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ON THE CAUCHY PROBLEM FOR BACKWARD STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS IN HOLDER SPACES'

BY SHANJIAN TANG AND WENNING WEI
Fudan University

This paper is concerned with solution in Holder spaces of the Cauchy
problem for linear and semi-linear backward stochastic partial differential
equations (BSPDEs) of super-parabolic type. The pair of unknown variables
are viewed as deterministic spatial functionals which take values in Banach
spaces of random (vector) processes. We define suitable functional Holder
spaces for them and give some inequalities among these Holder norms. The
existence, uniqueness as well as the regularity of solutions are proved for
BSPDEs, which contain new assertions even on deterministic PDEs.

1. Introduction. In this paper, we consider the Cauchy problem for backward
stochastic partial differential equations (BSPDEs, for short) of super-parabolic

type:
—du(t, x) = [a" (t, x) a,?ju(z, xX) +bi(t, x) du(t, x)
+c(t, )u(t, x) + f(t,x) + o', x)vt, x)]dt
—vl(t,x)dWl, (t,x)e[0,T) x R™;
u(T,x)=o(x), x e R".

(1.1

Here, T > 0 is fixed, W = {W,:t € [0, T]} := (Wl, e Wd)/ 1s a d-dimensional
standard Brownian motion defined on some filtered complete probability space
(2, #,F, P) with F := {%,:t € [0, T]} being the augmented natural filtration
generated by W, a := (@ )yxn is a symmetric and positive matrix-valued deter-
ministic functions of the time and space variable (z, x), b := (B, ...,b" and
o= (al, e, o*d)/ are random vector fields, and ¢, f, and terminal term & are
scalar-valued random fields. Denote by & the predictable o-algebra generated
by F. Here and after, we use the Einstein summation convention, the prime de-

Received April 2013; revised September 2014.
1Supported in part by the Natural Science Foundation of China (Grants #10325101 and
#11171076), Basic Research Program of China (973 Program, No. 2007CB814904), WCU (World
Class University) Program through the Korea Science and Engineering Foundation funded by the
Ministry of Education, Science and Technology (R31-20007), the Science Foundation for Ministry
of Education of China (No. 20090071110001), and the Chang Jiang Scholars Programme.
MSC2010 subject classifications. Primary 60H15; secondary 35R60.
Key words and phrases. Backward stochastic partial differential equations, backward stochastic
differential equations, Holder space, heat potential.

360


http://www.imstat.org/aop/
http://dx.doi.org/10.1214/14-AOP976
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html

HOLDER SOLUTION OF BACKWARD SPDES 361

notes the transpose of a vector or a matrix, and denote

9 5. ) 9?

8 1= —, = 2 = .
ST s T dx Yo Ox dx;

Our aim is to find a pair of random fields (u,v):[0,T] x 2 x R* - R x R? in
suitable Holder spaces such that BSPDE (1.1) is satisfied in some sense, and to
study the regularity of (u, v), particularly in the space variable x.

As a mathematically natural extension of backward stochastic differential equa-
tions (BSDEs) (see, e.g., [3-5, 12, 20, 28]), BSPDEs arise in many applications
of probability theory and stochastic processes. For instance, in the optimal con-
trol problem of stochastic differential equations (SDEs) with incomplete informa-
tion or stochastic partial differential equations (SPDEs), a linear BSPDE arises as
the adjoint equation of SPDEs (or the Duncan—Mortensen—Zakai filtration equa-
tion) to formulate the maximum principle (see, e.g., [1, 2, 25, 26, 29, 30]). In the
study of controlled non-Markovian SDEs by Peng [21], the so-called stochastic
Hamilton—Jacobi-Bellman equation is a class of fully nonlinear BSPDEs. Solu-
tion of forward-backward stochastic differential equation (FBSDE) with random
coefficients is also associated to that of a quasi-linear BSPDE, which gives the
stochastic Feynman—Kac formula (see, e.g., [17]).

Weak and strong solutions of linear BSPDEs have already received an extensive
attention in literature. Strong solution in the Sobolev space W2 is referred to, for
example, [7, 8, 10, 11, 14, 15, 17, 18, 23], and in L? [p € (1, 00)] is referred to,
for example, [9]. The theory of linear BSPDEs in Sobolev spaces is rather com-
plete now. Qiu and Tang [22] further discuss the maximum principle of BSPDEs
in a domain. It is quite natural to consider now the Holder solution of BSPDEs. We
note that Tang [27] discusses the existence and uniqueness of a classical solution to
semi-linear BSPDE using a probabilistic approach. However, the coefficients are
required to be k-times (with k£ > 2 + 5) continuously differentiable in the spatial
variable x, which is much higher than the necessary regularity on the coefficients
known in the theory of deterministic PDEs. In this paper, the pair of unknown
variables are viewed as deterministic spatial functionals which take values in Ba-
nach spaces of random (vector) processes. We discuss BSPDE (1.1) in Holder
spaces, using the methods of deterministic PDEs (see Gilbarg and Trudinger [13],
LadyZenskaja, Solonnikov and Ural’ceva [16]), and establish a Holder theory for
BSPDESs under the spatial Holder-continuity assumption on the coefficients a, b, ¢
and o. The paper seems to be the first attempt at Holder solution of BSPDE:s.

As an alternative stochastic extension of deterministic second-order parabolic
equations, (forward) SPDEs have been studied in Holder spaces by Rozovskii [24]
and Mikulevicius [19]. However, our BSPDE (1.1) is significantly different from
an SPDE. Indeed, a BSPDE has an additional unknown variable v whose regu-
larity is usually worse. It serves in our BSPDE as the diffusion, but it is not a
priori given. Instead, it is endogenously determined by the given coefficients via a
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martingale representation theorem. It is crucial to choose a suitable Holder space
to describe its regularity. In light of the functional Holder space introduced by
Mikulevicius [19] for discussing a SPDE, we define in Section 2 the functional
Holder spaces such as C" T (R"; VFZ[O, T]) for u, and C" ¥ (R"; zg(o, T:R%))
for v. That is, we only discuss the continuity of the unknown pair (u, v) in x by
looking at (u(-, x), v(-, x)) as a functional stochastic process taking values in the
space yg[o, T] x .Z]I?(O, T:RY).

We first study the following simpler BSPDE with space-invariant coefficients a
and o:

—du(t,x) = [a" (1) afju(z, x)+ f(t,x) + ol ()t x)]dt
(1.2) —v(t, x)dW!, (t,x) €[0,T) x R",
u(T,x)=o(x), x e R".

Here, the coefficients ai-i(-) and orl(-) i, j=1,-,n;1=1,-,d) do not depend
on the space variable x. The advantage of the simpler case is that the solution
(u, v) admits an explicit expression in terms of the terminal value ® and the free
term f via their convolution with the heat potential. We prove the existence and
uniqueness result of this equation, and show that (i, v)(¢,-) € C*T¢ x C¢, and
u(-,x) € CY2 when ® € C'*t® and f(r,-) € C*. These regularity results are ex-
tended to general space-variable BSPDE (1.1) by the freezing coefficients method
and the standard continuity argument. Moreover, when all the coefficients are de-
terministic, BSPDE (1.1) becomes a deterministic PDE, and our results include
new consequences on a deterministic PDE.

The rest of the paper is organized as follows. In Section 2, we define some
functional Holder spaces, and recall analytical properties of the heat potential. In
Section 3, we study the existence, uniqueness and regularity of the solution of
BSPDE (1.2). In Section 4, we extend the results in Section 3 to BSPDE (1.1)
via the freezing coefficients method and the standard argument of continuity, and
discuss their consequences on a deterministic PDE. In Section 5, we discuss a
semi-linear BSPDE.

2. Preliminaries.

2.1. Notation and Holder spaces. Define the set of multi-indices
I:={y=1,....%) 1, ..., yn are all nonnegative integers}.
Fory eI" and x = (xq, ..., x,) € R", define

n y gl
= a D’ = .
vl ;% axrl dx3? - 9xy"

The inner product in an Euclidean space is denoted by (-, -), and the norm by | - |.
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The following are some spaces of random variables or stochastic processes. For
p e[l,+o0], LP(Q, P,Y) = LP(Q, %1, P,Y) is the Banach space of Hilbert
space Y-valued random variables & on a complete probability space (2, %7, P)
with finite norm

1€,y = E[IE10]"7, € oo,y = esssup|(@)|

Y

.Zﬁ” p(0,T:;Y) is the Banach space of Hilbert space Y-valued [F-adapted pro-
cesses f with finite norm

T 1/p
I fllzrery = E[/O lroly dt} s gy = eissgpllf(w, Dy
w,t
and 5”{’ p([0,T];Y) is the Banach space of Hilbert space Y-valued F-adapted
(path-wisely) continuous processes f with finite norm

]1/P

1£l7very = E[ max FOIF] 1l = 1F L.

