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BROWNIAN MOTION AND THERMAL CAPACITY1

BY DAVAR KHOSHNEVISAN AND YIMIN XIAO

University of Utah and Michigan State University

Let W denote d-dimensional Brownian motion. We find an explicit for-
mula for the essential supremum of Hausdorff dimension of W(E)∩F , where
E ⊂ (0,∞) and F ⊂ Rd are arbitrary nonrandom compact sets. Our formula
is related intimately to the thermal capacity of Watson [Proc. Lond. Math.
Soc. (3) 37 (1978) 342–362]. We prove also that when d ≥ 2, our formula can
be described in terms of the Hausdorff dimension of E × F , where E × F is
viewed as a subspace of space time.

1. Introduction. Let W := {W(t)}t≥0 denote standard d-dimensional Brow-
nian motion where d ≥ 1. The principal aim of this paper is to describe the Haus-
dorff dimension dimH(W(E)∩F) of the random intersection set W(E)∩F , where
E and F are compact subsets of (0,∞) and Rd , respectively. This endeavor solves
what appears to be an old problem in the folklore of Brownian motion; see Mörters
and Peres [16], page 289.

In general, the Hausdorff dimension of W(E) ∩ F is a random variable, and
hence we seek only to compute the L∞(P)-norm of that Hausdorff dimension. The
following example—due to Gregory Lawler—highlights the preceding assertion:
Consider d = 1, and set E := {1} ∪ [2,3] and F := [1,2]. Also, consider the two
events:

A1 := {
1 ≤ W(1) ≤ 2,W

([2,3]) ∩ [1,2] = ∅

}
,

(1.1)
A2 := {

W(1) /∈ [1,2],W ([2,3]) ⊂ [1,2]}.
Evidently, A1 and A2 are disjoint; and each has positive probability. However,
dimH(W(E) ∩ F) = 0 on A1, whereas dimH(W(E) ∩ F) = 1 on A2. Therefore,
dimH(W(E) ∩ F) is nonconstant, as asserted.

Our first result describes our contribution in the case that d ≥ 2. In order to
describe that contribution, let us define � to be the parabolic metric on “space
time” R+ × Rd , that is,

�
(
(s, x); (t, y)

) := max
(|t − s|1/2,‖x − y‖)

.(1.2)
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The metric space S := (R+ × Rd, �) is also called space time, and Hausdorff
dimension of the compact set E × F —viewed as a set in S—is denoted by
dimH(E × F ;�). That is, dimH(E × F ;�) is the infimum of s ≥ 0 for which

lim
ε→0

inf

( ∞∑
j=1

∣∣�-diam(Ej × Fj )
∣∣s) < ∞,(1.3)

where the infimum is taken over all closed covers {Ej × Fj }∞j=1 of E × F with
�-diam(Ej × Fj ) < ε, and “�-diam(�)” denotes the diameter of the space–time
set �, as measured by the metric �.

THEOREM 1.1. If d ≥ 2, then∥∥dimH

(
W(E) ∩ F

)∥∥
L∞(P) = dimH(E × F ;�) − d,(1.4)

where “dimH A < 0” means “A = ∅.” Display (1.4) continues to hold for d = 1,
provided that “=” is replaced by “≤.”

The following example shows that (1.4) does not always hold for d = 1:
Consider E := [0,1] and F := {0}. Then a computation on the side shows that
dimH(W(E) ∩ F) = 0 a.s., whereas dimH(E × F ;�) − d = 1.

On the other hand, Proposition 1.2 below shows that if |F | > 0, where | · |
denotes the Lebesgue measure, then W(E) ∩ F shares the properties of the image
set W(E).

PROPOSITION 1.2. If F ⊂ Rd (d ≥ 1) is compact and |F | > 0, then∥∥dimH

(
W(E) ∩ F

)∥∥
L∞(P) = min{d,2 dimH E}.(1.5)

If, in addition, dimH E > 1/2 and d = 1, then P{|W(E) ∩ F | > 0} > 0.

When F ⊂ Rd satisfies |F | > 0, it can be shown that dimH(E × F ;�) =
2 dimH E + d . Hence, (1.5) coincides with (1.4) when d ≥ 2. Proposition 1.2 is
proved by showing that, when |F | > 0, there exists an explicit “smooth” random
measure on W(E) ∩ F . Thus, the remaining case, and this is the most interest-
ing case, is when F has Lebesgue measure 0. The following result gives a suit-
able (though quite complicated) formula that is valid for all dimensions, including
d = 1.

THEOREM 1.3. If F ⊂ Rd (d ≥ 1) is compact and |F | = 0, then∥∥dimH

(
W(E) ∩ F

)∥∥
L∞(P) = sup

{
γ > 0 : inf

μ∈Pd (E×F)
Eγ (μ) < ∞

}
,(1.6)

where Pd(E × F) denotes the collection of all probability measures μ on E × F

that are “diffuse” in the sense that μ({t} × F) = 0 for all t > 0, and

Eγ (μ) :=
∫ ∫ e−‖x−y‖2/(2|t−s|)

|t − s|d/2 · ‖y − x‖γ
μ(ds dx)μ(dt dy).(1.7)
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Theorems 1.1 and 1.3 are the main results of this paper. But it seems natural that
we also say a few words about when W(E) ∩ F is nonvoid with positive probabil-
ity, simply because when P{W(E) ∩ F = ∅} = 1 there is no point in computing
the Hausdorff dimension of W(E) ∩ F .

It is a well-known folklore fact that W(E) intersects F with positive proba-
bility if and only if E × F has positive thermal capacity in the sense of Watson
[21, 22]. (For a simpler description, see Proposition 1.4 below.) This folklore fact
can be proved by combining the results of Doob [2] on parabolic potential theory;
specifically, one applies the analytic theory of [2], Chapter XVII, in the context
of space–time Brownian motion as in [2], Section 13, pages 700–702. When com-
bined with Theorem 3 of Taylor and Watson [20], this folklore fact tells us the
following: If

dimH(E × F ;�) > d,(1.8)

then W(E) ∩ F is nonvoid with positive probability; but if dimH(E × F ;�) < d

then W(E) ∩ F = ∅ almost surely. Kaufman and Wu [9] contain related results.
And our Theorem 1.1 states that the essential supremum of the Hausdorff dimen-
sion of W(E) ∩ F is the slack in the Taylor–Watson condition (1.8) for the non-
triviality of W(E) ∩ F .

The proof of Theorem 1.3 yields a simpler interpretation of the assertion that
E × F has positive thermal capacity, and relates one of the energy forms that
appear in Theorem 1.3, namely E0, to the present context. For the sake of com-
pleteness, we state that interpretation next in the form of Proposition 1.4. This
proposition provides extra information on the equilibrium measure—in the sense
of parabolic potential theory—for the thermal capacity of E × F when |F | = 0.
[When |F | > 0, there is nothing to worry about, since P{W(E) ∩ F �= ∅} > 0 for
every nonempty Borel set E ⊂ (0,∞).]

PROPOSITION 1.4. Suppose F ⊂ Rd (d ≥ 1) is compact and has Lebesgue
measure 0. Then P{W(E) ∩ F �= ∅} > 0 if and only if there exists a probability
measure μ ∈ Pd(E × F) such that E0(μ) < ∞.

Theorems 1.1 and 1.3 both proceed by checking to see whether or not W(E)∩F

(and a close variant of it) intersect a sufficiently-thin random set. This so-called
“codimension idea” was initiated by S. J. Taylor [19] and has been used in other
situations as well [5, 14, 17]. A more detailed account of the history of stochastic
codimension can be found in the recent book of Mörters and Peres [16], page 287.
The broad utility of this method—using fractal percolation sets as the (thin) testing
random sets—was further illustrated by Yuval Peres [18].

Throughout this paper, we adopt the following notation: For all integers k ≥ 1
and for every x = (x1, . . . , xk) ∈ Rk , ‖x‖ and |x|, respectively, define the �2 and
�1 norms of x. That is,

‖x‖ := (
x2

1 + · · · + x2
k

)1/2 and |x| := |x1| + · · · + |xk|.(1.9)
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The rest of the paper is organized as follows. Proposition 1.2 is proved in Sec-
tion 2. Then, in Sections 5 and 3, Theorems 1.1 and 1.3 are proved in reverse order,
since the latter is significantly harder to prove. The main ingredient for proving
Theorem 1.3 is Theorem 3.1 whose proof is given in Section 4. Proposition 1.4 is
proved in Section 4.5.

2. Proof of Proposition 1.2. The upper bound in (1.5) follows from the well-
known fact that dimH W(E) = min{d,2 dimH E} almost surely. In order to estab-
lish the lower bound in (1.5), we first construct a random measure ν on W(E)∩F ,
and then appeal to a capacity argument. The details follow.

