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Reactive point processes (RPPs) are a new statistical model designed for
predicting discrete events in time based on past history. RPPs were devel-
oped to handle an important problem within the domain of electrical grid re-
liability: short-term prediction of electrical grid failures (“manhole events”),
including outages, fires, explosions and smoking manholes, which can cause
threats to public safety and reliability of electrical service in cities. RPPs in-
corporate self-exciting, self-regulating and saturating components. The self-
excitement occurs as a result of a past event, which causes a temporary
rise in vulner ability to future events. The self-regulation occurs as a result
of an external inspection which temporarily lowers vulnerability to future
events. RPPs can saturate when too many events or inspections occur close
together, which ensures that the probability of an event stays within a realistic
range. Two of the operational challenges for power companies are (i) making
continuous-time failure predictions, and (ii) cost/benefit analysis for decision
making and proactive maintenance. RPPs are naturally suited for handling
both of these challenges. We use the model to predict power-grid failures in
Manhattan over a short-term horizon, and to provide a cost/benefit analysis
of different proactive maintenance programs.

1. Introduction. We present a new statistical model for predicting discrete
events over time, called Reactive Point Processes (RPPs). RPPs are a natural fit
for many different domains, and their development was motivated by the problem
of predicting serious events (fires, explosions, power failures) in the underground
electrical grid of New York City (NYC). In New York City and in other major
urban centers, power-grid reliability is a major source of concern, as demand for
electrical power is expected to soon exceed the amount we are able to deliver with
our current infrastructure [DOE (2008), NYBC (2010), Rhodes (2013)]. Many
American electrical grids are massive and have been built gradually since the time
of Thomas Edison in the 1880s. For instance, in Manhattan alone, there are over
21,216 miles of underground cable, which is almost enough cable to wrap once
around the earth. Manhattan’s power distribution system is the oldest in the world,
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and NYC’s power utility company, Con Edison, has cable databases that started in
the 1880s. Within the last decade, in order to handle increasing demands on NYC’s
power-grid and increasing threats to public safety, Con Edison has developed and
deployed various proactive programs and policies [So (2004)]. In Manhattan, there
are approximately 53,000 access points to the underground electrical grid, which
are called electrical service structures or manholes. Problems in the underground
distribution network are manifested as problems within manholes, such as under-
ground burnouts or serious events. A multi-year, ongoing collaboration to predict
these events in advance was started in 2007 [Rudin et al. (2010, 2012, 2014)],
where diverse historical data were used to predict manhole events over a long-
term horizon, as the data were not originally processed enough to predict events in
the short term. Being able to predict manhole events accurately in the short term
could immediately lead to reduced risks to public safety and increased reliability
of electrical service. The data from this collaboration have sufficiently matured
due to iterations of the knowledge discovery process and maturation of the Con
Edison inspections program, and, in this paper, we show that it is indeed possible
to predict manhole events to some extent within the short term.

The fact that RPPs are a generative model allows them to be used for cost-
benefit analysis, and thus for policy decisions. In particular, since we can use RPPs
to simulate power failures into the future, we can also simulate various inspection
policies that the power company might implement. This way we can create a robust
simulation setup for evaluating the relative costs of different inspection policies
for NYC. This type of cost-benefit analysis can quantify the cost of the inspections
program as it relates to the forecasted number of manhole events.

RPPs capture several important properties of power failures on the grid:

• There is an instantaneous rise in vulnerability to future serious events imme-
diately following an occurrence of a past serious event, and the vulnerability
gradually fades back to the baseline level. This is a type of self-exciting prop-
erty.

• There is an instantaneous decrease in vulnerability due to an inspection, repair
or other action taken. The effect of this inspection fades gradually over time.
This is a self-regulating property.

• The cumulative effect of events or inspections can saturate, ensuring that vul-
nerability levels never stray too far beyond their baseline level. This captures
diminishing returns of many events or inspections in a row.

• The baseline level can be altered if there is at least one past event.
• Vulnerability between similar entities should be similar. RPPs can be incorpo-

rated into a Bayesian framework that shares information across observably sim-
ilar entities.

RPPs extend self-exciting point processes (SEPPs), which have only the self-
exciting property mentioned above. Self-exciting processes date back at least to
the 1960s [Bartlett (1963), Kerstan (1964)]. The applicability of self-exciting
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point processes for modeling and analyzing time-series data has stimulated inter-
est in diverse disciplines, including seismology [Ogata (1988, 1998)], criminology
[Egesdal et al. (2010), Lewis et al. (2010), Louie, Masaki and Allenby (2010),
Mohler et al. (2011), Porter and White (2012)], finance [Aït-Sahalia, Cacho-Diaz
and Laeven (2010), Bacry et al. (2013), Chehrazi and Weber (2011), Embrechts,
Liniger and Lin (2011), Filimonov and Sornette (2012), Hardiman, Bercot and
Bouchaud (2013)], computational neuroscience [Johnson (1996), Krumin, Reutsky
and Shoham (2010)], genome sequencing [Reynaud-Bouret and Schbath (2010)]
and social networks [Crane and Sornette (2008), Du et al. (2013), Masuda et al.
(2012), Mitchell and Cates (2010), Simma and Jordan (2010)]. These models ap-
pear in so many different domains because they are a natural fit for time-series
data where one would like to predict discrete events in time, and where the oc-
currence of a past event gives a temporary boost to the probability of an event in
the future. A recent work on Bayesian modeling for dependent point processes
is that of Guttorp and Thorarinsdottir (2012). Paralleling the development of fre-
quentist literature, many Bayesian approaches are motivated by data on natural
events. Peruggia and Santner (1996), for example, develop a Bayesian frame-
work for the Epidemic-Type-Aftershock-Sequences (ETAS) model. Nonparamet-
ric Bayesian approaches for modeling data from nonhomogeneous point pattern
data have also been developed [see Taddy and Kottas (2012), e.g.]. Blundell, Beck
and Heller (2012) present a nonparametric Bayesian approach that uses Hawkes
models for relational data. An expanded related work section appears in the sup-
plementary material [Ertekin, Rudin and McCormick (2015)].