If Y = R or there is no confusion on the underlying Hilbert space Y, we omit
Y in these notations and simply write L? (2, P), f{P(O, T, fﬁP[O, TT &,

| fllzr, I fll.#p,.... Furthermore, the underlying probability P is omitted in
these notations if there is no confusion and we simply write L”(£2), .Z]If 0, 7),
SE0,T1, ...

Now we define our functional differentiable Holder spaces. Let m be a nonnega-
tive integer, « € (0, 1) a constant, and Y a Banach space. C" (R", Y) is the Banach
space of all Y-valued continuous functionals defined on R"” which are m-times
continuously differentiable (strongly in Y) with all the derivatives up to order m
being bounded in Y, equipped with the norm

16y =3 [H1k.v,

k=0
where

[Pley =D [D"¢loy.  [dloy =ldloy := sup [¢px)],.

lyl=k el

C™tY(R",Y) is the sub-space of all ¢ € C"(R",Y) such that [@ln+ey < +00,
where

(Blay = sup 120Dy gy S (D0,

x,y;R” |x - )’|a ly|=m
X7y

For ¢ € C"™*(R",Y), define the norm (|llm+a,y = ¢llm,y + [@lntay. If
Y = R, these spaces, semi-norms, and norms are classical differentiable and
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Holder ones on R”, and Y will be omitted in these notation and we simply
write C™(R"), C"™T*(R"), [lo, [-mta> and | - |;m1e. In this paper, we shall take
Y =R, LP(Q), Z{(O, T;RY, 5’]1457([0, T]) for p € [1, oo]. Moreover, we use the
following abbreviations:

- llmta,or =1 - ||m+a?,¢]§’[oj]’ |- llmta,zr =1 - ”m—&—a,f]Fp(O,T;R‘)’

and similar abbreviations for semi-norms.
For LP(Q2, %7, P, Y)-valued functional u defined on [0, T'] x R", we denote its

partial derivatives in the space L? (2, %, P,Y) by o,u := 3—‘;, oju = %, 81.2].14 =
82u
dx; dx;> etc.
C =C(,...,-) denotes a constant depending only on quantities appearing in

parentheses. In a given context, the same letter will (generally) be used to denote
different constants depending on the same set of arguments.
It can be verified that

2.1 (" ]a,.2p < [R]o, 2 [V]a, 2r + [ha, 2o [V]o, 2r

forany (h, ) € C*(R", £z°(0, T; R")) x C*(R", Z{(O, T; R")). This inequality
will be used in Section 4.

Similar to classical Holder spaces of scalar- or finite-dimensional vector-valued
functions, we have the following interpolation inequalities.

LEMMA 2.1. For ¢ > 0, there is C = C(e, ) > 0 such that for all ¥ €
CH(R", L0, T;RY))
(V1o 2r < el¥]oqa,2r + Cl¥]o,2r,
(V]i4o, 20 < eV ]2ta.2r + Cl¥lo.gzr,
(V] gr < €lV¥]ota,2r + Cl¥]o 2r,
(V1o 2r < el¥]ota,.2r + Cl¥]o,.zr.
Analogous inequalities also hold for elements of the Hdlder functional space

C*e(R", LP(Q)) or C*T*R", #F[0, T)).

The proof is similar to that of the interpolation inequalities in the classical
Holder spaces in Gilbarg and Trudinger [13], Lemma 6.32. It is omitted here.

2.2. Linear BSPDEs. Consider the Cauchy problem of linear BSPDE (1.1)
in functional Holder spaces. Denote by S” the totality of all n x n-symmetric
matrices. Assume that all the coefficients:

a:[0,T] x R* - S§", b:[0,T] x 2 x R" - R",
c:[0,TI x 2 xR" > R, o:[0,T] x  x R" > RY,
00, TIx 2xR" > R, P: QxR > R,
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are random fields and jointly measurable, and are F-adapted or .%#7-measurable at
each x € R". We make the following assumptions.

ASSUMPTION 2.1 (Super-parabolicity). There are two positive constants A
and A such that

MEP? <la(t,x)E,6) < AlE>  Y(t,x,&) €[0,T] x R" x R".

ASSUMPTION 2.2 (Boundedness). The functionals
aeC*(R",L*(0,T;S")), be C*(R", Z°(0,T; R")),
c e C*(R", Z£°(0, 1)),
and o0 € C*(R", Zg°(0, T R%)). Also, a, b, ¢ and o are bounded, that is, there is
A > O such that [|allq, 20 + [1Dlla, 2 + lclla, 20 + 0 lla, 20 < A.

Note that throughout the paper a is assumed to be a deterministic S”-valued
bounded function of the time—space variable (¢, x).
A classical solution to BSPDE (1.1) in Holder spaces is defined as follows.

DEFINITION 2.1.  Let ® € C!*(R", L2(Q)) and f € C*(R", £2(0,T)). We
call (u, v) a classical solution to BSPDE (1.1) if

(u,v) € C*(R", #2[0, T]) N C*T(R", £2(0, T)) x C*(R", £2(0, T; RY)),
and for all (¢, x) € [0, T] x R",

u(t,x)=ox) + /ZT[aij(s,x) aizju(s,x) + bi(s,x) o;u(s, x)
+c(s, x)uls,x) + f(s,x)+ ol(s, x)v; (s, x)] ds
— /tT vl(s,x)dWsl, P-as.
For simplicity of notation, define
%, NCT % €Y,
= C(R"; 20, T]) N C*T(R"; £2(0, T))C*(R"; £2(0, T; RY)).

2.3. Estimates on the heat potential. Consider the heat equation:
(2.2) du(t, x) =a" (t) 0 u(t, x), (r,x) €[0,T] x R",

where a = (@), xn : [0, T] — S" satisfies the super-parabolic assumption. Define

1 -1
Gy (x) = —( sﬁ,x,x) VO<t<s<T,

1
()2 (det Ay )12 7P <_4
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where A ; 1= fts a(r)dr. In a straightforward way, we have

395Gy (x) =d"(s)0]Gss(x), s>t
(23) )
3Gy (x)=—a’ (1) 0}Gs,(x), s>t

REMARK 2.1. From LadyZenskaja, Solonnikov and Ural’ceva ([16], (1.7))
and (2.5) of Chapter IV, we have for y € I,
1, y =0,
0, ly1>0
and there are C = C(A, A, y,n,T) and c € (0, }‘) such that

(2.4) /R DY Gy, (x)dx = {

2

(2.5)  |DYGy,(x)| < C(s — 1)~ HIYD/2exp (—cﬁ) Vs > 1.
Furthermore, we have

) o
(2.6) / |DY Gy, (x)|dt < C|x|—<"+'y‘)+2/ Pt D/2¥2 exp(—cr) dr

0 0
for any s € [0, T'] and x # 0, and
(2.7) / |DY Gy (x)||x]* dx < C(s — t)<“—'V'>/2/ x| exp(—c|x|?) dx

R~ R~

fors >rand o € (0, 1).

The following lemmas will be used to derive a priori Holder estimates in Sec-
tion 3.
From Mikulevicius [19], Lemma 4, we have:

LEMMA 2.2. For any multi-index |y| = 2, there exists C = C(A, A, y,n, T)
such that for0 <t <s <T andn >0,

A S
/ / DVGw(y)dy’dt - f
T [yI<n T

LEMMA 2.3.  Let nn > 0 be a constant. Then for y € I such that |y| = 2, there
is a constant C =C (A, A, y,a,n, T) such that

| prGumay|ar=c.
|yI=n

S
/B sup [ |DY Gy o()|1yI% di dy < C.

2 (0) T<s Jt

PROOF. In view of (2.6), we have

A
[ sw [p7Gamlbidrdy=c [ ey s o
B B,(0) O

2(0) T<sJt
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LEMMA 2.4. Forany x,x € R" and y €I such that |y| =2, we have

S
/| sup [ | D7 Gys(x — y) — DY Gy g (i — y)|I% — y|*di dy < Cr®,
y

—x|>nt<sJrt

where n:=2|x —x|and C=C(A, A, y,a,n,T).

PROOF. Define ¥ := x 4+ 2(x — x). Let £ be any point on the segment joining
x and x. For |y — x| > n, we have

& — x| < %lx =X < dx —yl,
Hx =yl <lE—yl=|x =y +E—x)| < 3x—yl.
In view of (2.5) and (2.6), we have

S
/| sup [ |DY Gy o(x — y) — D Gy g (& — || — y|* dt dy
y

—x|>nt<sJrt

s prl
§Cn_/|‘ sup/ _/(; |0: DY Gy (rx + (1 —r)x — y)|dr|x — y|“dt dy
y T

—Xx|>n t<s
T 1

SCnf / / ~43)/2

ly—x|>nJ0 JO

- + 1_ _ 2
xexp(—clrx ( tr)x l )drlx—y|°‘dtdy

T _ vl2
< Cn/ / 1~ /2 exp(—cu) lx — y|*dtdy

0 Jly—x|>n t
SCn/ e =yl dy < o, -

ly—x|>n

3. BSPDE with space-invariant coefficients ¢ and o. Consider the follow-
ing linear BSPDE:

—du(t, x) =[a" (t) 3 u(t, x) + f(t,x) + o' ()vy (1, x)] dt

(3.1 — vy (t, x) dW/, (t,x)€[0,T) x R",
u(T,x) = d(x), x e R,
where a := (a'/),xn:[0, T] — S" is Borel measurable and o := (¢!, ..., 0%):

Qx[0,T]— R%is F-adapted. It is simpler than BSPDE (1.1), for both coefficients
a and o are assumed to be independent of the space variable x (hence not varying
with the space variable, and hereafter called space-invariant). For this case, both
Assumptions 2.1 and 2.2 can be combined into the following one.
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ASSUMPTION 3.1. a € £®(0,T;S") and o € £*(0, T; R?). There are
two positive constants A and A such that A|€|?> < (a(r)€, &) < AJE|*> for any
(t,6) €[0, T] x R" and [lo || g~ < A.

