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DIFFUSION-LIMITED AGGREGATION ON THE
HYPERBOLIC PLANE

BY RONEN ELDAN
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We consider an analogous version of the diffusion-limited aggregation
model defined on the hyperbolic plane. We prove that almost surely the ag-
gregate viewed at time infinity will have a positive density.

1. Introduction. The celebrated Diffusion-limited aggregation (in short,
DLA) model is a probabilistic model where particles undergoing a certain dif-
fusion stick together and form up into clusters. Most commonly, the aggregate
begins with a single particle at a fixed point, and in every iteration a new particle
arrives via a Brownian motion (or some random walk) starting from infinity and
stops at the moment it hits the existing cluster, thus expanding it. This model was
first introduced by Witten and Sandler [8] in 1981 as a model which could be used
to represent several physical phenomena related to systems where the principle
mean of transport of particles is by diffusion. Some examples of systems which
appear to have DLA-like behavior are electro-deposition, mineral deposits, and
dielectric breakdown systems.

The most interesting settings for the DLA model are naturally the two- and
three-dimensional Euclidean spaces (or the grids Z2 and Z

3). In these spaces, de-
termining some of the most basic properties of this model seem to be notoriously
hard problems. For example, it is not known whether the rate of growth of the
diameter of the aggregate is not O(n1/d) where n is the number of particles and
d is the dimension, or whether or not the density of the cluster at time infinity is
zero. It is conjectured by physicists that the answers to both these questions are
positive. One of the only known facts about DLA in Euclidean space is the re-
sult of Kesten [5], who obtained the upper bound O(n2/max(d,3)) for the speed of
growth of the diameter of the DLA in Z

d . We would also like to mention a paper
of Barlow, Pemantle and Perkins [1] in which the DLA model on a tree is studied
as well as the work of Ebertz-Wagner [3] in which it is shown that the Euclidean
DLA cluster will almost surely have infinitely many holes.

Roughly speaking, an analogous version of this model can be defined in any
space where the notion of diffusion exists. If the Poisson boundary consists of one
point (or, in other words, the definition of “a particle released at infinity” makes
sense) and the diffusion is recurrent, the growth process can be defined so that law

Received October 2013; revised March 2014.
MSC2010 subject classifications. 60K40, 60K99.
Key words and phrases. Random cluster growth models, diffusion-limited aggregation, hyper-

bolic space, harmonic measure.

2084

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/14-AOP928
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


DLA ON THE HYPERBOLIC PLANE 2085

of the location of a new particle is the harmonic measure of the existing aggregate
with pole at infinity. If the diffusion is transient (such as in the case of Z3), one
can consider the harmonic measure with a pole far away from the aggregate, let
the pole go to infinity and take limits (i.e., conditioning on a random walk coming
from infinity to hit the cluster).

Another way to define the law of growth in settings where the diffusion is tran-
sient is to use the time-reversibility property of the random walk. According to
this property, the harmonic measure of a set, with pole at infinity, is proportional
to the so-called equilibrium measure associated to the set. For sets with sufficient
smoothness properties, this measure is absolutely continuous with respect to the
Hausdorff measure on the boundary of the set and its density is proportional to the
gradient, in the normal direction to the boundary, of the solution of the Dirichlet
problem with boundary conditions 1 on the set and 0 at infinity. From a proba-
bilistic point of view, this density is roughly proportional to the probability that
a particle released close to the boundary of the set reaches infinity before hitting
the aggregate. Fortunately, this definition also makes sense in settings where the
Poisson boundary consists of more than one point. A more detailed description of
this will be given in the next section.

Our aim in this paper is to study a DLA model defined on the hyperbolic plane,
showing that in this case, the cluster at time infinity almost surely admits a posi-
tive upper density. Our results suggest that in the hyperbolic setting the behavior
of the aggregate is simpler to analyze than the Euclidean one. However, simula-
tions point that its geometry is still fairly complicated: it seems that the so-called
“rich-get-richer” behavior takes place also in this setting and the aggregates look
far from having a certain limit shape. Our results may therefore be viewed as a
modest attempt to rigorously study certain properties of a model whose complex-
ity is somewhat similar to that of the Euclidean DLA. Diffusion-limited growth
on general Riemannian manifolds and specifically on the hyperbolic plane was al-
ready considered in the physics literature, see [2]; The physical motivation for this
study is that natural phenomena of DLA-like behavior such as mineral dendrites,
cell colonies and cancerous tumors usually grow on curved surfaces.

In our construction, the particles will be metric balls of radius 1. We define A0 to
be a fixed point p0 and recursively Ai+1 = Ai ∪ {x} where the point x (thought of
as the center of a disc-shaped particle) will be picked from the set of points whose
distance from Ai is exactly 2 (which means exactly that the corresponding discs
will be tangent to each other) and will be distributed in this set proportionally to
the probability of escape to infinity, described in the previous paragraph. We will
also write A∞ = ⋃∞

i=1 Ai . The precise construction appears in the next section.
Figure 1 shows an instance of this construction drawn on the Poincaré disc.

In a metric measure space X whose diameter is infinite, we say that a locally-
finite set A ⊂ X has an upper density greater or equal to c if there exists a point
p ∈ X and a sequence R1 < R2 < · · · such that Ri → ∞ as i → ∞, such that

#
(
A ∩ B(p,Ri)

) ≥ cμ
(
B(p,Ri)

) ∀i ∈ N,
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FIG. 1. A simulation of the DLA model with 1000 particles, viewed on the Poincaré disc model.

where B(p, r) is a metric ball centered at p with radius r and μ is the measure
defined on X. We can use this definition in the hyperbolic plane, using the standard
hyperbolic distance as a metric and the standard Riemannian volume of a set as a
measure.

Our main theorem reads the following.

THEOREM 1.1. The set A∞ = ⋃∞
i=1 Ai almost surely has an upper density

greater than c, where c > 0 is a universal constant.

REMARK 1.2. The reader may suspect that the above theorem follows from
a general geometric fact about the hyperbolic plane and does not use any of the
randomness in the model. Alas, there is an example of a connected set which is a
union of balls of radius 1, whose convex hull is the entire plane, but whose upper
density is zero. Indeed, consider the following “spiral” set: take a point p ∈ H

2

and θ0 ∈ Tp (where Tp is the tangent space at p) and consider the exponential map
e :Tp → H

2. Define

A = ⋃
θ∈[0,∞)

BH

(
expp

(
XθR(θ)

)
,1

)
,

where Xθ is a unit vector in Tp whose angle with θ0 is θ , BH(p, r) is a geodesic
ball of radius r centered at p and R(θ) is an increasing function. It is not hard to
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verify that if the function R(θ) goes to infinity fast enough, the set A will have the
properties described above.

In the vaguest sense, the intuition behind the fact that the behavior of the DLA
model in the hyperbolic plane is different from the conjectured behavior in Eu-
clidean space is related to the rate of decay of the harmonic potential. Consider
two particles located at distance L apart. The probability for two Brownian paths
released from the two particles to intersect at some point is exponentially decreas-
ing with L which, in turn, roughly means that when growing an aggregate from
those two points simultaneously, these two aggregates will hardly interact. In par-
ticular, the new particles added to any two given “arms” of our aggregate will grow
farther away from each other at linear speed. This means that the growth law of the
aggregate is almost “local” in the sense that the subtree related to each new particle
added to the aggregate will only ever be affected by its immediate neighborhood
and, moreover, their interaction will decrease exponentially with time. The absence
of long-range interactions will prevent the multiscale phenomena, expected in the
Euclidean case, from occurring in our case.

Specifically, the geometry of the hyperbolic plane makes it much harder to iso-
late certain parts of the DLA and disallowing them to grow further by creating
fjords which are too narrow for particles to come through, which in turn means
that the DLA will locally keep growing at most of its parts and will eventually fill
the whole space.

Let us now review the general plan of our proof, while trying to explain how the
aforementioned properties of hyperbolic geometry come into play.

The main step of the proof will be to show that there exists a universal constant
R0 > 0 such that for any metric ball B of radius R0, there is a probability of at
least 0.99 that the aggregate will intersect this ball, no matter how far the ball is
from the starting point of the aggregate.

The proof of this step relies heavily on the fact that the upper half-plane, R ×
(0,∞), is isometric to H

2 via a conformal mapping (using the so-called Poincaré
metric). Regarding our aggregate on the upper half-plane and choosing the correct
embedding, this is easily reduced to showing that an aggregate which begins at the
point (0, ε) reaches, with a nonnegligible probability, any rectangle of the form
� = [−C,C] × [1,2] where C > 0 is a universal constant and ε is an arbitrarily
small positive number.