The self-regulating property can be thought of as the effect of an inspection.
Inspections are made according to a predetermined policy of an external source,
which may be deterministic or random. In the application that self-exciting point
processes are the most well known for, namely, earthquake modeling, it is not pos-
sible to take an action to preemptively reduce the risk of an earthquake; however,
in other applications it is clearly possible to do so. In our power failure applica-
tion, power companies can perform preemptive inspections and repairs in order
to decrease electrical grid vulnerability. In neuroscience, it is possible to take an
action to temporarily reduce the firing rate of a neuron. There are many actions
that police can take to temporarily reduce crime in an area (e.g., temporary in-
creased patrolling or monitoring). In medical applications, doses of medicine can
be preemptively applied to reduce the probability of a cardiac arrest or other event.
Alternatively, for instance, the self-regulation can come as a result of the patient’s
lab tests or visits to a physician.

Another way that RPPs expand upon SEPPs is that they allow deviations from
the baseline vulnerability level to saturate. Even if there are repeated events or
inspections in a short period of time, the vulnerability level still stays within a
realistic range. In the original self-exciting point process model, it is possible for
the self-excitation to escalate to the point where the probability of an event gets
very close to one, which is generally unrealistic. In RPPs, the saturation function
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prevents this from happening. Also, if many inspections are done in a row, the
vulnerability level does not drop to zero, and there are diminishing returns for the
later ones because of the saturation function.

Outline of paper. We motivate RPPs using the power-grid application in Sec-
tion 2. We first introduce the general form of the RPP model in Section 3. We
discuss a Bayesian framework for fitting RPPs in Section 4. The Bayesian formu-
lation, which we implement using Approximate Bayesian Computation (ABC),
allows us to share information across observably similar entities (manholes in our
case). For both methods we fit the model to NYC data and performed simulation
studies. Section 5 contains a prediction experiment, demonstrating the RPPs’ abil-
ity to predict future events in NYC. Once the RPP model is fit to data from the
past, it can be used for simulation. In particular, we can simulate various inspec-
tion policies for the Manhattan grid and examine the costs associated with each
of them in order to choose the best inspection policy. Section 6 shows this type of
simulation using the RPP, illustrating how it is able to help choose between differ-
ent inspection policies, and thus assist with broader policy decisions for the NYC
inspections program. The paper’s supplementary material [Ertekin, Rudin and Mc-
Cormick (2015)] includes a related work section, conditional frequency estimator
(CF estimator) for the RPP, experiments with a maximum likelihood approach,
a description of the inspection policy used in Section 6 and simulation studies for
validating the fitting techniques for the models in the paper. It also includes a de-
scription and link for a publicly available simulated data set that we generated,
based on statistical properties of the Manhattan data set.

A short version of this paper appeared in the late-breaking developments track
of AAAI-13 [Ertekin, Rudin and McCormick (2013)].

2. Description of data. The data used for the project includes records from
the Emergency Control Systems (ECS) trouble ticket system of Con Edison, which
includes records of responses to past events (total 213,504 records for 53,525 man-
holes from 1995 until 2010). Part of the trouble ticket for a manhole fire is in
Figure 1.

Events can include serious problems such as manhole fires or explosions, or
nonserious events such as wire burnouts. These tickets are heavily processed into a
structured table, where each record indicates the time, manhole type (“service box”
or “manhole,” and we refer to both types as manholes colloquially), the unique
identifier of the manhole and details about the event. The trouble tickets are clas-
sified automatically as to whether they represent events (the kind we would like
to predict and prevent) or not (in which case the ticket is irrelevant and removed).
The processing of tickets is based on a study where Con Edison engineers manu-
ally labeled tickets, and is discussed further by Passonneau et al. (2011).
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FDNY/250 REPORTS F/O 45536 E.51 ST & BEEKMAN PL...MANHOLE FIRE
MALDONADO REPORTS F/O 45536 E.51 ST FOUND SB-9960012 SMOKING
HEAVY...ACTIVE...SOLID...ROUND...NO STRAY VOLTAGE...29-L...
SNOW...FLUSH REQUESTED...ORDERED #100103.
12/22/09 08:10 MALDONADO REPORTS 3 2WAY-2WAY CRABS COPPERED
CUT OUT & REPLACED SAME. ALSO STATES 5 WIRE CROSSING COMES U
P DEAD WILL INVESTIGATE IN SB-9960013.
FLUSH # 100116 ORDERED FOR SAME
12/22/09 14:00 REMARKS BELOW WERE ADDED BY 62355
12/22/09 01:45 MASON REPORTS F/O 4553 E.51ST CLEARED ALL
B/O-S IN SB9960013 ALSO FOUND A MAIN MISSING FROM THE WEST IN
12/22/09 14:08 REMARKS BELOW WERE ADDED BY 62355
SB9960011 F/O 1440 BEEKMAN................................JMC

FIG. 1. Part of the ECS remarks from a manhole fire ticket in 2009. The ticket implies that the man-
hole was actively smoking upon the worker’s arrival. The worker located a crab connector that had
melted (“coppered”) and a cable that was not carrying current (“dead”). Addresses and manhole
numbers were changed for the purpose of anonymity.