The special structural assumption on both coefficients a and o allows us to give
an explicit expression of the adapted solution (u, v) to BSPDE (3.1). To see this
point, let us look at the respective contributions of both coefficients a and o to the
solution (u, v) of BSPDE (3.1).

Define

(3.2) W, = —/Ota(s)ds + W, 1[0, 7]

and the equivalent probability Q by

(3.3) dQ = exp(/(;T(a(t),dW,) — %/(;T|a(t)|2dt> dP.

It can be verified that W is a standard Brownian motion on Q, 7r,F, 0).
BSPDE (3.1) is written into the following form:

T
u(t, x) = ®(x) +/ [a" (r) 87u(r, x) + f(r,.x)]dr
(3.4) . !
—/ v, x)dW!,  (1,x) [0, T] x R".

Furthermore, we have for (¢, x) € [0, T] x R"

2 T 2
(3.5) u(t,x) = E’Q’ [CD(x) —i—f (a" (r) djulr,x) + f(r, x)) dr].
t

Since a is deterministic and Q does not depend on the space variable x (in view of
Assumption 3.1), we have for (¢, x) € [0, T] x R"

7 T i 7 7
u(t,x) =Ey' ®(x) + / [a" (r) 8l~2j (EQ’u(r, x)) + E, f(r, x)]dr, a.s.
t
Note that it is the integral on [¢, 7] with respect to r of the following backward
parabolic equation with U (r, x; t) := E g’ u(r, x):
—9,U(rx:0)=a¥ (N RUG.x;0)+ EY f(r.x),  (rnx) e[, T) xR”,
U(T.x) = E§ ®(x), x eR".

Define for the convolution of the heat potential G ; with a functional ¢ defined
on R” and a functional i defined on [0, T'] x R" as follows: for x € R",

Rip) = [ Guir=ysmdy  ¥s=1,
(3.6)

RyO@:= [ Gute=yu.ndy  Vs=1,
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It is well known that the solution of the last PDE has the following representation:
almost surely:

a7 T g
U(r,x;1) = R} (E}' ®)(x) +f RY(EQ' f(s,)(x)ds,
r
(r,x)elt, T] x R™.
Setting r = ¢, we have almost surely

T g,
u(t, x) = R,T(E’g’cb)(x) +/, RY(EQ' f(s,))(x)ds, (t,x) €[0,T] x R™.

It is easy to see that {Eg[CD(x),t € [0,T]} and {E‘g’f(s,x),t € [0, T]} are
uniquely characterized by

EJom =gx),  EJ f(s.x)=Y(:s.x),
(t,x)e[0, T] xR", a.s.,
where (¢(-; x), ¥ (-; x)) and (Y (-; T, x), g(+; 7, x)) are the unique adapted solution

of the following two parameterized BSDEs:

T T
w(t;X)=<I>(x)+/ al(r)wz(r;x)dr—/ Vi 1) dW.,
t t

3.7)
tel0, T]
and
Y(t;1,x) = f(f,x)+/ral(r)gz(r; T,x)dr —/ng(r; 7,x)dW!,
(3.8) ! !

tel0, ],

respectively. In this way, we have the desired representation of (u, v): for (¢, x) €
[0, T] x R",

T
u(t,x) = RTp(x) + f RY(t:r, () dr,

and further we expect from the linear structure of our BSPDE that

T
v(t, x) =RtTl//(t,-)(X)+ft Rig(t;r,)(x)dr,

which is stated as the subsequent Theorem 3.3.

The rest of the section is structured as follows. In Section 3.1, we prove the
above explicit expression for the classical solution (#, v) to BSPDE (3.1) in terms
of the terminal term & and the free term f. In Section 3.2, we derive the a priori
Holder estimates. Finally, in Section 3.3, we prove the existence and uniqueness
result of classical solution to BSPDE (3.1).
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3.1. Explicit expression of (u, v).

LEMMA 3.1. Suppose that Assumption 3.1 holds, ® € CHY(R", L2(Q)) and
f eC*R", zg(o, ). If (u,v) € CE N Cijza x C%, is the classical solution of
BSPDE (3.1), then for all (¢, x) € [0, T] x R", we have almost surely

T
u(t,x) = R,TCIJ(x) —i—/t [R} f(s)(x) —I—crl(s)Rtsvl(s)(x)]ds

—/TR;v,(s)(x)de.
t

PROOF. For fixed (¢,x) € [0, T] x R" and s € (¢, T], using It6’s formula, we
have

Gy, (x —y)u(s,y)
T
= Gry(x — Yu(T, y) — / Gri(x — y)dur, y)
T
- / u(r, y)dGy(x — y)
39 =Gr:(x—y)®Q)

T

+ [ Grate = 05 0.0+ 601G = u )] dr
T

- / Gri(x — Y)ui(r, y) dW!

T . ..
— [ 10082 = D 3) = G = 1)l ) O e )] dr:

N
A direct computation shows that

T .. ..
L, [ a7 0083 Grax = youtr. ) = Grat = y)a” () 03t )] dr dy =0,

Stochastic Fubini theorem (see Da Prato [6], Theorem 4.18) gives that

T T
L[ Gutc=yuenawiay= [ [ Grx=yue.ydyaw.
nJs R n

Thus, integrating w.r.t. y over R” both sides of (3.9), we have

|, Goate = yyuts. y)dy
T
(3.10) = RtTCD(x) +/ [R] f(r)(x)+ Jl(r)Rtrvl(r)(x)] dr

T
—f RIv(r)(x) dW.
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In what follows, we compute the limit of each part of (3.10) as s — t.

Since u € C*(R", 5’]%[0, T1), we have from estimates (2.4) and (2.5) on the
heat potential that
2

E]/ Gt (x — yyu(s, ) dy — u(t, )
Rn

2

= £| [ Goutr = [uts. )~ ut. 0] dy
3.11) SCE/Rn GS,;(x—y)|u(s,y)—u(t,x)|2dy

< CE/ exp (—clz|?)|u(s, x — /s —12) — u(t,x)|2dz — 0,
Rl‘l

ass | t.

In view of (2.4), we have
2
E

| [, Gritx = vutdyaw!

N
£
t

N
<2k |
t

S S
§CE] / Gri(x — y)|v(r, y)—v(r,x)\zdydr+2E/ \v(r,x)\zdr
t JR" t

2
dr

[, Gralr =) 3) = v )] dy + 0 0)

2 s
dr + 2E/ lv(r, x)|* dr
t

[, Gralx = 9o 3) = v )] dy

S Ju(r, y) —v(r, x)?
<C sup Gm(x—y)lx—ylz‘”dy‘ sup E o
R" relr.s] yeRn Ji lx — yl

’ 2
—|—2E/ lv(r, x)|"dr.
t

Since v € C*(R", .XFZ(O, T:R9)), we have

N s _ 2
liinE/ o(r, ) dr =0, lim sup E 00 y) — v, X))
syt t

i P dr =0.
yeR” ! y

In view of subsequent Lemma 3.2, we obtain

K 2
(3.12) limE// Gri(x — y)vi(r, ) dydW!| =0.
st t JRr
In a similar way, we have
K 2
(3.13) liinE‘/ [RI f(r)(x) + o' (") R v (r)(x)]dr| =0.
syt t
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Letting s — ¢ in equality (3.10), we have the desired result from (3.11), (3.12)
and (3.13). O

LEMMA 3.2. For0<t<s <T,we have

[, sup Grate =yl =y dy < +oc.

" relt,s]

PROOF. First, consider the following function p:

p(t,r) :=1t"""?exp (—?ﬂ), (t,r)€[0,T] x R.
We have
p(t,r)= (cr2 — %nt)t_zp(t, r).

