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A NONCOMMUTATIVE MARTINGALE CONVEXITY INEQUALITY1

BY ÉRIC RICARD∗ AND QUANHUA XU†,‡

Université de Caen Basse-Normandie∗,
Wuhan University† and Université de Franche-Comté‡

Let M be a von Neumann algebra equipped with a faithful semifinite
normal weight φ and N be a von Neumann subalgebra of M such that the
restriction of φ to N is semifinite and such that N is invariant by the modular
group of φ. Let E be the weight preserving conditional expectation from M
onto N . We prove the following inequality:

‖x‖2
p ≥ ∥∥E(x)

∥∥2
p + (p − 1)

∥∥x − E(x)
∥∥2
p, x ∈ Lp(M),1 < p ≤ 2,

which extends the celebrated Ball–Carlen–Lieb convexity inequality. As an
application we show that there exists ε0 > 0 such that for any free group Fn

and any q ≥ 4 − ε0,

‖Pt‖2→q ≤ 1 ⇔ t ≥ log
√

q − 1,

where (Pt ) is the Poisson semigroup defined by the natural length function
of Fn.

1. Introduction. Let M be a von Neumann algebra equipped with a faithful
semifinite normal weight φ. The associated noncommutative Lp-spaces will be
simply denoted by Lp(M). We refer to [11] for information on noncommutative
integration. Recall that if N is a von Neumann subalgebra of M such that the
restriction of φ to N is semifinite and such that N is σφ-invariant [i.e., σ

φ
t (N ) =

N for all t ∈ R], then there exists a unique φ-preserving conditional expectation E
from M onto N such that

E(axb) = aE(x)b, a, b ∈ N , x ∈M.

Here σφ denotes the modular group of φ. Moreover, E extends to a contractive
projection from Lp(M) onto Lp(N ) for any 1 ≤ p < ∞. Below is our main result.

THEOREM 1. Let M, N and E be as above. If 1 < p ≤ 2, then

‖x‖2
p ≥ ∥∥E(x)

∥∥2
p + (p − 1)

∥∥x − E(x)
∥∥2
p, x ∈ Lp(M).(1)

If 2 < p < ∞, the inequality is reversed.
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Inequality (1) is a martingale convexity inequality. It is closely related to the
celebrated convexity inequality of Ball, Carlen and Lieb [2] for the Schatten
classes Sp . Namely, for 1 < p ≤ 2, we have

‖x + y‖2
p + ‖x − y‖2

p ≥ 2‖x‖2
p + 2(p − 1)‖y‖2

p, x, y ∈ Sp.(2)

In fact, it is easy to see that (2) is a special case of (1) by considering M =
B(�2) ⊕ B(�2). Conversely, the validity of (2) for any noncommutative Lp-spaces
implies (1). Indeed, we will deduce (1) from the following:

THEOREM 2. Let M be any von Neumann algebra. If 1 < p ≤ 2, then

‖x + y‖2
p + ‖x − y‖2

p ≥ 2‖x‖2
p + 2(p − 1)‖y‖2

p, x, y ∈ Lp(M).(3)

If 2 < p < ∞, the inequality is reversed.

What is new and remarkable in (2) or (3) is the fact that (p − 1) is the best con-
stant. In fact, if one allows a constant depending on p in place of (p − 1), then (3)
is equivalent to the well-known results on the 2-uniform convexity of Lp(M). We
refer to [2] for more discussion on this point. The optimality of the constant (p−1)

has important applications to hypercontractivity in the noncommutative case. It is
the key to the solution of Gross’s longstanding open problem about the optimal
hypercontractivity for Fermi fields by Carlen and Lieb [4]. It plays the same role
in [3] and [9]. Note that the optimality of (p − 1) in (3) implies (p − 1) is also
the best constant in (1). It seems that (1) with this best constant is new even in the
commutative case.

Clearly, (2) implies (3) for injective M (or more generally, QWEP M) since
then Lp(M) is finitely representable in Sp . The proof of (2) in [2] goes through a
differentiation argument for the function t �→ ‖x + ty‖p

p with self-adjoint x and y.
It seems difficult to directly extend their argument to finite von Neumann alge-
bras. The subtle point is the fact that to be able to differentiate the above function,
one needs the invertibility of x + ty for all t ∈ [0,1] except possibly countably
many of them. This invertibility is easily achieved in the matrix algebra case, that
is, for M = Mn, the algebra of n × n-matrices. Instead, we will use a pseudo-
differentiation argument which is much less rigid than that of [2]. The main nov-
elty in our argument can be simply explained as follows. We first cut the operator
x + ty by its spectral projections in order to reduce the general case to the invert-
ible one; to do so we need x + ty to be of full support for all t ∈ [0,1]. We then
get this full support property for all t by adding to x + ty an independent operator
with diffuse spectral measure. Note that by standard perturbation argument, it is
easy to insure the full support (or even the invertibility) of x + ty for one t .