We have more or less complete event data from 1999 until the present, and in-
complete event data between 1995 and 1999. A plot of the total number of events
per year (using our definition of what constitutes an event) is provided in Fig-
ure 2(a).

We also have manhole location and cable record information, which contains
information about the underground electrical infrastructure. These two large tables
are joined together to determine which cables enter into which manholes. The
inferential join between the two tables required substantial processing in order to
correctly match cables with manholes. Main cables are cables that connect two
manholes, as opposed to service or streetlight cables which connect to buildings
or streetlights. In our studies on long-term prediction of power failures, we have
found that the number of main phase cables in a manhole is a relatively useful
indicator of whether a manhole is likely to have an event. Figure 2(b) contains a
histogram of the number of main phase cables in a manhole.

The electrical grid was built gradually over the last ∼130 years, and, as a result,
manholes often contain cables with a range of different ages. Figure 2(c) contains
a histogram of the age of the oldest main cables in each manhole, as recorded in
the database. Cable age is also used as a feature for our RPP model. Cable ages
range from less than a year old to over 100 years old; Con Edison started keeping
records back in the 1880s during the time of Thomas Edison. We remark that it is
not necessarily true that the oldest cables are the ones most in need of replacement.
Many cables have been functioning for a century and are still functioning reliably.

We also have data from Con Edison’s new inspections program. Inspections can
be scheduled in advance, according to a schedule determined by a state mandate.
This mandate currently requires an inspection for each structure at least once ev-
ery 5 years. Con Edison also performs “ad hoc” inspections. These occur when
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(a) (b)

(c)

FIG. 2. A plot of the number of yearly events, a histogram of the number of Main Phase (PH)
cables, and a histogram of the age of oldest cable set in a manhole.

a worker is inside a manhole for another purpose (e.g., to connect a new service
cable) and chooses to fill in an inspection form. The inspections are broken down
into 5 distinct types, depending on whether repairs are urgent (Level I) or whether
the inspector suggests major infrastructure repairs (Level IV) that are placed on a
waiting list to be completed. Sometimes when continued work is being performed
on a single manhole, this manhole will have many inspections performed within a
relatively small amount of time—hence our need for “diminishing returns” on the
influence of an inspection that motivates the saturation function of the RPP model.

Some questions of interest to power companies are as follows:

(i) Can we predict failures continuously in time, and can we model how
quickly the influence of past events and inspections fade over time?

(ii) Can we develop a cost/benefit analysis for proactive maintenance policies?

RPPs will help with both of these questions.

3. The reactive point process model. We begin with a simpler version of
RPPs where there is only one time-series corresponding to a single entity (man-
hole). Our data consist of a series of NE events with event times t1, t2, . . . , tNE

and a series of given inspection times denoted by t̄1, t̄2, . . . , t̄NI
. The inspection

times are assumed to be under the control of the experimenter. RPPs model events
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as being generated from a nonhomogeneous Poisson process with intensity λ(t)

where

λ(t) = λ0

[
1 + g1

( ∑
∀te<t

g2(t − te)

)
− g3

( ∑
∀t̄i<t

g4(t − t̄i )

)
+ C11[NE≥1]

]
,(1)

where te are event times and t̄i are inspection times. The vulnerability level perma-
nently goes up by C1 if there is at least one past event, where C1 is a constant that
can be fitted. The C11[NE≥1] term is present to deal with “zero inflation,” where the
case of zero events needs to be handled separately than one or more past events.
Functions g2 and g4 are the self-excitation and self-regulation functions, which
have initially large amplitudes and decay over time. Self-exciting point processes
have only g2, and not the other functions, which are novel to RPPs. Functions
g1 and g3 are the saturation functions, which start out as the identity function
and then flatten farther from the origin. If the total sum of the excitation terms is
large, g1 will prevent the vulnerability level from increasing too much. Similarly,
g4 controls the total possible amount of self-regulation and encodes “diminishing
returns” for having several inspections in a row.

The RPP model arose based on exploratory work performed using a conditional
frequency (CF) estimator of the data. To construct the CF estimator, we computed
the empirical probability of another event occurring on a day t given that an event
occurred at t = 0. To obtain these probabilities, we first align the sequences of time
so that t = 0 represents the time when an event happened. We now have a series of
“trails” that give the probability of another event, conditional on the last event that
occurred for a given manhole. We used only trails that were far apart in time so we
could look at the effect of each event without considering short-term influences
of other previous events. What we see from Figure 3(a) is that the conditional
probability for experiencing a second event soon after the first event is high and
decays with t . This decay represents self-exciting behavior. To see evidence of self-
excitation from the raw data, we present plots of event times for several manholes
in Figure 4. We see a clear grouping of events which is consistent with self-exciting
behavior. These observations lead us to include the g2 term in (1). The behavior
we observe could not be easily explained using a simple random effects model;
an attempt to do this is within Section 4 of the supplementary material [Ertekin,
Rudin and McCormick (2015)].