Therefore, the function p(-, r) increases on [0, T'] for any fixed r such that r? >
M? = %, and we have

sup p(t,r) < p(T,r).
1€[0,T]

In view of estimate (2.5) to the heat potential, we have

[, 1= 3P sup Grotx = )dy

reft,s]

= lx — yI** sup G, (x —y)dy

lx—yl=M reft,s]
+ lx — y[** sup G (x —y)dy
[x—y|>M relt,s]
<C 1% sup p(r —1,|z])dz
lz|=M reft,s]
+C 21** sup p(r—t, |zl)dz
|z|>M reft,s]
=L +C 121 p(T, |2]) dz.
|z|>M

Since the second integral is easily verified to be finite, it remains to show /| < co.
Noting that p(z, |z|) is maximized at t = %c|z|2 over [0, T'] for any fixed z such
that |z| < M, we have

2 _
sup p(r = 1.12)) < p( ~elzl 2] ) = Clel

reft,s]
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and

L =C 2|72 dz < +oo.
|z|<M

The proof is then complete. [

In Lemma 3.1, the expression of u still depends on v, which is unknown. Next,
we construct an explicit expression of (u#, v) only in terms of the terminal term @
and the free term f.

Let ® € C1T*(R", L2(Q)) and f € C*(R", £2(0, T)). Consider the two fam-
ily BSDEs (3.7) and (3.8): for any x € R" and almost all T € [0, T'], their solutions
are denoted by (¢(-, x), ¥ (-, x)) and (Y (-; 7, x), g(-; T, x)), respectively. From the
theory of BSDEs, we have

(0, ) € CIT*(R", A2[0, T]) x C'T¢(R", Z2(0, T; RY)),
and there is C = C(«, n, d) such that
(3.14) loll a2 + 1V 110,22 < ClIPll 4o, 12,
T 2
supE/ sup|Y (t; r, x)|" dr
X 0 t<r

E [y sup,, |Y(t;r,x) — Y (t;r,.0)2dr

~+ sup _
X#X |x —x|2"‘
T pr )
(3.15) + supE/ f lg(t;r,x)|"dtdr
x o Jo
E Jy Jilg@;r,x) —g@;r, ©)didr
+ sup —
X#X |x — x|
<CIfIZ 4o

We have the following explicit expression of (u, v).

THEOREM 3.3. Let Assumption 3.1 hold and (®, f) € C'T¢R", L*(Q)) x
C*(R", ,,Q”FZ(O, T)). Let (p, V) and (Y, g) be solutions of BSDEs (3.7) and (3.8),

respectively, and (u,v) € C‘;z N Cijz“ X Cf's}z solve BSPDE (3.1). Then for all
x € R", ’

T
u(t,x):R,Tw(t)(x)Jr/ RSY (t;5)(x)ds
(3.16) '
Vte[0,T], dP-a.s.,

T
us,x) = R yr(s)(x) + / Rl gi(s; r)(x) dr,
(3.17) :
ds xdP-ae.,as.,l=1,...,d,
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where R} is defined by (3.6).

PROOF. In view of Lemma 3.1 and the definition (3.2), we see that for all
(t,x)e[0,T] x R",

T T T 7l
u(t,x) =R, ®(x) —i—/t R} f(s)(x)ds _./t Rvi(s)(x)dW,, P-as.,

T ~
060 =@~ [ isixdW, P,
t
and for almost all T € [0, T] and any s < T,

r ~
Y(s;t,x)= f(z,x) —/ g1(r; r,x)dWl,, P-as.

N

In view of the stochastic Fubini theorem and semi-group property of G ;, we have
T
R ®(x) + / R f(5)(x)ds
t
T T
=R, ¢(1)(x) +/ R}Y (t;5)(x)ds
t
T - ~ T s .
(3.18) +/ R; 1ﬂl(S)(JC)dWS+/ R;/ g1(r; s)(x)dW, ds
! t t
- T
=R, ¢(1)(x) +/ R}Y (t;5)(x)ds
t

T T -
+/ st(RsTlﬂl(S)-i-/ Rggz(s;r)dr)(x)dwﬁ.
t S
Therefore,

T ~
u(t,x)—i—f R‘;vl(s)(x)dWé
t
T
(3.19) =RtT<p(t)(x)—|—/ RIY(t;5)(x)ds
t
T T T 7l
+/ R‘;(Rs wl(s)+/ Rggl(s;r)dr>(x)dWs.
t N
In view of (3.14) and (3.15), we have for each x € R",

‘/tT R} (RSTW(S) + ‘KT Rl g(s; r)dr)(x) — R v(s)(x)

Taking on both sides of (3.19) the expectation with respect to the new probabil-
ity Q [see (3.3) for the definition] conditioned on .%;, we have almost surely

2
ds < 400, P-a.s.

T
u(z,x):ngo(z)(x)Jr/t RY(t;5)(x)ds  Vx eR"Y
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and
T T _
[ R (Rwo+ [ Ratindr —um)@dii =0
t N
for any (¢, x) € [0, T] x R", which implies the following:

(3.20) E[ /t !

for any (¢, x) € [0, T] x R". Then, forall/ =1, ..., d, we have almost surely

T 2
R} (RsTw(s) —|—ﬂ Rig(s;r)dr — v(s))(x) ds} =0

T T
V= [ R (RIno + [ Ratindr—um ) ds =0
t N
for any (¢, x) € [0, T] x R", which almost surely solves a deterministic PDE and,
therefore, the nonhomogeneous term (the sum in the bigger pair of parentheses

in the last equality) of this PDE is equal to zero. Consequently, we have for each
x eR",

T
(s, x) = Ry (s)(x) +f Rigi(s;r)(x)dr,  ds x dP-ae., as.
R
The proof is complete. [

REMARK 3.1. Let Assumption 3.1 hold and (®, f) € C!T*(R", L>(Q)) x
C*(R", ZFZ(O, T)). Let (¢, ¥) and (Y, g) be solutions of BSDEs (3.7) and (3.8),

respectively. Then, for all x € R", RIT o(t)(x) and ftT R}Y (t;s)(x)ds are twice
continuously differentiable in x as Zﬂg (0, T)-valued functionals. Moreover, we
have for all (r,x) € [0, T) x R",

R oW = [ Grix—»ag.ydy,  Pas.

R 0O = [ 9Gr.x = [0ty — e 0ldy, P

and for all x e R", dt x dP-a.e., a.s.,

r T
o [ RYGwds= [ [ %Gt =Yy dyds.
t ' Rr
T
35/ RSY (t;5)(x)ds
t
T 2
:/t‘ /R" 3ist,t(x — y)[Y(t; S, y) — Y(;; S, x)] dyds.

3.2. Holder estimates. Using the explicit expression of (u, v) in Theorem 3.3,
we shall derive Holder estimates for (u, v).
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LEMMA 3.4. Let Assumption 3.1 be satisfied and suppose that
(®, f) e CH*(R", L*(Q)) x C*(R", Z2(0, T)).

If (u,v) €C%,N Cf;za x C%, solves BSPDE (3.1), then we have

o
&
lully4e, 22 < CUIPI 1 4a,2 + 1 fllg,22),

where C=C(A, A,a,n,d,T).
PROOF. In view of (3.16) and (3.17), we need to prove

IR 95402 < CUPl 14 2

T
H [ Ry < Cllflly 2.

2+, L2

It is sufficient to prove the second inequality, and the first one can be proved in a
similar way.
For y € I" such that |y| <1, in view of (2.5), (2.7), (3.15) and Remark 3.1, we

f
0

T

T T X
SE/ / / |DY Gy i (x = W)Y (135, )| dyds
0 Jt R~

T 2
Dyf R Y (t;5)(x)ds| dt
t

T 2
/ DY Gy (x —y)Y(t;s,y)dyds| dt
t R~

T
x/ |DY G 1 (x — y)|dydsdt
t Rﬂ

and, therefore,

f
0

T Ky
5/ E/ sup|Y(t;s,y)|2/ |DY Gy (x — y)|dtdsdy
R 0 <s 0

T 2
Dyf R Y (t;8)(x)ds| dt
t

T
xsup/ / |DY G (x —y)|dyds
T Jr R~

T s
< CsupE/ sup|Y(t;s,y)|2ds-f supf |DY Gy (x — y)|dtdy
y Jo R s Jo

t<s

T
xsup/ / |DY Gy (x —y)|dyds
T Jt R~
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2
t<s TS JT ‘

T )
/ f t_("'HVD/ZeXp (—cL V| )dydt
0 R® t

T K
§CsupE/ sup|Y(t;s,y)}2ds- ‘/ sup [ |DY Gy (x —y)|dtdy
y 0 R~

‘ 2

2
<CIfI2

2
f C”f”owg)z

That is,

(3.21) HfT RSY (5 5)ds

<C|fllo,g2-
1,22

For |y| =2, in view of (2.5), (2.7), (3.15) and Remark 3.1, we have

T 2
el
0
T
_cx
0

T Y(:s,y)— Y s, x)|?
§CsupE/ sup| ( y) Z(a )| ds
y 0 r<s lx — ¥l

T
DV/ R}Y (t;s)ds| dt
t

/f DY Gy — y)lx — ye PN ZYESOL
t JR» |x — y|*

2
X

S
A; sup [ |D? Gy (x —y)|lx — y|*drdy

nr<sJt

T —_v|2
/ / 1~ HYD/2 exp <_Cu> Ix — y|*dydt
0 JR? 1

2
<CIfL oy

<CIf1 4o
Thus,

T
(3.22) |:/ R’Y (t;5) ds} <CI[f]l, o2
. 2’32 ’
Define v := 2|x — x| for x # x. By Remark 3.1, we have for |y | =2,

T T _
Dy/; R‘;Y(t;s)(x)ds—Dy/t RIY (t;s)(X)ds
T
:/ / DY Gy (x — WY (55, y) — Y(1: 5, x)]dy ds
t R~

T
[ [, D7 GuE = ¥ s y) = Y5, D] dyds
t n

4
= Ii(t,x, %)
i=1
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with

T
I ;=/ / DY Gy (x — D[Y (555, y) — Y(t:5,)] dy ds,
t v (x)
T
b= _/ f DY Gy (% — Y (55, y) — Y13 5, 9] dyds,
t v (X)
T
(323) ILz:= —/ / DY Gy (x —y)[Y(t;5,x) =Y (t;5,%)]dyds,
t |y—x|>v

T
o= [ [ DG =) = DG - )]
t ly—x|>v

x [Y(t;8,y) —Y(t;s,%)]dyds.