An iteration of Theorem 1 immediately implies the following inequality on non-
commutative martingales.
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COROLLARY 3. Let (Mn)n≥0 be an increasing sequence of von Neu-
mann subalgebras of M with w*-dense union in M. Assume that each Mn is
σφ-invariant, and φ|Mn is semifinite. Let En be the conditional expectation with
respect to Mn. Then for 1 < p ≤ 2,

‖x‖2
p ≥ ∥∥E0(x)

∥∥2
p + (p − 1)

∑
n≥1

∥∥En(x) − En−1(x)
∥∥2
p, x ∈ Lp(M).

For 2 < p < ∞, the inequality is reversed.

Another possible iteration is the following:

COROLLARY 4. Let (Mn)1≤n≤N be a family of von Neumann subalgebras
of M. Assume that each Mn is σφ-invariant and φ|Mn is semifinite. Let E+

n

be the conditional expectation with respect to Mn and E−
n = Id − E+

n . Then for
1 < p ≤ 2,

‖x‖2
p ≥ ∑

(εi )∈{+,−}N
(p − 1)|{i|εi=−}|

∥∥∥∥∥
(

N∏
i=1

Eεi

i

)
(x)

∥∥∥∥∥
2

p

, x ∈ Lp(M).

For 2 < p < ∞, the inequality is reversed.

Applying it to the case where M = L∞({±1}N) and Mn is the subalgebra of
functions independent of the nth variable, we deduce the classical hypercontrac-
tivity for the Walsh system (with operator valued coefficients). Similarly, taking
M to be the Clifford algebra with N generators, we obtain the optimal hypercon-
tractivity for Fermi fields as pointed out in [2, 4].

We end the paper with some applications to hypercontractivity for group von
Neumann algebras. In particular for the Poisson semigroup of a free group, we
obtain the optimal time for the hypercontractivity from L2 to Lq for q ≥ 4.

2. The proofs. We will prove Theorems 1 and 2. Using the Haagerup re-
duction theorem as in [7], one can reduce both theorems to the finite case. Thus
throughout this section M will denote a von Neumann algebra equipped with a
faithful tracial normal state τ . Lp(M) is then constructed with respect to τ . We
will first prove (3), then deduce (1) from it. 1 < p < 2 will be fixed in the sequel.

As explained before, the proof of (3) will be done by a pseudo-differentiation ar-
gument. Recall that for a continuous function f from an interval I to R its pseudo-
derivative of second order at t is

D2f (t) = lim inf
h→0+

f (t + h) + f (t − h) − 2f (t)

h2 .

This pseudo-derivative shares many properties of the second derivative. For in-
stance, if D2f is nonnegative on I , then f is convex. Indeed, by adding εt2 to f



870 E. RICARD AND Q. XU

(with ε > 0), we can assume that D2f (t) is positive for all t . If f was not convex,
there would exist t0 < t1 in I such that the function f − g takes a positive value at
some point of (t0, t1), where g is the straight line joining the two points (t0, f (t0))

and (t1, f (t1)). So f − g achieves a local maximum at a point s ∈ (t0, t1). Conse-
quently, D2f (s) = D2(f − g)(s) ≤ 0, which is a contradiction.

Our pseudo-differentiation argument consists in proving the following inequal-
ity for x, y ∈ Lp(M):

D2‖x + ty‖2
p(0) ≥ 2(p − 1)‖y‖2

p.(D2
x,y)

Here the differentiation is, of course, taken with respect to the variable t . The
arguments from [2] can be adapted to give:

LEMMA 5. Let a, b ∈ M be self-adjoint elements with a invertible. Then
(D2

a,b) holds.

PROOF. As a is invertible in M, a + tb is also invertible for small t . Introduce
an auxiliary function ψ on R,

ψ(t) = ‖a + tb‖p
p = τ

((
a2 + t (ab + ba) + t2b2)p/2)

.

ψ is differentiable in a neighborhood of the origin and

ψ ′(t) = p

2
τ
[(

a2 + t (ab + ba) + t2b2)p/2−1(
(ab + ba) + 2tb2)]

.