Choose and fix a constant γ such that

0 < γ < min{d,2 dimH E}.(2.1)

According to Frostman’s theorem, there exists a Borel probability measure σ on
E such that ∫ ∫

σ(ds)σ (dt)

|s − t |γ /2 < ∞.(2.2)

For every integer n ≥ 1, we define a random measure μn on E × F via∫
f dμn := (2πn)d/2

∫
E×F

f (s, x) exp
(
−n‖W(s) − x‖2

2

)
σ(ds)dx(2.3)

for every Borel measurable function f :E × F → R+. Equivalently,∫
f dμn =

∫
E×F

σ(ds)dxf (s, x)

∫
Rd

dξ exp
(
i
〈
ξ,W(s) − x

〉 − ‖ξ‖2

2n

)
,(2.4)

thanks to the characteristic function of a Gaussian vector.
Let νn be the image measure of μn under the random mapping g :E × F →

Rd defined by g(s, x) := W(s). That is,
∫

φ dνn := ∫
(φ ◦ g)dμn for all Borel-

measurable functions φ : Rd → R+. It follows from (2.3) that, if {νn}∞n=1 has a
subsequence which converges weakly to ν, then ν is supported on W(E) ∩ F .
This ν will be the desired random measure on W(E) ∩ F . Thus, we plan to prove
that: (i) {νn}∞n=1 indeed has a subsequence which converges weakly; and (ii) use
this particular ν to show that P{dimH(W(E) ∩ F) ≥ γ } > 0. This will demon-
strate (1.5).

In order to carry out (i) and (ii), it suffices to verify that there exist positive and
finite constants c1, c2 and c3 such that

E
(‖νn‖) ≥ c1, E

(‖νn‖2) ≤ c2(2.5)

and

E
∫ ∫

νn(dx)νn(dy)

‖x − y‖γ
≤ c3,(2.6)
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simultaneously for all n ≥ 1, where ‖νn‖ := νn(R) denotes the total mass of νn.
The rest hinges on a well-known capacity argument that is explicitly hashed out in
[6], pages 204–206; see also [11], pages 75–76.

It follows from (2.4) and Fubini’s theorem that

E
(‖νn‖) =

∫
E×F

σ(ds)dx

∫
Rd

dξE
(
ei〈ξ,W(s)−x〉)e−‖ξ‖2/(2n)

(2.7)

=
∫
E×F

(
2π

s + n−1

)d/2

exp
(
− ‖x‖2

2(s + n−1)

)
σ(ds)dx.

Since E ⊂ (0,∞) is compact, we have infE ≥ δ for some constant δ > 0. Hence,
(2.7) implies that infn≥1 E(‖νn‖) ≥ c1 for some constant c1 > 0, and this verifies
the first inequality in (2.5). For the second inequality, we use (2.3) to see that

‖νn‖ = ‖μn‖ = (2πn)d/2
∫
E×F

exp
(
−n‖W(s) − x‖2

2

)
σ(ds)dx.(2.8)

We may replace F by all of Rd in order to find that ‖νn‖ ≤ (2π)d a.s.; whence
follows the second inequality in (2.5). Similarly, we prove (2.6) by writing∫ ∫

νn(dx)νn(dy)

‖x − y‖γ

=
∫
(E×F)2

σ(ds)σ (dt)dx dy

‖W(t) − W(s)‖γ

× (2πn)d exp
(
−n‖W(s) − x‖2 − n‖W(t) − y‖2

2

)
.

We may replace F by Rd , use the scaling property of W and the fact that γ < d in
order to see that

E
∫ ∫

νn(dx)νn(dy)

‖x − y‖γ
≤ c

∫ ∫
σ(ds)σ (dt)

|s − t |γ /2 a.s.

Therefore, (2.6) follows from (2.2).
Finally, we prove the last statement in Proposition 1.2. Since dimH E > 1

2 , Frost-
man’s theorem assures us that there exists a Borel probability measure σ on E such
that (2.2) holds with γ = 1. We construct a sequence of random measures {νn}∞n=1
as before, and extract a subsequence that converges weakly to a random Borel
measure ν on W(E) ∩ F such that P{‖ν‖ > 0} > 0.

Let ν̂ denote the Fourier transform of ν. In accord with Plancherel’s theorem,
a sufficient condition for P{|W(E) ∩ F | > 0} > 0 is that ν̂ ∈ L2(R). We apply
Fatou’s lemma to reduce our problem to the following:

sup
n≥1

E
∫ ∞
−∞

∣∣̂νn(θ)
∣∣2 dθ < ∞.(2.9)
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By (2.4) and Fubini’s theorem,

E
∫ ∞
−∞

∣∣̂νn(θ)
∣∣2 dθ

=
∫ ∞
−∞

dθE
∫

R2
μn(ds dx)μn(dt dy)eiθ(W(s)−W(t))

(2.10)
=

∫ ∞
−∞

dθ

∫
(E×F)2

σ(ds)σ (dt)dx dy

∫
R2

dξ dη

× exp
(
−i(ξx + ηy) − ξ2 + η2

2n

)
E

(
ei[(ξ+θ)W(s)+(η−θ)W(t)]).

When 0 < s < t , this last expectation can be written as

exp
(
− s

2
(ξ + η)2 − t − s

2
(η − θ)2

)
.(2.11)

By plugging this into (2.10), we can write the triple integral in [dθ dξ dη] of (2.10)
as ∫

R2
e−i(ξx+ηy) exp

(
−ξ2 + η2

2n
− s

2
(ξ + η)2

)
dξ dη

×
∫ ∞
−∞

exp
(
− t − s

2
(η − θ)2

)
dθ(2.12)

= p(x, y)

√
2π

t − s
,

where p(x, y) denotes the joint density function of a bivariate normal distribution
with mean vector 0 and covariance matrix �−1, where

� :=
(

s + n−1 s

s s + n−1

)
.(2.13)

We plug (2.12) into (2.10), replace F by Rd to integrate [dx dy] in order to find
that

sup
n≥1

E
∫ ∞
−∞

∣∣̂νn(θ)
∣∣2 dθ ≤ const ·

∫ ∫
σ(ds)σ (dt)

|s − t |1/2 < ∞.(2.14)

This yields (2.9) and completes the proof of Proposition 1.2.

3. Proof of Theorem 1.3. Here and throughout,

Bx(ε) := {
y ∈ Rd :‖x − y‖ ≤ ε

}
(3.1)

denotes the radius-ε ball about x ∈ Rd . Also, define νd to be the volume of B0(1);
that is,

νd := 2 · πd/2

d�(d/2)
.(3.2)
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Recall that {W(t)}t≥0 denotes a standard Brownian motion in Rd , and consider
the following “parabolic Green function”: For all t > 0 and x ∈ Rd ,

pt(x) := e−‖x‖2/(2t)

(2πt)d/2 1(0,∞)(t).(3.3)

The seemingly-innocuous indicator function plays an important role in the sequel;
this form of the heat kernel appears earlier in Watson [21, 22] and Doob [2], (4.1),
page 266.

As indicated in the Introduction, our proof of Theorem 1.3 is based on the codi-
mension argument to check whether or not W(E) ∩ F intersect a sufficiently-thin
“testing” random set. One example of such testing sets could be the range of a sta-
ble Lévy process X = {X(t)}t≥0 in Rd with index α ∈ (0,2]. However, this choice
of testing set will only work for d ≤ 3, because the range X((0,∞)) will not be
able to intersect W(E) ∩ F if d ≥ 4 due to the fact that X((0,∞)) ∩ G = ∅ a.s.
for any Borel set G ⊂ Rd with dimH G < d − α.

To avoid this restriction and for future applications, we will use the range of
an N -parameter additive stable Lévy process with index α as the testing set for
proving Theorem 1.3.

Let X(1), . . . ,X(N) be N isotropic stable processes with common stability index
α ∈ (0,2]. We assume that the X(j)’s are totally independent from one another,
as well as from the process W , and all take their values in Rd . We assume also
that X(1), . . . ,X(N) have right-continuous sample paths with left-limits. This as-
sumption can be—and will be—made without incurring any real loss in generality.
Finally, our normalization of the processes X(1), . . . ,X(N) is described as follows:

E
[
exp

(
i
〈
ξ,X(k)(1)

〉)] = e−‖ξ‖α/2 for all 1 ≤ k ≤ N and ξ ∈ Rd .(3.4)

Define the corresponding additive stable process Xα := {Xα(t)}t∈RN+ as

Xα(t) :=
N∑

k=1

X(k)(tk) for all t := (t1, . . . , tN ) ∈ RN+ .(3.5)

Also, define Cγ to be the capacity corresponding to the energy form (1.7). That is,
for all compact sets U ⊂ R+ × Rd and γ ≥ 0,

Cγ (U) :=
[

inf
μ∈Pd (U)

Eγ (μ)
]−1

.(3.6)

THEOREM 3.1. If d > αN and F ⊂ Rd has Lebesgue measure 0, then

P
{
W(E) ∩ Xα

(
RN+

) ∩ F �= ∅

}
> 0 ⇐⇒ Cd−αN(E × F) > 0.(3.7)

We can now apply Theorem 3.1 to prove Theorem 1.3. Theorem 3.1 will be
established subsequently.
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PROOF OF THEOREM 1.3. Suppose α ∈ (0,2] and N ∈ Z+ are chosen such
that d − αN ∈ (0,2). If Xα denotes an N -parameter additive stable process Rd

whose index is α ∈ (0,2], then [12], Theorem 4.4, implies that

codim Xα

(
RN+

) = d − αN.(3.8)

This means that Xα(RN+) will intersect any nonrandom Borel set G ⊂ Rd \{0} with
dimH(G) > d −αN , with positive probability; whereas Xα(RN+) does not intersect
any G ⊂ Rd \ {0} with dimH(G) < d − αN , almost surely.

