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GENE-LEVEL PHARMACOGENETIC ANALYSIS ON SURVIVAL
OUTCOMES USING GENE-TRAIT SIMILARITY REGRESSION
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Gene/pathway-based methods are drawing significant attention due to
their usefulness in detecting rare and common variants that affect disease sus-
ceptibility. The biological mechanism of drug responses indicates that a gene-
based analysis has even greater potential in pharmacogenetics. Motivated by
a study from the Vitamin Intervention for Stroke Prevention (VISP) trial, we
develop a gene-trait similarity regression for survival analysis to assess the
effect of a gene or pathway on time-to-event outcomes. The similarity regres-
sion has a general framework that covers a range of survival models, such
as the proportional hazards model and the proportional odds model. The in-
ference procedure developed under the proportional hazards model is robust
against model misspecification. We derive the equivalence between the sim-
ilarity survival regression and a random effects model, which further unifies
the current variance component-based methods. We demonstrate the effec-
tiveness of the proposed method through simulation studies. In addition, we
apply the method to the VISP trial data to identify the genes that exhibit an
association with the risk of a recurrent stroke. The TCN2 gene was found to
be associated with the recurrent stroke risk in the low-dose arm. This gene
may impact recurrent stroke risk in response to cofactor therapy.

1. Introduction. Genetic variations play a significant role in drug responses.
A gene that participates in a particular physiological mechanism might influence
the response to a specific therapeutic agent that targets the mechanism. Identi-
fying these influential genes may help to clarify if an individual might benefit
from or be harmed by the therapy. Understanding the genetic diversity of drug
responses can help to identify medications that maximize treatment effectiveness
and minimize the risk of adverse effects for individuals. Such an understanding
will also lead to improved risk stratification, prevention and treatment strategies
for human diseases. Pharmacogenetics studies show how an adverse reaction or
positive response to pharmaceutical treatment is affected by an individual’s ge-
netic makeup and has the potential to deliver both public health and economic
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benefits rapidly. With the recent advancements in high-throughput technologies,
it is becoming common for pharmacogenetic researches to systematically inves-
tigate genetic markers across the genome. Nevertheless, appropriate and efficient
analysis of the data remains a challenge.

Gene- or pathway-based analyses can assess pharmacogenetic effects more ef-
fectively than single-marker based analyses [Goldstein, Tate and Sisodiya (2003);
Goldstein (2005)]. First, there often exist obvious candidate genes and pathways
that metabolize the drug and carry variants that are relevant to the drug responses.
Responses to therapies usually involve complex relationships between gene vari-
ants within the same molecular pathway or functional gene set. When applied to
pharmacogenetic studies, gene- or pathway-based methods might identify mul-
tiple variants of subtle effects that are missed by single marker-based methods.
Second, pharmacogenetic studies typically enroll only a moderate number of pa-
tients, which limits the power of the association detection. Gene-based analyses
have been shown to yield higher power than standard single marker and haplotype
analyses. This type of analysis can particularly facilitate studies on rare-event drug
responses, such as adverse reactions, where it could take many years to collect a
sufficient number of samples to obtain adequate power for standard analyses. In
gene-based analyses, the association signals are aggregated across variants, and
the total number of tests is reduced; the amplification of the association signals
and the alleviation of the multiple testing burdens result in improved power.

Our study was motivated by the need for a gene-based analysis of the time-to-
event data of the Vitamin Intervention for Stroke Prevention (VISP) trial [Toole,
Malinow and Chambless (2004); Hsu, Sides and Mychalecky (2011)]. Our goal
is to assess the association between the recurrent stroke risk and the 9 candidate
genes involved in the homocystein (Hcy) metabolic pathway (see Data section for
more details). In our preliminary analysis, we used the Cox proportional hazards
(PH) model [Cox (1972)] to perform single-SNP screening on 69 SNPs across 9
genes from 969 individuals. There were no SNPs past the significance threshold
after accounting for multiple testing. However, the top 6 hits, thresholding at un-
adjusted p-values <0.05, were concentrated in two genes. Specifically, 4 SNPs
are from TCN2 (i.e., rs1544468, rs731991, rs2301955 and rs2301957 have Wald’s
test p-values of 0.0065, 0.0072, 0.0346 and 0.0346, resp.) and 2 SNPs are from
CTH (i.e., rs648743 and rs663465 each have a Wald’s test p-value of 0.0115).
The Kaplan–Meier curves of these 6 SNPs are shown in Figure 1 and indicate the
potential for different risk patterns among different variants at these loci. The clus-
tering within the two genes suggests that it would be more efficient to combine the
individual signal strengths and model the joint effect of multiple loci in a gene.

We perform the gene-based analysis using a gene-trait similarity regression in-
spired by Haseman–Elston regression from linkage analysis [Elston et al. (2000);
Haseman and Elston (1972)] and haplotype similarity tests for regional association
[Beckmann et al. (2005); Qian and Thomas (2001); Tzeng et al. (2003)]. First, we
quantify the genetic and trait similarities for each pair of individuals. The genetic
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FIG. 1. The Kaplan–Meier survival curves for the top 6 SNPs identified from the single SNP asso-
ciation analysis with risk of recurrent stroke.

similarity is determined using identity by state (IBS) methods. The trait similarity
is obtained from the covariance of the transformed survival time conditional on
the covariates. We then regress the trait similarity on the genetic similarity and
test the regression coefficient to detect the genetic association. There are several
gene-based approaches for censored time-to-event phenotypes in the literature, in-
cluding Goeman et al. (2005) and Lin and colleagues [Cai, Tonini and Lin (2011);
Lin et al. (2011)]. In these approaches, the multimarker effects were modeled un-
der the Cox PH model using linear random effects [Goeman et al. (2005)] or a
nonparametric function induced by a kernel machine [Cai, Tonini and Lin (2011);
Lin et al. (2011)]. The global effect of a gene was detected by testing for the corre-
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sponding genetic variance component. These approaches were found to be superior
in identifying pathways or genes that are associated with survival.

