS)p].
Since this is true for any e ∈ S, we have

‖FS‖p
p ≤ min

e∈S
2p|S\{e}|

E
[
E
(∣∣�eF(r)

∣∣|rS)p].(24)

Now,

E
(∣∣�eF(r)

∣∣|rS)p ≤ E
(∣∣F(r) − F

(
re←r ′)∣∣|rS)p.

Using (4) and Lemma 2.4,

E
(∣∣R(r) −R

(
re←r ′)∣∣|rS) ≤ C(�)E

(∣∣r(e) − r ′(e)
∣∣i2

re←1(e)|rS)
= C(�)E

(∣∣r(e) − r ′(e)
∣∣|rS)E(

i2
re←1(e)|rS).

Thus,

E
[
E
(∣∣�eR(r)

∣∣|rS)p] ≤ C(�)pmp(e)pE
[
E
(
i2
r (e)|rS)p]

≤ C(�)pLmp(e)p
(∑

e′∈S

E
[
i2
r

(
e′)])p

,
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where the last inequality follows from the second part of Lemma 2.4. Gathering
this inequality and (24),

‖RS‖p ≤ (
2C(�)

)L min
e∈S

mp(e)
∑
e′∈S

E
[
i2
r

(
e′)]

≤ (
2C(�)

)L ∑
e′∈S

mp

(
e′)

E
[
i2
r

(
e′)]

≤ C′(�)L
∑
e′∈S

∥∥Ru,v
{e′}

∥∥
p,

using the first part of the lemma. �

4. Central limit theorem. Even if one takes two vertices u and v far apart,
there is not necessarily a Gaussian central limit theorem for the effective resistance
between them, since the influence of an edge near u, for instance, may well rep-
resent a positive fraction of the total variance of the resistance. However, let us
define the influence of an edge e on the effective resistance between u and v by

Iu,v(e) := ∥∥Ru,v
{e}

∥∥2
2.

Then, if the maximal influence of an edge is small with respect to the variance
and if the graph has homogeneous currents and bounded degree, one may obtain
a Gaussian approximation. The following theorem shows a result in this direction,
whereas another instance of this phenomenon will be described on a sequence of
finite graphs, the discrete tori, in Section 5.

THEOREM 4.1. Let G be a graph with homogeneous currents and bounded
degree, equipped with elliptic resistances in [1,�]. For vertices u and v such that
Var(Ru,v) > 0, define

β(u, v) = supe∈E Iu,v(e)

Var(Ru,v)

and

Ru,v := [
Ru,v −E

(
Ru,v)]/√Var

(
Ru,v

)
.

Let � be the standard Gaussian distribution function and let Fu,v be the distribu-
tion function of Ru,v

. There is a function f :R+ → [0,1], depending on G and �

only, such that

f (x)−→
x→0

0

and ∥∥Fu,v − �
∥∥∞ ≤ f

(
β(u, v)

)
.
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PROOF. Let us fix the vertices u and v. For every integer L, one defines J =
J (L) as

J (L) = {
S ⊂ E s.t. diam(S) ≤ L and S �= ∅

}
.

Let WL be the random variable:

WL =
∑

S∈J (L)Ru,v
S√∑

S∈J (L) ‖Ru,v
S ‖2

2

.

Since G has homogeneous currents, we know that for L large enough, WL will
be close (in L2-norm) to Ru,v

. On the other hand, since Ru,v
S depends only on

(r(e))e∈S , we know that for every fixed L, WL is a sum of random variables with
only local dependence. Thus, one may use the work of [12] to control the distance
to normality.

To be more precise, let FL be the distribution function of WL. For S in J (L),
define, using the notation of [12],

AS = {
S1 ∈ J (L) s.t. S ∩ S1 �= ∅

}
,

BS = {
S2 ∈ J (L) s.t. ∃S1 ∈ AS,S1 ∩ S2 �= ∅

}
,

CS = {
S3 ∈ J (L) s.t. ∃S2 ∈ BS,S2 ∩ S3 �= ∅

}
.