Define

� := sup
{
γ > 0 : inf

μ∈Pd (E×F)
Eγ (μ) < ∞

}
(3.9)

with the convention that sup∅= 0.
If � > 0 and d − αN < �, then Cd−αN(E × F) > 0. It follows from Theo-

rem 3.1 and (3.8) that

P
{
dimH

(
W(E) ∩ F

) ≥ d − αN
}
> 0.(3.10)

Because d − αN ∈ (0,�) is arbitrary, we have ‖dimH(W(E) ∩ F)‖L∞(P) ≥ �.
Similarly, Theorem 3.1 and (3.8) imply that

d − αN > � �⇒ dimH

(
W(E) ∩ F

) ≤ d − αN almost surely.(3.11)

Hence, ‖dimH(W(E) ∩ F)‖L∞(P) ≤ � whenever � ≥ 0. This proves the theorem.
�

4. Proof of Theorem 3.1. Our proof of Theorem 3.1 is divided into separate
parts. We begin by developing a requisite result in harmonic analysis. Then we de-
velop some facts about additive Lévy processes. After that, we prove Theorem 3.1
in two separate parts.

4.1. Isoperimetry. Recall that a function κ : Rn → R+ := [0,∞] is tempered
if it is measurable and∫

Rn

κ(x)

(1 + ‖x‖)m dx < ∞ for some m ≥ 0.(4.1)

A function κ : Rn → R+ is said to be positive definite if it is tempered and for all
rapidly-decreasing test functions φ : Rn → R,∫

Rn
dx

∫
Rn

dyφ(x)κ(x − y)φ(y) ≥ 0.(4.2)

Let ĝ denote the Fourier transform of a function (or a measure) g. We use the
following normalization: ĝ(ξ) = ∫

Rn exp(iξ · z)g(z)dz when g ∈ L1(Rn). We will
make heavy use of the following result.
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LEMMA 4.1. If κ : Rn → R+ is positive definite and lower semicontinuous,
then for all finite Borel measures μ on Rn,∫ ∫

κ(x − y)μ(dx)μ(dy) = 1

(2π)d

∫
Rd

κ̂(ξ)
∣∣μ̂(ξ)

∣∣2 dξ.(4.3)

If κ is in addition bounded, then in fact for all finite Borel measures μ and ν on Rn,∫ ∫
κ(x − y)μ(dx)ν(dy) = 1

(2π)d

∫
Rd

κ̂(ξ)μ̂(ξ )̂ν(ξ)dξ.(4.4)

PROOF. Equation (4.3) is proved in Foondun and Khoshnevisan [3], Corol-
lary 3.4; for a weaker version see [13], Theorem 5.2. We can derive (4.4) from
(4.3) in a standard way (“polarization”): Apply (4.3) with μ + ν in place of μ to
see that∫ ∫

κ(x − y)(μ+ ν)(dx)(μ+ ν)(dy) = 1

(2π)d

∫
Rd

κ̂(ξ)
∣∣(μ̂+ ν̂)(ξ)

∣∣2 dξ.(4.5)

Develop both sides, and match the quadratic terms, using (4.3), to finish. �

Lemma 4.1 implies two “isoperimetric inequalities” that are stated below as
Propositions 4.2 and 4.4. Recall that a finite Borel measure ν on Rd is said to be
positive definite if ν̂(ξ) ≥ 0 for all ξ ∈ Rd .

PROPOSITION 4.2. Suppose κ : Rd → R+ is a lower semicontinuous positive-
definite function such that κ(x) = ∞ iff x = 0. Suppose ν and σ are two positive
definite probability measures on Rd that satisfy the following:

1. κ and κ ∗ ν are uniformly continuous on every compact subset of Rd \ {0}; and
2. (τ, x) �→ (pτ ∗ σ)(x) is uniformly continuous on every compact subset of

(0,∞) × (Rd \ {0}).
Then, for all finite Borel measures μ on R+ × Rd ,∫ ∫

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(x − y)μ(dt dx)μ(ds dy)

(4.6)
≤

∫ ∫
p|t−s|(x − y)κ(x − y)μ(dt dx)μ(ds dy).

REMARK 4.3. The very same proof shows the following slight enhancement:
Suppose κ and ν are the same as in Proposition 4.2. If σ1 and σ2 share the prop-
erties of σ in Proposition 4.2 and σ̂1(ξ) ≤ σ̂2(ξ) for all ξ ∈ Rd , then for all finite
Borel measures μ on R+ × Rd ,∫ ∫

(p|t−s| ∗ σ1)(x − y)(κ ∗ ν)(x − y)μ(dt dx)μ(ds dy)

(4.7)
≤

∫ ∫
(p|t−s| ∗ σ2)(x − y)κ(x − y)μ(dt dx)μ(ds dy).
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Proposition 4.2 is this in the case that σ2 := δ0. An analogous result holds for
positive definite probability measures ν1 and ν2 which satisfy ν̂1(ξ) ≤ ν̂2(ξ) for all
ξ ∈ Rd .

PROOF. Throughout this proof, we choose and fix ε > 0.
Without loss of generality, we may and will assume that∫ ∫

p|t−s|(x − y)κ(x − y)μ(dt dx)μ(ds dy) < ∞;(4.8)

for there is nothing to prove, otherwise.
Because p|t−s| is positive definite for every nonnegative t �= s, so are p|t−s| ∗ σ

and κ ∗ ν. Because p|t−s| is bounded and continuous when s �= t , it follows from
the Bochner–Minlos–Schwartz theorem that p|t−s| × (κ ∗ ν) is positive definite.
Therefore, for fixed t > s, Lemma 4.1 applies, and tells us that for all Borel prob-
ability measures ρ on Rd , and for all nonnegative t �= s,∫ ∫

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(x − y)ρ(dx)ρ(dy)

(4.9)

= 1

(2π)d

∫
Rd

dξ

∫
Rd

dζe−(t−s)‖ξ‖2/2σ̂ (ξ)κ̂(ζ )̂ν(ξ)
∣∣ρ̂(ξ − ζ )

∣∣2.
Because the preceding is valid also when σ = ν = δ0, and since 0 ≤ σ̂ (ξ), ν̂(ξ) ≤ 1
for all ξ ∈ Rd , it follows that for all nonnegative t �= s,∫ ∫

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(x − y)ρ(dx)ρ(dy)

(4.10)
≤

∫ ∫
p|t−s|(x − y)κ(x − y)ρ(dx)ρ(dy).

This inequality continues to holds when ρ is a finite Borel measure on Rd , by
scaling. Thus, thanks to Tonelli’s theorem, the proposition is valid whenever
μ(dt dx) = λ(dt)ρ(dx) for two finite Borel measures λ and ρ, respectively defined
on R+ and Rd .

Now let us consider a compactly-supported finite measure μ on R+ × Rd . For
all η > 0, define

G(η) := {
(t, s, x, y) ∈ (R+)2 × (

Rd)2 : |t − s| ∧ ‖x − y‖ ≥ η
}
.(4.11)

It suffices to prove that for all η > 0,∫ ∫
G(η)

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(x − y)μ(dt dx)μ(ds dy)

(4.12)
≤

∫ ∫
G(η)

p|t−s|(x − y)κ(x − y)μ(dt dx)μ(ds dy).
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This is so, because κ(0) = ∞ and (4.8) readily tell us that the product measure
μ ⊗ μ does not charge{

(t, s, x, y) ∈ (R+)2 × (
Rd)2 :x = y

};(4.13)

and, therefore,

lim
η↓0

∫ ∫
G(η)

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(x − y)μ(dt dx)μ(ds dy)

=
∫ ∫

s �=t
x �=y

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(x − y)μ(dt dx)μ(ds dy)(4.14)

=
∫ ∫

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(x − y)μ(dt dx)μ(ds dy).

And similarly,

lim
η↓0

∫ ∫
G(η)

p|t−s|(x − y)κ(x − y)μ(dt dx)μ(ds dy)

(4.15)
=

∫ ∫
p|t−s|(x − y)κ(x − y)μ(dt dx)μ(ds dy).

And the proposition follows, subject to (4.12).
Next, we verify (4.12) to finish the proof. One can check directly that G(η) ∩

supp(μ ⊗ μ) is compact, and both mappings (t, s, x, y) �→ (p|t−s| ∗ σ)(x − y) ×
(κ ∗ ν)(x − y) and (t, s, x, y) �→ p|t−s|(x − y)κ(x − y) are uniformly continuous
on G(η) ∩ supp(μ ⊗ μ).