Next, we estimate I; (¢, x,x) fori = 1,2, 3,4. In view of (3.15), Lemma 2.3, and
Remark 3.1, we have

r 2
E/ |11 (2, x, X)|" dt
0

T T
=E/ / f DY Gy (x — y)|x — y[®
0 t v(x)

XI(Sy) (SX)Idde Jt
lx — y[®
T |Y(t;s,y) = Y(t;5,x)
<CsupE sup| #:5,y) @ 5, 2)| ds
2a
y 0 1<s lx — yl

x i

s
fB sup [ |D? Gy o(x — y)|Ix — yI*didy

v(x) t<sJt
<CIfI; golx — %1

In the same way, we have

T
12 —
E [ nG.x. D di < CUFE ol — 77,

From Lemma 2.2, we have

T 2
E/ |I3(t, x, %)|"dt
0

T
sE/
0

T T 5
§E/ / |Y(t;5,x) — Y (t;5,%)]
0 Jt

T
xsup/
t t

2

ds| dt

T
f |Y(t;5,x) = Y(t;5,%)]
t

/| DG =y
y—x|>v

dsdt

/| DV Guilx =y
y—x|>v

ds

/| DG =y
y—x|>v
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T
< CE/ sup|Y (1 5, x) — Y (t; 5, %) ds
0

t<s

S
X supf / DY G (x —y)dy|dt
s JO |J|y—x|>v

<CIfL golx — %1

For 14(¢, x, x), in view of (2.5), (3.15) and Lemma 2.4, we have

T 2
E/|umxjﬂdt
0

T
<ce
0

T
f A D7 G =) = DGy E =)
t y—x|>v

2

X |Y(t;s,y) — Y(t;s,i)}dyds dt

r Y(t;s,y) = Y(t;5, %)
§CsupE/ sup| UL )i) 2(a 5 )| ds
y o Jooiss X =yl

K 2
X [/ sup [ |DY Gy (x —y) — DV G (X — y)|IXx — y|“dt dy}
[y

—x|>v t<sJT

<CIfE gpolx — 5

In summary, we have
4 T )
(3.24) ZE/O |1it, x, ®)[7dr < CLfT golx — X1
i=1
Combining (3.21), (3.22) and (3.24), we have

‘fTRFY(-;s)ds

< Cl fllg, -
2+4a, L2 “ U

LEMMA 3.5. Let Assumption 3.1 be satisfied and suppose that
(®, f) € CIT(R", L?(Q)) x C¥(R", £2(0, T)).
If (u,v) € Cf;z N Cijz“ X C:‘éﬂ solves BSPDE (3.1), then we have
0llg, 22 < CUIP 1422 + 1 lla, 22),
where C=C(A, A,a,n,d,T).

PROOF. In view of (3.16) and (3.17), we need to prove
[ R-TW(‘)”a,.zz <ClIPla.25

HfTRFg(-;S)ds

<Cllfllg, g
o, L?
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It is sufficient to prove the second inequality, and the first one can be proved in a

similar way.
For all x € R", and almost all » € [0, T'],

RZY(I;F)(X)=f(F,X)+/t U(S)Rsrg(S;r)(X)ds—ft Rg(s;r)(x) dWs

r
[ o [ 03Gutx= Y sir) ~ Ysiro]ds
t n
Vt <r.

From the theory of BSDEs, we have

E[/()r|R;g(s;r)(x)|2ds}
<CE[ |00
+/(;r 2ds}

, 2
§CE[|f(r,x)|2+fO ‘/R" Bl-szr,S(x—y)[Y(s;r, y)—Y(s;r,x)]dy‘ ds]

Integrating both sides on [0, T'], we have

Tt 5
E|:/(; /s |RIg(s;r)(x)| drds:|

_ T prr . ‘ 5
_E[/O fO|ng(s,r)(x)] dsdr}

T
§CEUO | f(r. )| dr

aij(s)/Rn 305 Grs(x — MY (sir,y) = Y(sir, x)]dy

T pr )
—i—/o /0 /Rn 8i2jGr,s(X—y)[Y(s;r, y)—Y(s;r,x)]dy‘ dsdr]
T
SCE|:/0 ‘f(”,x)‘zdr
T T )
[ [ e sn vt s

Similarly,

E[/OT KT|R§g(s; r)(x) — R g(s; r)()?)|2drds}

< CE[/OT|f(r,x) - f(r,i)|2dr]
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+CE[/(;T/ST

A;n (aiszr,s(x - Y)[Y(SQ r,y)—Y(s;r, X)]

— 907G rs(X —y)

2
X [Y(s;r,y) =Y (s;r,X)])dy| dr ds].
In view of the proof in Lemma 3.4, we have
T
R’g(;s)ds < Cllf llg, 22
f P o, L O

We have the following Holder estimate for (u, v).

THEOREM 3.6. Let Assumption 3.1 be satisfied and
(@, f) e CTH*(R", L*(Q)) x C*(R", Z£2(0, T)).
If (u, v) is a classical solution to BSPDE (3.1), then
ltllg, 52 + lttllpga, 22 + 10llg, 22 < CUIPN4q, 12 + 1 fllg, 22)s
where C=C(A, A,a,n,d,T).
PROOF. From Theorem 3.3 and the Lemmas 3.4 and 3.5, we have

lully 4, 22 + 10l 22 < CUI PN 4a, 12 + 1 f lla 22)-

Since (u, v) is the solution of BSPDE (3.1), for all (¢, x) € [0, T] x R", the equality
holds almost surely:

T .
u(t,x) = o) +/¢ [a (s) aizju(s,x) + f(s,x)+ o (s)v(s, x)]ds

T
—/ v(s, x)dWs.
t

For each x, it is a BSDE of terminal value ®(x) and generator a'(t) a}ju(t, x) +
f(t,x)+ o(t)V. From the theory of BSDEs, we have

E[sup|u(t,x)|2] < CE[|<I>(x)|2+/T|aij(s)8i2ju(s,x) +f(s,x)|2ds]
t 0

T
< (:E[|<I><x)|2+/0 (107 uts, x> + |f<s,x>|2)ds}
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and for all x # x,
E[Sl;plu(t,x) —u(t, H)
< CE[|o) —o@®)|’]
+ CE|:/OT(’3i2ju(s,x) — Bizju(s,j)|2 ) — fsDP) ds],
Then
lully, 2 < C(I1Pllgz2 + Nullopg 22 + 1 f llge2)

S C(1®N 14,22 + 1 fllg, 22)-
The proof is complete. [J

3.3. Existence and uniqueness.

THEOREM 3.7. Let Assumption 3.1 be satisfied and
(@, f) € CIT¥(R", L(R)) x C¥(R", £2(0, T)).

Let (¢, ¥) and (Y, g) be solutions of BSDEs (3.7) and (3.8), respectively. Then, the
pair (u, v) of random fields defined by

T
u(t, x) =R,T¢(r)(x)+/t REY (15 5)(x) ds,

T
v(t,x):RtTlﬁ(t)(x)+/t RIg(t;5)(x)ds
is the unique classical solution to BSPDE (3.1). Moreover, (u,v) € (Cg‘ﬁ2 N

CH) x €%, and

lullg o2 + Nl o2 + 10l 22 < CUIPN g 2 + 11 flla.22),
where C=CA, A,a,n,d,T).

PROOF. In view of Remark 3.1, for all (¢, x) € [0, T] x R", we have
T ..
/ a (s) 97 RY ¢(s)(x) ds
t
T - )
- /, /Rn a’(s) 9;;Gr.s(x = y)[e(s.y) — @(s. x)]dy ds
r 9
:/f, 5, 0Ts(x —W[e(s.y) — (s, x)]dyds

(3.25) = [, Grutx = »lpt.y) = ¢t 0)dy
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T
[ Grate=dlpts. ) — 0] dy
T T T 7l
= Rl p0@ = 9.0+ [ R0 4T
T 7!
- /t Yi(s, x)dW

T ~
— R (1) (x) — D(x) + / RTY1(s)(x) d .