Finally, let N(CS) = {S′ ∈ J (L) s.t. CS ∩ CS′ �=∅} and

κ = max
S

{∣∣N(CS)
∣∣, ∣∣{S′ s.t. S ∈ CS′

}∣∣}.
It is clear that

CS ⊂ {
S3 ∈ J (L) s.t. ∃e ∈ S, e′ ∈ S3, d

(
e, e′) ≤ 2L

}
.

Thus,

N(CS) ⊂ {
S′ ∈ J (L) s.t. ∃e ∈ S, e′ ∈ S′, d

(
e, e′) ≤ 6L

}
,

which shows that ∣∣N(CS)
∣∣ ≤ |S|δ6L2δL

and ∣∣{S′ s.t. S ∈ CS′
}∣∣ ≤ |S|δ2L2δL

.

Thus, one may use Theorem 2.4 of [12] with p = 3 and κ ≤ 28δL
where δ is a

bound on the degrees in G. We obtain

‖FL − �‖∞ ≤ κ

∑
S∈J (L) ‖Ru,v

S ‖3
3

(
∑

S∈J (L) ‖Ru,v
S ‖2

2)
3/2

.



STABILITY AND CLT FOR EFFECTIVE RESISTANCE 1093

Using Corollary 3.14 and Lemma 3.15,

‖FL − �‖∞ ≤ C1(L,�,G)

∑
S∈J (L)(

∑
e∈S ‖Ru,v

{e} ‖3)
3

(
∑

e∈E ‖Ru,v
{e} ‖2

2)
3/2

≤ C1(L,�,G)

∑
S∈J (L) |S|2/3 ∑

e∈S ‖Ru,v
{e} ‖3

3

(
∑

e∈E ‖Ru,v
{e} ‖2

2)
3/2

≤ C′
1(L,�,G)

∑
e∈E ‖Ru,v

{e} ‖3
2

(
∑

e∈E ‖Ru,v
{e} ‖2

2)
3/2

,

one gets

‖FL − �‖∞ ≤ C(L)
√

β(u, v),

where C(L) = C(�,G,L) is a positive nondecreasing function of L.
On the other hand, Theorem 3.13 ensures that∥∥∥∥Ru,v −E

(
Ru,v) − ∑

S∈J (L)

Ru,v
S

∥∥∥∥
2

≤ ε(L)Var
(
Ru,v),

where ε(L) = ε(�,G,L) is a positive nonincreasing function of L which goes to
zero as L goes to infinity. This implies∥∥Ru,v − WL

∥∥2 ≤ 4ε(L).

Notice that � is 1-Lipschitz (in fact, 1/
√

2π -Lipschitz), so for any η > 0 and any
t ∈ R

Fu,v(t) − �(t) ≤ Fu,v(t) − �(t + η) + η

≤ Fu,v(t) − FL(t + η) + C(L)
√

β(u, v) + η

≤ P
(
WL −Ru,v

> η
) + C(L)

√
β(u, v) + η

≤ ‖Ru,v − WL‖2
2

η2 + C(L)
√

β(u, v) + η

≤ 4ε(L)

η2 + C(L)
√

β(u, v) + η.

Symmetrically, one gets, for any η > 0 and any t ∈ R

∣∣Fu,v(t) − �(t)
∣∣ ≤ 4ε(L)

η2 + C(L)
√

β(u, v) + η.

Optimizing in η gives∥∥Fu,v − �
∥∥∞ ≤ 3ε1/3(L) + C(L)

√
β(u, v).
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It remains to optimize in L. Let L0(x) = sup{L ∈ N s.t. 3ε1/3(L) ≥ √
xC(L)}.

Then ∥∥Fu,v − �
∥∥∞ ≤ 6ε1/3(L0

(
β(u, v)

))
.