By discretization, we can find finite Borel measures {λj }∞j=1—on R+—and

{ρj }∞j=1—on Rd—such that μ is the weak limit of μN := ∑N
j=1(λj ⊗ ρj ) as

N → ∞. It follows from (4.4) and an argument similar to (4.9) that for all η > 0
and N ≥ 1,∫ ∫

G(η)
(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(x − y)μN(dt dx)μN(ds dy)

(4.16)
≤

∫ ∫
G(η)

p|t−s|(x − y)κ(x − y)μN(dt dx)μN(ds dy).

Let N ↑ ∞ to deduce (4.12), and hence the proposition. �

PROPOSITION 4.4. Suppose κ : R → R+ is a lower semicontinuous positive-
definite function such that κ(x) = ∞ iff x = 0. Suppose ν and σ are two positive
definite probability measures, respectively on R and Rd , that satisfy the following:

1. κ and κ ∗ ν are uniformly continuous on every compact subset of R \ {0}; and
2. (τ, x) �→ (pτ ∗ σ)(x) is uniformly continuous on every compact subset of

(0,∞) × (Rd \ {0}).
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Then, for all finite Borel measures μ on R+ × Rd ,∫ ∫
(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(s − t)μ(dt dx)μ(ds dy)

(4.17)
≤

∫ ∫
p|t−s|(x − y)κ(s − t)μ(dt dx)μ(ds dy).

PROOF. It suffices to prove the proposition in the case that

μ(ds dx) = λ(ds)ρ(dx),(4.18)

for finite Borel measures λ and ρ, respectively on R+ and Rd . See, for instance,
the argument beginning with (4.11) in the proof of Proposition 4.2. We shall extend
the definition λ so that it is a finite Borel measure on all of R in the usual way: If
A ⊂ R is Borel measurable, then λ(A) := λ(A∩ R+). This slight abuse in notation
should not cause any confusion in the sequel.

Tonelli’s theorem and Lemma 4.1 together imply that in the case that (4.18)
holds:∫ ∫

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(s − t)μ(dt dx)μ(ds dy)

=
∫ ∫

λ(dt)λ(ds)(κ ∗ ν)(s − t)

∫ ∫
ρ(dx)ρ(dy)(p|t−s| ∗ σ)(x − y)

(4.19)

= 1

(2π)d

∫
Rd

σ̂ (ξ)
∣∣ρ̂(ξ)

∣∣2 dξ

∫ ∫
λ(dt)λ(ds)(κ ∗ ν)(s − t)e−|t−s|·‖ξ‖2/2

≤ 1

(2π)d

∫
Rd

∣∣ρ̂(ξ)
∣∣2 dξ

∫ ∫
λ(dt)λ(ds)(κ ∗ ν)(s − t)e−|t−s|·‖ξ‖2/2.

The map τ �→ exp{−|τ | · ‖ξ‖2/2} is positive definite on R for every fixed ξ ∈ Rd ;
in fact, its inverse Fourier transform is a (scaled) Cauchy density function, which
we refer to as ϑξ . Therefore, in accord with Lemma 4.1,∫ ∫

(κ ∗ ν)(s − t)e−|t−s|·‖ξ‖2/2λ(dt)λ(ds)

= 1

2π

∫
R

∣∣̂λ(τ)
∣∣2(κ̂ν̂ ∗ ϑξ )(τ )dτ ≤ 1

2π

∫
R

∣∣̂λ(τ)
∣∣2(κ̂ ∗ ϑξ )(τ )dτ(4.20)

=
∫ ∫

κ(s − t)e−|t−s|·‖ξ‖2/2λ(dt)λ(ds).

The last line follows from the first identity, since we can consider ν = δ0 as a
possibility. Therefore, it follows from (4.19) and (4.20) that∫ ∫

(p|t−s| ∗ σ)(x − y)(κ ∗ ν)(s − t)μ(dt dx)μ(ds dy)

≤ 1

(2π)d

∫
Rd

∣∣ρ̂(ξ)
∣∣2 dξ

∫ ∫
λ(dt)λ(ds)κ(s − t)e−|t−s|·‖ξ‖2/2

=
∫ ∫

λ(dt)λ(ds)κ(s − t)

∫ ∫
ρ(dx)ρ(dy)p|t−s|(x − y);
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the last line follows from the first identity in (4.19) by considering the special case
that ν = δ0 and σ = δ0. This proves the proposition in the case that μ has the form
(4.18), and the result follows. �

4.2. Additive stable processes. In this subsection, we develop a “resolvent
density” estimate for the additive stable process Xα .

First of all, note that the characteristic function ξ �→ E exp(i〈ξ,Xα(t)〉) of Xα(t)
is absolutely integrable for every t ∈ RN+ \{0}. Consequently, the inversion formula
applies and tells us that we can always choose the following as the probability
density function of Xα(t):

gt(x) := gt(α;x) = 1

(2π)d

∫
Rd

e−i〈x,ξ〉−|t|·‖ξ‖α/2 dξ.(4.21)

LEMMA 4.5. Choose and fix some a,b ∈ (0,∞)N such that aj ≤ bj for all
1 ≤ j ≤ N . Define

[a,b] := {
s ∈ RN+ :aj ≤ sj ≤ bj for all 1 ≤ j ≤ N

}
.(4.22)

Then, for all M > 0 there exists a constant A0 ∈ (1,∞)—depending only on the
parameters d , N , M , α, min1≤j≤N aj , and max1≤j≤N bj —such that for all x ∈
[−M,M]d ,

A−1
0 ≤

∫
[a,b]

gt(x)dt ≤ A0.(4.23)

PROOF. Let �1 := (1, . . . ,1) ∈ RN . Then we may also observe the scaling re-
lation,

gt(x) = |t|−d/αg�1
(

x

|t|1/α

)
,(4.24)

together with the fact g�1 is an isotropic stable-α density function on Rd . The upper
bound in (4.23) follows from (4.24) and the boundedness of g�1(z).

On the other hand, since a ∈ (0,∞)N , the lower bound in (4.23) follows from
(4.24) and the well-known fact that g�1(z) is continuous and strictly positive every-
where. �

PROPOSITION 4.6. Choose and fix some b ∈ (0,∞)N and define [0,b] as
in Lemma 4.5, and assume d > αN . Then, for all M > 0 there exists a constant
A1 ∈ (1,∞)—depending only on d , N , M , α, min1≤j≤N bj , and max1≤j≤N bj —
such that for all x ∈ [−M,M]d ,

1

A1‖x‖d−αN
≤

∫
[0,b]

gt(x)dt ≤ A1

‖x‖d−αN
.(4.25)
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PROOF. Recall the following standard estimate: For all R > 0, there exists
C(R) ∈ (1,∞) and c(R) ∈ (0,1) such that

c(R)

‖z‖d+α
≤ g�1(z) ≤ C(R)

‖z‖d+α
for all z ∈ Rd with ‖z‖ ≥ R.(4.26)

See [10], Proposition 3.3.1, page 380, where this is proved for R = 2. The slightly
more general case where R > 0 is arbitrary is proved in exactly the same manner.

Since ∫
[0,b]

gt(x)dt ≤ e|b|
∫

RN+
e−|t|gt(x)dt,(4.27)

the proof of Proposition 4.1.1 of [10], page 420, shows that the upper bound in
(4.25) holds for all x ∈ Rd .

For the lower bound, we first recall the notation �1 := (1, . . . ,1) ∈ RN , and then
apply (4.24) and (4.26) in order to find that∫

[0,b]
gt(x)dt =

∫
[0,b]

|t|−d/αg�1
(

x

|t|1/α

)
dt

(4.28)

≥ c(1)

‖x‖d+α
·

∫
t∈[0,b]:
|t|1/α≤‖x‖

|t|dt.

Clearly, there exists R0 > 0 sufficiently small such that whenever ‖x‖ ≤ R0,∫
t∈[0,b]:
|t|1/α≤‖x‖

|t|dt ≥ const · ‖x‖α(N+1),(4.29)

and the result follows. On the other hand, if ‖x‖ > R0, then the preceding display
still holds uniformly for all x ∈ [−M,M]d . This proves the proposition. �

We mention also the following; it is an immediate consequence of Proposi-
tion 4.6 and the scaling relation (4.24).