For many years, similarity-based methods have been successfully used to eval-
uate gene-based associations in quantitative and binary traits [Beckmann et al.
(2005); Lin and Schaid (2009); Qian and Thomas (2001); Tzeng et al. (2003);
Wessel and Schork (2006)]. Our work makes such approaches available for sur-
vival phenotypes. In addition, our similarity regression covers a variety of risk
models, including the commonly used PH model and the proportional odds (PO)
model. Furthermore, we show that the coefficient of the similarity regression ob-
tained for survival phenotypes can be reexpressed as a variance component of a
certain working random effects model. Such results facilitate the derivation of the
test statistic and unify the similarity model and previous variance component meth-
ods [Goeman et al. (2005); Cai, Tonini and Lin (2011); Lin et al. (2011)]. Specif-
ically, under the Cox PH model, our test statistic is equivalent to the test statistic
defined by a kernel machine approach [Lin et al. (2011)]. We also show that the
test statistic can be robust to model misspecification. Specifically, the proposed test
gives the correct type I error even if the true risk model is misspecified. However,
the correct specification of the true risk model generally leads to a test with better
power. Finally, we demonstrate the utility of the similarity regression by iden-
tifying the important TCN2 gene in the VISP study. The significance of TCN2 to
stroke risk has been reported by other association studies [Giusti et al. (2010); Low
et al. (2011)] and has been supported by molecular biology evidence [Afman et al.
(2003); von Castel-Dunwoody et al. (2005)]. Our findings further suggest poten-
tial interactions between TCN2 and B12 supplementation. This new information
furthers the possibility that TCN2 could be utilized to predict recurrent strokes,
identify at-risk individuals and identify therapeutic targets for ischemic stroke.

2. Data. The VISP study was a prospective, double-blind, randomized clini-
cal trial [Toole, Malinow and Chambless (2004)]. The trial was designed to study
if high doses of folic acid, vitamin B6 and vitamin B12 reduce the risk of a recur-
rent stroke as compared to low doses of these vitamins. The trial enrolled patients
who were 35 or older, had a nondisabling cerebral infarction within 120 days of
randomization, and had Hcy levels in the top quartile of the U.S. population. Sub-
jects were randomly assigned to receive daily doses of either a high-dose formu-
lation (containing 25 mg vitamin B6, 0.4 mg vitamin B12 and 2.5 mg folic acid)
or a low-dose formulation (containing 200 μg vitamin B6, 6 μg vitamin B12 and
20 μg folic acid). Patient recruitment began in August 1997 and was completed
in December 2001. A total of 3680 participants were enrolled at 56 clinical sites
across the United States, Canada and Scotland. The patients were followed for a
maximum of two years, and the average follow-up duration was 1.7 years. In the
VISP genetic study, 2206 participants provided informed consent and blood sam-
ples. The SNP genotypes of 9 genes related to the enzymes and cofactors in the
Hcy metabolic pathway were collected: BHMT1, BHMT2, CBS, CTH, MTHFR,
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MTR, MTRR, TCN1 and TCN2 [Hsu, Sides and Mychalecky (2011)]. In a previous
study, Hsu, Sides and Mychalecky (2011) conducted single-SNP analyses on tar-
geted loci (e.g., Hcy-associated variants) to examine the genetic association with
the recurrent stroke risk. In the low-dose arm, the authors found that TCN2 SNP
rs731991 under a recessive mode was associated with the risk of a recurrent stroke
with an unadjusted log-rank test p-value of 0.009. The associations for the re-
maining SNPs within the 9 genes in the low-dose arm were not studied. We extend
this previous analysis to all 9 genes using a gene-based approach. After quality
control screening of the data (e.g., removing loci with >99% missing proportion
or Hardy–Weinberg disequilibrium under additive mode and removing individu-
als with missing genotypes), the analysis included 969 individuals in the low-dose
arm with 69 recessively coded SNPs.

3. Gene-trait similarity regression for survival traits.

3.1. The model. For individual i (i = 1,2, . . . , n), let Ti denote the survival
time of interest and Ci denote the censoring time. We observe T̃i = min(Ti,Ci) and
the censoring indicator δi = I (Ti ≤ Ci). In addition, let Xi denote the K ×1 vector
of covariates and Gmi denote the allele count vector of marker m for person i,
where the length of Gmi , �m is the number of distinct alleles at marker m, m =
1,2, . . . ,M . For example, for a tri-allelic locus m, Gmi = (1,0,1)T if person i has
genotype “A1A3” and (0,2,0)T if person i has genotype “A2A2.”

For each pair of individuals i and j , we measure the genetic similarity, Sij ,
of the targeted gene and the trait similarity, Zij . The genetic similarity is quan-
tified using the weighted IBS sum across the M markers in the gene, that is,
Sij = ∑M

m=1 wmSm
ij , where Sm

ij = 2 if |Gm,i − Gm,j | is a zero vector, Sm
ij = 1 if

|Gm,i − Gm,j | contains exactly two 1’s (and if �m > 2, the remaining entries are 0),
and Sm

ij = 0 otherwise. The weights, wm, are specified to up-weight or down-
weight a variant based on certain features. Examples include weights that are based
on allele frequencies, the degree of evolutionary conservation or the functionality
of the variations [Wessel and Schork (2006); Schaid (2010a, 2010b); Price et al.
(2010)]. We can use the minor allele frequency of marker m, denoted as qm, to up-
weight similarities that are contributed by rare variants. Specifically, one can set a
moderate weight, such as wm = q

−3/4
m [Pongpanich, Neely and Tzeng (2012)] or

wm = q−1
m [Tzeng et al. (2011)], to promote similarity attributed by rare alleles, or

use a more extreme weight, such as wm = (1 − qm)24 [Wu et al. (2011)], to target
rare variants only.

The trait similarity, Zij , is quantified as follows. First, we define Yi = H(Ti),
where H(·) is an (unspecified) monotonic increasing transformation function, such
as the logarithm transformation Yi = log(Ti). Assume that the conditional mean of
Yi given the covariates and genes is E(Yi | Xi, gi) = θ + XT

i γ + gi , where θ is
the intercept, gi is the multi-locus genetic effect of person i, and γ is the K-
dimensional covariate effect. Further, define μ0

i = θ + XT
i γ . The trait similarity
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is defined as the product of the paired residuals adjusting for the covariate effects,
that is, Zij = (Yi − μ0

i )(Yj − μ0
j ). The expected value of the trait similarity is the

covariance between the transformed survival times of subjects i and j .
The gene-trait similarity regression has the form

E(Zij | Xi,Xj ) = b × Sij , i �= j.(3.1)

Just as in Tzeng et al. (2009, 2011), the regression has a zero intercept and does not
have the covariate term XiXj because the baseline and covariate effects have been
adjusted when defining Zij . This argument will become more obvious from the
viewpoint of variance components in the following subsection. Under model (3.1),
the overall association of a gene can be evaluated by testing the null hypothesis:
b = 0.