Next, we evaluate whether subsequent events continue to increase propensity
for another event or whether the risk in the most troubled manholes “saturates”
and multiple manhole events in a row have diminishing-returns on the conditional
probabilities. Figure 3(b) shows the saturation effect. The y-axis of this plot con-
tains raw empirical probabilities of another event. The x-axis are sums of effects
from previous recent events (sums of g2 values). If Figure 3(b) were linear, we
would not see diminishing returns. That is, a linear trend in Figure 3(b) would
indicate that each subsequent event increases the likelihood of another event by



REACTIVE POINT PROCESSES 129

(a) Empirical probabilities and fitted values (b) Empirical probabilities and fitted values

for the self-excitation function g2 for the saturation function g1

FIG. 3. Fitted functions for empirical probabilities for the Manhattan data set. These figures dis-
play results for the conditional frequency estimator used to derive the form of the RPP model. The
left figure shows the empirical probability of another event given a previous event a given number of
days in the past. The decreasing empirical probability with time motivates our self-excitation func-
tion. The right plot shows the increase in propensity for another event given the total cumulative
probability from past events. The curvature indicates that additional events have diminishing returns
on the likelihood of another event, motivating the saturation component of the RPP.

the same amount. Instead, we see a distinct curve, indicating that the additional
increase in risk decreases as the number of events rises. To further aid in develop-
ing a functional form of the model, we fit smooth curves to the data displayed in
Figure 3(a) and (b). The process for fitting these smooth curves, as well as simula-
tion experiments for validation, is described in detail in the supplementary material
[Ertekin, Rudin and McCormick (2015)]. The fitted values for the smooth curves
are

g2(t) = 11.62

1 + e0.039t
,

g1(t) = 16.98 ×
(

1 − log
(
1 + e−0.15t ) × 1

log 2

)
.

These estimates inspired the parameterizations we provided in equation (2). We
also estimated the baseline hazard rate λ0 and baseline change C1 for Manhattan
as λ0 = 2.4225 × 10−4 and C1 = 0.0512.

Because the inspection program is relatively new, we were not able to trace out
the full functions g4 and g3; however, we strongly hypothesize that the inspections
have an effect that wears off over time based on a matched pairs study [see, e.g.,
Passonneau et al. (2011)], where we showed that for manholes that had been in-
spected at least twice, the second manhole inspection does not lead to the same
reduction in vulnerability as the first manhole inspection does. In what follows, we
will show how the parameters of g1, g2, g3 and g4 can be made to specialize to
each individual manhole adaptively.
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FIG. 4. Time of events in distinct manholes in the Manhattan data that demonstrate the self-exci-
tating behavior. The x-axis is the number of days elapsed since the day of first record in the data set
and the markers indicate the actual time of events.

Inspired by the CF estimator, we use the family of functions below for fitting
power-grid data, where a1, b1, a3, b3, β and γ are parameters that can be either
modeled or fitted:

g1(ω) = a1 ×
(

1 − 1

log 2
log

(
1 + e−b1ω

))
, g2(t) = 1

1 + eβt
,

(2)

g3(ω) = a3 ×
(

1 − 1

log 2
log

(
1 + eb3ω

))
, g4(t) = −1

1 + eγ t
.

The factors of log 2 ensure that the vulnerability level is not negative.
We need some notation in order to encode the possibility of multiple manholes.

In the case that there are multiple entities, there are P time-series, each corre-
sponding to a unique entity p. For medical applications, each p is a patient, and
for the electrical grid reliability application, p is a manhole. Our data consist of
events {t(p)e}p,e, inspections {t̄ (p)i}p,i and, additionally, we may have covariate
information Mp,j about every entity p, with covariates indexed by j . Covariates
for the medical application might include a patient’s gender, age at the initial time,
race, etc. For the manhole events application, covariates include the number of
main phase cables in the manhole (number of current carrying cables between two
manholes), the total number of cable sets (total number of bundles of cables) in-
cluding main, service and streetlight cables, and the age of the oldest cable set
within the manhole. All covariates were normalized to be between −0.5 and 0.5.

Within the Bayesian framework, we can naturally incorporate the covariates to
model functions λp for each p adaptively. Consider β in the expression for the self-
excitation function g2 above. The β terms depend on individual-level covariates.
In notation,

g
(p)
2 (t) = 1

1 + eβ(p)t
, g

(p)
4 (t) = −1

1 + eγ (p)t
.(3)

The β(p)’s are assumed to be generated via a hierarchical model of the form

β = log
(
1 + e−Mυ)

where υ ∼ N
(
0, σ 2

υ

)
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are the regression coefficients and M is the matrix of observed covariates. The
γ (p)’s are modeled hierarchically in the same manner,

γ = log
(
1 + e−Mω)

with ω ∼ N
(
0, σ 2

ω

)
.

This permits slower or faster decay of the self-exciting and self-regulating com-
ponents based on the characteristics of the individual. For the electrical reliability
application, we have noticed that manholes with more cables and older cables tend
to have faster decay of the self-exciting terms, for instance.

Demonstrating the need for the saturation function in the RPP model. In the
previous section we used exploratory tools on the Manhattan data to demonstrate
diminishing returns in risk for multiple subsequent events. In what follows, we link
the exploratory work in the last section with our modeling framework, demonstrat-
ing how the standard linear self-exciting process can produce unrealistic results
under ordinary conditions.

First we show that the self-excitation term can cause the rate of events λ(t) to
increase without bound. To show this, we considered a baseline vulnerability of
λ0 = 0.01, setting C1 = 0.1, used g2(t) = 1

1+e0.005t , and omitted the other compo-
nents of the model (no inspections, no saturation g1). The self-excitation eventu-
ally causes the rate of events to escalate unrealistically as shown in Figure 5 (upper
left). The embedded subfigure is a zoomed-in version of the first 1500 time steps.

When we include the saturation function g1, the excitation is controlled, and
the probability of an event no longer increases to unreasonable levels. We used
g1(ω) = 1 − 1

log 2 log(1 + e−ω), so that the vulnerability λ(t) can reach to a maxi-
mum value of 0.021. The result is in Figure 5 (upper right).