LEMMA 4.7. Choose and fix some b ∈ (0,∞)N and define [0,b] as in
Lemma 4.5. Then there exists a constant A2 ∈ (1,∞)—depending only on d , N ,
α, min1≤j≤N bj , and max1≤j≤N bj —such that for all x ∈ Rd ,∫

[0,2b]
gt(x)dt ≤ A2

∫
[0,b]

gt(x)dt.(4.30)

PROOF. Let M > 1 be a constant. If x ∈ [−M,M]d , then (4.30) follows from
Proposition 4.6. And if ‖x‖ ≥ M , then (4.30) holds because of (4.24) and (4.26),
together with the well-known fact that g1 is continuous and strictly positive every-
where; compare with the first line in (4.28). �



BROWNIAN MOTION AND THERMAL CAPACITY 419

4.3. First part of the proof. Our goal, in this first half, is to prove the follow-
ing:

Cd−αN(E × F) > 0 �⇒ P
{
W(E) ∩ Xα

(
RN+

) ∩ F �= ∅

}
> 0.(4.31)

By Lemma 4.1 in [12], it is equivalent to prove

Cd−αN(E × F) > 0 �⇒ E
{
λd

((
W(E) ∩ F

) � Xα

(
RN+

))}
> 0,(4.32)

where λd is the Lebesgue measure in Rd and A � B := {a − b :a ∈ A,b ∈ B}.
First, let us make some reductions. Because E ⊂ (0,∞) and F ⊂ Rd are as-

sumed to be compact, there exists a q ∈ (1,∞) such that

E ⊆ [
q−1, q

]
and F ⊆ [−q, q]d .(4.33)

We will use q for this purpose unwaiveringly. Notice that if, either

E
{
λd

(
Xα

(
RN+

))}
> 0

or there exist some n ≤ N − 1 and distinct i1, . . . , in ∈ {1, . . . ,N} such that

E
{
λd

((
W(E) ∩ F

) � Xi1,...,in

(
Rn+

))}
> 0,

then (4.32) holds trivially. In the above, similarly to (3.5), Xi1,...,in is defined by

Xi1,...,in(t) =
n∑

k=1

X(ik)(tik ) for all t := (ti1, . . . , tin) ∈ Rn+.

Hence, without loss of generality, we can and will assume that E(Xα(RN+)) = 0
and E{λd((W(E) ∩ F) � Xi1,...,in(R

n+))} = 0 for all n ≤ N − 1 and all distinct
i1, . . . , in ∈ {1, . . . ,N}. Since each Lévy process Xj has only countable number of
jumps, this assumption implies

λd

{(
W(E) ∩ F

) � (
Xα

(
RN+

) \ Xα

(
RN+

))} = 0 P-a.s.(4.34)

Now we provide some preliminary result for proving (4.32). Define

fε(x) := 1

νdεd
1B0(ε)(x) and φε(x) := (fε ∗ fε)(x).(4.35)

For every μ ∈ Pd(E × F) and ε > 0 we define a random variable Zε(μ) by

Zε(μ) :=
∫
[1,2]N

du
∫
E×F

μ(ds dx)φε

(
W(s) − x

)
φε

(
Xα(u) − x

)
.(4.36)

LEMMA 4.8. There exists a constant a ∈ (0,∞) such that

inf
μ∈Pd (E×F)

inf
ε∈(0,1)

E
[
Zε(μ)

] ≥ a.(4.37)
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PROOF. Thanks to the triangle inequality, whenever u ∈ B0(ε/2) and v ∈
B0(ε/2), we have u − v ∈ B0(ε) and v ∈ B0(ε). Therefore, for all u ∈ Rd and
ε > 0,

φε(u) = 1

ν2
dε2d

∫
Rd

1B0(ε)(u − v)1B0(ε)(v)dv

(4.38)

≥ 1

ν2
dε2d

1B0(ε/2)(u)

∫
Rd

1B0(ε/2)(v)dv ≥ 2−dfε/2(u).

Because fε/2 is a probability density, and since ε ∈ (0,1), the preceding implies
that for all u ∈ [1,2]N and x ∈ Rd ,

(φε ∗ gu)(x) =
∫

Rd
φε(u)gu(x − u)du

(4.39)
≥ 2−d

∫
Rd

fε/2(u)gu(x − u)du ≥ 2−d inf‖z−x‖≤1/2
gu(z).

Since F ⊂ [−q, q]d , (4.39) and (4.24) in the Lemma 4.5 tell us that

a0 := inf
u∈[1,2]N

inf
x∈F

inf
ε∈(0,1)

(φε ∗ gu)(x) > 0.(4.40)

And, therefore, for all ε > 0 and μ ∈ Pd(E × F),

E
[
Zε(μ)

] =
∫
E×F

μ(ds dx)(φε ∗ ps)(x)

∫
[1,2]N

du(φε ∗ gu)(x)

≥ a0

∫
E×F

(φε ∗ ps)(x)μ(ds dx)(4.41)

≥ a0 inf
s∈[1/q,q] inf

x∈F
inf

ε∈(0,1)
(φε ∗ ps)(x),

which is clearly positive. �

PROPOSITION 4.9. There exists a constant b ∈ (0,∞) such that the following
inequality holds simultaneously for all μ ∈ Pd(E × F):

sup
ε>0

E
(∣∣Zε(μ)

∣∣2) ≤ bEd−αN(μ).(4.42)

PROOF. First of all, let us note the following complement to (4.38):

φε(z) ≤ 2df2ε(z) for all ε > 0 and z ∈ Rd .(4.43)

Define, for the sake of notational simplicity,

Qε(t, x; s, y) := φε

(
W(t) − x

)
φε

(
W(s) − y

)
.(4.44)

Next, we apply the Markov property to find that for all (t, x) and (s, y) in E × F

such that s < t , and all ε > 0,

E
[
Qε(t, x; s, y)

] = E
[
φε

(
W(s) − y

)
φε

(
W̃ (t − s) + W(s) − x

)]
,(4.45)
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where W̃ is a Brownian motion independent of W . An application of (4.43) yields

E
[
Qε(t, x; s, y)

] ≤ 4dE
[
f2ε

(
W(s) − y

)
f2ε

(
W̃ (t − s) + W(s) − x

)]
(4.46)

≤ 8dE
[
f2ε

(
W(s) − y

)
f4ε

(
W̃ (t − s) − x + y

)]
,

thanks to the triangle inequality. Consequently, we may apply independence and
(4.38) to find that

E
[
Qε(t, x; s, y)

] ≤ 8dE
[
f2ε

(
W(s) − y

)] · E
[
f4ε

(
W(t − s) − x + y

)]
≤ 32dE

[
φ4ε

(
W(s) − y

)] · E
[
φ8ε

(
W(t − s) − x + y

)]
(4.47)

= 32d(φ4ε ∗ ps)(y) · (φ8ε ∗ pt−s)(x − y).

Since s ∈ E, it follows that s ≥ 1/q , and hence supz∈Rd ps(z) ≤ p1/q(0). Thus,

E
[
φε

(
W(t) − x

)
φε

(
W(s) − y

)] ≤ 32dp1/q(0) · (φ8ε ∗ pt−s)(x − y).(4.48)

By symmetry, the following holds for all (t, x), (s, y) ∈ E × F and ε > 0:

E
[
φε

(
W(t) − x

)
φε

(
W(s) − y

)] ≤ 32dp1/q(0) · (φ8ε ∗ p|t−s|)(x − y).(4.49)

Similarly, we can show that for all (u, x), (v, y) ∈ [1,2]N × F and ε > 0:

E
[
φε

(
Xα(u) − x

)
φε

(
Xα(v) − y

)] ≤ 16dK · (φ8ε ∗ gu−v)(x − y),(4.50)

where K := g(1/q,...,1/q)(0) < ∞ by (4.21), and the definition of gt(z) has been
extended to all t ∈ RN \ {0} by symmetry, namely,

gt(z) := |t|−d/αg�1
(

z

|t|1/α

)
for all z ∈ Rd and t ∈ RN \ {0},(4.51)

where we recall �1 := (1, . . . ,1) ∈ RN .
To verify (4.50), we define Z1 = Xα(u)−Xα(u�v) and Z2 = Xα(v)−Xα(u�

v), where u � v = (u1 ∧ v1, . . . , uN ∧ vN). Then the random variables Z1,Z2 and
Xα(u � v) are independent. Similarly to (4.46) and (4.47), the left-hand side of
(4.50) is bounded from above by

8dE
[
f2ε

(
Z1 + Xα(u � v) − x

)
f4ε(Z2 − Z1 + x − y)

]
.(4.52)

By conditional on Z1 and Z2 and applying the unmorality of Xα(u � v) (see Re-
mark 2.3 in [11]), we see that (4.52) is at most

8d

νd(2ε)d
P
[∣∣Xα(u � v)

∣∣ ≤ 2ε
]
E

[
f4ε(Z2 − Z1 + x − y)

]
(4.53)

≤ 16dg(1/q,...,1/q)(0) · (φ8ε ∗ gu−v)(x − y),

where we have also use the fact that Z2 − Z1 has density function gu−v. This
proves (4.50).
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It follows easily from (4.49) and (4.50) that E(|Zε(μ)|2) is bounded from above
by a constant multiple of∫ ∫

(φ8ε ∗ p|t−s|)(x − y)

(∫
[1,2]2N

(φ8ε ∗ gu−v)(x − y)du dv
)

(4.54)
× μ(dt dx)μ(ds dy),

uniformly for all ε > 0. Define

κ(z) :=
∫
[0,1]N

gu(z)du for all z ∈ Rd .(4.55)

Then we have shown that, uniformly for every ε > 0,

E
(∣∣Zε(μ)

∣∣2) ≤ const ·
∫ ∫

(φ8ε ∗ p|t−s|)(x − y)(φ8ε ∗ κ)(x − y)

(4.56)
× μ(dt dx)μ(ds dy).