3.2. Score test for the gene-level effect. We derive the score test statistic based
on the equivalence between the similarity regression and a mixed model. This
equivalence is demonstrated as follows. Consider a working mixed model for the
transformed survival time:

Yi = H(Ti) = XT
i γ + gi + θ + εi,(3.2)

where (g1, . . . , gn)
T ∼ N (0, τS) with S = {Sij }ni,j=1, that is, the covariance be-

tween gi and gj depends on the genetic similarity between subjects i and j , and
ε∗
i ≡ θ + εi , i = 1, . . . , n are independently and identically distributed with a

known distribution that is independent of Xi and gi . Given Xi and gi , model (3.2)
specifies a general class of linear transformation models [Cheng, Wei and Ying
(1995)], which contains many popular survival models as special cases. For exam-
ple, when ε∗

i follows the standard extreme value distribution, the linear transfor-
mation model becomes the PH model [Cox (1972)]. When ε∗

i follows the standard
logistic distribution, the linear transformation model becomes the PO model [Ben-
nett (1983)].

Under (3.2), the conditional expectation of the trait similarity between individ-
uals i and j (i �= j ) is

E(Zij | Xi,Xj ) = cov(Yi, Yj | Xi,Xj ) = cov
(
gi + ε∗

i , gj + ε∗
i

)
= cov(gi, gj )

= τ × Sij .

Therefore, we have b = τ , that is, the regression coefficient in the similarity re-
gression (3.1) is the genetic variance component in the mixed model (3.2). This
motivates us to develop a score test for the variance component in the working
model. As shown in the Appendix, the score test statistics for τ = 0 can be written
as

Qn = 1

n
(r̂1, . . . , r̂n)S(r̂1, . . . , r̂n)

T ,
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where

r̂i =
∫ ∞

0
ω̂i(t) dMi(t; γ̂ , Ĥ )

= δi

λ̇{Ĥ (T̃i) − γ̂ T Xi}
λ{Ĥ (T̃i) − γ̂ T Xi}

− λ
{
Ĥ (T̃i) − γ̂ T Xi

}
,

Mi(t;γ,H) = δiI (T̃i ≤ t) −
∫ t

0
I (T̃i ≥ s) d


{
H(s) − γ T Xi

}
,

ω̂i(t) = λ̇{Ĥ (t)− γ̂ T Xi}/λ{Ĥ (t)− γ̂ T Xi}, and S is as defined after equation (3.2).
Here, λ(·) and 
(·) are the hazard and cumulative hazard functions of ε∗

i , re-
spectively, λ̇(·) is the first derivative of λ(·), and γ̂ and Ĥ (·) are the estimates
of γ and H(·), respectively, in model (3.2) under the null hypothesis: τ = 0.
For example, if the PH model is imposed, that is, λ(u) = λ̇(u) = eu, the esti-

mators γ̂ and �̂(·) ≡ eĤ (·) can be taken as the maximum partial likelihood es-
timator and Breslow’s estimator, respectively. Under this case, ω̂i(t) ≡ 1 and
r̂i = δi − �̂(T̃i) exp(−γ̂ T Xi), that is, the martingale residual for the null model.
If the PO model is used, that is, λ(u) = eu/(1 + eu) and λ̇(u) = eu/(1 + eu)2, we
have ω̂i(t) = 1/[1 + exp{Ĥ (t) − γ̂ T Xi}]. In general, γ and H(·) can be estimated
using the martingale-based estimating equations [Chen, Jing and Ying (2002)] or
the nonparametric maximum likelihood estimation method [Zeng and Lin (2006)]
for the semiparametric linear transformation model. In the Appendix, we show that
under the null hypothesis the test statistic, Qn, asymptotically follows a weighted
χ2 distribution where the weights can be estimated consistently. The p-values can
then be calculated numerically using a resampling method or moment-matching
approximations [Pearson (1959); Duchesne and Lafaye De Micheaux (2010)].

We note that the proposed score test can be robust to the misspecification of
the true survival model. As an illustration, consider the test derived under the PH
model. Based on the results for the robust inference of the PH model [Lin and Wei
(1989)], when the PH model is misspecified, the maximum partial likelihood es-
timator, γ̂ , and Breslow’s estimator, �̂(·), do not converge to the true parameters
but converge to some deterministic values γ ∗ and �∗(·) under certain regularity
conditions. The corresponding r∗

i = δi − �∗(T̃i) exp(−XT
i γ ∗) is not a martingale

residual but has a mean of 0 under the null hypothesis. Therefore, it can be shown
that Qn converges in distribution to a weighted χ2 distribution under the null hy-
pothesis even with model misspecification. As shown in our simulation studies,
the proposed score test derived under the PH model still gives correct type-I error
when the true model is the PO model. However, the power of the test depends on
the assumed working model. In general, the test derived under the true risk model
may have better power.
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4. Results of the analysis of the VISP trial data. We now return to the VISP
trial to evaluate the association between the recurrent stroke risk and the 9 can-
didate genes studied in Hsu, Sides and Mychalecky (2011). In our analysis, we
conducted a gene-based screening on the 9 genes using the low-dose samples. Af-
ter removing loci with >1% of missingness and subjects with missing genotypes,
there were 969 individuals with 69 polymorphic SNPs under recessive coding. Of
the 969 individuals, 86 experienced a recurrent stroke (i.e., 91.1% censoring). We
used the proposed similarity regression (referred to as SimReg) with inverse allele
frequency weights wm = q

−3/4
m , that is, the weight recommended in Pongpanich,

Neely and Tzeng (2012) when analyzing a mixture of common and rare variants.
We calculated the p-values of the SimReg statistics using the resampling method.
Specifically, we computed the nonzero eigenvalues, ξ̂1, . . . , ξ̂d , of �̂ as defined in
the Appendix. We generated 104 sets of (χ2