As in [2] by functional calculus, the operator (a2 + t (ab+ba)+ t2b2)p/2−1 admits
the following integral representation:(

a2 + t (ab + ba) + t2b2)p/2−1

(4)

= cp

∫ ∞
0

sp/2−1 1

s + a2 + t (ab + ba) + t2b2 ds,

where

c−1
p =

∫ ∞
0

sp/2−1 1

s + 1
ds.

Thus ψ is twice differentiable at t = 0 and

ψ ′′(0) = pτ
(|a|p−2b2)

(5)

− cp

∫ ∞
0

sp/2−1τ

[
1

s + a2 (ab + ba)
1

s + a2 (ab + ba)

]
ds.

It then follows that ϕ = ψ2/p is also twice differentiable at t = 0 and

ϕ′′(0) = 2

p

(
2

p
− 1

)
‖a‖2−2p

p ψ ′(0)2 + 2

p
‖a‖2−p

p ψ ′′(0) ≥ 2

p
‖a‖2−p

p ψ ′′(0).
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Hence (D2
a,b) will be a consequence of

1

p
‖a‖2−p

p ψ ′′(0) ≥ (p − 1)‖b‖2
p.(6)

To prove the last inequality we claim that ψ ′′(0) increases when a is replaced
by |a|. Indeed, the trace inside the integral in (5) is equal to twice the following
sum:

τ

[
a

s + a2 b
a

s + a2 b

]
+ τ

[
a2

s + a2 b
1

s + a2 b

]
.

The second term above depends only on |a| (recalling that a is self-adjoint). It
remains to show that the first one increases when a is replaced by |a|. By decom-
posing a into its positive and negative parts, we see that the first term is equal
to

τ

[
a+

s + a2+
b

a+
s + a2+

b

]
+ τ

[
a−

s + a2−
b

a−
s + a2−

b

]
− 2τ

[
a+

s + a2+
b

a−
s + a2−

b

]
.

All above traces are nonnegative. Therefore, the above quantity increases when
the subtraction is replaced by addition. Then tracing back the argument and noting
that |a| = a+ + a−, we get the desired inequality

τ

[
a

s + a2 b
a

s + a2 b

]
≤ τ

[ |a|
s + a2 b

|a|
s + a2 b

]
.

Returning back to (5), we deduce the claim. Thus in the following we will assume
that a is a positive invertible element of M.

The positivity of a will facilitate the calculation of ψ ′′(0) as explained in [2].
Since a + tb is positive for small t , we have

ψ(t) = τ
(
(a + tb)p

)
.

Thus for t close to 0,

ψ ′(t) = pτ
(
(a + tb)p−1b

)
.

To calculate the second derivative we use the following integral representation:

(a + tb)p−1 = dp

∫ ∞
0

sp−1
[

1

s
− 1

s + a + tb

]
ds.

Consequently,

ψ ′′(0) = p dp

∫ ∞
0

sp−1τ

[
1

s + a
b

1

s + a
b

]
ds.

As shown in [2], the function

F : z �→ τ

[
1

s + z
b

1

s + z
b

]
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is convex on the positive cone of M.
Let u be the unitary operator in the polar decomposition of b (as M is finite,

the usual partial isometry in this decomposition can be chosen to be a self-adjoint
unitary). Then clearly

F(z) = 1

2

(
F(z) + F(uzu)

) ≥ F

(
z + uzu

2

)
.

Now z′ = z+uzu
2 commutes with u, so

F(z) ≥ F
(
z′) = τ

[
1

s + z′ |b| 1

s + z′ |b|
]
.

Let B be the Abelian von Neumann subalgebra of M generated by b, and let Eb

be the associated trace preserving conditional expectation. Then

F
(
z′) = τ

[
Eb

(
1

s + z′ |b| 1

s + z′
)
|b|

]
.

However, the Kadison–Schwarz inequality implies

Eb

(
1

s + z′ |b| 1

s + z′
)

≥ Eb

(
1

s + z′ |b|1/2
)
Eb

(
|b|1/2 1

s + z′
)

= Eb

(
1

s + z′
)2

|b|.
Hence, by the positivity of the trace on products of positive elements, we deduce

F(z) ≥ τ

[
Eb

(
1

s + z′
)2

|b|2
]
.

Then by the operator convexity of 1
t
, we have

Eb

(
1

s + z′
)

≥ 1

s + Eb(z′)
= 1

s + Eb(z)
.