Since L0(x) goes to infinity as x goes to zero, f (x) := 6ε1/3(L0(x)) answers the
theorem. �

It is in general difficult to apply this result because it is difficult to bound
β(u, v). However, notice that the influence of an edge is always bounded. Thus,
on a bounded graph with homogeneous currents, if the variance of Ru,v goes
to infinity as u and v move apart, one gets a central limit theorem. Notice that
the last point is equivalent to showing that E[∑e(i

u,v
r (e))4] goes to infinity. It

may be shown, for instance, that this is true on some wedges of Z
2, using the

idea of Nash–Williams inequality. For instance, let h(x) = xα with α ≤ 1/3, let
V = {(x, y) ∈ Z

2 s.t. |y| ≤ h(|x|) and let G be the subgraph of Z2 induced by V.
Then one may derive a central limit theorem for R0,v on G when the distance
d(0, v) goes to infinity. Since this example is not quasi-transitive, one has to use
the Harnack inequality to prove that the graph has homogeneous currents.

Notice also that already on Z
2, the variance of the resistance is only of order 1

(cf. [26]), and thus one cannot expect a central limit theorem for point-to-point
effective resistance when the resistances are i.i.d. (since the influence of the edges
near the source and the sink is of order 1). In this respect, the interest of Theo-
rem 4.1 is rather limited. However, one should rather think of it as a first step, with
a clean statement, toward central limit theorems for resistances on sequences of
finite graphs, as will be made clear in Section 5.

5. CLT for the effective resistance of the d-dimensional torus. In this sec-
tion, we investigate when n becomes large the effective resistance of the torus Td

n

equipped with nonconstant i.i.d. resistances from [1,�]. Here, Td
n is the graph

(Vd
n,Ed

n) where Vd
n = (Z/nZ)d and Ed

n is the set of oriented edges of the torus:
two vertices x and y of Vd

n are joined by an edge from x to y if there is some
i ∈ {1, . . . , n} such that xi − yi ∈ {−1,1} and for all j �= i, xj = yj . One chooses
also exactly one edge of each orientation as follows:

En
1/2 = {

(x, y) ∈ Ed
n s.t. ∃i ∈ {1, . . . , n}yi − xi = 1

}
.

Recall that 	2−(Ed
n, r) is the Hilbert space

	2−
(
Ed

n, r
) = {

θ ∈ R
Ed

n s.t. Er (θ) < ∞ and ∀e ∈ Ed
n, θ(e) = −θ(−e)

}
,

where

Er (θ) := ∑
e∈En

1/2

r(e)θ2(e),
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FIG. 2. The cut E0 on a 2-dimensional torus.

endowed with the scalar product(
θ, θ ′)

r = ∑
e∈En

1/2

r(e)θ(e)θ ′(e).

Also, for resistances r in [1,�]En
1/2 , all the sets 	2−(Ed

n, r) are the same, and we
denote this space by 	2−(Ed

n).
Since T

d
n has no boundary, our first objective is to define the effective resis-

tance in a natural and translation invariant way. First, we define a special cut along
direction 1 (see Figure 2):

E0 := {
(x, y) ∈ En

1/2 s.t. x ∼ y, x1 = 0 and y1 = 1
}
,

and the flows which cross the torus along direction 1, with intensity 1:

�n
0 :=

{
θ ∈ 	2−

(
Ed

n

)
s.t. d∗θ = 0 and

∑
e∈E0

θ(e) = 1
}
.

Notice that the elements of �n
0 are sourceless flows and that the definition is

independent of the choice of the cut (along direction 1). Indeed, if we define, for
any i in {0, . . . , n − 1},

Ei := {
(x, y) ∈ Vd

n × Vd
n s.t. x ∼ y, x1 = i and y1 = i + 1

}
,

then, for any i and any θ ∈ 	2−(En
1/2), we have∑

e∈Ei

θ(e) − ∑
e∈Ei−1

θ(e) = ∑
x s.t. x1=i

d∗θ(x).(25)

Thus, for any sourceless flow θ ,
∑

e∈E0
θ(e) equals 1 if and only if

∑
e∈Ei

θ(e) = 1
for some i in {0, . . . , n − 1}. Thus, for any translation τ on the torus,

θ ∈ �n
0 ⇐⇒ θ ◦ τ ∈ �n

0.(26)
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DEFINITION 5.1. One defines the effective resistance of the torus as

Rn := inf
θ∈�n

0

Er (θ).(27)

Using the Nash–Williams inequality, it is easy to show that Rn = �(1/nd−2).
Using the ideas of the preceding sections, one may show that Rn satisfies a central
limit theorem. This is the main result of the present paper.