At this point, let us now try to further illustrate the difference between Euclidean
and hyperbolic geometry which we are going to exploit: in order for the aggregate
to never reach the rectangle � , it has to encompass � , at least in the sense that �

will be contained in the convex hull of the aggregate before any point of the � has
a chance to be reached by it. In particular, the aggregate has to reach one of the
lines {x = ±C}. Now, note that any geodesic line connecting the starting points
with these two lines actually passes through � . In other words, the rectangle �

acts as bottleneck which prevents the aggregate from encompassing it. It is easy to
see that no analogous phenomenon takes place in the Euclidean space.
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REMARK 1.3. As mentioned above, in the paper of Barlow, Pemantle and
Perkins [1], a diffusion-limited aggregation on an infinite regular tree is studied.
The fact that the hyperbolic space has a tree-like structure may mislead the reader
to think that the model studied in their paper is closely related to our model, and
that the two are therefore expected to behave in the same way. While these two
models are superficially similar and both called DLA, their behavior is nevertheless
quite different. Remark that on the discrete tree, each connected component of the
complement of a given subtree looks exactly the same. Thus, the tree counterpart
of our process would be defined such that the rate of growth of the aggregate is
constant on all points of its boundary, regardless of its geometry. By definition,
this aggregate will eventually fill the entire tree and it is not hard to see that it
would do it in a rather uniform way.

Let us try to explain our strategy to formally establish the fact that � is likely
to be reached by the aggregate before one of the lines {x = ±C} is reached.

The idea will be to establish bounds on the rate of growth of the minimum
encompassing rectangle of the aggregate, hence the maximal x-coordinate of the
aggregate at time t , denoted by X(t), and the maximal y-coordinate, denoted by
Y(t) (see Figure 2 below). In order to prove that the aggregate reaches the rectan-
gle � , it will be enough to show that X(t) does not grow much faster than Y(t).
We will work with a continuous time t ∈ R

+, so that growth of the cluster is ac-
cording to an exponential clock whose rate is proportional to the capacity, which
ensures us that in small time intervals the expected rate of growth in different parts
of the cluster is roughly independent (this is defined in Section 2).

FIG. 2. The definitions X(t), Y (t), Y+
L (t),Fr(A(t)) and Ỹ (t) illustrated.
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Two key geometric lemmas proven in Section 3 will provide an upper bound
for the rate of growth of X(t) and a lower bound for the rate of growth of Y(t).
The former bound, whose proof uses the easy fact that in the half-plane model
the y coordinate of the center of metric circle of radius 1 is proportional to its
Euclidean radius, roughly says that d

dt
E[X(t)] < CY(t). According to the latter

bound, which makes use of the conformal invariance, the probability of Y(t) to
multiply itself by a constant during a unit time interval is at least of the order
cY (t)/(X(t)+Y(t)) or, in other words, roughly dY (t) > cY 2(t)/X(t). Here, c,C

are universal constants.
Next, we note that (very informally) these bounds combined give

d
X(t)

Y (t)
= dX(t)

Y (t)
− X(t) dY (t)

Y (t)2 ≤ C − c.

One would expect that by integrating those two bounds it should be possible to
attain an estimate of the form Y(t) > X(t)α where α is a positive constant which
depends on the ratio C/c, at least in expectation. However, it seems like the above
bounds cannot be pushed to give constants which would yield α ≥ 1.

Because of this, we have to do something a little more complicated. We define
Ỹ (t) as the height of the cluster close to the edge where x attains its maximum (as
in Figure 2), and consider two different cases: if Ỹ (t) is much smaller than Y(t),
we get that dX(t) is small enough so that the two bounds above can be integrated to
attain that d X(t)

Y (t)
is negative. On the other hand, if Ỹ (t) and Y(t) are comparable,

it turns out that we expect X(t)/Y (t) to decrease due to a completely different
reason (provided that it is not too small). We know that there is a nonnegligible
probability that the height of the cluster will grow rather rapidly close to its edge
[hence close to the place where X(t) is attained] and, therefore, Y(t) can multiply
itself by a constant within a constant amount of time. All of this is carried out in
Section 4.

Once we have those two bounds, which can be combined into a unified bound
on the (expected) rate of growth of R(t) = X(t)/Y (t) the proof of the main step
is just a matter of defining the correct martingale and using the optional stop-
ping theorem. Note, however, that the process X(t)/Y (t) cannot actually be a
super-martingale as we know that it is always positive, and it clearly does not
converge. Ideologically, this process should be regarded as a super-martingale re-
flecting at zero, and for such processes, the optional stopping theorem cannot help
(it is not hard to see that Brownian motion with a strong drift toward zero and
reflection at zero can be almost surely stopped at arbitrarily large values with a
stopping time of finite expectation). With a little extra work, we show that the
process x → R(min{t;X(t) > x}) is also a super-martingale with reflection at
zero and a strong enough drift, which turns out to be enough. In Section 5, we
tie up the loose ends, showing how the main step can be used to complete the
proof.
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2. Preliminaries.

2.1. The Poincaré half-plane model. We denote the hyperbolic plane by H
2.

For two points p1,p2 ∈ H
2, we define the hyperbolic distance between them by

dH (p1,p2). In many cases, we will view the hyperbolic plane using the Poincaré
half-plane model, which is the usual open half plane R2+ := R×(0,∞) (sometimes
called the Poincaré half-plane) equipped with an embedding H :R2+ → H

2 and a
distance function defined by

dH

(
(x1, y1), (x2, y2)

) = dH

(
H(x1, y1),H(x2, y2)

)
(1)

= Arcosh
(

1 + (x2 − x1)
2 + (y2 − y1)

2

2y1y2

)
.

By slight abuse of notation, throughout this note we will sometimes allow our-
selves to interchange freely between the roles of p and H(p), whenever the inten-
tion is clear from the context.

For a point p ∈ R
2+, let BH(p, r) ⊂ R

2+ be the closed dH -ball centered at p

with radius r and let BE(p, r) ⊂ R
2+ be the closed Euclidean-ball centered at p

with radius r . We will often use the following elementary estimate, which follows
immediately from formula (1).

LEMMA 2.1. For any (x, y) ∈R
2+, one has

BE

(
(x, y),0.5y

) ⊆ BH

(
(x, y),1

) ⊆ BH

(
(x, y),2

) ⊆ BE

(
(x, y),7y

)
.

Another basic fact of which we will make use quite often is the invariance of
the model to Möbius transformations leaving R

2+ intact:

FACT 2.2. For any constants α ∈ R and β > 0 consider the transformation

T : (x, y) → (βx + α,βy).

Then dH is invariant under T , namely,

dH

(
(x0, y0), (x1, y1)

) = dH

(
T (x0, y0), T (x1, y1)

)
for all (x0, y0), (x1, y1) ∈R

2+.

We denote by H
2(∞) the set of ideal points (or omega points) of the hyperbolic

plane. We also define

R
2+(∞) = R× {0} ∪ {∞}.

By continuity, we can extend an embedding H :R2+ →H
2 to the set R2+(∞).

One last property of the Poincaré model which we will exploit is its conformal-
ity, namely, the fact that the map H :H2 →R

2+ is a conformal map. Thanks to this
fact and since, according to a theorem of P. Lévy, the path of a Brownian motion
is invariant under conformal maps, we have the following.
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FACT 2.3 (Conformal invariance). Let A ⊂ H
2 be a measurable set and let

x ∈ H
2 be any point. The path of a hyperbolic Brownian motion starting at x and

stopped when it reaches A ∪H
2(∞) has the same distribution as the image under

the map H of the path of the usual Euclidean Brownian motion defined on R
2+

started at H−1(x) and stopped at H−1(A) ∪R
2+(∞).

2.2. The harmonic measure. As explained above, in Euclidean space, the
DLA is usually defined via particles arriving from infinity, or equivalently, the
place of the particle added to the aggregate is has a distribution whose law is the
harmonic measure on the boundary of the existing aggregate, with a pole at infin-
ity. Unfortunately, in the hyperbolic space, there is no natural analogous definition,
as the harmonic measure actually depends on the point in H(∞) from which the
particle is released (or, in other words, the Poisson boundary contains more than
one point). In order to find a definition of a DLA growth model on the hyperbolic
plane that makes sense, we use the following fact which is a consequence of the
time reversibility of the Brownian motion (for a proof, see [4], page 252 and [6],
Theorem 8.33).

FACT 2.4. For any smooth set A ⊂R
n, n ≥ 3, there exists a constant CA such

that for any x ∈ ∂A, one has

CAmA,∞(x) = lim
ε→0+

1

ε
P

(
A Brownian motion released from x + �nε

reaches ∞ before hitting A

)
,

where �n is the normal direction to ∂A at x, pointing outward and mA,∞(x) is the
density of the harmonic measure of the domain A with pole at ∞ evaluated at the
point x.

Fortunately, the right-hand side of the above formula can be defined just the
same in the hyperbolic plane. Fix two measurable subsets A,B ⊂ H

2 ∪ H
2(∞)

such that H2(∞) ⊂ A ∪ B and fix a point x ∈ ∂A \ H(∞) such that ∂A is smooth
at x. Denote by Tx be the tangent space of H2 at x and let v ∈ Tx be the outward
normal to ∂A at x. Consider the exponential map expx :Tx →H

2. We define

mA,B(x) = lim
ε→0+

1

ε
P

(
A brownian motion released from expx(εv)

reaches B before hitting A

)
.

For all measurable D ⊂ ∂A \H2(∞), we define

MA,B(D) =
∫
D

mA,B(x) d�(x),

where �(·) is the standard length measure in the hyperbolic plane. We claim that
the above integral is well defined and finite whenever A is a finite union of metric
balls. Indeed, the boundary of such a set is smooth up to a finite set of points,
which means that the above integral is well defined. Moreover, it is evident from



2092 R. ELDAN

the above definition that mA,B admits the following monotonicity property: for two
sets A′ ⊂ A such that x ∈ ∂A′ ∩ ∂A, one has mA′,B(x) ≥ mA,B(x). Consequently,
the function mA,B(x) is bounded on ∂A and the integral is finite.