Letting ã = Eb(a), we have just shown

ψ ′′(0) ≥ p dp

∫ ∞
0

sp−1τ

[
1

s + ã
b

1

s + ã
b

]
ds = ψ̃ ′′(0),(7)

where

ψ̃(t) = τ
(
(ã + tb)p

)
.

Finally, (6) immediately follows from (7). Indeed, by (7) and the Hölder inequality,

1

p
‖a‖2−p

p ψ ′′(0) ≥ 1

p
‖ã‖2−p

p ψ̃ ′′(0) = (p − 1)‖ã‖2−p
p τ

(
ãp−2b2) ≥ (p − 1)‖b‖2

p.

This finishes the proof of the lemma. �

For a ∈ M self-adjoint, we denote by s(a) = 1(0,∞)(|a|). s(a) is the support
of a, that is, the least projection e of M such that ea = a. We say that a has full
support if s(a) = 1.
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LEMMA 6. Let a, b ∈ M be self-adjoint with s(a) = 1. Then (D2
a,b) holds.

PROOF. We will reduce this lemma to the previous one by cutting a + tb with
the spectral projections of a. Let e be a nonzero spectral projection of a, and put
ae = eae and be = ebe. Since a is of full support, ae is invertible in the reduced
von Neumann algebra Me = eMe. Thus Lemma 5 can be applied to the couple
(ae, be) in Me. Let ψe(t) = ‖ae + tbe‖2

p as before. ψe is twice differentiable at
t = 0, and (6) holds with ψe in place of ψ .

Let e⊥ = 1 − e. Then for t in a neighborhood of the origin, we have [recalling
that ϕ(t) = ‖a + tb‖2

p]

ϕ(t) ≥ (∥∥e(a + tb)e
∥∥p
p + ∥∥e⊥(a + tb)e⊥∥∥p

p

)2/pdef=(
ψe(t) + γe(t)

)2/p
.

However,

ψe(t) = ‖ae‖p
p + tψ ′

e(0) + t2

2
ψ ′′

e (0) + o
(
t2)

as t → 0.

Let

α(t) = ‖ae‖p
p + γe(t) = ∥∥ae + e⊥(a + tb)e⊥∥∥p

p = ∥∥a + te⊥be⊥∥∥p
p.

Then

ϕ(t) ≥
(
α(t) + tψ ′

e(0) + t2

2
ψ ′′

e (0) + o
(
t2))2/p

= α(t)2/p

(
1 + 2t

p

ψ ′
e(0)

α(t)
+ t2

p

ψ ′′
e (0)

α(t)
+ 1

p

(
2

p
− 1

)
t2 ψ ′

e(0)2

α(t)2 + o
(
t2))

= α(t)2/p + 2t

p
ψ ′

e(0)α(t)2/p−1 + t2

p
ψ ′′

e (0)α(t)2/p−1

+ 1

p

(
2

p
− 1

)
t2ψ ′

e(0)2α(t)2/p−2 + o
(
t2)

≥ α(t)2/p + 2t

p
ψ ′

e(0)α(t)2/p−1 + t2

p
ψ ′′

e (0)α(t)2/p−1 + o
(
t2)

.

By convexity of norms,

α(t)2/p + α(−t)2/p ≥ 2‖a‖2
p = 2ϕ(0).

We then deduce that
ϕ(t) + ϕ(−t) − 2ϕ(0)

t2

≥ 2

p
ψ ′

e(0)
α(t)2/p−1 − α(−t)2/p−1

t

+ 1

p
ψ ′′

e (0)
[
α(t)2/p−1 + α(−t)2/p−1] + o(1).
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The uniform smoothness of the norm ‖‖p implies that the function α2/p−1 is dif-
ferentiable at t = 0, and its derivative is equal to

(2 − p)‖a‖1−p
p τ

(
v|a|p−1e⊥be⊥)def=δe,

where v is the unitary in the polar decomposition of a. It then follows that

D2ϕ(0) ≥ 4

p
ψ ′

e(0)δe + 2

p
ψ ′′

e (0)‖a‖2−p
p .

Hence by (6),

D2ϕ(0) ≥ 4

p
ψ ′

e(0)δe + 2(p − 1)‖be‖2
p.

Thanks to the full support assumption of a, we can let e → 1 in the above inequal-
ity. This limit procedure removes the first extra term, so we finally get

D2ϕ(0) ≥ 2(p − 1)‖b‖2
p. �

Now we are ready to show (3).