Now we show the effect of the saturation function g3 in the presence of repeated
inspections. If no manhole events occur and the manhole is repeatedly inspected,
then using the linear SEPP model, its vulnerability levels can become arbitrarily
close to 0. This is not difficult to show, and we do this in Figure 5 (lower left). Here
we used λ0 = 0.2, g4(t) = −0.25

1+e0.002t , and omitted g3. We ran the same experiment

but with saturation, specifically, with g3(ω) = 1 − 1
log 2 log(1 + eω). The results in

Figure 5 (lower right) show that the saturation function never lets the vulnerability
drop unrealistically far below the baseline level.

4. Fitting RPP statistical models. In this section we describe our Bayesian
framework for inference using RPP models. The RPP intensity in equation (1)
provides structure to capture self-excitation, self-regulation and saturation. First,
in Section 4.1 we describe the likelihood for the RPP statistical model. We then
describe prior distributions and our computational strategy for sampling from the
posterior in Section 4.2. Section 4.3 then details the values we use in making pre-
dictions. Along with the results presented here, we extensively evaluated our infer-
ence strategy using a series of simulation experiments, where the goal is to recover
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(a) Model with self-excitation function g2 (b) Model with self-excitation function g2

(without saturation function g1 and inspections) and saturation function g1 (no inspections)

and a zoomed view of the first 1500 days

(c) Model with self-regulation function g4 (d) Model with self-regulation function g4

(without saturation function g3 and events) and saturation function g3 (no events)

FIG. 5. The effect of the saturation functions g1 and g3. The dots on the time axis in subfigures
(a) and (b) indicate the times of events, and the dots in subfigures (c) and (d) indicate the times of
inspections. The figures on the right include saturation, and the figures on the left do not include
saturation. Without saturation, the self-excitation function in (a) grows unbounded, whereas the self-
-regulation function in (c) drops to an unrealistic level of zero. The effects of the saturation functions
in Figures (b) and (d) keep g2 and g4 within realistic bounds.

parameters of simulated data for which there is ground truth. We further applied
the method of maximum likelihood to the Manhattan power-grid data. Details of
these additional experiments are in the supplementary material [Ertekin, Rudin and
McCormick (2015)].

4.1. RPP likelihood. This section describes the likelihood for the RPP statisti-
cal model. Using the intensity function described in Section 3, the RPP likelihood
is derived using the likelihood formula for a nonhomogeneous Poisson process
over the time interval [0, Tmax]:

logL
({

t
(p)
1 , . . . , t

(p)

N
(p)
E

}
p;υ, a1,M

)
(4)

=
P∑

p=1

[N
(p)
E∑

e=1

log
(
λp

(
t (p)
e

)) −
∫ Tmax

0
λp(u)du

]
,

where υ are coefficients for covariates represented by the matrix M. The covariates
are the number of main phase cables in the manhole (number of current carrying
cables between two manholes), the total number of cable sets (total number of
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bundles of cables) including main, service and streetlight cables, and the age of the
oldest cable set within the manhole. All covariates were normalized to be between
−0.5 and 0.5.

4.2. Bayesian RPP. Developing a Bayesian framework facilitates sharing of
information between observably similar manholes, thus making more efficient use
of available covariate information. The RPP model encodes much of our prior in-
formation into the shape of the rate function given in equation (1). As discussed in
Section 3, we opted for a simple, parsimonious model that imposes mild regular-
ization and information sharing without adding substantial additional information;
specifically, we use diffuse Gaussian priors on the log scale for each regression
coefficient.

We fit the model using Approximate Bayesian Computation [Diggle and Grat-
ton (1984)]. The principle of Approximate Bayesian Computation (ABC) is to
randomly choose proposed parameter values, use those values to generate data,
and then compare the generated data to the observed data. If the difference is suf-
ficiently small, then we accept the proposed parameters as draws from the ap-
proximate posterior. To do ABC, we need two things: (i) to be able to simulate
from the model and (ii) a summary statistic. To compare the generated and ob-
served data, the summary statistic from the observed data, S({t (p)

1 , . . . , t
(p)

N
(p)
E

}p),

is compared to that of the data simulated from the proposed parameter values,
S({t (p),sim

1 , . . . , t
(p),sim

N
(p),sim
E

}p). If the values are similar, it indicates that the proposed

parameter values may yield a useful model for the data.
A critical difference between updating a parameter value in an ABC iteration

versus, for example, a Metropolis–Hastings step is that ABC requires simulating
from the likelihood, whereas Metropolis–Hastings requires evaluating the likeli-
hood. In our context, we are able to both evaluate and simulate from the likelihood
with approximately the same computational complexity. ABC has some advan-
tages, namely, that we have meaningful summary statistics, discussed below. Fur-
ther, in our case it is not particularly computationally challenging, as we already
extensively simulate from the model as a means of evaluating hypothetical inspec-
tion policies. We evaluated the adequacy of this method extensively in simulation
studies presented in the supplementary material [Ertekin, Rudin and McCormick
(2015)].

A key conceptual aspect of ABC is that one can choose the summary statistic to
best match the problem. The sufficient statistic for the RPP is the vector of event
times, and thus gives no data reduction—so we choose other statistics. One impor-
tant insight in constructing our summary statistic is that changing the parameters
in the RPP model alters the distribution of times between events. The histogram of
time differences for a homogenous Poisson Process, for example, has an exponen-
tial decay. The self-exciting process, on the other hand, has a distribution resem-
bling a lognormal because of the positive association between intensities after an
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event occurs. Altering the parameters of the RPP model changes the intensity of
self-excitation and self-regulation, thus altering the distribution of times between
events. We construct our first statistic, therefore, by examining the KL divergence
between the distribution of times between events in the data and the distribution
between event times in the simulated data. We do this for each of our proposed pa-
rameters. Examining the distribution of times between events, though not the true
sufficient statistic, captures a concise and low-dimensional summary of a key fea-
ture of the process. This statistic does not, however, capture the overall prevalence
of events in the process. Since we focus only on the distribution of times between
events, various processes with different overall intensity could produce distribu-
tions with similar KL divergence to the data distribution. We therefore introduce
a second statistic that counts the total number of events. We contend that together
these statistics represent both the spacing and the overall scale (or frequency) of
events. Thus, the two summary measures we use are as follows:

1. DNE: The difference in the number of events in the simulated and observed
data.

2. KL: The Kullback–Leibler divergence between two histograms, one from the
observed data and one from the real data. These are histograms of time differences
between events.