REMARK 2.5. In fact, this definition is valid for any set whose boundary is a
rectifiable curve (see [7], Example 1.2).

Finally, when A ∩H
2(∞) =∅, we also abbreviate

MA(D) = MA,H2(∞)(D).(2)

In view of Fact 2.4, it seems natural to construct our DLA cluster using this mea-
sure.

2.3. Construction of the DLA. The evolution of our aggregate will be repre-
sented via a sequence of random finite sets A1 ⊂ A2 ⊂ · · · , each element of which
is a point in H

2 represents a single particle. The particles are assumed to be metric
balls of radius 1, and the elements of the above sets are the centers of those metric
balls, hence the actual aggregate takes the form⋃

p∈Ai

BH (p,1).

We fix a point p0 ∈ H
2 which we regard as the origin of the aggregate. We begin

with the set A0 = {p0}. The set Ai+1 will be the existing aggregate Ai with the
addition of one point representing the center of the new particle. In order to define
the law according to which this new point is distributed, we will need some more
definitions.

For a finite set A ⊂H
2, we define

B(A) = ⋃
x∈A

BH(x,2).

The point of taking balls of radius 2 is that any ball centered at a point in ∂B(A)

whose radius is 1 will be tangent to the aggregate (which is assumed to be a union
of balls of radius 1). Define

μA(·) = Cap(A)−1MB(A)(·),
where

Cap(A) := MB(A)

(
∂B(A)

)
is a normalizing constant to which we will refer to as the capacity of A and where
the measure MB(A) is defined in equation (2). Note that by definition, the measure
μA is a probability measure.



DLA ON THE HYPERBOLIC PLANE 2093

REMARK 2.6. The quantity Cap(A) is sometimes referred to as the inverse
Riemann modulus of A. It is a well known fact, which is a consequence of Schot-
tky’s theorem that it is invariant under conformal maps of the hyperbolic plane.

We can finally define by recursion,

Ai+1 = Ai ∪ {Xi},
where Xi is a random point in ∂B(Ai) distributed according to the law μAi

.
Throughout this note, we will usually allow ourselves to interchange freely be-

tween Ai and H−1(Ai) (when this does not cause any confusion), thus sometimes
considering Ai as a subset of R2+.

2.4. Continuous time. In our proofs, it will be more convenient to regard
our process in continuous time. We define a sequence of times t0, t1, t2, . . . by
the following inductive law: Define t0 = 0, and for all i ≥ 0, let ti+1 − ti be an
exponentially-distributed variable whose expectation is Cap(Ai)

−1, independent
from all the rest. Finally, we define

A(t) = Ai(t),

where

i(t) = max{i; ti ≤ t}.
We denote by Ft the filtration corresponding to the process. The next fact will be
useful to us:

FACT 2.7. The process A(t) is a Markov process, hence for every random
variable X measurable with respect to F∞ and every t ≥ 0,

E[X|Ft ] = E
[
X|A(t)

]
.

Moreover, for any t and for any measurable B ⊂ ∂B(A(t)), one has

lim
ε→0+

1

ε
P

(
B ∩ A(t + ε) �= ∅|A(t)

) = MB(A(t))(B)(3)

and for all B such that B ∩ ∂B(A(t)) = ∅,

lim
ε→0+

1

ε
P

(
B ∩ (

A(t + ε) \ A(t)
) �=∅|A(t)

) = 0.(4)

PROOF. The Markov property follows immediately from the definition of the
process. In order to prove formula (3), we make note that for all i ∈ N,

Cap(Ai) ≤ ∑
p∈Ai

MB(Ai)

(
∂BH (p,2)

)

≤ ∑
p∈Ai

MBH (p,2)

(
∂BH (p,2)

) = P0i
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for some constant P0 > 0. Therefore, we can estimate

P
(
i(t + ε) ≥ i(t) + 2|A(t)

)
≤ P

(
ti(t)+1 ≤ t + ε|A(t)

)
P

(
ti(t)+2 < ti(t)+1 + ε|A(t)

)
≤ P

(
E

(
1/

(
P0i(t)

))
< ε

)
P

(
E

(
1/

(
P0

(
i(t) + 1

)))
< ε

) = O
(
ε2)

,

where E(v) denotes an exponential variable with expectation v. We deduce that
the probability that more than one particle is added to the cluster in an interval of
the form [t, t + ε] is of the order ε2. Since by definition, the next particle added
must be at ∂B(A(t)), equation (4) follows. Next, we have

lim
ε→0+

1

ε
P

(
A(t + ε) ∩ B �=∅|A(t)

)

= P(Ai(t)+1 ∩ B �= ∅) lim
ε→0+

1

ε
P

(
ti(t)+1 ≤ t + ε|A(t)

)

= μA(t)(B) lim
ε→0+

1

ε

(
1 − exp

(−ε Cap
(
A(t)

))) = μA(t)(B)Cap
(
A(t)

)
,

which proves (3). The proof is complete. �

3. Geometric lemmas. The goal of this section is to prove two geometric
lemmas which will serve as central ingredients in the proof. Throughout this sec-
tion, we assume that the embedding of H2 in R

2+ has been fixed, and consider the
aggregate A(t) as a subset of R2+. We begin with some definitions which will be
frequently used later on.

For every time t ≥ 0, we define

X(t) = sup
{|x|; ∃y such that (x, y) ∈ A(t)

}
and

Y(t) = sup
{
y; ∃x such that (x, y) ∈ A(t)

}
.

We define also,

Y+
L (t) = sup

{
y; ∃x ≥ L such that (x, y) ∈ A(t)

}
and

Y−
L (t) = sup

{
y; ∃x ≤ L such that (x, y) ∈ A(t)

}
.

For a particle b ∈ A(t), we say that b is in the front of A(t) and denote b ∈ Fr(A(t))

if there exists a point p = (x, y) ∈ R
2+ having dH (b,p) ≤ 1 and |x| ≥ X(t). Fi-

nally, we define

Ỹ (t) = sup
{
y; (x, y) ∈ Fr

(
A(t)

)}
.

These definitions are illustrated in Figure 2.
We begin with the following upper bound for the rate of growth of X(t), which

turns out to be controlled by Ỹ (t) in expectation.
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LEMMA 3.1. There exists a universal constant C > 0 such that for all t ≥ 0,
one has almost surely

lim
ε→0+

1

ε

(
E

[
X(t + ε)|Ft

] − X(t)
) ≤ CỸ (t).(5)

The geometric intuition behind this lemma is the following: first of all, by the
nature of the harmonic measure, if each particle of the aggregate would be allowed
to duplicate itself with a constant rate, regardless of the other existing particles,
this would result in a faster expected growth of X(t). Consequently, it is enough to
prove this lemma for the simpler model in which the harmonic measure is replaced
with the usual length measure on the boundary of the aggregate. By definition of
the front of the aggregate, we may only consider particles in Fr(A(t)) since only
these can cause X(t) to increase by duplicating. Lemma 2.1 shows us that a particle
whose height is y is expected to duplicate to a particle at horizontal distance Cy

for some fixed C > 0, which implies that the total expected horizontal growth of
the aggregate at unit time is bounded by the sum

∑
p∈Fr(A(t)) Cy(p). The geometry

of the front of the aggregate only allows a constant number of particles at a given
height, which will allow us to bound this sum by that of a geometric sequence,
which only depends on the largest summand. In other words, the expected growth
will be bounded by the height of Fr(A(t)).

We will first need the following intermediate, technical result, whose proof is
postponed to the end of the section.

LEMMA 3.2. For all t ≥ 0 and given any aggregate A(t), there exist constants
C,ε0 > 0 such that for all ε < ε0

P
(
X(t + ε) − X(t) > α|Ft

) ≤ Cε min
(
α−2,1

) ∀α > 0.

PROOF OF LEMMA 3.1. Fix a time t > 0 and an aggregate A(t). For all s > 0,
define the set

Bs = {
(x, y) ∈ ∂B

(
A(t)

); |x| − X(t) ≥ s
}
.

According to formulas (3) and (4), one has

lim
ε→0+

1

ε
P

(
X(t + ε) − X(t) ≥ s|Ft

) = MB(A(t))(Bs).

Using Lemma 3.2, we know that there exist constants ε0,C > 0 such that for all
ε < ε0, ∫ ∞

s=0

1

ε
P

(
X(t + ε) − X(t) ≥ s|Ft

)
ds < C.
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Consequently, we may use the dominated convergence theorem to get

lim
ε→0+

1

ε
E

(
X(t + ε) − X(t)|Ft

)

= lim
ε→0+

∫ ∞
s=0

1

ε
P

(
X(t + ε) − X(t) ≥ s|Ft

)
ds(6)

=
∫ ∞
s=0

MB(A(t))(Bs) ds.