PROOF OF THEOREM 2. First by density, we need only to show (3) for
x, y ∈ M. Then notice that it suffices to do it for self-adjoint elements using a
classical 2 × 2-matrix trick. Indeed, let M̃ = M2 ⊗ M equipped with the tensor
trace. Given x, y ∈ M let

a =
(

0 x

x∗ 0

)
and b =

(
0 y

y∗ 0

)
.

Then a and b are self-adjoint. Moreover, by easy computations, (3) for x and y is
equivalent to the same inequality for a and b.

To use Lemma 6, we require that a + tb have full support for any t ∈ R. This is
achieved by a tensor product argument. Choose a positive element c ∈ L∞([0,1])
whose spectral measure with respect to Lebesgue measure is diffuse (atomless),
say c(t) = t for t ∈ [0,1]. In other words, considered as a random variable in
the probability space [0,1], the law of c is diffuse. On the other hand, for t ∈ R,
composing the spectral resolution of a+ tb with the trace τ , we can view a+ tb as a
random variable in another probability space (�,P ). Now, consider the tensor von
Neumann algebra L∞([0,1])⊗M; it is finite. M and L∞([0,1]) are identified as
subalgebras of L∞([0,1])⊗M in the usual way. Then for any ε > 0, the law
of a + tb + εc is the convolution of the laws of a + tb and εc. It is atomless
since the law of c is atomless. Consequently, the support of a + tb + εc is full in
L∞([0,1])⊗M.
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Thus by Lemma 6 applied to the pair (a + εc, b), the function f (t) =
‖a + tb + εc‖2

p − (p − 1)t2‖b‖2
p satisfies D2(f )(t) ≥ 0, so it is convex. Hence

f (1) + f (−1) ≥ 2f (0); this is (3) for a + εc and b. Letting ε → 0 gives the de-
sired result. �

Finally, we deduce (1) from (3).

PROOF OF THEOREM 1. Given x ∈ Lp(M) let a = E(x) and b = x − E(x).
Consider again the function f defined by

f (t) = ‖a + tb‖2
p − (p − 1)t2‖b‖2

p.

Then (3) implies D2f ≥ 0, so f is convex. On the other hand, the function g(t) =
‖a + tb‖2

p is also convex and by the contractivity of E on Lp(M),

‖a + tb‖p ≥ ∥∥E(a + tb)
∥∥
p = ‖a‖p.

Hence we conclude that the right derivative g′
r (0) ≥ 0, so that f ′

r (0) ≥ 0, too.
Consequently, f is increasing on R

+. In particular, f (1) ≥ f (0), which is nothing
but (1). �

3. Applications to hypercontractivity. We give in this section some applica-
tions to hypercontractivity inequalities on group von Neumann algebras. Let G be
a discrete group and vN(G) the associated group von Neumann algebra. Recall
that vN(G) is the von Neumann algebra generated by the left regular representa-
tion λ: vN(G) = λ(G)′′ ⊂ B(�2(G)). It is equipped with a canonical trace τ , that
is, τ(x) = 〈xe, e〉, where e is the identity of G. Given a function ψ :G →R+ with
ψ(e) = 0, we consider the associated Fourier–Schur multiplier initially defined on
the family C[G] of polynomials on G:

Pt :
∑
g∈G

x(g)λ(g) �→ ∑
g∈G

e−tψ(g)x(g)λ(g), t > 0.

We will assume that Pt extends to a contraction on Lp(vN(G)) for every 1 ≤ p ≤
∞. Schoenberg’s classical theorem asserts that if ψ is symmetric and conditionally
negative, Pt is a completely positive map on vN(G). Since it is trace preserving,
Pt defines a contraction on Lp(vN(G)) for every 1 ≤ p ≤ ∞. Thus in this case
our assumption is satisfied.

The hypercontractivity problem for the semigroup (Pt )t>0 and for 1 < p < q <

∞, consists in determining the optimal time tp,q > 0 such that

‖Pt‖p→q ≤ 1 ∀t ≥ tp,q .

We refer to [8, 9] for more information and historical references. It is easy
to check that if such a time tp,q exists, then ψ has a spectral gap, namely
infg∈G\{e} ψ(g) > 0. After rescaling, we will assume that infg∈G\{e} ψ(g) = 1.
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In most-known cases the expected optimal time tp,q is attained, namely,

tp,q = log

√
q − 1

p − 1
.

It is a particularly interesting problem of determining the optimal time tp,q when
G = Fn is the free group on n generators with n ∈ N ∪ {∞}, and ψ is its natural
length function. Some partial results are obtained in [8, 9]. For instance, by em-
bedding vN(Fn) into a free product of Clifford algebras, it is proved in [9] that for
any q > 2,

t2,q ≤ log
√

q − 1 +
(

1

2
− 1

q

)
log

√
2.