THEOREM 5.2. Suppose that r(e), e ∈ En
1/2 are i.i.d. with positive variance

and support in [1,�] for some � > 1. Then

Var(Rn) = �
(
n4−3d),

and the resistance satisfies a central limit theorem:

Rn −E(Rn)√
Var(Rn)

L−→
n→∞N (0,1).

It is straightforward to show that a similar statement holds for what should be
called the effective conductance of the torus Td

n , Cn := 1/Rn or the mean conduc-
tivity of the torus Td

n: An = n2−dCn. One obtains

Var(An) = �
(
n−d)

and

An −E(An)√
Var(An)

L−→
n→∞N (0,1).

In [5], the definition of An is different, based on the discrete cube and not on
the torus, however the behaviour should be the same. [5] obtains only suboptimal
bounds for the variance of the mean conductivity. In [16], an optimal bound on the
variance is obtained for a related quantity based on the corrector of homogeniza-
tion theory. Again, the behaviour should be the same. In any case, the central limit
theorem is new.

Our strategy to show Theorem 5.2 is simply to apply the ideas of Theorem 4.1 to
this setting, where the infinite graph is traded against a growing sequence of finite
graphs. First, notice that there is a unique minimal flow reaching the infimum in the
definition of the resistance. It is characterized by an orthogonality criterion which
is the analog of the Kirchhoff cycle law (see Definition 2.1) in this setting, so
we shall call it a pseudo-Kirchhoff cycle law. Define the following tangent vector
space to �n

0:

−→
� :=

{
θ ∈ 	2−

(
Ed

n

)
s.t. d∗θ = 0 and

∑
e∈E0

θ(e) = 0
}
.
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LEMMA 5.3. The infimum in (27) is attained at a unique flow i
per
r,n which is the

unique flow in �n
0 that satisfies the following pseudo-Kirchhoff cycle law:

∀h ∈ −→
�,

(
h, iper

r,n

)
r = 0.

PROOF. This is standard since (·, ·)r is a scalar product. Let θ0 ∈ �n
0 be fixed.

Notice that �n
0 = θ0 + −→

� . Define i
per
r,n as the orthogonal projection of θ0 on

−→
�

⊥

for (·, ·)r . It is the unique element i of 	2−(Ed
n) satisfying

θ0 − i ∈ −→
� and ∀h ∈ −→

�, (h, i)r = 0,

which is equivalent to

i ∈ �n
0 and ∀h ∈ −→

�, (h, i)r = 0.

This shows the last part of the lemma. Now, for any θ ∈ �n
0, θ − i

per
r,n belongs to

−→
� ,

and thus

Er (θ) = Er

(
θ − iper

r,n

) + 2
(
θ − iper

r,n , iper
r,n

)
r + Er

(
iper
r,n

)
= Er

(
θ − iper

r,n

) + Er

(
iper
r,n

)
,

which shows that the infimum of Er (θ) over θ ∈ �n
0 is uniquely attained at i

per
r,n .
�

Since the minimal flow is sourceless but satisfies the additional condition that
the net flow through E0 is 1, one needs to adapt the setting of the first sections in
order to prove Theorem 5.2. For any e ∈ En

1/2, let

�n
e :=

{
unit flows θ from e− to e+ s.t.

∑
e′∈E0

θ
(
e′) = 1e∈E0

}
.

From (25), one sees that for any unit flow θ from e− to e+, and any i,∑
e′∈Ei

θ
(
e′) = ∑

e′∈E0

θ
(
e′) + 1e∈Ei

− 1e∈E0 .

Thus, one sees that for any translation τ on the torus, and any edge e,

θ ∈ �n
e ⇐⇒ θ ◦ τ ∈ �n

τ−1(e)
.(28)

Then, one may show as in the proof of Lemma 5.3 that θ �→ Er (θ) has a unique
minimizer on �n

e , that we shall call je
r,n, and which is characterized by the same

pseudo-Kirchhoff cycle law.