Next, using Lemma 2.1, we learn that for two points (x1, y1), (x2, y2) ∈ R
2+ one

has

dH

(
(x1, y1), (x2, y2)

) ≤ 2 ⇒ |x1 − x2| ≤ C1y1.(7)

It follows that, using the definition of Fr(A(t)),

Bs ⊂ ⋃
(x,y)∈Fr(A(t))

|x|+C1y≥X(t)+s

∂B
({

(x, y)
})

for all s > 0. Next, observe that for all (x, y) ∈ R
2+, one has by definition

MB(A(t))

(
∂B

({x, y})) ≤ MB({x,y})
(
∂B

({x, y})) =: P0,(8)

where P0 > 0 is a universal constant [in particular, it does not depend on (x, y)].
A combination of the two above equations teaches us that

MB(A(t))(Bs) ≤ ∑
(x,y)∈Fr(A(t))

|x|+C1y≥X(t)+s

MB({x,y})
(
∂B

({x, y}))

≤ #
{
(x, y) ∈ Fr

(
A(t)

); |x| + C1y ≥ X(t) + s
}
P0

≤ #
{
(x, y) ∈ Fr

(
A(t)

);C1y ≥ s
}
P0.

A combination of the above inequality with (6) yields

lim
ε→0+

1

ε
E

(
X(t + ε) − X(t)|Ft

)

≤ P0

∫ ∞
s=0

#
{
(x, y) ∈ Fr

(
A(t)

);C1y ≥ s
}
ds(9)

= P0C1
∑

(x,y)∈Fr(A(t))

y.

We turn to estimate the above sum. Recall the definition of Fr(A(t)) and observe
that Lemma 2.1 also implies

(x, y) ∈ Fr
(
A(t)

) ⇒ X(t) − C1y ≤ |x| ≤ X(t).(10)
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Now, for any number K > 0, define

F(K) = {
(x, y) ∈ R

2+;X(t) − C1y ≤ |x| ≤ X(t) and K/2 ≤ y ≤ K
}
.

Fact 2.2 teaches us that the hyperbolic volume of F(K) does not depend on K , as
a dilation of the number K corresponds to rescaling of each connected component
of F(K) about a point on the x-axis. Since these sets are compact and separated
from the X axis, they have a finite volume. It is thus clear that the cardinality of
any set of disjoint dH -balls of radius 1 whose centers are in F(K) is bounded by
some universal constant C2 (which does not depend of K). Consequently,∑

(x,y)∈Fr(A(t))∩F(K)

y ≤ C2K.(11)

Note that by equation (10), we have

Fr
(
A(t)

) ⊂
∞⋃

j=0

F
(
Ỹ (t)2−j )

.

Using this fact with (9) and (11) finally gives

lim
ε→0+

1

ε
E

(
X(t + ε) − X(t)|Ft

)
≤ P0C1

∑
(x,y)∈Fr(A(t))

y

= P0C1

∞∑
j=0

∑
(x,y)∈Fr(A(t))∩F(Ỹ (t)2−j )

y ≤ 2P0C1C2Ỹ (t)

and the proof of the lemma is complete. �

The next bound can be regarded as a lower bound for the rate of growth of Y(t),
whose proof relies heavily on the conformity of the map H . This bound is a con-
sequence of a rather straightforward geometric fact about the harmonic measure:
given a rectangle of the form K = [−M,M] × [0,1], consider the harmonic mea-
sure MK,R×{0} evaluated on different points of its upper edge [−M,M] × {1}.
The density of this measure at a point (x,1) ∈ ∂K is bounded from below by
c(M − |x| + 1)−1. Recall that, by definition, the aggregate A(t) is contained in
the rectangle [−X(t),X(t)] × [0, Y (t)]. This means that the probability of the ag-
gregate’s top-most particle [the one attaining Y(t)] to duplicate itself upward, and
thus increase Y(t) by a constant multiplicative factor is bounded from below by
cY (t)/(X(t) + Y(t)).

We will need a bound that deals with a slightly more general scenario, in which
one has the additional information that a constant fraction of the aggregate’s height
is attained at a point close to the front of the aggregate, say located at X(t) − L.
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In this case, the above estimate on the harmonic measure gives a rate of growth
of cL−1. However, since we do not assume here that the aggregate is entirely
contained in the corresponding rectangle the argument will have to be slightly
more delicate.

LEMMA 3.3. There exists a constant c > 0 such that for all t ≥ 0 one has

lim
ε→0+

1

ε
P

[
Y(t + ε) > (1 + c)Y (t)|A(t)

]
> c

Y(t)

Y (t) + X(t)
.(12)

Furthermore, for any constant 	 ≥ 1, there exists a constant c(	) (which depends
only on 	) such that the following holds: Let L ∈ R and suppose that Y(t) ≤
	Y+

L (t). Then

lim
ε→0+

1

ε
P

[
Y+

L−10Y (t)(t + ε) ≥ (1 + c)Y+
L (t)|A(t)

]
(13)

> c(	)
Y (t)

Y (t) + X(t) − L
.

Likewise, if Y(t) ≤ 	Y−
L (t) then

lim
ε→0+

1

ε
P

[
Y−

L+10Y (t)(t + ε) ≥ (1 + c)Y−
L (t)|A(t)

]
(14)

> c(	)
Y (t)

Y (t) + X(t) + L
.

PROOF. We will prove formula (13). The proof of (14) is completely analo-
gous, and the fact that (12) is true will follow immediately from (13) by taking
L = −X(t) and 	 = 1.

Let (x0, y0) be the point attaining the maximum y0 = Y+
L (t). Denote B =

BH((x0, y0),2) and y1 = max{y; ∃x s.t. (x, y) ∈ B}.
Fix a constant c > 0, which will be the universal constant in (13), whose value

will be chosen later. If there exists a point (x, y) ∈ A(t) such that x ≥ L − 10Y(t)

and y ≥ (1 + c)y0 then the event in (13) holds almost surely, and we are done.
Therefore, we may assume from this point on that this is not the case, hence, we
can assume from now on that

A(t) ∩ [
L − 10Y(t),∞) × [

(1 + c)y0,∞) =∅.(15)

Define the set

Uc = ([
L − 10Y(t),∞) × [

0, (1 + c)y0
]) \ B.

It is easy to verify that dH ((x0, y1),U0) ≥ 2 + c1 for a universal constant c1 ≥ 0
[recall that dH ((x0, y0), (x0, y1)) = 2 and see Figure 3]. Therefore, by continuity
by the invariance of the metric to rescaling around the point (x0,0) (which follows
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FIG. 3. Some of the definitions in the proof of Lemma 3.3.

from Fact 2.2), we can choose the constant c > 0 to be a small enough universal
constant so that

dH

(
(x0, y1),Uc

) ≥ 2 + c2(16)

for some universal constant c2 > 0. Define

S = {
(x, y) ∈ ∂B;dH

(
(x, y), (x0, y1)

) ≤ c2/2
}

(also see Figure 3). Equations (15) and (16) imply that S ⊂ ∂B(A(t)). Note that
this fact does cease to be true if we make the constants c, c2 smaller. Therefore, by
decreasing the value of these constants if necessary, we can also assert that

S ⊂ [L − 10y0,∞) × [
(1 + c)y0,∞)

(17)

(here we also used the fact that x0 ≥ L). Thanks to the last equation and in view of
equations (3) and (4), we have

lim
ε→0+

1

ε
P

[
Y+

L−10y0
(t + ε) ≥ (1 + c)y0|A(t)

]
= MB(A(t))

({
(x, y) ∈ ∂B

(
A(t)

);y ≥ (1 + c)y0 and x ≥ L − 10y0
})

≥ MB(A(t))(S).

It is therefore enough to prove that

MB(A(t))(S) ≥ c(	)
Y (t)

Y (t) + X(t) − L
.(18)

Our next goal thus to give a lower bound for MB(A(t))(S). We do this in three
steps.

Step 1: Define the set

F = [x0,∞) × (2	y1,∞).
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In this step, we aim at showing that

MB(A(t)),F (S) ≥ c(	)(19)

for some c(	) > 0 which is a constant only depending on 	. Define

S+ := ⋃
(x,y)∈S

{x} × (y,∞)

and

E =R
2+ \ S+.

Assumptions (15) and (16) along with Lemma 2.1 ensure that

S+ ∩B
(
A(t)

) = ∅

(see Figure 3) which implies that

MB(A(t)),F (S) ≥ ME,F (S).(20)

In order to give a bound for the right-hand side, we consider the transformation

T : (x, y) → (
(x − x0)/y0, y/y0

)
.

By Fact 2.2, we know that T is an isometry. Now, it is not hard to verify that
the sets T (E) and T (F ) do not actually depend on the aggregate A(t), they only
depend on the constant 	. It follows that there exists some constant c(	) such that

ME,F (S) = MT (E),T (F )(S) = c(	) > 0.

It is also easy to verify (by drawing a picture) that c(	) > 0 for all 	 ≥ 1. By
combining this with (20), equation (19) is proven.

Step 2: Define

G = (L,∞) × (
2
(
	y1 + X(t) − L

)
,∞)

and

f (x, y) = P

(
Brownian motion started at (x, y)

reaches G before reaching B
(
A(t)

))
.

The aim of this step is to estimate inf(x,y)∈F f (x, y). Along with the previous step,
this will give us a bound for MB(A(t)),G(S).