1,1, . . . , χ
2
1,d). Each set consisted of d

independently and identically distributed χ2
1 random variables. For each set, we

calculated the value
∑d

k=1 ξ̂kχ
2
1,k , and the 104 values formed an empirical null

distribution of the SimReg statistics. The SimReg p-value was the proportion of
the generated null statistics that were greater than the observed statistic. We per-
formed SimReg analyses under the PH model (referred to as SimReg-PH) and the
PO model (referred to as SimReg-PO). The performances of the SimReg methods
were benchmarked against three approaches: (a) the single SNP minimum p-value
method using the Cox PH model (referred to as minP), (b) the multi-SNP method
using the global test for survival under the PH model [Goeman et al. (2005)] as
implemented in the R-package globaltest (referred to as Global), and (c) the
multi-SNP method using the kernel machine [Lin et al. (2011)] as implemented
in the R-package KMTest.surv (referred to as KM) with 104 resamplings. Al-
though the SimReg-PH test statistic is identical to the KM test statistic, the results
may be slightly different due to the different resampling methods adopted to obtain
the p-values. Specifically, in the KM method, the score statistic was perturbed by
multiplying i.i.d. normal random variables to achieve the same limiting distribution
of the test statistic. In SimReg-PH, the weights in the limiting weighted χ2 distri-
bution, that is, ξ1, . . . , ξd , were consistently estimated and then the samples were
directly generated from the estimated weighted χ2 distribution based on a large
number of i.i.d. χ2

1 random variables. The different resampling approaches also
lead to different computational burden. For example, using a 3.6 GHz Xeon Pro-
cessor with 60 GB RAM with 104 resamplings, the system run-time of SimReg-
PH was <1/6 of KM in the VISP analysis, and the time difference became greater
with a larger number of resamplings. For the minP method, we fitted the standard
PH model to each SNP in a gene, took the smallest p-value and calculated the ad-
justed p-value of a gene to correct for the multiple SNPs using 1 − (1−minimum
raw p-value)Keff . The effective number of independent tests, Keff, was estimated
using the method of Moskvina and Schmidt (2008) and accounts for the correla-
tions in recessive coding of loci. As studied by Hsu, Sides and Mychalecky (2011),
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TABLE 1
Results of the VISP genetic study

BHMT1 BHMT2 CBS CTH MTHFR MTR MTRR TCN1 TCN2

Numbers of SNPs 5 3 6 10 7 20 5 3 15
minP 0.3399 0.5968 0.3354 0.0918 0.9105 0.8933 0.6183 0.9764 0.0704
(Keff) (3.99) (2.83) (4.41) (8.35) (4.64) (10.64) (4.78) (2.77) (11.28)
Global 0.6457 0.7391 0.2669 0.0518 0.7819 0.9154 0.7363 0.9689 0.0457
KM 0.4863 0.6142 0.2386 0.0078 0.7094 0.8289 0.7289 1.0000 0.0075
SimReg-PH 0.5794 0.6402 0.1889 0.0073 0.6833 0.8835 0.5988 0.9845 0.0040
SimReg-PO 0.6136 0.6942 0.2877 0.0075 0.7807 0.9011 0.6422 0.9922 0.0052

The adjusted p-values for the gene were obtained using 1 − (1 − minimum raw p-value)Keff . Sig-
nificance is concluded by comparing the p-values with the Bonferroni threshold 0.05/9 = 0.0056,
which accounts for the 9 gene analysis.

all analyses were considered under the recessive mode and were adjusted for age,
sex and race.

The p-values for each of the methods are shown in Table 1, and the p-values are
compared with the Bonferroni threshold adjusted for the 9 gene analyses, that is,
0.05/9 = 0.0056. SimReg-PH detected a significant association between the recur-
rent stroke risk and TCN2 (i.e., p-value = 0.0040), which strengthens the observa-
tion of differential survival between different variants from the single SNP analy-
sis. Gene CTH had the second smallest p-value (0.0073), which did not pass the
Bonferroni threshold but was near the cutoff. These results also agree with the find-
ings in the single SNP analysis. The results of SimReg-PO are similar to those of
SimReg-PH except that the p-values are slightly larger, that is, p-value = 0.0052
for TCN2 and 0.0075 for CTH. On the other hand, the KM, Global and minP meth-
ods did not yield any significant findings. However, the smallest p-values of the 9
genes were obtained for TCN2 (i.e., p-values of TCN2 are 0.0075 for KM, 0.0457
for Global and 0.0704 for minP). As expected, the results of KM were very similar
to those of SimReg-PH, except that the p-value of TCN2 was slightly above the
0.0056 threshold. The smallest p-values for the minP method were from the TCN2
SNP rs731991 with a raw Wald’s test p-value of 0.0065. However, neither the raw
minimum p-value (0.0065) nor the adjusted p-value (0.0704) survived the signifi-
cance threshold corrected for multiple testing (0.0056). All methods also had CTH
as the gene with the second smallest p-value (i.e., p-values 0.0078 for KM, 0.0518
for Global, and 0.00918 for minP).

Next, we assessed the prediction performance of Cox PH models built with and
without TCN2 using the procedure described in Li and Luan (2005). Specifically,
we randomly divided the samples into a training set (n = 646) and a testing set
(n = 323). Based on the training set, we fitted the Cox PH regression with two
models: Model 1 included only the baseline covariates (age, sex and race), that is,
no genetic information, and model 2 included the baseline covariates plus the top
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FIG. 2. The Kaplan–Meier survival curves for the two risk groups of patients.

7 principal components (PCs) of TCN2 SNPs that explained 95% of the variations.
The PCs were used instead of the 15 original genotypes because of the high linkage
disequilibrium among them. Based on the fits of the PH model from the training
set, we obtained the risk scores of every subject under each model and computed
the medians of the risk scores. We also computed the risk scores for the testing
set using the estimated coefficients from the training set. Next, we divided the
subjects into 2 risk groups: high-risk and low-risk. Individuals with a risk score
higher/lower than the median risk scores obtained from the training data comprised
the high-risk/low-risk group. Finally, we plotted the Kaplan–Meier curves for the 2
risk groups in the training data and the two risk groups in the testing data separately
and obtained the p-values of the corresponding log-rank tests. The results are given
in Figure 2. As expected, the p-values for both models under the training set were
very significant. However, only model 2 is significant (p-value is 0.048) under the
testing set. This result implies that TCN2 gives a more accurate prediction of the
risk for recurrent stroke.