LEMMA 5.4. The following infimum

inf
θ∈�n

e

Er (θ)
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is attained at a unique flow je
r,n, which is the orthogonal projection of χe on

−→
�

⊥

in 	2−(Ed
n, r). It is the unique flow in �n

e that satisfies the pseudo-Kirchhoff cycle
law:

∀h ∈ −→
�,

(
h, je

r,n

)
r = 0.

PROOF. The proof is completely similar to the proof of Lemma 5.3, since
−→
�

is again the tangent vector space to �n
e . �

The role of je
r,n will be similar to that of ier in the first sections, as hinted by the

following lemma.

LEMMA 5.5. The functions r �→ i
per
r,n (e), for any edge e, and r �→ Rn(r) admit

partial derivatives of all orders. In addition, for any edges e, e′:

(i) ∀e′ �= e, ∂e′iper
r,n (e) = i

per
r,n (e′)
r(e′) j e′

r,n(e) = i
per
r,n (e′)
r(e)

j e
r,n(e

′).

(ii) ∀e, ∂ei
per
r,n (e) = i

per
r,n (e)

r(e)
(j e

r,n(e) − 1).

(iii) ∀e, ∂eRn(r) = (i
per
r,n (e))2.

PROOF. The fact that r �→ i
per
r,n (e) and r �→ Rn(r) admits partial derivatives of

all order is analogous to the classical case; cf. the proof of Lemma 2.3.
Let us fix some edge e′ ∈ En

1/2. One may thus differentiate the node law and the
pseudo-Kirchhoff cycle law of Lemma 5.3 with respect to r(e′) to obtain

∀x ∈ Vd
n, d∗[∂e′ iper

r,n

]
(x) = 0

and

∀h ∈ −→
�,

∑
e

h(e)r(e)

(
∂e′ iper

r,n (e) + i
per
r,n (e′)
r(e′)

χe′(e)
)

= 0.

Thus, if we define

θ(e) = ∂e′ iper
r,n (e) + i

per
r,n (e′)
r(e′)

χe′(e),

we see that

∀x /∈ e′, d∗θ(x) = 0

and

∀h ∈ −→
�, (h, θ)r = 0.

Furthermore,

d∗θ
(
e′−

) = i
per
r,n (e′)
r(e′)
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and

∑
e∈E0

θ(e) = i
per
r,n (e′)
r(e′)

1e′∈E0 .

It follows from the characterization of je′
r,n that

θ = i
per
r,n (e′)
r(e′)

j e′
r,n.

This gives the proof of the first two equations. The proof of the last one is analo-
gous to the classical case; cf. Lemma 2.3. �

When n is large, we would like to compare je
r,n to a flow on the whole lattice Zd .

To do this, we shall couple the network (Zd,Ed) with all the tori by “unwrapping”
each torus on Z

d . This construction will be used throughout the section. Since our
main objects are elements of �n

0 and �n
e , we mainly need to identify the set of

edges Ed
n , equipped with their resistances, as subsets of Ed , and then be careful

about what happens to the boundary operator through this identification.

First, fix e to be any edge such that e− is the origin of Zd . Let r ∈ [1,�]Ed
1/2 be

a fixed collection of resistances and define

Vn = {−�n/2�, . . . , ⌊(n − 1)/2
⌋}d

,

where �·� is the integer part, and

En
1/2 = {

(x, y) ∈ Vn ×Z
d s.t. ∃i ∈ {1, . . . , n}yi − xi = 1 and ∀j �= i, xj = yj

}
so that these sets are roughly centered around the origin. Now, we let G

per
n be the

network with edge set En
1/2, resistances induced by r and set of vertices all the

endpoints of the edges of En
1/2 with periodic condition, that is, vertices with iden-

tical coordinates modulo n are identified (this takes care of the boundary operator
on the torus). Clearly, G

per
n is isomorphic to T

d
n , and we shall thus use the notation

E0, �n
e , �n

0 and je
r,n on G

per
n as well.

LEMMA 5.6. Let e be any fixed edge such that e− is the origin of Zd . Let ier be
the minimal current on Z

d from e− to e+, then je
r,n converges to ier in 	2−(Ed, r).

PROOF. We let GF
n be the subgraph of Zd induced by the set of vertices Vn.