In order to do this, we use the fact that y coordinate of the Brownian motion
is a martingale whose starting value is at least 2	y1, together with the optional
stopping theorem, to deduce that the y coordinate of the Brownian motion hits the
set 2(	y1 +X(t)−L) before hitting the set [0,	y1] with probability at least p′ :=

	y1
2(	y1+X(t)−L)

. Now since, by definition, x0 ≥ L, it follows from the symmetry of
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the x coordinate of the Brownian motion and from the independence between the
two coordinates that

inf
(x,y)∈F

f (x, y) ≥ 	y1

4(	y1 + X(t) − L)
≥ c′ Y(t)

Y (t) + X(t) − L
,(21)

where c′ > 0 is a universal constant.
Step 3: In view of that last step, it is enough to estimate the probability that a

Brownian motion starting from any point in G will hit the set H2(∞) before hitting
B(A(t)). To show that, we define

H = (−∞,	y1 + X(t)
) × [

0,	y1 + X(t) − L
]
.

Note that A(t) ⊂ H , so it is enough to estimate the probability of reaching R
2+(∞)

before hitting H . The key in this step is to define

T : (x, y) → (
(x − L)/

(
	y1 + X(t) − L

)
, y/

(
	y1 + X(t) − L

))
.

Again, by Fact 2.2, we know that T is an isometry. Moreover,

T (G) = [0,∞) × [2,∞), T (H) = (−∞,1] × [0,1].
Viewed this way, it is clear that thanks to the conformal invariance there exists a
universal constant c3 > 0 such that the probability of a Brownian motion starting
from any point in G to hit to x axis before hitting H is greater than c3. Plugging
this fact together with (19) and (21) finally gives

MB(A(t))(S) ≥ c3c(	)c′ Y(t)

Y (t) + X(t) − L
,(22)

which is exactly (18), and the proof is complete. �

REMARK 3.4. It is not hard to verify that the above proof gives us a rather
poor dependence of the constant c(	) on 	, namely, c(	) ∼ exp(−	2). However,
it is possible to prove that, in fact, one can have the dependence c(	) ∼ 	−1. Since
this difference will only affect the magnitude of the universal constant we get in
our main theorem, we choose to only present the above proof, which is simpler.

Finally, we will need the following lemma which will allow us to use the op-
tional stopping theorem.

LEMMA 3.5. Fix an aggregate A(t) at time t , and fix a number x0 > 0. Define
the stopping time,

T = min
{
s ≥ t;X(s) > x0|A(t)

}
.

Then

E[T ] ≤ ∞.
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The proof is not hard but rather technical, and we only provide a sketch. One
way to explain the reason behind this fact is that the equilibrium measure on a
geodesic line in the hyperbolic plane exists, and is a constant multiple of the length
measure. As a result, it follows that the convex hull of the aggregate encapsulates
any ball within a time whose expectation is finite.

PROOF OF LEMMA 3.5 (Sketch). Consider the domain

L = {
(x, y) ∈ R

2+;x2 + y2 > 1
}
.

It is well known that for any two geodesic curves, there exists an isometry of the
hyperbolic plane sending the first to the second. Consequently, there is a bijective
isometry T such that

T
({

(x, y) ∈ R
2+;x ≥ x0

}) = L.

Therefore, by considering the initial aggregate T (A(t)), without loss of generality
we may assume that

T ′ = min
{
t ≥ 0;A(t) ∩ L �=∅|A(0)

}
and prove that E[T ′] ≤ ∞ for an arbitrary initial aggregate A(0). Defining,

T1 = min
{
t;X(t) ≥ 1 or Y(t) ≥ 1

}
.

It is clear that T ′ ≤ T1, therefore, it is enough to show that E[T1] < ∞. Lemma 3.3
teaches us that for any t ≤ T1 one has

lim
ε→0+

1

ε
P

(
Y(t + ε) ≥ (1 + c)Y (t)|Ft

) ≥ cY (0)

for a universal constant c > 0. It is not hard to check that the last equation implies
that there exists a constant c1 which only depends on Y(0) such that

P
(
Y(t + 1) ≥ 1 or X(t + 1) ≥ 1|Ft

) ≥ c1

for all t > 0. In other words,

P(T1 < t + 1|Ft ) ≥ c1 ∀t ≥ 0.

The above equation implies that T1 has a subexponential tail and, therefore, has a
finite expectation. �

PROOF OF LEMMA 3.2. Fix t ≥ 0 and fix an aggregate A(t). Define n0 =
i(t) = #A(t) + 1. We begin with noting that Lemma 2.1 teaches us that

An0+n ⊂R× [
0, Y (t)10n] ∀n ≥ 1

and, therefore,

X(tn0+n) ≤ X(t) + 7Y(t)10n ∀n ≥ 1(23)
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almost surely. We claim that, in order to conclude the lemma, it will be enough to
show that there exist constants C′, ε0 > 0 [which may depend on A(t)] such that

P
(
tn0+n − t < ε|A(t)

)
< C′ε10−2n ∀ε < ε0.(24)

Indeed, for all α > 0, write

n = max
(⌊

log(α/7Y(t))

log 10

⌋
,1

)
.

Then thanks to (23),

P
(
X(t + ε) − X(t) > α|A(t)

) ≤ P
(
tn0+n ≤ t + ε|A(t)

)
and plugging (24) to this would prove the lemma.

We therefore move on to the proof of (24). Recall that for all j , the differ-
ence tj − tj−1 is an exponentially-distributed random variable whose expectation
is Cap(Aj )

−1. Moreover, we clearly have by the definition of the harmonic mea-
sure

Cap(Aj ) = MB(Aj )

(
∂B(Aj )

) = ∑
p∈Aj

MB(Aj )

(
∂B

({p}))

≤ ∑
p∈Aj

MB({p})
(
∂B

({p})) = (j + 1)C0 ∀j ≥ 0,

where C0 > 0 is some universal constant. It follows that for all j < n, the expecta-
tion of tj+1 − tj is at least 1

nC0
. An elementary fact about exponentially-distributed

variables is that

0 < a < b ⇒ P
(
E[b] < t

)
< P

(
U

([0, a]) < t
) ∀t > 0,

where U([0, a]) represents a uniformly-distributed point in the interval [0, a]. It
follows that

P(tn0+n − tn0+1 < ε) ≤ P

(
n−1∑
i=1

Xi < ε

)
∀ε > 0,∀n ≥ 1,

where Xi are independent variables whose distribution is uniform over the interval
[0, 1

C0(n0+n)
]. An application of a standard large-deviation principle teaches us that

there exists some ε0 > 0 (which may depend on n0) such that

P
(
tn0+n − tn0+1 < ε|A(tn0+1)

) ≤ 10−2n

for all ε < ε0 and for all n > 1. Moreover, since the density of the exponential
distribution is bounded, we have

P
(
tn0+1 − t < ε|A(t)

) ≤ C2ε ∀ε > 0

for some constant C2. Plugging the two above estimates finally establishes equa-
tion (24) and the lemma is complete. �
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4. The process of ratios. For all t ≥ 0, define R(t) = X(t)/Y (t). The goal of
this section is to prove the following theorem.

THEOREM 4.1. There exists a universal constant C > 0 such that the follow-
ing holds:

Let t ≥ 0 be a time and fix any initial configuration A(t). In addition, fix a
number X0 such that X0 ≥ X(t). Define, for every nonnegative integer i,

τi = min
{
s;X(s) ≥ 2iX0

}
.

Then one has for all i,

E
[
R(τi+1)|A(t)

] ≤ C + 0.9E
[
R(τi)|A(t)

]
.

The next lemma, which is one of the two main ingredients in the proof of the
theorem, gives upper bounds on the expected growth of R(t). Its proof relies on a
combination of Lemmas 3.1 and 3.3.

LEMMA 4.2. There exist universal constants δ, c1, c2 > 0 such that one has
for all t ≥ 0,

lim sup
ε→0+

1

ε
E

[
R(t + ε) − R(t)|A(t)

]
< +c1.(25)

Moreover, defining the following event,

E(t) := {
Ỹ (t) < δY (t)

}
,(26)

whenever the event E(t) holds one has

lim sup
ε→0+

1

ε
E

[
R(t + ε) − R(t)|A(t)

]
< −c2.(27)

PROOF. Denote

F(ε) = {
Y(t + ε) ≥ (1 + c)Y (t)

}
,

where c is the constant from equation (12). According to Lemma 3.3, we have

P
(
F(ε)|A(t)

) ≥ cε
Y (t)

X(t) + Y(t)
+ o(ε).(28)

Next, we use Lemma 3.1 to deduce that

E
[
X(t + ε) − X(t)|A(t)

] ≤ CỸ (t)ε + o(ε).(29)
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We write

E
[
X(t + ε)/Y (t + ε)|A(t)

]
= E

[
X(t + ε)

Y (t + ε)
1F(ε)C

∣∣∣Ft

]
+E

[
X(t + ε)

Y (t + ε)
1F(ε)

∣∣∣Ft

]

≤ 1

Y(t)
E

[
X(t + ε)1F(ε)C |Ft

] + 1

(1 + c)Y (t)
E

[
X(t + ε)1F(ε)|Ft

]

= 1

Y(t)
E

[
X(t + ε)|Ft

] −
(

1 − 1

1 + c

)
1

Y(t)
E

[
X(t + ε)1F(ε)|Ft

]

= X(t)

Y (t)
+ 1

Y(t)
E

[
X(t + ε) − X(t)|Ft

] − c

1 + c

1

Y(t)
E

[
X(t + ε)1F(ε)|Ft

]

≤ X(t)

Y (t)
+ 1

Y(t)
E

[
X(t + ε) − X(t)|Ft

] − c

1 + c

X(t)

Y (t)
P

(
F(ε)|Ft

)
.