It follows easily from (4.21) that the conditions of Proposition 4.2 are met for
σ(dx) := ν(dx) := φ8ε(x)dx and, therefore, that proposition yields the following
bound: Uniformly for all ε > 0,

E
(∣∣Zε(μ)

∣∣2) ≤ const ·
∫ ∫

p|t−s|(x − y)κ(x − y)μ(dt dx)μ(ds dy).(4.57)

According to Proposition 4.6, κ(z) ≤ const /‖z‖d−αN uniformly for all z ∈ {x −
y :x, y ∈ F }, and the proof is thus completed. �

Now we establish (4.31).

PROOF OF THEOREM 3.1 (First half). If Cd−αN(E ×F) > 0, then there exists
μ0 ∈ Pd(E × F) such that Ed−αN(μ0) < ∞, by definition. We apply the Paley–
Zygmund inequality [10], page 72, to Lemma 4.8 and Proposition 4.9, with μ

replaced by μ0, to find that for all ε > 0,

P
{
Zε(μ0) > 0

} ≥ |EZε(μ0)|2
E(|Zε(μ0)|2) ≥ a2/b

Ed−αN(μ0)
.(4.58)

If Zε(μ0)(ω) > 0 for some ω in the underlying sample space, then it follows from
(4.36) and (4.38) that

inf
s∈E

inf
x∈F

inf
u∈[1,2]N

max
(∥∥W(s) − x

∥∥,∥∥Xα(u) − x
∥∥)

(ω) ≤ ε(4.59)

for the very same ω. Letting ε → 0 in (4.58) we see that, as the right-most term in
(4.58) is independent of ε > 0, the preceding establishes

P
{
W(E) ∩ Xα

([a, b]N ) ∩ F �= ∅

}
> 0.
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From the proof of Lemma 4.1 in [12], we see that the above implies

E
{
λd

((
W(E) ∩ F

) � Xα

([a, b]N ))}
> 0.(4.60)

Because of (4.34), we obtain (4.32). This proves the first half of the proof of The-
orem 3.1. �

4.4. Second part of the proof. For the second half of our proof, we aim to
prove that

P
{
W(E) ∩ Xα

([a, b]N ) ∩ F �=∅

}
> 0 �⇒ Cd−αN(E × F) > 0(4.61)

for all positive real numbers a < b. This would complete our derivation of Theo-
rem 3.1. In order to simplify the exposition, we make some reductions. Since F

has Lebesgue measure 0, we may and will assume that E has no isolated points.
Furthermore, we will take [a, b]N = [1,3/2]N .

Henceforth, we assume that the displayed probability in (4.61) is positive. Let
∂ be a point that is not in R+ × RN+ , and we define an E × [1,3/2]N ∪ {∂}-valued
random variable T = (S,U) as follows:

1. If there is no (s,u) ∈ E × [1,3/2]N such that W(s) = Xα(u) ∈ F , then T =
(S,U) := ∂ .

2. If there exists (s,u) ∈ E × [1,3/2]N such that W(s) = Xα(u) ∈ F , then we
define T = (S,U) inductively. Let S denote the first time in E when W hits
Xα([1,3/2]N) ∩ F , namely,

S := inf
{
s ∈ E :W(s) ∈ Xα

([1,3/2]N ) ∩ F
}
.(4.62)

It follows from (4.62) that there is a sequence (sn,un) ∈ E×[1,3/2]N such that
sn ↓ S and W(sn) = Xα(un) ∈ F for all n ≥ 1. Notice that for any subsequence
of {un}, say {unk }, which converges to some u = (u1, . . . , uN) ∈ [1,3/2]N ,
we have limk→∞ Xα(unk ) = W(S). The limit on the left-hand side can be ex-
pressed as the sum of left or right limits of the Lévy processes X(j) at uj (j =
1, . . . ,N ). For simplicity of notation, we denote this limit by Xα(u1, . . . , uN).
Then we can define inductively,

U1 := inf
{
u1 ∈ [1,3/2] :Xα(u1, u2, . . . , uN) = W(S)

for some u2, . . . , uN ∈ [1,3/2]},
U2 := inf

{
u2 ∈ [1,3/2] :Xα(U1, u2, . . . , uN) = W(S)

(4.63)
for some u3, . . . , uN ∈ [1,3/2]},

...

UN := inf
{
uN ∈ [1,3/2] :Xα(U1, . . . ,UN−1, uN) = W(S)

}
.
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Note that U = (U1, . . . ,UN) ∈ [1,3/2]N and Xα(U) = W(S) ∈ F on the event
{(S,U) �= ∂}.

Now for every two Borel sets G1 ⊆ E and G2 ⊆ F we define

μ(G1 × G2) := P
{
S ∈ G1,Xα(U) ∈ G2|T �= ∂

}
.(4.64)

Since P{T �= ∂} > 0, it follows that μ is a bona fide probability measure on E ×F .
Moreover, μ ∈ Pd(E × F), since for every t > 0,

μ
({t} × F

) = P
{
S = t,Xα(U) ∈ F |T �= ∂

} ≤ P{W(t) ∈ F }
P{T �= ∂} = 0,(4.65)

because F has Lebesgue measure 0.
For every ε > 0, we define Zε(μ) by (4.36), but insist on one (important)

change. Namely, now, we use the Gaussian mollifier,

φε(z) := 1

(2πε2)d/2 exp
(
−‖z‖2

2ε2

)
,(4.66)

in place of fε ∗ fε . (The change in the notation is used only in this portion of the
present proof.)

Thanks to the proof of Lemma 4.8,

inf
ε∈(0,1)

E
[
Zε(μ)

]
> 0.(4.67)

We can argue, as we did in the proof of (4.56) [e.g., up to a constant factor, the
inequalities (4.49) and (4.50) still hold], to find that

sup
ε∈(0,1)

E
(∣∣Zε(μ)

∣∣2) ≤ const ·
∫ ∫

(φ8ε ∗ p|t−s|)(x − y)(φ8ε ∗ κ)(x − y)

(4.68)
× μ(ds dx)μ(dt dy),

where κ is defined by (4.55). Define

κ̃(z) :=
∫
[0,1/2]N

gt(z)dt for all z ∈ Rd .(4.69)

Thanks to Lemma 4.7,

sup
ε∈(0,1)

E
(∣∣Zε(μ)

∣∣2) ≤ const ·
∫ ∫

(φ8ε ∗ p|t−s|)(x − y)(φ8ε ∗ κ̃)(x − y)

(4.70)
× μ(ds dx)μ(dt dy).

Now we are ready to explain why we had to change the definition of φε from
fε ∗ fε to the present Gaussian ones: In the present Gaussian case, both subscripts
of “8ε” can be replaced by “ε” at no extra cost; see (4.71) below. Here is the reason
why:
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First of all, note that φε is still positive definite; in fact, φ̂ε(ξ) = e−ε2‖ξ‖2/2 > 0
for all ξ ∈ Rd . Next—and this is important—we can observe that φ̂ε ≤ φ̂δ when-
ever 0 < δ < ε. And hence, the following holds, thanks to Remark 4.3:

sup
ε∈(0,1)

E
(∣∣Zε(μ)

∣∣2) ≤ const ·
∫ ∫

(φε ∗ p|t−s|)(x − y)(φε ∗ κ̃)(x − y)

(4.71)
× μ(ds dx)μ(dt dy).

This proves the assertion that “8ε can be replaced by ε.”
Now define a partial order ≺ on RN as follows: u ≺ v if and only if ui ≤ vi

for all i = 1, . . . ,N . Let Xv denote the σ -algebra generated by the collection
{Xα(u)}u≺v. Also define G := {Gt }t≥0 to be the usual augmented filtration of the
Brownian motion W .

According to Theorem 2.3.1 of [10], page 405, {Xv} is a commuting N -
parameter filtration [10], page 233. Hence, so is the (N + 1)-parameter filtration

F := {
Fs,u; s ≥ 0,u ∈ RN+

}
,(4.72)

where Fs,u := Gs ×Xu is the product σ -algebra.
Now, for any fixed (s,u) ∈ E × [1,3/2]N ,

E
[
Zε(μ)|Fs,u

] ≥
∫
V (u)

dv
∫
E×F
t≥s

μ(dt dx)Tε(t, x;v),(4.73)

where

V (u) := {
v ∈ [1,2]N :uj ≤ vj for all 1 ≤ j ≤ N

}
(4.74)

and

Tε(t, x;v) := E
[
φε

(
W(t) − x

)
φε

(
Xα(v) − x

)|Fs,u
]
.(4.75)

Thanks to independence, and the respective Markov properties of the processes
W,X(1), . . . ,X(N),

Tε(t, x;v) = E
[
φε

(
W(t) − x

)|Gs

] · E
[
φε

(
Xα(v) − x

)|Xu
]

(4.76)
= (φε ∗ pt−s)

(
x − W(s)

) · (φε ∗ gv−u)
(
x − Xα(u)

)
.