Vitamin supplements have been identified as a potential treatment for vascu-
lar diseases. The beneficial effects of vitamin supplements on stroke recurrence
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are not yet fully understood. In VISP, vitamin supplements did not show an ef-
fect on the recurrent stroke risk during the 2 years of follow-up. However, we
found that genetic variants, such as SNPs in TCN2, were associated with the re-
current stroke risk in the low-dose arm. This finding is consistent with the litera-
ture. TCN2 was previously found to be associated with ischemic stroke risk [Low
et al. (2011); Giusti et al. (2010)] and premature ischemic stroke risk [Giusti et al.
(2010)]. It has been reported that TCN2 interferes with the intracellular availabil-
ity of vitamin B12 [von Castel-Dunwoody et al. (2005)]. The gene is associated
with plasma homocysteine levels and affects the proportion of vitamin B12 bound
to transcobalamin [Afman et al. (2003)]. It is suspected that SNPs on the genes
coding for enzymes involved in the methionine metabolism have been suspected
to be associated with hyperhomocysteinaemia, which can result in occurrence of
stroke [Giusti et al. (2010)]. Our significant findings in the low-dose arm suggest
that there may be an interaction between TCN2 and B12 supplementation, a find-
ing that warrants further studies. The findings lead to a hypothesis that there may
be one specific combination of genotypes of TCN2 that is more efficient at trans-
porting B12 and thus impacts the effectiveness of cofactor therapy on recurrent
stroke risk. A functional study is being planned to localize possibly independent
regions of association and determine their function.

Besides TCN2, CTH is marginally associated with recurrent stroke risk in the
low-dose arm. It encodes cystathionine gamma-lyase, which is an enzyme that
converts cystathionine to cysteine in the trans-sulfuration pathway [Wang et al.
(2004)]. It may be a determinant of plasma Hcy concentrations, which may in-
crease the risk of recurrent stroke because of arterial disease. It is worth further
study as well.

5. Simulation studies. We performed simulations to assess the validity and
effectiveness of the proposed SimReg methods based on the 15 SNPs in TCN2
of the 969 VISP low-arm samples. The rarest minor allele frequency (MAF) is
approximately 3%. We generated genotypes of n individuals by randomly sam-
pling with replacement from the 15-SNP genotypes of the 969 samples. For in-
dividual i, we generated the covariate, Xi , from N(0,1). We generated the sur-
vival time, Ti , based on the genetic and covariate information under two mod-
els: the PH model and the PO model. Specifically, for the PH model, log(Ti) =
−(Xi + ∑

� γ�G�i)+ ε∗
i , where ε∗

i follows the standard extreme value distribution;
for the PO model, log{exp(Ti) − 1} = −(Xi + ∑

� γ�G�i) + ε∗
i , where ε∗

i follows
the standard logistic distribution. The value of G�i is determined by the genotypes
at the causal locus � and the mode of inheritance. For example, if A is the causal
allele at locus �, then G�i = 2,1 and 0 for genotypes AA, Aa and aa, respectively,
under an additive mode. Under a dominant mode, G·i = 1,1 and 0, respectively.
Under a recessive mode, G·i = 1,0 and 0, respectively. For type I error analysis, no
SNPs were set to be causal, that is, γ� was set to be 0 for all �. For power analysis,
we selected 3 SNPs with different MAFs and LD patterns as causal loci from the
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TABLE 2
Effect sizes for power analyses

Additive and dominant Recessive

15%∗ 40% 90% 15% 40% 90%
n = 500 n = 500 n = 1000 n = 1000 n = 1000 n = 1000

Scenario Causal SNPs (MAF) Effect size (γR,γU ,γC ) Effect size (γR,γU ,γC )

1 R (0.036) (1.5, 0.0, 0.0) (4.0, 0.0, 0.0)
2 U (0.132) (0.0, 1.0, 0.0) (0.0, 3.0, 0.0)
3 C (0.419) (0.0, 0.0, 0.3) (0.0, 0.0, 0.3)
4 R, U (0.6, 0.6, 0.0) (4.0, 4.0, 0.0)
5 R, U (0.6, 0.4, 0.0) (2.5, 2.0, 0.0)
6 R, C (0.3, 0.0, 0.3) (0.3, 0.0, 0.3)
7 R, C (0.6, 0.0, 0.2) (2.5, 0.0, 0.2)
8 U, C (0.0, 0.3, 0.3) (0.0, 0.3, 0.3)
9 U, C (0.0, 0.4, 0.2) (0.0, 2.0, 0.2)

10 R, U, C (0.3, 0.3, 0.3) (0.3, 0.3, 0.3)
11 R, U, C (0.6, 0.4, 0.2) (2.5, 2.0, 0.2)

∗censoring proportion.

15 SNPs in TCN2 and referred to them as SNP R, SNP U and SNP C. The MAFs
are 0.036 (rare) for SNP R, 0.132 (uncommon) for SNP U and 0.419 (common)
for SNP C. The average R2’s between a causal locus and the remaining loci are
0.002 (low) for SNP R, 0.003 (low) for SNP U and 0.216 (high) for SNP C. The
specific values of γ�’s are given in Table 2 for each scenario under different inheri-
tance modes and censoring rates. The values were set to consider 1, 2 and 3 causal
loci in the gene and to consider causal loci that have either the same or different
effect sizes (e.g., rarer variants with larger effect sizes). All of the power scenarios
assumed linear additive effects of the causal loci, which favors the linear random
effects model (e.g., Global) and can be used to examine the utility of using the
nonlinear IBS function to capture the multi-marker effects.