On the other hand, Junge et al. [8] show that for any finite n there exists q(n) such
that if q ≥ q(n) is an even integer, then

t2,q = log
√

q − 1.

The proof is combinatoric and based on lengthy calculations.
Here we provide an improvement. We will use Haagerup-type inequalities [6].

Letting Sk be the set of words of length k in Fn and for any x ∈ vN(Fn) supported
on Sk , the original Haagerup inequality is

‖x‖∞ ≤ (k + 1)‖x‖2.(8)

For q > 2 and k ∈ N, let Kk,q be the best constant in the following Khintchine
inequality for homogeneous polynomials x of degree k:∥∥∥∥ ∑

g∈Sk

x(g)λ(g)

∥∥∥∥
q

≤ Kk,q

∥∥∥∥ ∑
g∈Sk

x(g)λ(g)

∥∥∥∥
2
.

We will need the following:

LEMMA 7. We have Kk,4 ≤ (k + 1)1/4.

PROOF. Denote by gi the generators of Fn with the convention that g−i =
g−1

i . For a multi-index i = (i1, . . . , id) with ij + ij+1 �= 0, we let gi = gi1 · · ·gid

and |i| = d . So we may write

x = ∑
|i|=k

αiλ(gi).

We compute x∗x according to simplifications that may occur

x∗x = ∑
0≤d≤k

∑
|β|=d

|i|=|j |=k−d

ik−d �=jk−d �=−β1

αj,βαi,βλ
(
g−1

j gi

)
,
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where i, β denotes the multi-index obtained by superposing the two multi-indices
i and β . We then deduce that

‖x‖4
4 = ∥∥x∗x

∥∥2
2 = ∑

0≤d≤k

∑
|i|=|j |=k−d

ik−d �=jk−d

( ∑
|β|=d

ik−d �=jk−d �=−β1

αj,βαi,β

)2

≤ ∑
0≤d≤k

∑
|i|=|j |=k−d

ik−d �=jk−d

( ∑
|β|=d

ik−d �=−β1

|αi,β |2
)

·
( ∑

|β|=d

jk−d �=−β1

|αj,β |2
)

≤ ∑
0≤d≤k

( ∑
|i|=k−d,|β|=d

ik−d �=−β1

|αi,β |2
)

·
( ∑

|j |=k−d,|β|=d

jk−d �=−β1

|αj,β |2
)

= (k + 1)‖x‖4
2. �

REMARK 8. Taking αi = 1 and by the free central limit theorem as n → ∞,
one can see that the previous inequality is sharp. Thus Kk,4 = (k + 1)1/4. This
constant is the L4-norm of the kth Chebyshev polynomial for the semi-circle law.

Using the Hölder inequality we deduce from (8) and the previous lemma that
for any k ≥ 1,

Kk,q ≤ (k + 1)1−3/q, q ≥ 4,(9)

Kk,q ≤ (k + 1)1/2−1/q, 2 ≤ q ≤ 4.(10)

We will also use the following elementary folklore:

REMARK 9. Let T :Lp(M) → Lq(M) be a bounded linear map. Assume
that T is 2-positive in the sense that IdM2 ⊗T maps the positive cone of Lp(M2 ⊗
M) to that of Lq(M2 ⊗M). Then∥∥T (x)

∥∥
q ≤ ∥∥T (|x|)∥∥1/2

q

∥∥T (∣∣x∗∣∣)∥∥1/2
q , x ∈ Lp(M).

Consequently,

‖T ‖ = sup
{∥∥T (x)

∥∥
q :x ∈ Lp(M)+,‖x‖p ≤ 1

}
.

Indeed, for any x ∈ Lp(M), ( |x| x

x∗ ∣∣x∗∣∣ ) ≥ 0.

So the 2-positivity of T implies(
T

(|x|) T (x)

T
(
x∗)

T
(∣∣x∗∣∣)

)
≥ 0.
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This yields a contraction c ∈ M such that T (x) = T (|x|)1/2cT (|x∗|)1/2. Then the
Hölder inequality gives the assertion.

THEOREM 10. There exists ε0 > 0 such that for any free Fn and any
q ≥ 4 − ε0,

‖Pt‖2→q ≤ 1 ⇔ t ≥ log
√

q − 1.