Similarly, we have
T
/ a’ (s) o}, / RIY (s;7)(x)drds
_f / / a'(s) al-szr,S(x—y)[Y(s;r, y)—Y(s;r,x)]dydrds
—/ / / Grs(x—y)[Y(s r,y) =Y (s;r,x)|dydrds
:f / / _8_Gm(x—y)[Y(s;r, y)=Y(s;r,x)|dsdydr
(3.26) R g
= /R” Gri(x —W[Y@;r,y) = Y(t;r,x)]dydr
T r
[ [ G =n iy = eiroldydr
T T
——/ f(r,x)dr—l—/ RiY(t;r)(x)dr
t t

T (T "
+/ / Rl gi(s;r)(x)drd W',
t N
In view of (3.25) and (3.26), we have

T
/ a'l(s) 82u(s x)ds
T T
—f a'l (s) 07 [RY @(s)(x)] ds+/ aU(s)a,?jU R;Y(s;r)(x)dr] ds
t s
=R,Tgo<r>(x)—<1><x>+/ RI6) 0 d W = [ 7o) dr
t t
T T T ~
+‘/t‘ R,’Y(t;r,y)dr+/t /A R;g'l(s;r)()c)drdW?Y

T T —,
:—d>(x)—/t f(r,x)dr+u(t,x)+/t vi(s,x)dWs.
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Thus, (u, v) solves BSPDE (3.1), that is,

T o
u(t,x) = o) —I—’/t [a' (s) aizju(s,x) + f(s,x) +o(s)v(s, x)]ds

T
—/ v(s, x)dWs.
t

The desired estimate follows from Theorem 3.6. The proof is complete. [

Moreover, we have the following Holder continuity of u# in time ¢. For any
7 €[0,T], denote by |- ll,,,40. 52 and || - ||, 44 2., the obvious Holder norms of
a process restricted to the time interval [z, T].

PROPOSITION 3.8. Let Assumption 3.1 be satisfied and
(@, f) e CIT*(R", L*(Q)) x C*(R", Z£2(0, T)).

Let (u,v) € C{‘;z N Ci;za X Cg‘ﬂ be the classical solution to BSPDE (3.1). Then
forany t € [0, T], we have

lu, ) —u—r, ')||a,gz,, <CVT(I®l 1.2 + 1 fllg22)
where C=C(A, A,a,T,n,d).

PROOF. Since (u, v) satisfies BSPDE (3.1), we have

T 2
E/ |u(t,x)—u(t—r,x)| dt
T

T
SCEf
T

T
+CE/
T

T ,rTA(s+1T) ) 2 5 5
§CEfO f (185u(s, )7+ | f (s, 0" 4 |v(s, x)[7) dr ds
SVT

T ,rTA(s+T) 2
—I—CE/ / lv(s, x)|"dtds
0 Jsvr

< C‘L’([u]g’_gz + [f]g_gZ + [U]gfz)

<Ct(191, 412 + 11 g2)-
Similarly, for any x # X,

2
'/twU@ﬁ%u@J)+f@Jﬂ+UGMGJ»dScﬁ
-7

2

t
/ v(s, x)dWs| dt
1—T

T 2
E[ lut,x) —u@t —t,x) — [u(t,X) —u(@ —7,x)]|" dt

2 2 -2
SCT(I®ly, 2 + 115 go)lx — 2%

Therefore, we have the desired result. [
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4. BSPDEs with space-variable coefficients. In this section, using the con-
ventional combinational techniques of the freezing coefficients method and the
parameter continuation argument well developed in the theory of deterministic
PDEs, we extend the a priori Holder estimates as well as the existence and unique-
ness result for BSPDE of the preceding section to the more general BSPDE (1.1).

Consider a smooth function ¢ € C3°(R") such that

o<1 ad o) {1, X <1,
an x)=
== v 0, |x|>2

For any z € R" and 6 > 0 fixed, define

1g (x) :zqo(x ;Z)-

We easily see that for y € T', there is a constant C = C(y, n) such that
[D7nly <o (D3], < comI

LEMMA 4.1. Let h € C"T*(R"; £2(0, T; RY)) with m =0, 1,2. Then there
is a positive constant C(0, o) such that

el 2 < 2 sup 05h sz + CO, )Rl 2.
zeR"

PROOF. It is sufficient to prove

(] 4q. 2 <2 sup [néh]2+a,g2 +C 0, a)|hllg, g

zeR®

The proof of the rest is similar.
For any 6 > 0 fixed, we have

My <h+ D
with

E[[T D h(t,x) — D h(t,%)|>dt]'/?
Iii= > sup o | @, x) - (t, H)|”di]
122 =<0 lx — x]¥
and
E[f) |DYh(t,x) — DY h(t, %)|* dr]'/?

=2 [x—F 120 lx — x|«

I =

For any x, x € R", if |[x — x| < 0, choose z = x,

heY sup EUIDTOEERG ) = DY G @R D)PI

‘y|:2|x—f|<9 |-x _il()l

= sup [néh]2+a,$2 .
z€RM
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If |x — x| > 6, using the interpolation inequality in Lemma 2.1, we have

T 1/2
L< ) sup E[/ |DYh(t,x) — Dyh(t,i)|2dt:| 0
jyl=2 k—xIz6 L0
1
<CO,)[h]y o < E[h]2+a’§/ﬂ2 +C0,a)[h]y g2.
Then

[Mlr4a,22 <2 sup [n5hly, o o2+ Clihllg 2.
zeR" ’ |:|

We have the following a priori Holder estimate on the solution (u,v) to
BSPDE (1.1).

THEOREM 4.2. Let the Assumptions 2.1 and 2.2 be satisfied and (P, f) €
CHe(R", L?(Q)) x C“(R”,fﬂ?(o, T)). If (u,v) € Cf;z N Ci;;“ X C:“gz solves
BSPDE (1.1), we have

[ullg, 52 + Nttllpga, o2 + 10llg, 22 < C(IPN14q, 12 + 1 fllg, 22)
where C=C(A, A,a,n,d,T).
PROOF. For any z € R” and 6 > 0, denote
ug(t,x) == ngx)u(t,x), vy (t, x) == ng(x)v(t, x),
D5 (x) == ng ()P (x),
and
fE(tx) = [a" (1, x) — a' (1. 2)] 95u(t, x)nf (x)
+[o (1, x) — o (t,2)Jv(t, x)ng (x)
—2a"(t,2) Qu(t, x) 3;m5 (x) — a” (1, D)u(t, x) 87mf (x)

+ b (1, %) Qiu(t, x)ng (x) + c(t, x)u(t, x)ng (x) + £, x)ng (x)

7
= Z;zfi(t,x,z,é’),

i=1
with < (¢, x, z,0) denoting the obvious ith term (i = 1,2,...,7) in the three
lines of sum. Then we have &5 € C!T*(R", L%(Q)), f§ € C*(R", .£2(0, T)), and
(ug, vg) € C% N C;*z“ x C%,. Moreover, (ug, vg) solves the following BSPDE:
—dufy(t,x) = [a" (1, 2) 7 uf (1, x) + f§ (1, x) + o' (¢, 2) (v§ (¢, X)), ] dt
— (v§(t, x)), dW/, (t,x) € [0, T] x R";
ug (T, x) = g (x), x eR",
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To simplify notation, define the following two types of universal constants:

C=C, A,a,n,d, T),
C()=C(G, M A,a,n,d, T).

In view of Theorem 3.6, we have

1461210, 22 + [Vila 22 = CUPEN 1 4o 12 + [ i o, 22)-

From Lemma 4.1, we have

ltllara, 22 + 19l 2 < C(sup| @ 12 + 5P| £ |0 2 )
z Zz

4.1)
+CO)(llullg, 22 + vl 22)-
Thus, to estimate (i, v), we need to estimate d>§ and & ,i =1,...,7, in terms
of fy.
|PF 11 o2 = [16Plo 12 + [15P]y 12 + [15P] g 12
1 1 1
< c<1 ot W)”’]W 4 C(l + e—a)[cplm
C
+ g[q)]a’LZ + [q)]1+cl,L2

< CONPl 4,12

Denote by [],4q.92.4 and | - 44, 42 4 the semi-norm and norm of func-

tionals on subset A C R” instead of on the whole space R". It is obvious that
@ (t,x,z,0) =0 for x ¢ Byy(z). In view of inequality (2.1) and the interpolation
inequality in Lemma 2.1, we have

G2 g2 = 12O,
<[a7 () = a7 (D)o oo gy o) 1071422
+[a" (, ) —a (, )]y, goolttly 2
+[a7 () = a7 (. D]y g oy 161l 22
< AQOY ([ulyyq g2 + U]y g2) + Cluly 42
< AQOY ()10, 22 + Elulyig 22 + C@)luly, 42)