We generated the censoring time, Ci , from Unif(0, c), where c is uniquely cho-
sen for each of 3 censoring rates: 15%, 40% and 90%. Specifically, we set c = 6.7,
2.0 and 0.2 for censoring rates of 15%, 40% and 90%, respectively. The sample
sizes, n, were 500 for the 15% and 40% censoring rates under the additive and
dominant modes. For the 90% censoring rate under the additive and dominant
modes and all censoring rates under the recessive mode, n = 1000. Each scenario
was analyzed using SimReg (PH and/or PO), minP, Global and KM. SimReg-PH
and KM have identical test statistics but used different resampling approaches to
obtain p-values. Because both resampling approaches are asymptotically equiva-
lent, we expect minor differences in finite sample performance between SimReg-
PH and KM. In all analyses, the causal loci were excluded.
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5.1. Results of type I error analyses. We first examined the performance of
the proposed SimReg-PH model. Table 3 displays the type I error rates of different
methods when the survival times were generated from the PH model. The results
were based on 105 replications except that KM was based on 5 × 104 replications
due to computational cost. In each replication, the p-values of SimReg-PH were
obtained from 5×105 resamplings. We report the type I error rates evaluated at the
nominal levels of 5×10−2, 5×10−3 and 5×10−4. The type I error rates obtained
by SimReg-PH remained around the nominal levels. However, the deviations were
larger for α = 5 × 10−4, mainly due to fewer resampled statistics observed on
the extreme tail. In particular, for the low censoring proportion (i.e., 15%), the
type I error rates were slightly inflated, while for the high censoring proportion
(i.e., 90%), the type I error rates became a little conservative when α = 5 × 10−4.
Nevertheless, the overall results suggest that the SimReg-PH test maintained an
appropriate size, which confirms the validity of the derived null distribution of
the test statistic, Qn. As expected, the type I error rates obtained by KM were
very similar to SimReg-PH. The type I error rates obtained by the Global test are
overly conservative; similar behavior has been reported in the literature [Zhong
and Chen (2011)]. The minP method had correct type I error rates under additive
and dominant modes. However, the method had inflated type I error rates under
the recessive mode, and the inflation was more severe with smaller α. Under the
recessive mode, the Bonferroni corrected p-values obtained by replacing Keff with
the total number of SNPs also yielded inflated type I error rates. Specifically, the
empirical type I error rates for 15%, 40% and 90% censoring are (0.0627, 0.0687,
0.0608) for α = 5 × 10−2, (0.0145, 0.0152, 0.0163) for α = 5 × 10−3 and (0.0042,
0.0041, 0.0053) for α = 5 × 10−4, respectively. The anti-conservation appears to
be somewhat related to the rare recessive loci; when the rare loci are excluded from
the analysis, the empirical type I error rate became closer to the nominal level (data
not shown). However, such an exclusion strategy might give uninformative results
because the relevant signals were excluded from the analysis.

Table 4 displays the type I error rates when the survival times were generated
from the PO model. Both SimReg-PH and SimReg-PO were implemented. The
results were based on 5000 replications, and the type I error rates were calcu-
lated at the nominal level of 0.05. The type I error rates for both SimReg-PO and
SimReg-PH were close to 0.05 independent of the inheritance mode and the cen-
soring proportions. These results show the validity of the SimReg-PO tests and
the robustness of the SimReg-PH tests. Though not performed, KM is expected to
have the same robustness as SimReg-PH. As seen previously, the Global test had
conservative type I error rates, but the magnitude of conservation is less than that
seen in Table 3. The minP method yielded slightly inflated type I error rates for
the additive and dominant modes with low censoring proportion (i.e., 15%). As
before, it yielded inflated type I error rates for the recessive mode.
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TABLE 3
Type I error rates for survival time generated from the PH model

Additive Dominant Recessive

Analyzed under 15% 40% 90% 15% 40% 90% 15% 40% 90%
PH model (n = 500) (n = 500) (n = 1000) (n = 500) (n = 500) (n = 1000) (n = 1000) (n = 1000) (n = 1000)

α = 5 × 10−2 (Rates shown on the scale of 10−2)
minP 4.89 4.85 4.44 4.92 4.84 4.16 7.63 7.46 7.25
Global 2.73 2.71 2.72 3.01 2.99 2.96 2.75 2.74 2.73
KM 5.07 5.11 4.73 5.10 5.17 4.81 5.12 4.97 4.78
SimReg-PH 5.11 5.10 4.79 5.15 5.11 4.83 5.21 5.04 5.01

α = 5 × 10−3 (Rates shown on the scale of 10−3)
minP 6.52 6.22 5.50 6.13 5.44 4.39 17.09 17.62 19.21
Global 2.82 2.65 2.67 2.98 2.74 2.86 2.61 2.50 2.59
KM 5.18 4.86 4.02 5.26 4.86 4.28 5.40 5.54 4.96
SimReg-PH 5.18 4.91 4.15 5.22 5.03 4.38 5.84 5.20 5.96

α = 5 × 10−4 (Rates shown on the scale of 10−4)
minP 8.6 8.1 6.8 8.0 7.0 6.2 48.4 47.9 60.3
Global 2.9 3.9 2.7 4.0 3.2 2.4 3.1 2.9 2.8
KM 5.8 5.2 2.8 6.8 5.8 4.4 8.4 4.4 6.6
SimReg-PH 7.1 5.7 2.7 6.9 5.4 3.2 8.0 4.6 8.1

The type I error rates are shown on the scale of 102, 103, and 104 for nominal level at 0.05, 0.005, and 0.0005, respectively. The survival times were

generated from the PH model and were analyzed using different approaches under the PH model. The results were based on 105 replications except that
the results for KM were based on 5 × 104 replications.
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TABLE 4
Type I error rates for survival time generated from the PO model

Additive Dominant Recessive

15% 40% 90% 15% 40% 90% 15% 40% 90%
(n = 500) (n = 500) (n = 1000) (n = 500) (n = 500) (n = 1000) (n = 1000) (n = 1000) (n = 1000)

minP 0.0584 0.0548 0.0444 0.0560 0.0492 0.0410 0.0798 0.0774 0.0740
Global 0.0358 0.0320 0.0256 0.0352 0.0332 0.0266 0.0342 0.0312 0.0250
SimReg-PH 0.0488 0.0496 0.0464 0.0492 0.0504 0.0478 0.0526 0.0518 0.0480
SimReg-PO 0.0446 0.0486 0.0468 0.0452 0.0496 0.0508 0.0544 0.0492 0.0490

The survival times were generated from the PO model and were analyzed using different approaches under the PO model or the PH model (to examine
the impact of model misspecification). The results were based on 5000 replications.
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5.2. Results of power analyses. The power analyses were performed using
the settings specified in Table 2. The results were based on 100 replications under
each scenario. Figure 3 shows the power when the survival times were generated
from the PH model. We first consider the additive mode. When one large-effect
causal locus has low MAF and low LD with the other markers (e.g., Scenarios
1, 5 and 11), minP tends to have the highest power independent of the censoring
proportion. The good performance of minP is not unexpected in these scenarios be-
cause the overall association of the gene was driven by a single large-effect locus,
for which the majority of the other SNPs did not carry much information. As a re-
sult, there is no power gain when borrowing information from other SNPs, which is
what SimReg-PH does. However, the power gain of minP over other methods gen-
erally diminishes as the number of causal loci increases (e.g., Scenarios 5 to 10).
In scenarios where the marker set is not dominated by a single causal locus of low
MAF and low LD, SimReg-PH showed comparable or higher power. As expected,
KM had near identical power as SimReg-PH in all scenarios. In most scenarios, the
Global test produces the least amount of power largely due to the over-conservative
test size. The overall performance under the dominant mode has a similar trend to
that of the additive mode. However, the power of SimReg-PH is comparable to
or better power than the power of minP in more cases under the dominant mode
than under the additive mode. For the recessive mode, SimReg-PH appears to have
better power than the Global test. We did not perform a power analysis for minP
because the type I error rates were inflated.