For the NYC data, we visualized three-dimensional parameter values, both for
DNE (in Figure 6) and KL (in Figure 7) metrics. In both figures, smaller values
(dark blue) are better. As seen, the regions where KL and DNE are optimized are
very similar.

Denoting the probability distribution of the actual data as P and the probability
distribution of the simulated data as Qυ , KL Divergence is computed as

KL(P‖Qυ) = ∑
bin

ln
(

P(bin)

Qυ(bin)

)
P(bin).

As mentioned previously in this section, the Bayesian portion of our model is
relatively parsimonious but does impose mild regularization and encourages sta-

FIG. 6. DNE for Manhattan data set. Each axis corresponds to the coefficient for one of the co-
variates. The magnitude of DNE is indicated by the color.
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FIG. 7. KL for Manhattan data set. Each axis corresponds to the coefficient for one of the covari-
ates. The magnitude of KL is indicated by the color.

bility. We require a distribution π over parameter values. If covariates are not used,
π is a distribution over β (and γ if inspections are present). If covariates are used,
π is a distribution over υ and ω. One option for π is a uniform distribution across
a grid of reasonable values. Another option, which was used in our experiments,
is to simulate from diffuse Gaussian/weakly informative priors on the log scale
[e.g., draw log(νj ) ∼ N(0,5)]. We assumed that C1 and a1 can be treated as tun-
ing constants to be estimated using the CF estimator method, though it is possible
to define priors on these quantities as well if desired.

There is an increasingly large literature in both the theory and implementation
of ABC [see, e.g., Beaumont et al. (2009), Drovandi, Pettitt and Faddy (2011),
Fearnhead and Prangle (2012)] that could be used to produce estimates of the full
posterior. In the supplementary material [Ertekin, Rudin and McCormick (2015)],
we present an importance sampling algorithm as one possible approach. In our
work, however, the goal is to estimate the posterior mode, which we then use for
prediction. To verify our ABC procedure, we used simulated ground truth data
with known β and γ values, and attempted to recover these values with the ABC
method, for both the DNE and KL metrics. We performed extensive simulation
studies to evaluate this method and full results are given in the supplementary
material [Ertekin, Rudin and McCormick (2015)].

In the next section we discuss how we estimate the posterior mode by using a
manifold approximation to the region of high posterior density. We begin by gen-
erating a set of proposed parameter values using the prior distributions. Consistent
with ABC, we simulate data from each set of candidate values and compare the
simulated data to our observed data using the KL and DNE statistics described
above. (From here, we could, e.g., define a kernel and accept draws with a given
probability as in importance sampling. Instead, our goal is estimating the posterior
mode to find parameters for the policy decision, as we describe next.)

4.3. Choosing parameter values for the policy decision. For the policy simu-
lation in Section 6 we wish to choose one set of parameter values to inform our
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FIG. 8. Fitted manifold of υ values with smallest KL divergence and smallest DNE.

decision. In order to choose a single best value of the parameters, we fit a polyno-
mial manifold to the intersection of the bottom 10% of KL values and the bottom
10% of DNE values. Defining υ1, υ2 and υ3 as the coefficients for number of main
phase cables, age of oldest main cable set and total number of sets features, the
formula for the manifold is

υ3 = −9.6 − 0.98υ1 − 0.13υ2 − 1.1 × 10−3(υ1)
2 − 3.6 × 10−3υ1υ2

+ 4.67 × 10−2(υ2)
2,

which is determined by a least squares fit to the data. The fitted manifold is shown
in Figure 8 along with the data.

We then optimized for the point on the manifold closest to the origin. This
implicitly adds regularization, as it chooses the parameter values closest to the
origin. This point is υ1 = −4.6554, υ2 = −0.5716, and υ3 = −4.8028.

Note that cable age (corresponding to the second coefficient) is not the most
important feature defining the manifold. As previous studies have shown [Rudin
et al. (2010)], even though there are very old cables in the city, the age of cables
within a manhole is not alone the best predictor of vulnerability. Now we also
know that it is not the best predictor of the rate of decay of vulnerability back to
baseline levels. This supports Con Edison’s goal to prioritize the most vulnerable
components of the power-grid, rather than simply replacing the oldest components.
The features that mainly determine decay of the self-excitation function g2 are the
number of main phase cables and the number of cable sets. As either or both of
these numbers increase, decay rate β increases, meaning that manholes with more
cables tend to return to baseline levels faster than manholes with fewer cables.