Therefore, the definition (4.69) of κ̃ and the triangle inequality together reveal that
with probability one,

E
[
Zε(μ)|Fs,u

]
≥ 1{(S,U) �=∂}(ω)(4.77)

×
∫
E×F
t>s

(φε ∗ pt−s)
(
x − W(s)

)
(φε ∗ κ̃)

(
x − Xα(u)

)
μ(dt dx).
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This inequality is valid almost surely, simultaneously for all s in a dense countable
subset of E (which will be assumed as a subset of Q+ for simplicity of notation)
and all u ∈ [1,3/2]N ∩ QN+ .

Select points with rational coordinates that converge, coordinatewise from the
above and below, to (S(ω),U(ω)). In this way, we find that

sup
s∈E,u∈[1,3/2]N
all rational coords

E
[
Zε(μ)|Fs,u

]
≥ 1{(S,U) �=∂}(ω)(4.78)

×
∫
E×F
t>S

(φε ∗ pt−S)
(
x − W(S)

)
(φε ∗ κ̃)

(
x − Xα(U)

)
μ(dt dx).

This is valid ω by ω. We square both sides of (4.78) and then apply expectations
to both sides in order to obtain the following:

E
{(

sup
(s,u)∈QN+1+

E
[
Zε(μ)|Fs,u

])2}
≥ P

{
(S,U) �= ∂

}
(4.79)

× E
[(∫

E×F
t>S

�ε(t, x)μ(dt dx)

)2

|(S,U) �= ∂

]
,

where

�ε(t, x) := (φε ∗ pt−S)
(
x − W(S)

)
(φε ∗ κ̃)

(
x − Xα(U)

)
.

According to (4.64), and because W(S) = Xα(U) on {(S,U) �= ∂}, the condi-
tional expectation in (4.79) is equal to the following:∫ (∫

E×F
t>s

(φε ∗ pt−s)(x − y)(φε ∗ κ̃)(x − y)μ(dt dx)

)2

μ(ds dy).(4.80)

In view of the Cauchy–Schwarz inequality, the quantity in (4.80) is at least(∫ ∫
E×F

t>s

(φε ∗ pt−s)(x − y)(φε ∗ κ̃)(x − y)μ(dt dx)μ(ds dy)

)2

,

which is, in turn, greater than or equal to

1

4

(∫ ∫
(φε ∗ p|t−s|)(x − y)(φε ∗ κ̃)(x − y)μ(dt dx)μ(ds dy)

)2

,(4.81)

by symmetry.
The preceding estimates from below the conditional expectation in (4.79). And

this yields a bound on the right-hand side of (4.79). We can also obtain a good
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estimate for the left-hand side of (4.79). Indeed, the (N + 1)-parameter filtration
F is commuting; therefore, according to Cairoli’s strong (2,2) inequality [10],
Theorem 2.3.2, page 235,

E
{(

sup
(s,u)∈QN+1+

E
[
Zε(μ)|Fs,u

])2}
≤ 4N+1E

(∣∣Zε(μ)
∣∣2)

,(4.82)

and this is in turn at most a constant times the final quantity in (4.81); compare
with (4.71). In this way, we are led to the following bound:

P
{
(S,U) �= ∂

} ≤ const ·
[∫ ∫

(φε ∗ p|t−s|)(x − y)(φε ∗ κ̃)(x − y)

(4.83)

× μ(dt dx)μ(ds dy)

]−1

.

Since the implied constant is independent of ε, we can let ε ↓ 0. As the integrand
is lower semicontinuous, we obtain the following from simple real-variables con-
siderations:

P
{
(S,U) �= ∂

} ≤ const ·
[∫ ∫

p|t−s|(x − y)κ̃(x − y)

(4.84)

× μ(dt dx)μ(ds dy)

]−1

.

By Proposition 4.6, the term in the reciprocated brackets is equivalent to the energy
Ed−αN(μ) of μ, and because μ is a probability measure on E × F , we obtain the
following:

P
{
(S,U) �= ∂

} ≤ const · Cd−αN(E × F).(4.85)

This yields (4.61), and hence Theorem 3.1.

4.5. Proof of Proposition 1.4. The method for proving Theorem 3.1 can be
modified to prove Proposition 1.4.

PROOF OF PROPOSITION 1.4 (Sketch). The proof for the sufficiency follows
a similar line as in Section 4.3; we merely exclude all appearances of Xα(u), and
keep careful track of the incurred changes. This argument is based on a second-
moment argument and is standard. Hence, we only give a brief sketch for the proof
of the more interesting necessity.

Assume that P{W(E) ∩ F �= ∅} > 0 and let � be a point that is not in R+.
Define τ := inf{s ∈ E :W(s) ∈ F } on {W(E) ∩ F �=∅}, where inf∅ := � (in this
instance).

Let μ be the probability measure on E × F defined by

μ(G1 × G2) := P
{
τ ∈ G1,W(τ) ∈ G2|τ �= �

}
.(4.86)
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Since F has Lebesgue measure 0, we have μ ∈ Pd(E × F). The rest of the proof
is similar to the argument of Section 4.4, but is considerably simpler. Therefore,
we omit the many remaining details. �

5. Proof of Theorem 1.1. Let us recall Kaufman’s uniform dimension result
for Brownian motion [7]: If d ≥ 2, then outside a single null set dimH W(G) =
2 dimH G for all analytic sets G ⊂ R+. Note that the set G can be random; that is,
G can depend on the Brownian path itself. By considering the random set G :=
W−1(F ), we can reduce the proof of Theorem 1.1 to one about determining a
formula for ‖dimH(E ∩ W−1(F ))‖L∞(P);2 see the paragraph that precedes (5.22).

For this purpose, we choose and fix an α ∈ (0,1), and let Xα to be a symmet-
ric stable Lévy process in R with index α. As before, we denote the transition
probabilities of Xα by

gt (x) := P{Xα(t) ∈ dx}
dx

= 1

π

∫ ∞
0

cos
(
ξ |x|)e−tξα/2 dξ.(5.1)

We define υ to be the corresponding 1-potential density. That is,

υ(x) :=
∫ ∞

0
gt (x)e−t dt.(5.2)

It is known that for all m > 0 there exists cm = cm,α > 1 such that

c−1
m |x|α−1 ≤ υ(x) ≤ cm|x|α−1 if |x| ≤ m;(5.3)

see [10], Lemma 3.4.1, page 383. Since α ∈ (0,1), the preceding remains valid
even when x = 0, as long as we recall that 1/0 := ∞.

For any μ ∈ P(E × F), the collections of all probability measures on E × F ,
and β > 0, define

Iβ(μ) :=
∫ ∫ e−‖x−y‖2/(2|t−s|)

|t − s|β/2 1{s �=t}μ(ds dx)μ(dt dy).(5.4)

The following forms the first step toward our proof of Theorem 1.1.

LEMMA 5.1. Suppose there exists a μ ∈ P(E × F) such that Id+2(1−α)(μ)

is finite. Then, the random set E ∩ W−1(F ) intersects the closure of Xα(R+) with
positive probability.

REMARK 5.2. It is possible, but significantly harder, to prove that the suffi-
cient condition of Lemma 5.1 is also necessary. We will omit the proof of that
theorem, since we will not need it.

2Here is where we study the case d ≥ 2 separately from the case d = 1. Kaufman’s theorem fails to

hold for one-dimensional Brownian motion. The standard example is the random set G := W−1{0}.
For this set, dimH W(G) = dimH{0} = 0. And this quantity is clearly different from 2 dimH G, which
is 1 thanks to a well-known theorem of Paul Lévy.
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PROOF OF LEMMA 5.1. The proof is similar in spirit to that of Proposition 1.2.
For all fixed ε > 0 and probability measures μ on (0,∞) × Rd , we define the
following parabolic version of (4.36), using the same notation for φε := fε ∗ fε ,
etc.:

Yε(μ) :=
∫ ∞

0
e−t dt

∫
μ(ds dx)φε

(
W(s) − x

)
φε

(
Xα(t) − s

)
.(5.5)

Just as we did in Lemma 4.8, we can find a constant c ∈ (0,∞)—depending only
on the geometry of E and F —such that uniformly for all μ ∈ P(E × F) and
ε ∈ (0,1),

E
[
Yε(μ)

] =
∫ ∞

0
e−t dt

∫
μ(ds dx)(φε ∗ ps)(x)(φε ∗ gt )(s) ≥ c;(5.6)

but now we apply (5.3) in place of Lemma 4.5.
And we proceed, just as we did in Proposition 4.9, and prove that

E
(∣∣Yε(μ)

∣∣2) ≤ const · Id+2(1−α)(μ).(5.7)

The only differences between the proof of (5.7) and that of Proposition 4.9 are the
following:

– Here we appeal to Proposition 4.4, whereas in Proposition 4.9 we made use of
Proposition 4.2; and

– We apply (5.3) in place of both Proposition 4.6 and Lemma 4.7. Otherwise, the
details of the two computations are essentially the same.