Figure 4 shows the power performance when the survival times were generated
from the PO model. The power obtained using SimReg-PO is similar to or better
than the power obtained using SimReg-PH, indicating that efficiency is gained
when the correct model is used. The power gain of SimReg-PO is more substantial
when the censoring proportion is low to medium, and the power is comparable
to or better power than the minP power in some of those difficult cases, such as
Scenario 1.

6. Discussion. In this work we extended the similarity regression (SimReg)
approaches, which have shown effectiveness in modeling marker-set effects on
binary and continuous outcomes, to survival models to facilitate the assessment
of gene or pathway effects on drug responses. The genetic effect is evaluated by
assessing the association between the IBS status of a pair of individuals and the
covariance of their survival times. We derived the equivalence between the similar-
ity survival regression and a random effects model. The equivalence facilitates the
derivation of the score test statistics and unifies the current variance component-
based methods. Specifically, the KM approach [Lin et al. (2011)] is equivalent to
SimReg-PH when the same kernel function is used to quantify the genetic similar-
ity, Sij . The Global test [Goeman et al. (2005)] can be viewed as a special case of
SimReg-PH with Sij = ∑

m GT
m,i Gm,j (i.e., the linear kernel). However, the results

of Global and SimReg-PH with linear kernels may be different because different
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FIG. 3. Power when the survival times are generated from the PH model.

approaches were used to derive the asymptotic distributions of the test statistics.
Compared to these existing gene-based approaches, our proposed method has the
generality to incorporate a variety of risk models in the class of linear transforma-
tion models, and we explicitly constructed the SimReg tests under the PH model
and the PO model in this work. We also proposed a resampling approach to obtain
the p-values that improves the computational efficiency. Finally, we showed that
the derived inference procedure is robust against the misspecification of the risk
model, which is an attractive feature because the underlying risk model is often
unknown. Through simulations, we showed that the power of the SimReg method
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FIG. 4. Power when the survival times are generated from the PO model.

is comparable to or higher than the power of the minP and Global methods across
various scenarios. We also verified that the SimReg-PH test statistics remain valid
even if the risk model is misspecified.

In the data application on the VISP study, we illustrated how SimReg can be
used to search for genes or pathways that are associated with a time-to-event out-
come and confirmed previous findings using this gene-based approach with statisti-
cal significance. Although we focused our method development and demonstrated
its utility based on pharmacogenetics studies, the proposed method is applicable to
other genetic clinical researches or observational studies with time-to-event out-
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comes. For a pharmacogenetic study with sample sizes 1000, such as the VISP
trial, 1000 runs of the SimReg analyses took ≤1 hour to complete on an Intel
Xeon 3.33 GHz machine with 12 Gb RAM using one processing core. We expect
a gene-based whole genome analysis on ∼20K genes should be completed in a day
using a comparable computing facility. We implemented the proposed methods in
R and made it available at the authors’ websites. We are incorporating the software
into the SimReg R package.

Motivated by the data application where the risk variant acted recessively, we
further investigated the behavior of the gene-based approaches under different
modes of inheritance. We found that all of the studied gene-based methods per-
formed appropriately under the additive and dominant modes. However, caution
should be used when performing the minimal p-value approaches under the re-
cessive mode; the minimal p-value approaches had severely inflated type I error
rates. The inflation might be related to the extremely rare recessive loci. However,
excluding those rare recessive loci is suboptimal because the important signals can
be artificially removed and lead to power loss. In contrast, the global test and the
similarity regression are not vulnerable to such a situation and appear to be more
suitable options given their reasonable performance under the recessive mode.

This work focused on assessing the genetic main effect on drug response in
an effort to understand how individual variation affects drug efficacy and toxic-
ity. In pharmacogenetics and personalized medicine, one major topic is to study
if the genetic effects are modified by treatments and how the effects differ across
treatment options. As observed in the VISP genetic studies, the effect of TCN2
on recurrent stroke risk is restricted to the low-dose treatment. An analysis strati-
fied by treatments allows for the evaluation of such heterogeneous effects between
different treatment groups, but its efficiency can be further improved by incorpo-
rating the gene-treatment interaction in the regression model. Such an extension is
not straightforward because the calculation of the score test requires the variance
component estimates for the genetic main effect under a mixed-effects survival
model. We are developing further extensions of SimReg to incorporate interaction
effects.

APPENDIX

Derivation of the score statistic Qn: Given the working mixed model H(Ti) =
γ T Xi + gi + ε∗

i , the log-likelihood function of the observed data can be written as

ln(γ,H, τ)

= log
∫

· · ·
∫ n∏

i=1

[
λ
{
H(T̃i) − γ T Xi − gi

}]δi

× e−
{H(T̃i )−γ T Xi−gi}fG(g1, . . . , gn) dg1 · · ·dgn,
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where λ and 
 are the specified hazard and cumulative hazard functions of ε∗
i , and

fG(g1, . . . , gn) is the joint density of g1, . . . , gn, that is, a multivariate normal den-
sity with mean 0 and variance–covariance matrix τS. Consider the variable trans-
formation (g∗

1 , . . . , g∗
n)′ = τ−1/2S−1/2(g1, . . . , gn)

′, where S = S1/2S1/2. Then
(g∗

1 , . . . , g∗
n)′ follows a standard multivariate normal distribution. The result leads

to

ln(γ,H, τ)