Also, we define GW
n be the graph obtained from Z

d by identifying all the vertices
outside {−�n/2�+1, . . . , �(n−1)/2�}d . See Figure 3. We equip these graphs with
resistances given by r . Since these graphs have sets of edges which are still subsets
of Ed , there is no ambiguity about what resistance is assigned to which edge.

We need now to introduce some terminology from the theory of electrical net-
works. Let G = (V,E) be a graph equipped with resistances r = (r(e))e∈E and
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FIG. 3. The three graphs G
per
n , GF

n and GW
n when n = 3 and d = 2. Squares are identified as a

single vertex, while empty circles are subject to periodic identification modulo n.

suppose that (Hn)n≥0 is a sequence of finite subgraphs of G that exhausts G, as
in Section 2.1. A star of a graph G = (V,E) is a member of 	2−(E, r) of the form∑

e−=x c(e)χe for x ∈ V. Let � (resp., �n) denote the closed subspace spanned
by the stars in 	2−(E, r) (resp., by the stars of HW

n ). A cycle is a member of 	2−(E, r)

of the form
∑n

i=1 χek with e1, . . . , en an oriented cycle in G. Let ♦ (resp., ♦n) de-
note the closed subspace spanned by the cycles in 	2−(E, r) (resp., by the cycles of
Hn). To understand the introduction of wired and free networks, notice that all stars
of the wired network HW

n are stars in G, except for the star at the “extra vertex”
which represents all the vertices outside Hn, but this additional star is just the op-
posite of all the stars in Hn, thus �n is a subspace of �. Furthermore, since (Hn)n
exhausts G, each star of G is a member of �n for n large enough. This shows that
� = ⋃

n �n. Also, all the cycles of Hn are cycles of G, and thus ♦n is a subspace
of ♦, and each cycle of ♦ is in ♦n for n large enough. This shows that ♦ = ⋃

n ♦n.
For a closed subspace V , denote by PV the projection on V in 	2−(E, r). Then,

for any edge e in H0, P�n
χe is the unique current on HW

n between e− and e+ and it
converges in 	2−(E, r) to ier = P�χe, the minimal current on G from e− to e+ (this
is a simple consequence of the fact that � = ⋃

n �n; see Exercise 9.2 in [23], and
also Propositions 9.1 and 9.2 therein). Also, P♦⊥

n
χe converges to iF,e

r = P♦⊥χe,

the free current from e− to e+. In general, the free current iF,e
r is a current that

may or may not be equal to ier . However, on Z
d (and on finite graphs of course),

it is known that those currents coincide. One says in this case that “currents are
unique.” Another way to express this is to say that � = ♦⊥. An argument can be
given as follows: this is trivial on Z, because free and wired currents between u and
v can be easily computed to be just 1 from u to v and 0 elsewhere, then the unicity
of currents is preserved under cartesian product (Exercise 9.7 in [23]), this shows
currents are unique on Z

d with unit resistances. Finally, the unicity of currents is
preserved under “rough isometries” (Theorem 9.9 in [23]), which include elliptic
perturbations of the weights.

Now, we return to our setting and let �n (resp., �per
n ) be the linear subspace

of 	2−(En
1/2) spanned by the stars of GW

n (resp., G
per
n ). Let also ♦n (resp., ♦per

n )

the linear subspace spanned by the cycles of GF
n (resp., G

per
n ). Since GF

n is a strict
subgraph of G

per
n ,

♦n ⊂ ♦per
n .
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Furthermore, any cycle in GF
n must traverse E0 in one direction the same number

of times that it traverses it in the other direction (notice that this is not true on G
per
n ,

due to the periodic boundary conditions). Thus,

♦n ⊂ ♦per
n ∩

{
θ ∈ 	2−

(
En

1/2
)

s.t.
∑
e∈E0

θ(e) = 0
}
.

Also, note that the stars in GW
n are generated by the stars at vertices in {−�n/2� +

1, . . . , �(n − 1)/2�}d , since the star at the “exterior vertex” equals the opposite of
the sum of all the other stars. But all those stars are stars of G

per
n . Thus,

�n ⊂ �per
n .