Lemma 5.1 follows from another application of the Paley–Zygmund lemma
[10], page 72, to (5.6) and (5.7); the Paley–Zygmund lemma is used in a simi-
lar way as in the proof of the first half of Theorem 3.1. We omit the details, since
this is a standard second-moment computation. �

Next, we present measure-theoretic conditions that are respectively sufficient
and necessary for Id+2(1−α)(μ) to be finite for some Borel space–time probability
measure μ on E × F .

LEMMA 5.3. We always have

dimH(E × F ;�) ≤ sup
{
β > 0 : inf

μ∈P(E×F)
Iβ(μ) < ∞

}
.(5.8)

PROOF. For all space–time probability measures μ, and τ > 0 define the
space–time τ -dimensional Bessel–Riesz energy of μ as

ϒτ(μ;�) :=
∫ ∫

μ(ds dx)μ(dt dy)

[�((s, x); (t, y))]τ .(5.9)

A suitable formulation of Frostman’s theorem [20] implies that

dimH(E × F ;�) = sup
{
τ > 0 :ϒτ(μ;�) < ∞}

.(5.10)
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We can consider separately the cases that ‖x − t‖2 ≤ |s − t | and ‖x − y‖2 >

|s − t |, and hence deduce that

e−‖x−y‖2/(2|t−s|)

|s − t |β ≤ min
(

c

‖x − y‖2β
,

1

|s − t |β
)
,(5.11)

where c := supz>1 z2βe−z/2 is finite. Consequently, I2β(μ) ≤ c′ϒ2β(μ;�), with
c′ := max(c,1), and (5.8) follows from (5.10). �

LEMMA 5.4. With probability one,

dimH

(
E ∩ W−1(F )

) ≤ dimH(E × F ;�) − d

2
.(5.12)

PROOF. Choose and fix some r > 0. Let T (r) denote the collection of all
intervals of the form [t − r2, t + r2] that are in [1/q, q]. Also, let S(r) denote
the collection of all closed Euclidean [�2] balls of radius r that are contained in
[−q, q]d . Recall that Xα is a symmetric stable process of index α ∈ (0,1) that is
independent of W . It is well known that uniformly for all r ∈ (0,1),

sup
I∈T (r)

P
{
Xα

([0,1]) ∩ I �= ∅

} ≤ const · r2(1−α);(5.13)

see [10], Lemma 1.4.3, page 355, for example. It is just as simple to prove that the
following holds uniformly for all r ∈ (0,1):

sup
I∈T (r)

sup
J∈S(r)

P
{
W(I) ∩ J �= ∅

} ≤ const · rd .(5.14)

[Indeed, conditional on {W(I) ∩ J �= ∅}, the random variable W(t) comes to
within r of J with a minimum positive probability, where t denotes the small-
est point in I .] Because W(I) ∩ J �= ∅ if and only if W−1(J ) ∩ I �= ∅, it follows
that uniformly for all r ∈ (0,1),

sup
I∈T (r)

sup
J∈S(r)

P
{
W−1(J ) ∩ I ∩ Xα

([0,1]) �= ∅

} ≤ const · rd+2(1−α).(5.15)

Define

R := ⋃
r∈(0,1)

{
I × J : I ∈ T (r) and J ∈ S(r)

}
.(5.16)

Thus, R denotes the collection of all “space–time parabolic rectangles” whose
�-diameter lies in the interval (0,1).

Suppose d +2(1−α) > dimH(E×F ;�). By the definition of Hausdorff dimen-
sion, and a Vitali-type covering argument (see Mattila [15], Theorem 2.8, page 34)
for all ε > 0, we can find a countable collection {Ej × Fj }∞j=1 of elements of R
such that: (i)

⋃∞
j=1(Ej × Fj ) contains E × F ; (ii) the �-diameter of Ej × Fj is
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positive and less than one (strictly) for all j ≥ 1; and (iii)
∑∞

j=1 |�-diam(Ej ×
Fj )|d+2(1−α) ≤ ε. Thanks to (5.15),

P
{
W−1(F ) ∩ E ∩ Xα

([0,1]) �= ∅

}
≤

∞∑
j=1

P
{
W−1(Fj ) ∩ Ej ∩ Xα

([0,1]) �=∅

}
(5.17)

≤ const ·
∞∑

j=1

∣∣�-diam(Ej × Fj )
∣∣d+2(1−α) ≤ const · ε.

Since neither the implied constant nor the left-most term depend on the value of ε,
the preceding shows that W−1(F ) ∩ E ∩ Xα([0,1]) is empty almost surely.

Now let us recall half of McKean’s theorem [10], Example 2, page 436: If
dimH(A) > 1 − α, then Xα([0,1]) ∩ A is nonvoid with positive probability. We
apply McKean’s theorem, conditionally, with A := W−1(F ) ∩ E to find that if
d + 2(1 − α) > dimH(E × F ;�), then

dimH

(
W−1(F ) ∩ E

) ≤ 1 − α almost surely.(5.18)

The preceding is valid almost surely, simultaneously for all rational values of 1−α

that are strictly between one and 1
2(dimH(E ×F ;�)− d). Thus, the result follows.

�

PROOF OF THEOREM 1.1. By the modulus of continuity of Brownian motion,
there exists a null set off which dimH W(A) ≤ 2 dimH A, simultaneously for all
Borel sets A ⊆ R+ that might—or might not—depend on the Brownian path itself.
Since W(E ∩ W−1(F )) = W(E) ∩ F , Lemma 5.4 implies that

dimH

(
W(E) ∩ F

) ≤ dimH(E × F ;�) − d almost surely.(5.19)

For the remainder of the proof, we assume that d ≥ 2, and propose to prove that∥∥dimH

(
W(E) ∩ F

)∥∥
L∞(P) ≥ dimH(E × F ;�) − d.(5.20)

Henceforth, we assume without loss of generality that

dimH(E × F ;�) > d;(5.21)

for there is nothing left to prove otherwise. In accord with the theory of Taylor and
Watson [20], (5.21) implies that P{W(E) ∩ F �= ∅} > 0.

According to Kaufman’s uniform-dimension theorem [7], the Hausdorff dimen-
sion of W(E) ∩ F is almost surely equal to twice the Hausdorff dimension of
E ∩ W−1(F ). Therefore, it suffices to prove the following in the case that d ≥ 2:∥∥dimH

(
E ∩ W−1(F )

)∥∥
L∞(P) ≥ dimH(E × F ;�) − d

2
,(5.22)
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as long as the right-hand side is positive. If α ∈ (0,1) satisfies

1 − α <
dimH(E × F ;�) − d

2
,(5.23)

than Lemma 5.3 implies that Id+2(1−α)(μ) < ∞ for some μ ∈ P(E × F). Thanks
to Lemma 5.1, E ∩ W−1(F ) ∩ Xα([0,1]) �= ∅ with positive probability. Conse-
quently,

P
{
dimH

(
E ∩ W−1(F )

) ≥ 1 − α
}
> 0,(5.24)

because the second half of McKean’s theorem implies that if dimH(A) < 1 − α,
then Xα(R+) ∩ A = ∅ almost surely. Since (5.24) holds for all α ∈ (0,1) that
satisfy (5.23), (5.22) follows. This completes the proof. �

REMARK 5.5. Let us mention the following byproduct of our proof of Theo-
rem 1.1: For every d ≥ 1,∥∥dimH

(
E ∩ W−1(F )

)∥∥
L∞(P) = dimH(E × F ;�) − d

2
.(5.25)

When d = 1, this was found first by Kaufman [8], who used other arguments (for
the harder half). See Hawkes [4] for similar results in case W is replaced by a
stable subordinator of index α ∈ (0,1).

We conclude this paper with some problems that continue to elude us.

OPEN PROBLEMS. Theorems 1.1 and 1.3 together imply that when d ≥ 2 and
F ⊂ Rd has Lebesgue measure 0,

sup
{
γ > 0 : inf

μ∈Pd (E×F)
Eγ (μ) < ∞

}
= dimH(E × F ;ρ) − d.(5.26)

The preceding is a kind of “parabolic Frostman theorem.” And we saw in the
Introduction that (5.26) is in general false when d = 1. We would like to better
understand why the one-dimensional case is so different from the case d ≥ 2. Thus,
we are led naturally to a number of questions, three of which we state below:

P1. Equation (5.26) is, by itself, a theorem of geometric measure theory. There-
fore, we ask, “Is there a direct proof of (5.26) that does not involve random
processes, broadly speaking, and Kaufman’s uniform-dimension theorem [7],
in particular”?

P2. When d ≥ 2, (5.26) gives an interpretation of the capacity form on the left-
hand side of (5.26) in terms of the geometric object on the right-hand side.
Can we understand the left-hand side of (5.26) geometrically in the case that
d = 1?

P3. The following interesting question is due to an anonymous referee: Are there
quantitative relationships between a rough hitting-type probability of the form
P{dimH(W(E) ∩ F) > γ } and the new capacity form of Benjamini et al. [1]
(see also [16], Theorem 8.24)? We suspect the answer is “yes,” but do not
have a proof.
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