+ C(eltlyyq v2 + C@)ul2)
< C(Qa(l + 8) + 8)[14]2_’_“"%2 + C(S, 0)[14]0“32.
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Similarly, we have
||’Q{2(7 5y 9) ||C{,$2 E Cea ||v||o{,‘22 + C[U]O,‘fza

|( . 2,0) 02 < ClAuly 22|9m, + Cldiuly, £2[3n],

1 1
< C<§ + m)[‘g[”]ﬂa,ﬂ + C(e)[uly, #2]

C
+ 5[8[14]24_&’52 + C(@)luly, 2]

IA

2] Ql—i—a
|4 2.0)| g2 < Cluly_p2|0705 |, + Cluly, 22[9715],

1 1
C<9—2 + W)[u]o,gz

C
+ 9—2(8[M]2+a’j2 + Cg [M]OW?Z)

1 1
C( 5+ s )elthasa o+ CE. Ol o

A

c
= 9—28[”]24-05,,2”2 + Cle, O)luly 22,

|5, 2,0)| . o2 < Cldiuly_p2|ngl, + Cldiuly o2 + Cldiuly o2

§C(1+ 1 >8[u]2+a$2+C(8 0)luly o2,

6a
6,720 o, 52 < C0ly, 375, + el 2 + o, 22)
< Celulyy o2 + C(e,0)[uly o2,

[5G 20y o < 1l + 1 FTo 2[5, < (1 4 )”f”aiﬂ

Choosing first € and then ¢ to be sufficiently small, in view of inequality (4.1), we
have

lull2ta, 22 + Ve, 22

=< %([M]Z—i—a,fz + ”v“(x,fz)
+ CI1PN e, 22 + 1 fllg, 22 + lullg g2 + V1o, 22)-

Nl 4,22 + 1V]lq, 22

<C(I®ly1aqr2+ I fllg. 22+ llullp, 22 + ||U||o,,zﬂ2)-
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Next, we estimate [|[v||o 2. BSPDE (1.1) can be written into the integral form:
u(t,x)=ox)
T )
[ a0 0 (s 6) + B (5, Bu(s, ) (s, X)u s, 1)
(4.3) '
+ f(s,x) + 0 (s, x)v(s, x)]ds
T
—/ v(s, x)dWs, dP-as.
t
For any fixed x € R", it is a BSDE with terminal condition ®(x) and generator
a'l(t,x) Bju(t, ) + b’ (t,%) du(t, ) + c(t, U + f(t,%) + 0 (1, )V
We have

T
2
E./o |v(t, x)|"dt
T .. ,
5CE[|q>(x)|2+/0 la' (1, x) afju(t,x)+b’(z,x)a,-u(z,x)+f(z,x)|2dt]

T
5CE[|c1>(x)|2+/0 [|8i2ju(t,x)|2+|8,~u(t,x)|2+|f(t,x)|2]dt:|.
By the interpolation inequalities in Lemma 2.1,

Ivllo, 22 < CI1@llg, 2 + Nully o2 + lully w2 + 1| fllo, 22)
< Celulyiq g2+ CEI1Plo 2 + lullg o2 + 11 fllo, 22)-

In view of (4.2), choosing ¢ to be sufficiently small, we have

@4 Nulrpe, g2+ llg g2 < CUIPRH pa 2 + 1 fllg, 22 + lullg_22)-

We now establish a maximum principle of u. In BSDE (4.3), for any (¢, x) €
[0, T] x R",

E[|u(t,x)|2]

< CE[\cp(x)|2
T . ,
4.5) +f la (1, x) 8i2ju(t,x)+bl(t,x)8iu(t,x)+f(t,x)|2dt:|
t

T
< CE[/ (]E)izju(t, x)|2 + \Biu(t, x)|2) dt}
t

+C(loW|g 2+ 1F13 42).
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For any ¢ € [0, T'], repeating all the preceding arguments on [¢, T'], we see that the
estimate (4.4) still holds for || - ||, 44 2, that s,

lllr s, 22,0 < CUPH a2 + 1 flla, 22 + llullg o2,,)-

Taking supremum on both sides of (4.5), we have

sup E[|u(t, x)[*] < C(lullyya 22, + | @W)5 12 + 1£12 42)
X
< Clllullg g2, + 19T 02+ 1£12 42)

T
([ swp el 0 ds + [0} 1 + 112 20 ).

From Gronwall’s inequality, we have

T
2 2
46)  llulg o 5/0 sup E[[u(t, 0[] dt < C(| @)1 12 + 1115, 42)-
X
By (4.4) and (4.6), we conclude that
4.7) Nl o2 + 10l 22 < CUIPN 1 ra.22 + 1 f o 22)-

In a similar way, we have
lully, 52 < CIPllg, 2 + tllr4g, 22 + V], 22 + 1| fllo, 22]

< CI®@ll1q,22 + 1 f 1l 22]-
The proof is complete. [J

(4.8)

Using the method of continuation (see Gilbarg and Trudinger [13], Theo-
rem 5.2), we have from the Theorems 3.7 and 4.2 the following existence and
uniqueness result for BSPDE (1.1).

THEOREM 4.3. Let the Assumptions 2.1 and 2.2 be satisfied, and

(@, f) e CIT¥(R", L?(R)) x C¥(R", £2(0, T)).

Then BSPDE (1.1) has a unique solution (u, v) € (C“ N C2+“) X C ,. Moreover,
there is a positive constant C = C(A, A, o, n,d, T) such that

lullg, 72 + Nullrpa, o2 + 10llg 22 < CUIPI 4o 12 + 11 fllq,22)-

PROOF. Define
Lu :=a" 8i2ju+bi oju + cu, Mv:=ov;
and for T € [0, 1],
Lou:=((—1t)Lu+ tAu, Mov:=((0—-1t)Mv+ TV,
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with A being the Laplacian of R”.
Consider the following space:

PARC {(u, V) € (Cgﬂz N C?;z"‘) X C:‘é)z 1Vt €0, T],
T T
u(t,x):CD(x)—l—/ F(s,x)ds—/ v(s, x)dWs;
t t

for some (®, F) € C'T(R", L*(Q)) x C*(R", L (0, T))},

equipped with the norm of (u,v) € #*:
[ o= Nully, 52 + ull2pa, 22 + 1Vl 22 + 1PNy, 22 + 1F llg, 22

Then #* is a Banach space.
Define the mapping IT, : _#% — C!T¢(R", L2(Q)) x C*(R", £2(0, T)) as fol-

lows:
I (u,v) :=(®, F — Lyu — M,v), (u,v)e 7%
We have
ITTe @) == 1@y 12+ IF = Lot = Myl g2
< ®@llhya,z2 F I1Fllg, 22 + 1 Lcully 22 + [Mevlly o2
< C(I®l4a, 2 + 1 Fllg, 22 + Nl ppq, 22 + 1]l 22)
= C||(u,v)|}fa.

On the other hand, for all (z, x) € [0, T] x R”, we have almost surely

u(t,x)=o(x) + /IT[Lru + Mrv+ (F — Lyu — Mv)]ds — /IT v(s, x)dWs.
Then we have from Theorem 4.2 the following estimate:
lullg, 72 + ullrpa, @2 + 0llg g2 < CUIPRl 4g, 2 + I1F — Leu — Mrvlly g2).
Thus, we obtain the following inverse inequality:
[ o = lully, 52 + lull2pa,22 + 1022 + 1PN 40,02 + 1 Fllg, 22
< llullg, o2 + lullpye, o2 + IVlg 22 + 1Pl 10,2
+IF — Leu — Movllg o2 + | Lcully o2 + IMzvlly o2
< C(IPlysa,2 + II1F = Leu — Mrvlly, o2)
= C||Ht(u, v)||.
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Theorem 3.7 implies that I is onto. Then, in view of the method of continuation
in Gilbarg and Trudinger [13], Theorem 5.2, page 75, I1; is also onto for all T €
[0, 1). In particular, ITg is onto. The desired result follows. [J

Similar to Proposition 3.8, we have the following Holder time-continuity of u.

PROPOSITION 4.4. Let Assumptions 2.1 and 2.2 be satisfied and (P, f) €
C!*T*(R", L*(Q)) x C*(R", £ (0, T)). Let (u,v) € (C%, N C@“) x C%,, solve
BSPDE (1.1). Then, for any t € [0, T],

JuC ) —ul =1,y g2, <CT2UI@N a2 + 1 f llg,22)
where C=C(A, A,a,T,n,d).

At the end of the section, we discuss the consequence of the preceding results
on a deterministic PDE. Consider the deterministic functions

d:R" > R, a:[0,T] x R" — S",
b:[0,TIxR" - R",  o:[0,T] x R" - R,
¢, f:[0,T] x R" - R.

As we know, a BSPDE with deterministic coefficients is in fact a deterministic
PDE. Then the second unknown variable of BSPDE (1.1) turns out to be 0, and
BSPDE (1.1) is in fact the following deterministic PDE:

du(t,x)=a"(t,x) 8i2ju(t, x) +bi(t, x) du(t, x)
4.9) +c(t, x)u(t,x) + f(t, x), (t,x)e[0,T) x R";
u(T,x)=o(x), x e R,

which does not involve the coefficient o anymore.