Plugging equations (28) and (29) into this formula gives

E
[
X(t + ε)/Y (t + ε)|Ft

] ≤ X(t)

Y (t)
+ C

Ỹ (t)

Y (t)
ε − c3ε

X(t)

X(t) + Y(t)
+ o(ε)

for a universal constant c3 > 0. Since Ỹ (t) ≤ Y(t) by definition, equation (25)
follows. To prove the second part of the lemma, the reader may easily verify that
by the definition of the event E(t), whenever E(t) holds with δ < 1, one has

X(t) > c4Y(t)(30)

for a universal constant c4 > 0. Moreover, by definition of the event E(t) one has

Ỹ (t)

Y (t)
≤ δ.

Plugging in these two facts gives

E
[
X(t + ε)/Y (t + ε)|Ft

] ≤ X(t)

Y (t)
+ ε

(
Cδ − c3

1

1 + c−1
4

)
+ o(ε).

Thus, by choosing δ to be a small enough universal constant, the second part of
the lemma is also established. �

As a corollary, we get the following.

COROLLARY 4.3. There is a universal δ > 0 such that if we define the event
E(t) as in (26), then the following holds: suppose A(t) is such that E(t) holds.
Define

T = min
{
s > t;E(s) does not hold or X(s) > 1.1X(t) or Y(s) > 100Y(t)

}
.
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Then one has

P
(
X(T ) ≥ 1.1X(t)|Ft

) ≤ 0.01.

PROOF. Using the optional stopping theorem (which is justified thanks to
Lemma 3.5) with the result of the previous lemma, we have for a small enough
choice of δ,

E
[
X(T )/Y (T )|Ft

] ≤ X(t)/Y (t) − c2E[T − t].
Since the left-hand side cannot be negative,

E[T − t] ≤ 1

c2

X(t)

Y (t)
.

According to Lemma 3.1, the following process is a super-martingale:

s → X(t + s) − X(t) −
∫ t+s

t
CỸ (r) dr.(31)

Therefore, by the optional stopping theorem, and since for every t ≤ s < T we
have by definition Ỹ (s) ≤ δY (s) ≤ 100δY (t),

E
[
X(T ) − X(t)|Ft

] ≤ CE

[∫ T

t
Ỹ (s) ds

]
≤ 100CδY(t)E[T − t]

(32)

≤ C ′δY (t)
X(t)

Y (t)
≤ C′δX(t).

Again, by choosing δ small enough (note that it can always be made smaller with-
out affecting the result of the previous lemma), we can make sure that

E
[
X(T ) − X(t)|Ft

] ≤ 0.001X(t),

and since X(t) is increasing it follows by Markov’s inequality that

P
(
X(T ) ≥ 1.1X(t)|Ft

) ≤ 0.01,

which is the promised result. �

From this point on, we assume that the event E(t) is defined as in equation (26),
and the constant δ is a fixed positive universal constant taken to be small enough
such that the above corollary holds true.

In view of the above corollary, the only times we have to worry about are when-
ever E(t) does not hold. The next lemma in some sense complements the previous
one, ensuring us that also if E(t) does not hold, we should expect X(t)/Y (t) to
decrease after a while (due to completely different reasons), providing that it is not
too small.
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LEMMA 4.4. There exists a universal constant � > 0 such that the following
holds: Assume that for some t0 ≥ 0, E(t0) does not hold and X(t0)/Y (t0) > �,
then

E
[
X(t1)/Y (t1)|A(t0)

]
< 1

4X(t)/Y (t),

where t1 = min{s;X(s) ≥ 1.1X(t0)}.

Before we move on to the proof, let us try to explain why this bound should be
correct. Whenever the event E(t) does not hold, we know that there is a particle p

located close to the front of the aggregate which, up to a constant, attains the ver-
tical height of the entire aggregate, Y(t). In this case, we can effectively “restart”
the growth process by only considering the part close to the front of the aggregate,
while ignoring the rest of it: as a consequence of Lemma 3.3, we know that parts of
the aggregate located close to the front have a vertical growth rate which is propor-
tional only to the distance from the front. This means that when considering only
the latter part of the aggregate, the growth rate will no longer be a function of X(t).
Now, as a result of Lemma 2.1, the vertical growth of the particles is multiplica-
tive in the sense that in order for Y(t) to multiply itself by a constant, it is enough
for the particle p to duplicate itself upward a constant number of times. From this
point on, the proof relies on a compactness-type argument: we know that the top
particle has to duplicate a constant number of times, while the rate of duplication
is independent of X(t). Therefore, it is enough to establish that the universal rate
of growth is such that any number of duplications will occur eventually, with high
probability. The time that it takes, which affects the increment of X(t), can then
be absorbed into the constant �; When this constant is big enough, a prescribed
additive growth of X(t) results in a small multiplicative growth which does not
significantly affect R(t).

The proof will be divided into a few steps. In the first step, we demonstrate that
it suffices to show that there exists a constant C > 0 such that Y(t) multiplies itself
by some constant, say 5, before X(t) grows (additively) by C. The second and
third steps deal with the rate of duplications of the particle p mentioned above.
It is shown that within any time interval in which X(t) − X(t0) multiplies itself
by two, there is at least a constant probability for the particle p to duplicate itself
once. This is the “compactness” to which we were referring above, as this rate
does not depend on X(t0). In the fourth and last step, we iteratively use this fact to
conclude that there is a probability bounded from below for any constant number
of multiplications when the time interval is large enough.

PROOF OF LEMMA 4.4. Since the claim is invariant to rescaling around the
origin, we may assume that Y(t0) = 1. Define

T = min
{
s;Y(s) > 5

}
.
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Step 1: We claim that it is enough to show that there exists a universal constant
C > 0 such that

P
(
X(T ) < X(t0) + C

)
> 0.99.(33)

Let us explain why this fact suffices in order to complete the proof. Since almost
surely only one particle can be added at a time and assuming that � is a large
enough constant, an application of Lemma 2.1 gives

X(t1) ≤ 1.1X(t0) + 10Y(t0) ≤ 1.11X(t0).

Also, if � is large enough then we can assume that X(t0) + C < 1.1X(t0) which
implies that

P(T < t1) > 0.99.

Using these two facts, we can thus estimate

E
[
X(t1)/Y (t1)|Ft0

]
= E

[
X(t1)/Y (t1)1{T <t1}|Ft0

] +E
[
X(t1)/Y (t1)1{t1≤T }|Ft0

]
≤ E

[
1.11X(t0)/

(
5Y(t0)

)
1{T <t1}|Ft0

] +E
[
1.11X(t0)/Y (t0)1{t1≤T }|Ft0

]
≤ (1.11

5 + 1.11 · 0.01
)
X(t0)/Y (t0) < 1

4X(t0)/Y (t0),

which is the result.
Step 2: Define Z(s) = X(s)−X(t0)+5. According to the assumption that E(t0)

does not hold and by definition of Fr(A(t)), we know that either Y+
X(t0)−5(t0) or

Y−
−X(t0)+5(t0) are greater than the universal constant δ > 0. Assume without loss

of generality that

Y+
X(s)−5(t0) ≥ δ(34)

(the assumption is legitimate since the model is invariant under reflection around
the y axis). Define 	 = 100δ−1. The assumption (34), together with the definitions
of Y+

L (s) and T , implies that for any L < X(t0)−5 and for any t0 ≤ s ≤ T one has
Y(s) ≤ 	Y+

L (s). Therefore, we can use the second part of Lemma 3.3 to deduce
that there exists a universal constant c1 > 0 such that for all t0 ≤ s < T and for all
L < X(t0) − 5 one has

lim
ε→0+

1

ε
P

[
YL−50(s + ε) > (1 + c1)YL(s)|A(s)

]
> c1/

(
5 + X(s) − L

)
.(35)

Here, we used the assumption that for s < T , one has Y(s) ≤ 5.
Define

L0 = 5 + 50 log(1+c1)
	.

At this point, the reader may regard L0 as some large universal constant, its sig-
nificance will become clear later on. Let L be a number satisfying

X(t0) − L0 ≤ L ≤ X(t0) − 5.(36)
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Also, fix a time t0 ≤ t < T and define

T1 = min
{
s|Z(s) > 2Z(t)

}
.

Let N(s) be a random variable counting the number of “jumps” up to time s,
hence,

N(s) = #
{
r ∈ [t, s];Y+

L−50(r) ≥ (1 + c1) lim
ε→0+ Y+

L (r − ε)
}
.

Our next goal will be to show that there exists a universal constant c > 0 such that

P
(
T < T1 or N(T1) ≥ 1|Ft

) ≥ c,(37)

which will be done in the next step.
Step 3: To prove the last formula, we begin by defining

M(s) = N(s) − c1(s − t)/
(
2Z(t) + L0

)
.