PROOF. The necessity is clear. The proof of the sufficiency will rely on Re-
mark 3.7 of [9]. Let σ be the automorphism of vN(Fn) given by σ(λ(gi)) =
λ(g−1

i ). Then Pt is hypercontractive from L2 to Lq with optimal time on vN(Fn)
σ ,

the fixed point algebra of σ . Let E be the conditional expectation onto vN(Fn)
σ .

Note that E = Id+σ
2 and it commutes with Pt .

Fix q > 2. To prove ‖Pt‖2→q ≤ 1 for t ≥ log
√

q − 1, it suffices to show
‖Pt(x)‖q ≤ ‖x‖2 for any positive x ∈ C[Fn] by virtue of Remark 9. We need one
more reduction. Given complex numbers ζi of modulus 1, there exists an automor-
phism πζ of vN(Fn) given by π(gi) = ζigi . It is an isometry on all Lp’s. Note that
πζ and Pt commute. Thus to prove ‖Pt(x)‖q ≤ ‖x‖2, we may assume that x(gi) is
real for every generator gi . We will fix a positive x ∈ C[Fn] with the last property.

Then write x = y + z where y = E(x). Since x(gi) ∈R, we have that z does not
have constant terms nor of degree 1. By Theorem 1 (or Theorem 3) and Remark 3.7
of [9],∥∥Pt(x)

∥∥2
q ≤ ∥∥Pt(y)

∥∥2
q + (q − 1)

∥∥Pt(z)
∥∥2
q ≤ ‖y‖2

2 + (q − 1)
∥∥Pt(z)

∥∥2
q.

Then for t = log
√

q − 1, decomposing z according to its homogeneous compo-
nents (zk) and using the Khintchine and the Cauchy–Schwarz inequalities, we get

∥∥Pt(z)
∥∥2
q ≤

(∑
k≥2

e−tk‖zk‖q

)2

≤ ∑
k≥2

K2
k,q

1

(q − 1)k
‖z‖2

2.

We aim to find those q > 2 for which

Rq = (q − 1)
∑
k≥2

K2
k,q

1

(q − 1)k
≤ 1.

For q ≥ 4, by (9) we have

Rq ≤ ∑
k≥2

(k + 1)2(1−3/q) 1

(q − 1)k−1 .

The terms of the sum on the right-hand side are decreasing functions of q if their
derivatives are negative, that is, if

6(q − 1)

q2 ≤ k − 1

log (k + 1)
.
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Noting that the left-hand side of the above inequality is decreasing on q , one easily
checks that this inequality is true for q ≥ 4 and k ≥ 3. However, it is true for k = 2
if and only if q ≥ q0, where

q0 =
√

3 log 3(
√

3 log 3 +
√

3 log 3 − 2) ≈ 5.36244.

We have the following numerical estimates:

R4 ≤ 0.92952 and
32(1−3/q0)

q0 − 1
− 31/2

3
≤ 0.02613.

Hence if q ∈ [4, q0],

Rq ≤ R4 + 32(1−3/q0)

q0 − 1
− 31/2

3
< 1.

We thus conclude that Rq < 1 for all q ≥ 4.
Since Rq is dominated by a continuous function of q , using (10) we get a similar

estimate for q ≥ 4 − ε0 for some ε0. A numerical estimate gives ε0 ≈ 0.18. �

REMARK 11. Instead of Remark 3.7 of [9], we can equally use Theorem A(iii)
of [9] in the preceding proof. But the commutation of Pt and the conditional ex-
pectation onto the symmetric subalgebra An

sym is less obvious.

It is likely that ε0 = 2, but other methods would have to be developed.
Gross’s pioneering work [5] shows that hypercontractivity is equivalent to the

validity of log-Sobolev inequalities. In the present situation of free groups, the va-
lidity of the hypercontractivity with optimal time in full generality (or equivalently,
ε0 = 2) is equivalent to the following log-Sobolev inequality in Lq for any q ≥ 2:

τ
(
xq logx

) ≤ q

2(q − 1)
τ
(
xq−1L(x)

) + ‖x‖q
q log‖x‖q, x ∈D+.(SLq )

Here L denotes the negative generator of (Pt ), and D is a core for L where the
inequality makes sense. It is known that (SL2) implies (SLq) for all q; see [10]. In
the same spirit we can show that (SLp) implies (SLq) if q > p ≥ 2. Let us record
this explicitly here since it might be of interest. The semigroup (Pt ) can be any
completely positive symmetric Markovian semigroup such that D is rich enough.

REMARK 12. Let q > p ≥ 2. Then (SLp) implies (SLq).