Note that the classical Holder space C""%(R") consists of all the deterministic
elements of the Holder space C" ¥ (R", L”(R)), and the two Holder functional
spaces C"T¥(R", L?(0, T; R")) and C"™™®(R", C[0, T]) consist of all the deter-
ministic elements of the two Holder functional spaces

C" (R, LP(0,T;RY)) and C"T¥(R", #F[0,T]),
respectively. Assumption 2.2 is replaced with the following one.
ASSUMPTION 4.1. The functions
aeC*R", L>®(0, T;R™M)), be C*R", L>(0,T;R")),
and ¢ € C*(R", L°(0, T)). There is a constant A > 0 such that

lalle,zo0 + 1Dlla, L0 + llclla L0 < A.
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In view of Theorem 4.3, we have the following existence, uniqueness and regu-
larity result for PDE (4.9).

PROPOSITION 4.5. Let the Assumptions 2.1 and 4.1 be satisfied, and
(®, f) € CT(R") x C*(R", L*(0, T)).
Then PDE (4.9) has a unique solution
ue C*(R", C[0,T]) N C**(R", L*(0, T))
such that
lulle.c + 1ullrq,12 < C(IPl14+a + I fllg,12),
where C=C(A, A,a,n,d,T).
The preceding proposition shows that the solution # to PDE (4.9) is (2 4+ «)-

Holder continuous if @ is (1 + «)-Holder continuous and f is a-Holder continu-
ous. It seems to have a novelty as explained in the following remark.

REMARK 4.1. Mikulevicius [19] studies the Cauchy problem of an SPDE
in a functional Holder space, and includes the following a priori estimate for
PDE (4.9):if ® =0, f(¢,-) € C*(R") for ¢t € [0, T], and sup, | f (¢, )|a < +00,
then PDE (4.9) has a unique solution u such that

u(t,) € C*H4R")  Vte[0,T] and suplu(t,)|,,, < Csup|f(t, )],
t t

In contrast, in Proposition 4.5 we require f € C%(R", LZ(O, T)) and assert u €
C>H(R", L2(0, T)).

S. Semi-linear BSPDEs. In this section, consider the following semi-linear
BSPDE:
—du(t,x) =[a" (1, x) 07u(t, x) + f(t, x, Vu(t, x), u(t, x), v(t, x))] dt
(5.1) —v(t,x)dW;, (t,x)el[0,T) xR,
u(T,x)=dx), x e R",
Here, a:[0, T] x R" — S” satisfies both super-parabolicity and boundedness As-
sumptions 2.1 and 2.2, £:[0,T] x Q x R” x R” x R x R? — R is jointly mea-

surable, and f (-, x, g, u, v) is F-adapted for any (x, g, u, v) € R” x R” x R x R,
We make the following Lipschitz assumption on f.

ASSUMPTION 5.1.  fo(-,-) := f(-,-,0,0,0) € C“(R”,ff(o, T)), and there
is a constant L > 0 such that
|f(t, x, g1, u1,v1) — f(t,x, g2, u2, v2)|
<L(lq1 — q2| + lu1 — uz| + lvi — v2}), dt x dP-ae., a.s.
for any (g1, u1,v1), (g2, u2, 12) € R* x R x R4 and x e RY.
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Then we have the following existence, uniqueness and regularity on semi-linear
BSPDE (5.1).

THEOREM 5.1. Let the Assumptions 2.1, 2.2 and 5.1 be satisfied, and ® €
C**(R", L?(R2)). Then the semi-linear BSPDE (5.1) has a unique solution
(u,v) € (C%, N C;rza) x C%,,. Moreover,

[ullg, 72 + Ntlloga, 22 + 1llg, 22 < CUIRN 4o, 2 + | follg, 22),
where C=C(A, A,a,n,d, T).
The proof requires the following two additional preliminary lemmas. Consider

the following linear BSPDE:

—du(t, x) = [a" (t, x) Bizju(t,x) — Bu(t,x) + f(t,x)]dt
(5.2) —v(t,x)dW,, (t,x) €[0,T) x R",
u(T,x)=0, x eRY,

where a: [0, T] x R" — S" is the same as before, and 8 > 0 is a constant. When
a(t,x) =a(t), define

Gl (x):=e PO DG, (x), 0<t<s<T.

LEMMA 5.2. For a universal constant C = C(A, A, «, y,n, T), we have:

(1) Fora €(0,1) and y €I such that |y| <2,
R
(5.3) / / D" GP (0| Ix|¥dxdt <Cp='TII=02 T =55 1>0.
v JR?

(ii) Fory €T suchthat |y|=2and0<t<s5s<T,

S ﬂ S
[l[ _preto dy\dr -/
T [yI<n T

<cp' wp>o.
(iii) For y €T such that |y| =2,

/ DY GP (y)dy|dr
lyl=n
(5.4)

S
(5.5 f sup |DVG§,(y)||y|°‘dtdyECﬁ_ln“ Vn > 0.
ly

|<nt=<sJt

@iv) Forany x,x e R" and y €T such that |y| =2,

N
sup | |DYGP,(x —y) — DV GP (& — y)|Ix — y|* dt dy
ly—x|>nt<sJt
(5.6)
<Cp Ix=x* Vnp=>0.
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LEMMA 5.3. Let f € C“(R”,ZH?(O, T)).If (u,v) € (C"‘y2 ﬂC‘%};"‘) X C“Zﬂ is
the solution of BSPDE (5.2), then

lullg, 2 + ltlloga, 22 + Vg 22 < CBNSNlg 22
where C(B) :=C(B, A, A,a,n,d, T) > 0, and converges to zero as p — 0.

PROOF. Step 1 [a(t,x) = a(t)]. Proceeding similarly as in the proof of
Lemma 3.1 and the Theorems 3.3 and 3.7, we have that the pair (u#, v) defined
for each x € R? by

T
u(t,x)::/ fRGf,t(x—y)Y(t;s,y)dyds Vi €[0,T],dP-as.,
t n

and
.
uteni= [ [ 6= atsirydyar,

dt xdP-ae.,as.,[=1,...,d,
is the unique solution to the linear BSPDE (5.2) with

T
Y(t;7,x):= f(r,x)—/ gt x)dWH Vi<t
t

In view of the estimates of Lemma 5.2, proceeding similarly as in the proof of the
Lemmas 3.4 and 3.5 and Theorem 3.6, we have

ltllg, o2 + Nullage, 22 + IVllg 22 < CBIfllo, 22
where C(B) := C(B, 1, A,a,n,d,T) > 0 is sufficiently small for sufficiently

large B.
Step 2 [(a'/),xn depends on x]. Using the freezing coefficients method as in
Theorem 4.2, we have the desired result. [

PROOF OF THEOREM S5.1. For any (Ui, V1) € (C%, N C;“) x C9,,

fG, -, VUL, ), Ui, ), Vi, 2) € C*(R?, .ZFZ(O, T)) because of Assumption 5.1
for f. In view of Theorem 4.3,

—duy (t,x) = [a" (¢, x) 31 (1, x)
+ f(t,x, VU(t,x), Ui (t, x), Vi(t, x))] dt
—vi(t,x)dW,;,  (t,x)€[0,T) x R",
ui(T, x) = @ (x), x eR"

has a unique solution (11, v1) € (Cf"y2 N C;S“‘) X C;,Z. For any (U, V) € (Cf"y2 N

(5.7)

C?;z“) x C%,, denote (u2,v2) € (C%, N Cc_z;z“) x C%, as the solution of equa-

tion (5.7) with (U1, V1) replaced by (Ua, V3). Define
’/_l(t7x) = Ml(t’-x) - uZ(ta .X), U(t,x) = Ul(t9-x) - U2(ta -x)a
U(t,x) = vi(t,x) —va(t,x),  V(t,x):=Vi(t,x) — Va(t, x)
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and
ft,x) = f(t,x, VUi (t, x), Ui (t, x), Vi (t, X))
— f(t,x, VU(t, x), Ua(t, x), Va(t, x)).
Then we have
—d[eP'a(t, x)] = (a" (1, x) 87 [P (, x)]
— BePlii(t, x) + P! f(t,x))dt
—eProe, x)(t, x)dWy, (t,x) €[0,T) x R,
ePTi(T, x) =0, x eR™.

In view of Lemma 5.3, we have

(5.8)

e il 2+ NP il g2 + P Bl g2
<CPBe” flly.»
< CAHL[|F Ty 2+ ¥ Tlrsg 52+ ¥ V] 2],

with C(B)L < 1 for a sufficiently large . Since the weighted norm ||e Uy 2+
||eﬂ’u||2+a’jz + ||eﬂ'v||a’$z is equivalent to the original one [ull, o2 +

ullp . 22 + IVllg, o2 in (Cf;2 N Ci;g“) X Cg,ﬂ’ the semi-linear BSPDE (5.1) has

a unique solution (1, v) € (C%, N C?zo‘) x C%,. The desired estimate is proved
in a similar way. [J
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