By equation (35) and by the fact that L ≥ X(t0) − L0, we learn that M(s) is a
sub-martingale in the interval [t, T1 ∧ T ]. Thus, by the optional stopping theorem
(which we can use thanks to Lemma 3.5), one has

E
[
N(T1 ∧ τ)|Ft

] ≥ E
[
(T1 ∧ τ − t)|Ft

]
c1/

(
2Z(t) + L0

)
,

where τ = min{t |N(t) ≥ 1} ∧ T . Consequently, for all α > 0, we may calculate

P(τ < T1|Ft )

≥ P
(
N(T1) ≥ 1|Ft

) ≥ E
[
N(T1 ∧ τ)|Ft

]
≥ E

[
(T1 ∧ τ − t)|Ft

]
c1/

(
2Z(t) + L0

)
≥ E

[
(T1 − t)1{τ>T1}|Ft

]
c1/

(
2Z(t) + L0

)
≥ (

P
(
T1 − t > 2αZ(t)|Ft

) − P(T1 > τ |Ft )
)
2αZ(t)c1/

(
2Z(t) + L0

)
[using the assumption Z(t) ≥ 5]

≥ (
P

(
T1 − t > α2Z(t)|Ft

) − P(T1 > τ |Ft )
)
αc2,

for some universal constant c2 > 0. Thus,

P(τ < T1|Ft ) ≥ αc2P
(
T1 − t > 2αZ(t)|Ft

)
/(1 + c2α).(38)

We now use Lemma 3.1, combined with the fact that Y(s) < 5 for all t ≤ s ≤ T ,
according to which

E
(
Z(s ∧ T ) − Z(t)|Ft

)
< C1(s − t)

for a universal constant C1 > 0. Taking s = t + 2αZ(t) and using Markov’s in-
equality, we get

P
(
Z

((
t + 2αZ(t)

) ∧ T
)
> 2Z(t)|Ft

)
< 2C1α.
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Now, by the definition of T1,{
Z

((
t + 2αZ(t)

) ∧ T
)
< 2Z(t)

} ⊆ {
Z

(
t + 2αZ(t)

)
< 2Z(t)

} ∪ {T < T1}
so a union bound gives

P
(
Z

(
t + 2αZ(t)

)
< 2Z(t)|Ft

)
> 1 − 2C1α − P(T < T1|Ft ).

But, using the definition of T1 once more, we know that

Z
(
t + 2αZ(t)

)
< 2Z(t) ⇒ T1 ≥ t + 2αZ(t)o

and the last equation becomes

P
(
T1 − t > 2αZ(t)|Ft

) ≥ 1 − 2C1α − P(T < T1|Ft ).

Choosing α to be a small enough universal constant and plugging the above
into (38) gives

P(τ < T1|Ft ) ≥ αc3
(
1 − 2C1α − P(T < T1|Ft )

) ≥ c4
(
1 − P(τ < T1|Ft )

)
,

where c3, c4 are universal constants. In other words, we have that

P(τ < T1|Ft ) ≥ c(39)

and equation (37) is proven.
Step 4: At this point, the strategy we will use in order to prove (33) is to repeat

this argument again and again, for a sequence of times Qi , until we accumulate
enough “jumps” so that T is surely reached. Define

Q1 = min
{
s ≥ t0;Z(s) > 2Z(0)

}
and inductively,

Qi+1 = min
{
s ≥ t0;Z(s) > 2Z(Qi)

}
.

Also define I to be the largest integer i such that Qi < T . By the definition of
T and by Lemma 2.1, we know that the (Euclidean) radius of any added ball is
smaller than a constant, so we can easily deduce the “continuity” in the following
sense:

Z(Qi+1) < RZ(Qi) ∀1 ≤ i < I,

where R is a universal constant. It follows that

Z(Qi) < 5Ri ∀1 ≤ i < I.(40)

For all i ∈ N define Ni to be the number of “jumps” so far. In other words, define
N0 = 0 and (recursively)

Ni = #
{
j < i; ∃r ∈ (Qj ,Qj+1] such that Y+

Lj−50(r) ≥ (1 + c1) lim
ε→0+ Y+

Lj
(r − ε)

}
,
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where

Lj := X(t0) − 5 − 50Nj .

Define also Yi = Y+
Li

(Qi), Zi = Z(Qi) and Fi to be the σ -algebra generated by
A(Qi). Observe that, by (34), the number of jumps needed in order to reach T is
smaller than log(1+c1)

	. So, by definition,

NI ≤ log(1+c1)
	,

which implies, by the definition of L0, that

X(t0) − L0 ≤ Li ≤ X(t0) − 5 ∀i ≤ I.

The above equation asserts that (36) is fulfilled, so we may use equation (37) which
translates to

P
(
Yi+1 > (1 + c1)Yi |Fi

)
> c ∀1 ≤ i < I.(41)

An application of, say, Hoeffding’s inequality gives

P
(
Yk < (1 + c1)

kc/2Y0 and I > k|Ft0

)
< C3 exp(−c3k),(42)

where C3, c3 > 0 are universal constants. Define α = 2
c

log(1+c1)
	. By (34), we

know that

(1 + c1)
kc/2Y0 > 5 ∀k > α,

which by definition means that

I > k ⇒ Yk ≤ (1 + c1)
kc/2Y0 ∀k > α.

Equation (42) becomes

P(I > k|Ft0) < C3 exp(−c3k) ∀k > α.

Now choose k large enough universal constant such that k > α and also the right-
hand side of the above equation is smaller than 0.01 (this is possible since 	 and
c1 have been fixed as universal constants, so α is a universal constant). We get

P(I > k|Ft0) < 0.01

and along with (40) this yields

P
(
Z(T ) > 5Rk|Ft0

)
< 0.01

equation (33) follows and the proof is complete. �

The next proposition combines the results of the previous two lemmas together
into a unified bound on the behavior of the process R(t) = X(t)/Y (t).
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PROPOSITION 4.5. There exists a universal constant C > 0 such that the fol-
lowing holds: Assume that for some t0 ≥ 0, X(t0)/Y (t0) > C. Then

E
[
X(T )/Y (T )|A(t0)

]
< 1

2X(t0)/Y (t0),

where T = min{s;X(s) ≥ 1.3X(t0)}.

Once we have established the above lemmas, the idea of the proof is very sim-
ple: just split into two cases, determined by whether or not there is a point in time
at which X(t) has not yet reached the value 1.1X(t0) and the event E(t) does not
hold. If such a point exists, we use Lemma 4.4, otherwise, we use Corollary 4.3.

PROOF OF PROPOSITION 4.5. If the event E(t0) does not hold, just use
Lemma 4.4 with the legitimate assumption that C > � and we are done. Other-
wise, denote

T1 = min
{
s > t0;E(s) does not hold or X(s) > 1.1X(t0) or Y(s) > 100Y(t0)

}
and,

T2 = min
{
s > T1;X(s) > 1.1X(T1) or Y(s) > 100Y(t0)

}
.

Using Lemma 2.1 and since we are stopping before Y(s) has reached the height
100Y(t0) ≤ 100C−1X(t0), we see that by taking the constant C to be large enough,
we can make sure that any particle added to the aggregate before time T2 can
increase X(t) by no more than 0.01X(t0). Since almost surely only one particle
can be added at a time, and assuming that C is a large enough constant, we get

X(T2) ≤ 1.3X(T0).(43)

Denote by F the event that E(T1) holds. By Corollary 4.3, we know that

P
(
X(T1) ≥ 1.1X(t)|Ft

) ≤ 0.01.

We can estimate

E
[
X(T2)/Y (T2)1F |Ft0

]
(44)

≤ 0.01 · 1.3X(t0)/Y (t0) + 1
100 1.3X(t0)/Y (t0),

where we have used that fact that by definition of T1 whenever X(t0) < 1.1 and F

holds, then necessarily Y(T1) > 100Y(t0).
Next, we handle the case that F does not hold. By assuming that C is large

enough, we can assume that X(T1)/Y (T1) > � (the universal constant in the for-
mulation of Lemma 4.4). An application of Lemma 4.4 gives

E
[
X(T2)/Y (T2)1FC |Ft0

] ≤ 1
4E

[
X(T1)/Y (T1)1FC |Ft0

] ≤ 1.3
4 X(t0)/Y (t0).
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Combining this bound with (44) gives us

E
[
X(T2)/Y (T2)|Ft0

]
≤ (

0.013 + 1.3
100 + 1.3

4

)
X(t0)/Y (t0) ≤ 0.36X(t0)/Y (t0),

by the same argument as the one preceding (43), one has X(T ) < 1.2X(T2), which
gives us the desired result. �

We are finally in a position to prove the main theorem of this section.