5. Predicting events on the NYC power-grid. Our first experiment aims to
evaluate whether the CF estimator or the feature-based strategy introduced above
is better in terms of identifying the most vulnerable manholes. To do this, we se-
lected 5000 manholes (rank 1001–6000 from the project’s current long-term pre-
diction model). These manholes have similar vulnerability levels, which allows us
to isolate the self-exciting effect without modeling the baseline level. Using both
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FIG. 9. Ranking differences between feature-based and constant (nonfeature-based) β strategies.

the feature-based β (ABC, with KL metric) and constant β (CF estimator method)
strategies, the models were trained on data through 2009, and then we estimated
the vulnerabilities of the manholes on December 31st, 2009. These vulnerabilities
were used as the initial vulnerabilities for an evaluation on the 2010 event data.
2010 is a relevant year because the first inspection cycle ended in 2009. All man-
holes had been inspected at least once, and many were inspected toward the end of
2009, which stabilizes the inspection effects. For each of the 53K manholes and at
each of the 365 days of 2010, when we observed a serious event in a manhole p,
we evaluated the rank of that manhole with respect to both the feature-based and
nonfeature-based models, where rank represents the number of manholes that were
given higher vulnerabilities than manhole p. As our goal is to compare the rela-
tive rankings provided by the two strategies, we consider only events where the
vulnerabilities assigned by both strategies are different than the baseline vulnera-
bility. Figure 9 displays the ranks of the manholes on the day of their serious event.
A smaller rank indicates being higher up the list, thus lower is better. Overall, we
find that the feature-based β strategy performs better than the nonfeature-based
strategy over all of the rank comparisons in 2010 (p-value 0.09, sign test). Our
results mainly illustrate that using different decay rates on past events for different
types of manholes leads to better predictions. Recall from Section 4.3 that larger
manholes tend to recover faster from previous events. The approach without the
features ignores the differences between manholes, and uses the same decay rate,
whereas the feature-based RPP takes these decay rates into account in making pre-
dictions.

In the second experiment, we compared the feature-based β strategy to the Cox
proportional–hazard model, which is commonly used in survival analysis to assess
the probability of failure in mechanical systems. We employed this model to as-
sess the likelihood of a manhole having a serious event on a particular day. For
each manhole, we used the same three static covariates as in the feature-based β

model, and developed four time-dependent features. The time-varying features for
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day t are (1) the number of times the manhole was a trouble hole (source of the
problem) for a serious event until t , (2) the number of times the manhole was a
trouble hole for a serious event in the last year, (3) the number of times the man-
hole was a trouble hole for a precursor event (less serious event) until t , and (4)
the number of times the manhole was a trouble hole for a precursor event in the
last year. The feature-based β model currently does not differentiate serious and
precursor events, though it is a direct extension to do this if desired. The model
was trained using the coxph function in the R survival package using data prior
to 2009, and then predictions were made on the test set of 5000 manholes in the
2010 data set. These predictions were transformed into ranked lists of manholes
for each day. We then compared the ranks achieved by the Cox model with the
ranks of manholes at the time of events. The difference of aggregate ranks was in
favor of the feature-based β approach (p-value 7e–06, sign test), indicating that the
feature-based β strategy provides a substantial advantage in its ability to prioritize
vulnerable manholes.

The Cox model we compared with represents a “long-term” model similar to
what we were using previously for manhole event prediction on Con Edison data
[Rudin et al. (2010)]. The Cox model considers different information, namely,
counts of past events. These counts are time-varying, but the past events do not
smoothly wear off in time as they do for the RPP. The fact that the RPP model is
competitive with the Cox model indicates that the effects of past manhole events
do wear off with time (in agreement with Figure 3 where we traced the decay
directly using data). The saturating elements of the model ensure that the model
is physically plausible, since we showed in Section 3 that the results could be
unphysical (with rates going to 0 or above 1) without the saturation.

6. Making broader policy decisions using RPPs. Because the RPP model
is a generative model, it can be used to simulate the future, and thus assist with
broader policy decisions regarding how often inspections should be performed.
This can be used to justify allocation of spending. Con Edison’s existing inspection
policy is a combination of targeted periodic inspections and ad hoc inspections.
The targeted inspections are planned in advance, whereas the ad hoc inspections
are unscheduled. An ad hoc inspection could be performed while a utility worker is
in the process of, for instance, installing a new service cable to a building or repair-
ing an outage. Either source of inspection can result in an urgent repair (Type I), an
important but not urgent repair (Type II), a suggested structural repair (Types III
and IV), or no repair, or any combination of repairs. Urgent repairs need to be
completed before the inspector leaves the manhole, whereas Type IV repairs are
placed on a waiting list. According to the current inspections policy, each manhole
undergoes a targeted inspection every 5 years. The choice of inspection policy to
simulate can be determined very flexibly, and any inspection policy and hypothe-
sized effect of inspections can be examined through simulation.
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As a demonstration, we conducted a simulation over a 20 year future time hori-
zon that permits a cost-benefit analysis of the inspection program, when targeted
inspections are performed at a given frequency. To do this simulation, we require
the following:

• A characterization of manhole vulnerability. For Manhattan, this is learned from
the past using the ABC RPP feature-based β training strategy for the saturation
function g1 and the self-excitation function g2 discussed above. Saturation and
self-regulation functions g3 and g4 for the inspection program cannot yet be
learned due to the newness of the inspection program and are discussed below.

• An inspection policy. The policy can include targeted, ad hoc or history-based
inspections. We chose to evaluate “bright line” inspection policies, where each
manhole is inspected once in each Y year period, where Y is varied (discussed
below). We also included an ad hoc inspection policy that visits 3 manholes per
day on average.