= log
∫

· · ·
∫ n∏

i=1

[
λ
{
H(T̃i) − γ T Xi − τ 1/2S1/2g∗

i

}]δi

× e−
{H(T̃i )−γ T Xi−τ 1/2S1/2g∗
i }

× f ∗
G

(
g∗

1 , . . . , g∗
n

)
dg∗

1 · · ·dg∗
n,

where f ∗
G is the density for the standard multivariate normal distribution. After

some algebra, we have

1

n

∂ln(γ,H, τ)

∂τ

∣∣∣∣
τ=0

= 1

2n
(r1, . . . , rn)S(r1, . . . , rn)

T

+ 1

2n

n∑
i=1

[
λ̈(ei)λ(ei) − {λ̇(ei)}2

λ2(ei)
− λ̇(ei)

]
sT
i si,

where ei = H(T̃i) − γ T Xi , λ̈(·) is the second derivative of λ(·), si is the ith row
of the matrix S1/2 and ri = ∫ ∞

0 λ̇{H(t) − γ T Xi}/λ{H(t) − γ T Xi}dMi(t;γ,H).
The equality in the above equation is obtained by first taking the derivative of
ln(γ,H, τ) with respect to τ and then deriving its limit as τ → 0 using L’Hôpital’s
rule. Note that the first term on the right-hand side of the above equation is non-
negative, and the second term converges in probability to a constant as n goes to
infinity. In addition, under the null hypothesis, ri’s have expectation of 0 at the true
values of γ and H because they are martingale integrations. Therefore, if the null
hypothesis is correct, the first term in the summation should be close to 0. This
result motivates us to consider a score test and reject the null hypothesis when the
score (1/n)∂ln(γ̂ , Ĥ , τ )/∂τ |τ=0 is bigger than some value, where γ̂ and Ĥ are
the estimates of γ and H , respectively, under the null model. It is asymptotically
equivalent to consider the test statistic Qn = n−1(r̂1, . . . , r̂n)S(r̂1, . . . , r̂n)

T and re-
ject the null hypothesis when Qn > cα , where cα is the critical value for a level-α
test.

Null distribution of the score statistic Qn: Here, we consider the estimators γ̂

and Ĥ (·) obtained via the martingale-based estimating equations for the standard
linear transformation model [Chen, Jin and Ying (2002)] under the null hypothe-
sis. Note that Qn = (n−1/2 ∑n

i=1 r̂i si)
T (n−1/2 ∑n

i=1 r̂i si). Let γ0 and H0 denote the
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true values of γ and H , respectively, in the null model. Based on the derivations
given in Chen, Jin and Ying (2002), we have the following asymptotic representa-
tions:

√
n(γ̂ − γ0) = −A−1 1√

n

n∑
i=1

∫ ∞
0

{
Xi − μX(t)

}
dMi(t;γ0,H0) + op(1),

√
n
{
Ĥ (t) − H0(t)

} = −b1(t)
T A−1 1√

n

n∑
i=1

∫ ∞
0

{
Xi − μX(t)

}
dMi(t;γ0,H0)

+ 1√
n

n∑
i=1

∫ t

0
φ(t, s) dMi(s;γ0,H0) + op(1).

The definitions of A, μX(·), b1(·) and φ(·, ·) can be found in Chen, Jin and Ying
(2002). By the Taylor expansion, we can show that

1√
n

n∑
i=1

r̂i si →d N(0,�),

as n → ∞, where � = E(ψiψ
T
i ) and

ψi =
[
δi

λ̇{H0(T̃i) − γ T
0 Xi}

λ{H0(T̃i) − γ T
0 Xi}

− λ
{
H0(T̃i) − γ T

0 Xi

}]
si

− (B1 − B2)A
−1

∫ ∞
0

{
Xi − μX(t)

}
dMi(t;γ0,H0)

−
∫ ∞

0
b2(t) dMi(t;γ0,H0).

Here

B1 = lim
n→∞

1

n

n∑
i=1

siX
T
i

[
λ̇
{
H0(T̃i) − γ T

0 Xi

}

− δi

(
λ̈
{
H0(T̃i) − γ T

0 Xi

}
λ
{
H0(T̃i) − γ T

0 Xi

}

− (
λ̇
{
H0(T̃i) − γ T

0 Xi

})2)

/
(
λ
{
H0(T̃i) − γ T

0 Xi

})2]
,

B2 = lim
n→∞

1

n

n∑
i=1

sib1(T̃i)
T [

λ̇
{
H0(T̃i) − γ T

0 Xi

}

− δi

(
λ̈
{
H0(T̃i) − γ T

0 Xi

}
λ
{
H0(T̃i) − γ T

0 Xi

}

− (
λ̇
{
H0(T̃i) − γ T

0 Xi

})2)

/
(
λ
{
H0(T̃i) − γ T

0 Xi

})2]
,
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b2(t) = lim
n→∞

1

n

n∑
i=1

siI (T̃i ≥ t)

× φ(T̃i, t)
[
λ̇
{
H0(T̃i) − γ T

0 Xi

}
− δi

(
λ̈
{
H0(T̃i) − γ T

0 Xi

}
λ
{
H0(T̃i) − γ T

0 Xi

}

− (
λ̇
{
H0(T̃i) − γ T

0 Xi

})2)

/
(
λ
{
H0(T̃i) − γ T

0 Xi

})2]
.

Therefore, Qn converges in distribution to a weighted χ2 distribution:∑d
k=1 ξkχ

2
1,k , where χ2

1,1, . . . , χ
2
1,d are d independently and identically distributed

χ2 random variables with degree freedom of 1, and ξ1, . . . , ξd are the d nonzero
eigenvalues of the matrix �. To obtain the critical value, cα , of the limiting
weighted χ2 distribution, we use a numerical method. Specifically, we first ob-
tain a consistent estimator, �̂, of � using the usual plug-in method and compute
the nonzero eigenvalues ξ̂1, . . . , ξ̂d of the matrix �̂. Next we generate a large
set (e.g., 10,000 sets) of independent and identically distributed random variables
χ2

1,1, . . . , χ
2
1,d . For each set of χ2 random variables, we compute

∑d
k=1 ξ̂kχ

2
1,k . We

can then estimate cα by the upper α-quantile of
∑d

k=1 ξ̂kχ
2
1,k’s and the associated

p-value of the score test can be computed accordingly.
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