PROOF OF THEOREM 4.1. Define

Ei = {
X(τi)/Y (τi) > C

}
and E0 = {X(t)/Y (t) > C}, where C is a universal constant whose value will be
determined later on. Observe that if for some i, we have X(τi) > 1.01 × 2iX0, it
means that the last jump in X(t) must have been rather big, namely that for the
smallest integer j such that X(τj ) = X(τi), one has

X(τj ) > 1.01 lim
ε→0+ X(τj − ε)

[here we used the assumption that X0 ≥ X(t)]. This, in turn, means that the radius
of the last ball added was proportional to X(τi). By Lemma 2.1, we learn that in
that case, X(τi)/Y (τi) cannot be larger than some universal constant, say C1. In
other words, by picking the constant C to be large enough, we can ensure that

Ei holds ⇒ X(τi) < 1.01 × 2iX0.(45)

Otherwise, if X(τi) ≤ 1.01×2iX0 then we necessarily have X(τi) ≤ 2.02X(τi−1).
It follows that for all i ≥ 1, either Ei does not hold or R(τi) ≤ 2.02R(τi−1), and
consequently

E
[
R(τi)1EC

i−1
|A(t)

] ≤ C + 2.02C ≤ 4C.(46)

Next, we deal with the case that Ei−1 holds. By choosing the constant C to be
large enough, we can use Proposition 4.5 to get

E
[
R(T )1Ei−1 |A(t)

] ≤ 1
2E

[
R(τi−1)|A(t)

]
,

where

T = min
{
s ≥ τi−1;X(s) ≥ 1.3X(τi−1)

}
.

Now, equation (45) teaches us that

E
[
R(τi)1Ei

1Ei−1 |A(t)
]

≤ 1.01 × 2

1.3
E

[
R(T )|A(t)

] ≤ 0.9E
[
R(τi−1)|A(t)

]
,
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and, therefore,

E
[
R(τi)1Ei−1 |A(t)

] = E
[
R(τi)1EC

i
1Ei−1 |A(t)

] +E
[
R(τi)1Ei

1Ei−1 |A(t)
]

≤ C + 0.9E
[
R(τi−1)|A(t)

]
.

Together with (46), we get

E
[
R(τi)|A(t)

] ≤ 5C + 0.9E
[
R(τi−1)|A(t)

]
.

This completes the proof of the theorem. �

5. Proof of the main theorem. In this section, we finally prove Theorem 1.1.
We begin with a lemma which roughly claims that the probability of the aggregate
to intersect a any metric ball whose radius is large enough, is close to 1, no matter
how far the ball is from the origin of the aggregate. The proof is a consequence of
the tools developed in the previous section; we show that by choosing a suitable
embedding of the aggregate into the Poincaré half-plane, the question of intersect-
ing a specific metric ball boils down to the fact that Y(t) grows rapidly enough
compared to X(t).

LEMMA 5.1. There exists a universal constant R0 > 0 such that the following
holds: Given any time t ≥ 0 and any finite starting aggregate, A(t), which started
from a point p ∈ H

2, there exists a number L > 0 such that for any point p′ with
d(p,p′) ≥ L one has

P
(
A(∞) ∩ BH

(
p′,R0

) �=∅|A(t)
) ≥ 0.99.

PROOF. Denote by D the dH -diameter of A(t), and define

M = max
{
x; ∃y > 0 such that dH

(
(x, y), (0,1)

)
< D

}
.

For any two points p1,p2 ∈ H
2, there is a (unique up to orientation) isometric

embedding φ :H2 → R
2+ such that φ(p1) = (0,1) and φ(p2) = (0, S) for some

S ≥ 1. So given the starting point of the aggregate, p, and an arbitrary point p′
satisfying d(p,p′) ≥ L (where L is a constant whose value will be determined
later on), we may therefore assume without loss of generality that H−1(p) = (0,1)

and that H−1(p′) = (0, S). Consider the metric ball

B = BH

(
(0, S),R0

)
.

Clearly, if R0 is a large enough universal constant, this ball will contain a rectangle
of the form

� = [−3R1S,3R1S] × [S,2S] ⊂ R
2+,

where R1 is a universal constant whose value will be chosen later on (see Figure 4
for an illustration). Also consider the stopping times

τi = min
{
s;X(s) ≥ 2iM

} ∀i ∈N.
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FIG. 4. The geometric definitions of Lemma 5.1.

By the definition of M we have X(t) ≤ M , and thus by Theorem 4.1 we know that
for all i ≥ 1,

E
[
R(τi+1)|A(t)

]
< C + 0.9E

[
R(τi)|A(t)

]
(47)

for a universal constant C > 0, which implies that

E
[
R(τi)|A(t)

] ≥ C1 ⇒ E
[
R(τi+1)|A(t)

] ≤ 0.95E
[
R(τi)|A(t)

]
(48)

for C1 = 20C. Next, if R(τ0) > 2M , then necessarily by Lemma 2.1 it means
that Y(τ0) > cX(τ0) for a universal constant c > 0 [since almost surely only one
particle is added at a time, and the increment in X(s) is not larger than a constant
times Y(s)]. We deduce that

E
[
R(τ0)|A(t)

] = E
[
R(τ0)1R(τ0)<2M |A(t)

] +E
[
R(τ0)1R(τ0)≥2M |A(t)

]
≤ 2M/Y(t) + c−1 ≤ 2M + C2

for a universal constant C2 > 0. Together with (47) and (48), it gives

E
[
R(τi)|A(t)

] ≤ C1 ∀i ≥ �

with � = max(log0.95
C1

2M+C2
,1). Denote K = �log2(R1S/M)�. Recall that we are

free to take the constant L as large as we want, which ensures us that the number
S can be as large as we like thanks to the assumption dH (p,p′) ≥ L. Now, since
the number M does not depend on the point p′ [but only on the aggregate A(t)],
by taking L to be large enough, it is legitimate to assume that

K ≥ �.

With this assumption, we get

E
[
R(τK)|A(t)

] ≤ C1,
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and also by the definition τi ,

X(τK) ≥ M2K ≥ R1S.

These two equations combined yield

P
[
Y(τK) < S|A(t)

]
< C1/R1 < 0.01,

where the last inequality can be attained by making sure that R1 is a large enough
universal constant (note that the value of C1 has already been fixed and thus does
not depend on R1). Defining

T = min
{
s;Y(s) ≥ S

}
,

the previous equation becomes

P
(
T > τK |A(t)

)
< 0.01.(49)

On the other hand, another application of Lemma 2.1 with the fact that only one
particle is added at a time almost surely, teaches us that

X(T ∧ τK) ≤ 2R1S + C3S

for a universal constant C3 > 0, and by choosing that R1 to be large enough we
can assert that

X(T ∧ τK) ≤ 3R1S

almost surely, without affecting the correctness of the above. Using the last equa-
tion and the definition of � , it is easy to check that we have the implication

T < τK ⇒ A(T ) ∩ � �= ∅ ⇒ A(T ) ∩ BH

(
p′,R0

) �= ∅.

In light of equation (49), this completes the proof. �

We are finally ready to prove the main theorem.

PROOF OF THEOREM 1.1. The main idea of the proof is to use the previous
lemma iteratively, in order to prove that there exists a random sequence of radii
L1 ≤ L2 ≤ · · · such that Li → ∞ almost surely and a random sequence of stopping
times T1 ≤ T2 ≤ · · · such that for all i ≥ 1, almost surely

P
(
#
(
A(∞) ∩ BH(p0,Li+1)

) ≥ c VolH
(
BH(p0,Li+1)

)|A(Ti),Li

) ≥ c,(50)

where c > 0 is a universal constant and p0 is the starting point of the aggregate.
This will clearly complete the proof, since it implies that with probability one there
exists a subsequence of radii {Lik }∞k=1 such that

#
(
A(∞) ∩ BH(p0,Lik )

) ≥ c VolH
(
BH(p0,Lik )

) ∀k ∈ N

for a universal constant c > 0.
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We build these sequences inductively. We begin with L1 = 1 and T1 = 0. Sup-
pose Li , Ti and A(Ti) are known. We use the previous lemma with A(t) = A(Ti)

as a starting aggregate. The result of the lemma ensures the existence of a number
L such that

P
(
A(∞) ∩ BH(p,R0) �= ∅|A(Ti)

) ≥ 0.99(51)

for all p such that dH (p0,p) ≥ L. Take Li+1 = max{2Li,2L}. Now consider a
maximal set of disjoint metric balls of radius R0 whose centers lie within the
annulus BH(p0,Li+1) \ BH(p0,Li+1/2). Denote the centers of these balls by
p1, . . . , pN so that N is the number of balls in this packing. By the maximality
of this set, it is obvious that we have

BH(p0,Li+1) \ BH(p0,Li+1/2) ⊂
N⋃

i=1

BH(pi,2R0).

Consequently,

N ≥ VolH(BH (p0,Li+1) \ BH(p0,Li+1/2))

VolH(p0,2R0)
≥ c1 VolH

(
BH(p0,Li+1)

)
(52)

for a universal constant c1 > 0. Define

M(t) = #
{
j ∈ {1, . . . ,N};BH(pj ,R0) ∩ A(t) �= ∅

}
and note that, since the balls BH(pj ,R0) are disjoint, we have that

#
(
A(t) ∩ BH(p0,Li+1)

) ≥ M(t) ∀t ≥ Ti.(53)

Equation (51) ensures that E[M(∞)|A(Ti)] ≥ 0.99N . It then follows from
Markov’s inequality that

P
(
M(∞) > N/2|A(Ti)

)
> 1

2 .

By σ -additivity, there exists a number T > 0 such that

P
(
M(T ) > N/2|A(Ti)

)
> 1

2 .

Set Ti+1 = T . Together with equations (52) and (53), this establishes (50). Note
that Li+1 and Ti+1 only depended on Li,Ti and A(Ti), and therefore the condi-
tioning on A(Ti) and Li in formula (50) is legitimate.

The proof is complete. �
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