Effect of inspections: The effect of inspections on the overall vulnerability of
manholes were designed in consultation with domain experts. The choices are
somewhat conservative, so as to give a lower bound for costs. The effect of an
urgent repair (Type I) is different from the effect of less urgent repairs (Types II,
III and IV). For all inspection types, after 1 year beyond the time of the inspec-
tion, the effect of the inspection decays to, on average, 85% of its initial effect, in
agreement with a short-term empirical study on inspections. (There is some un-
certainty in this initial effect, and the initial drop in vulnerability is chosen from
a normal distribution so that after one year the effect decays to a mean of 85%.)
For Type I inspections, the effect of the inspection decays to baseline levels after
approximately 3000 days, and for Types II, III and IV, which are more extensive
repairs, the effect fully decays after 7000 days. In particular, we use the following
g4 functions:

g
Type I
4 (t) = −83.7989 × (

r × 5 × 10−4 + 3.5 × 10−3) × 1

1 + e0.0018t
,(5)

g
Types II,III,IV
4 (t) = −49.014 × (

r × 5 × 10−4 + 7 × 10−3) × 1

1 + e0.00068t
,(6)

where r is randomly sampled from a standard normal distribution. For all inspec-
tion types, we used the following g3 saturation function:

g3(t) = 0.4 ×
(

1 − log
(
1 + e−3.75t ) × 1

log 2

)
,

which ensures that subsequent inspections do not lower the vulnerability to more
than 60% of the baseline vulnerability. Sampled g4 functions for Type I and
Types II, II, IV, along with g3 are shown in Figure 10.
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(a) g4 for Type I inspections (b) g4 for Types II, III, IV

(c) g3 = 0.4(1 − log(1 + e3.75x) 1
log 2 )

FIG. 10. Saturation and self-regulation functions g3 and g4 for simulation.

One targeted inspection per manhole was distributed randomly across Y years
for the bright line Y -year inspection policies, and 3 × 365 = 1095 ad hoc inspec-
tions for each year were uniformly distributed, which corresponds to 3 ad hoc
inspections per day for the whole power grid on average. During the simulation,
when we arrived at a time step with an inspection, the inspection outcome was
Type I with 25% probability, or one of Types II, III or IV, with 25% probability. In
the rest of the cases (50% probability), the inspection was clean, and the manhole’s
vulnerability was not affected by the inspection. If the inspection resulted in a re-
pair, we sampled r randomly and randomly chose the inspection outcome (Type I
or Types II, III, IV). This percentage breakdown was observed approximately for
a recent year of inspections in NYC.

To initialize manhole vulnerabilities for a bright line policy of Y years, we sim-
ulated the previous Y -year inspection cycle and started the simulation with the
vulnerabilities obtained at the end of this full cycle.

Simulation results: We simulated events and inspections for 53.5K manholes for
bright line policies ranging from Y = 1 year to Y = 20 years. Naturally, a longer
inspection cycle corresponds to fewer daily inspections, which translates into an
increase in overall vulnerabilities and an increase in the number of events. This
is quantified in Figure 11, which shows the projected number of inspections and
events for each Y year bright line policy. If we change from a 6 year bright line
inspection policy to a 4 year policy, we estimate a reduction of approximately 100
events per year. The relative costs of inspections and events can thus be considered
in order to justify a particular choice of Y for the bright line policy.
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FIG. 11. Number of events and inspections based on bright line policy. Number of years Y for
the bright line policy is on the horizontal axis in both figures. The left figure shows the number of
inspections, the right figure shows the number of events.

Let us say, for instance, that each inspection costs CI and each event costs CE .
The simulation results allow us to denote the forecasted expected number of events
over a period of time T as a function of the inspection frequency Y , which we
denote by NE(Y,T ). The value of NE(Y,T ) comes directly from the simulation,
as plotted in Figure 11. Let us make a decision for Y for P total manholes, over a
period T . To do this, we would choose a Y that minimizes the total cost

CE × NE(Y,T ) + CI × P × T/Y.

This line of reasoning provides a quantitative mechanism for decision making and
can be used to justify a particular choice of inspection policy.

7. Conclusion. Keeping our electrical infrastructure safe and reliable is of
critical concern, as power outages affect almost all aspects of our society, includ-
ing hospitals, financial centers, data centers, transportation and supermarkets. If
we are able to combine historical data with the best available statistical tools, it
will be possible to impact our ability to maintain an ever aging and growing power
grid. In this work, we presented a methodology for modeling power-grid failures
that is based on natural assumptions: (i) that power failures have a self-exciting
property, which was hypothesized by Con Edison engineers, (ii) that the power
company’s actions are able to regulate vulnerability levels, (iii) that the effects on
the vulnerability level of past events or repairs can saturate, and (iv) that vulner-
ability estimates should be similar between similar entities. We have been able to
show directly (using the CF estimator for the RPP) that the self-exciting and satura-
tion assumptions hold. We demonstrated through experiments on past power-grid
data from NYC, and through simulations, that the RPP model is able to capture
the relevant dynamics well enough to predict power failures better than the current
approaches in use.

The modeling assumptions that underlie RPPs can be directly ported to other
problems. RPPs are a natural fit for problems in healthcare, where medical
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conditions cause self-excitation and treatments provide regulation. Through the
Bayesian framework we introduced, RPPs extend to a broad range of problems
where predictive power can be pooled among multiple related entities, whether
manholes or medical patients.

The results presented in this work show for the first time that manhole events
can be predicted in the short term, which was previously thought not to be possi-
ble. Knowing how one might do this permits us to take preventive action to keep
vulnerability levels low, and can help make broader policy decisions for power-
grid maintenance through simulation of many uncertain futures, simulated over
any desired policy.

SUPPLEMENTARY MATERIAL

Supplementary material for “Reactive point processes: A new approach to
predicting power failures in underground electrical systems” (DOI: 10.1214/
14-AOAS789SUPP; .pdf). The supplementary material includes an expanded re-
lated work section, conditional frequency estimator (CF estimator) for the RPP,
experiments with a maximum likelihood approach, a description of the inspec-
tion policy used in Section 6, an analysis of Manhattan data using random effects
model and simulation studies for validating the fitting techniques for the models in
the paper. It also includes a description and link for a publicly available simulated
data set that we generated, based on statistical properties of the Manhattan data
set.
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