Recall from Lemma 5.4 that je
r,n is the orthogonal projection in 	2−(Ed

n, r) of χe on

Hn = −→
�

⊥
. It is easy to see that

−→
� =

{
θ ∈ ♦per

n s.t.
∑
e∈E0

θ(e) = 0
}
.

Indeed, on G
per
n , the condition d∗θ = 0 may be written as θ ∈ (�per

n )⊥, which is
equivalent to θ ∈ ♦per

n since G
per
n is a finite graph. Notice that je

r,n is a flow between
e− and e+ on G

per
n but not necessarily on Z

d . The inclusions above give

�n ⊂ Hn ⊂ ♦⊥
n .

Let � (resp., ♦) denote the closed linear subspace spanned by stars (resp., cycles)
in 	2−(Ed, r). Then, according to the elements of the theory of electrical networks
stated above, P�n

χe (resp., P♦⊥
n
χe) converges to ier = P�χe, the minimal current

on Z
d from e− to e+ (resp., iF,e

r = P♦⊥χe, the free current on Z
d from e− to e+).

But on Z
d , currents are unique. As a consequence, (je

r,n)n≥1 converges also to ier ,
the minimal current on Z

d from e− to e+. �

In order to adapt the notion of graphs with homogeneous currents to this setting
of sequences of finite graphs, define

α(d,L,�) := sup
n≥1

sup
r∈[1,�]E1/2

sup
e∈Td

n

∑
d(e′,e)≥L

r
(
e′)(je

r,n

(
e′))2

.

PROPOSITION 5.7. The d-dimensional discrete tori have homogeneous cur-
rents in the sense that for any � ≥ 1,

α(d,L,�) −→
L→+∞ 0.
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PROOF. We will adapt the proof of Proposition 3.10, using the convergence
of je

r,n given by Lemma 5.6. Let V = Z
d and E = E

d .
Let e1, . . . , ed be the d edges going from 0 to some point of nonnegative coor-

dinates. Thanks to the translation property (28), one has, for any translation τ on
the torus:

j
τ(e)

r◦τ−1,n
◦ τ = je

r,n.

Thus,

α(d,L,�) := sup
n≥1

sup
e∈{e1,...,ed }

sup
r∈[1,�]E1/2

∑
d(e′,e)≥L

r
(
e′)(je

r,n

(
e′))2

.

Let e be any fixed edge such that e− is the origin, and define

c := lim sup
L→∞

sup
n≥1

sup
r∈[1,�]E1/2

∑
d(e′,e)≥L

r
(
e′)(je

r,n

(
e′))2

.

It is thus enough to prove that c = 0. Notice that when n is fixed,

lim sup
L→∞

sup
r∈[1,�]E1/2

∑
d(e′,e)≥L

r
(
e′)(je

r,n

(
e′))2 = 0,

since the sequence in L is zero for L large enough. Thus, one may find a sequence
(rL,nL)L≥1 in [1,�]E1/2 ×N such that

c = lim
L→∞

∑
d(e′,e)≥L

rL
(
e′)(je

rL,nL

(
e′))2

,

and nL −→
L→∞+∞. The sequence je

rL,nL
is bounded in 	2−(Ed). Thus, by compact-

ness of [1,�]E1/2 one may extract a sequence from (rL,nL)L≥1, that we shall still
denote by (rL,nL)L≥1 to lighten the notation, such that (je

rL,nL
(e′))L converges

θ(e′) for any e′, and (rL(e′))L converges to some r(e′) ∈ [1,�] for any e′. Notice
that θ is a unit flow on the whole lattice Zd since for any L, (je

rL,nL
)L is a unit flow

on G
per
n . Using the minimality of ier ,

Er

(
ier
) ≤ Er (θ)

= ∑
e′∈E1/2

r
(
e′)θ2(e′)

≤ lim sup
L→∞

( ∑
d(e′,e)<L

rL
(
e′)(je

rL,nL

(
e′))2

)
(29)

= lim sup
L→∞

(
ErL

(
je
rL,nL

) − ∑
d(e′,e)≥L

rL
(
e′)(je

rL,nL

(
e′))2

)