To check the remark we rewrite (SLq) in a symmetric form with respect to q

and its conjugate index q ′ (provided that D is big enough):

τ(x logx) ≤ 1
2q ′qτ

(
x1/q ′

L
(
x1/q)) + τ(x) log τ(x), x ∈D+.(SLs

q )

Recall that for y ∈ Dom(L), τ(zL(y)) = limr→0
1
r
τ (z(1 − Pr)(y)). Let r > 0 and

x ∈ M+, and we will check that the function q �→ q ′qτ(x1/q ′
(1 − Pr)(x

1/q)) is
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increasing for q ≥ 2; we put θ = 1
q

. It is known from [1] that there exists a positive
symmetric Borel measure μr on σ(x) × σ(x) such that

τ
(
x1−θPr

(
xθ )) =

∫
σ(x)×σ(x)

s1−θ tθdμr(s, t).

Hence, by symmetry, it suffices to show that

f : θ �→ 1 + u − uθ − u1−θ

θ(1 − θ)

is convex on [0,1] for u > 0 as f (θ) = f (1 − θ). One easily checks that

f (θ) =
∫ 1

0
log(u)

(
uθ+(1−θ)(1−t) − uθt + u1−θ+θt − u(1−θ)(1−t))dt,

f ′′(θ) =
∫ 1

0
log(u)3(

t2(
uθ+(1−θ)(1−t) − uθt )

+ (1 − t)2(
u1−θ+θt − u(1−θ)(1−t)))dt ≥ 0.

Passing to the limit in r gives the result if D is big enough.
We end this section with application to more general groups (G,ψ). If ψ is

symmetric and satisfies the exponential order growth∣∣{g ∈ G :ψ(g) ≤ R
}∣∣ ≤ CρR ∀R > 0(11)

for some C > 0 and ρ > 1, then one of the main results of [8] shows that for
2 < q < ∞,

t2,q ≤ η log
√

q − 1

for any η > 2 when ρ is large compared to C. Their argument consists in first con-
sidering the case q = 4 by combinatoric methods and then using Gross’s extrap-
olation. We will show that the martingale inequality in Theorem 1 easily implies
a slight improvement. Note that our estimate on t2,q is as close as to the expected
optimal time as when q is sufficiently large, compared to ρ and C.

PROPOSITION 13. Assume (11) and 2 < q < ∞. Then

t2,q ≤
(

q − 2

q
log

√
2Cρ + log

√
q − 1

)
∨ logρ.

PROOF. By (11), the range of ψ is countable. Let ψ(G) = {n0, n1, n2, . . .}
with n0 < n1 < n2 < · · · . Then n0 = 0 and n1 = 1. Let x ∈ vN(G) be a polyno-
mial, x = ∑

x(g)λ(g), and let y = x − x(e). By Theorem 1∥∥Pt(x)
∥∥2
q ≤ ∣∣x(e)

∣∣2 + (q − 1)
∥∥Pt(y)

∥∥2
q .
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Let Bk = {g ∈ G :ψ(g) ≤ nk}, Sk = Bk \ Bk−1 and yk = ∑
g∈Sk

x(g)λ(g). Then

∥∥Pt(y)
∥∥2
∞ ≤

(∑
k≥1

e−tnk‖yk‖∞
)2

≤
(∑

k≥1

e−2tnk |Sk|
)

·
(∑

k≥1

‖yk‖2∞
|Sk|

)
.

Obviously,

‖yk‖2∞ ≤
( ∑

g∈Sk

∣∣x(g)
∣∣)2

≤ |Sk|
∑
g∈Sk

∣∣x(g)
∣∣2.

We get, using the Hölder inequality,

∥∥Pt(y)
∥∥2
q ≤ e−4t/q

(∑
k≥1

e−2tnk |Sk|
)(q−2)/q

‖y‖2
2.

Actually exchanging the arguments, one has the following, slightly better estimate
that we will not use: ∥∥Pt(y)

∥∥2
q ≤ ∑

k≥1

e−2tnk |Sk|2(q−2)/q‖y‖2
2.

By (11), for t > logρ,∑
k≥1

e−2tnk |Sk| ≤ ∑
k≥1

(
e−2tnk − e−2tnk+1

)|Bk| ≤ 2Ct

∫ ∞
1

e−(2t−logρ)s ds

= 2C
t

2t − logρ
e−(2t−logρ) ≤ 2Ce−(2t−logρ).

Hence, if 2t ≥ q−2
q

log(2Cρ) + log(q − 1), we deduce ‖Pt(x)‖q ≤ ‖x‖2, whence
the assertion. �
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