= lim sup
L→∞

ErL

(
je
rL,nL

) − c

≤ lim sup
L→∞

ErL

(
je
r,nL

) − c,



STABILITY AND CLT FOR EFFECTIVE RESISTANCE 1103

where in the last inequality we used the minimality property of je
rL,nL

. Now, using
Minkowski’s inequality,

ErL

(
je
r,nL

) = ∑
e′∈E1/2

rL
(
e′)(je

r,nL

(
e′))2

≤
(√√√√ ∑

e′∈E1/2

rL
(
e′)(ier (e′))2 +

√√√√�
∑

e′∈E1/2

(
je
r,nL

(
e′) − ier

(
e′))2

)2

.

Since (rL)L≥1 converges simply to r and is bounded by �, the dominated conver-
gence theorem gives ∑

e′∈E1/2

rL
(
e′)(ier (e′))2 −→

L→∞Er

(
ier
)
,

Lemma 5.6 says that (je
r,nL

)L≥1 converges to ier in 	2−(E1/2). Thus,

lim sup
L→∞

ErL

(
je
r,nL

) ≤ Er

(
ier
)
.

Plugging this into (29) shows that c = 0. �

Now, one may complete the proof of Theorem 5.2.

PROOF OF THEOREM 5.2. With Lemma 5.5 at hand, it is easy to reproduce the
proofs of Lemma 2.4, Corollary 3.14 and Theorem 3.13 with α(G,L,�) replaced
by α(d,L,�). One obtains notably the existence of constants C(�) and C(�,d)

such that for any n, and any L ≥ 1,∑
diam(S)≥L

∥∥(Rn)S
∥∥2

2 ≤ C(�)α(G,L,�)
∑
S �=∅

∥∥(Rn)S
∥∥2

2

and ∑
e

∥∥(Rn){e}
∥∥2

2 ≤ Var(Rn) = ∑
S �=∅

∥∥(Rn)S
∥∥2

2 ≤ C(�,d)
∑
e

∥∥(Rn){e}
∥∥2

2.

Now, thanks to the translation invariance of the model given by (26) and the fact
that the edge-resistances are i.i.d.,

βn := sup
n

sup
e∈En

1/2

‖(Rn){e}‖2
2

Var(Rn)
= �

(
1/nd)

and

sup
e∈En

1/2

E
[(

iper
r,n (e)

)2] = �

(
1

nd
E(Rn)

)
= �

(
1

n2d−2

)
.
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This already shows that

Var(Rn) = �
(

sup
e∈En

1/2

E
[(

iper
r,n (e)

)2]2
)

= �

(
1

n3d−4

)
.

Now, Proposition 5.7 allows to repeat the proof of Theorem 4.1. Let Fn be the dis-
tribution function of Rn−E(Rn)√

Var(Rn)
. One obtains the existence of a function f having

limit 0 at 0+ and such that for any n,

‖Fn − �‖∞ ≤ f (βn).

This completes the proof of the central limit theorem. �

6. Perspectives. We end this article with some questions left open.
First, it is not clear whether the notion of homogeneous currents is really useful

to get a central limit theorem. For instance, in the counterexample of Figure 1, one
sees that the currents ier still spread most of their mass at very localized places,
namely near e and near the edge e′

k which is in the same connected component
as e. Thus, one could be able to adapt the proof of the central limit theorem in this
special case. One may wonder whether the sole hypotheses of bounded degree and
small influences are enough to get a central limit theorem. On the other hand, if the
homogeneous currents hypothesis is proved really necessary, it would be important
to understand which graphs satisfy it, and whether it is stable under perturbations
like quasi-isometries.

Second, the most obvious question left open is the one raised in the Introduction,
that is to determine the order of the variance and to show a central limit theorem for
the resistance on the cube of side length n in Z

d , and not only on the torus. More
generally, consider a domain � of Rd with two disjoint subsets of its boundary,
A and Z. Let Gn be the graph induced by � ∩ 1

n
Z

d and let Rn be the effective
resistance between A and Z on Gn. Then we conjecture that a Gaussian central
limit theorem holds for Rn.
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