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Abstract. We study the maximum of a Gaussian field on [0, 1]d (d = 1) whose correlations decay logarithmically with the dis-
tance. Kahane (Ann. Sci. Math. Québec 9 (1985) 105-150) introduced this model to construct mathematically the Gaussian mul-
tiplicative chaos in the subcritical case. Duplantier, Rhodes, Sheffield and Vargas (Critical Gaussian multiplicative chaos: Conver-
gence of the derivative martingale (2012) Preprint, Renormalization of critical Gaussian multiplicative chaos and KPZ formula
(2012) Preprint) extended Kahane’s construction to the critical case and established the KPZ formula at criticality. Moreover, they
made in (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint) several conjectures on
the supercritical case and on the maximum of this Gaussian field. In this paper we resolve Conjecture 12 in (Critical Gaussian mul-
tiplicative chaos: Convergence of the derivative martingale (2012) Preprint): we establish the convergence in law of the maximum
and show that the limit law is the Gumbel distribution convoluted by the limit of the derivative martingale.

Résumé. Nous étudions le maximum d’un champ Gaussien sur [0, 119 (@ > 1) dont les corrélations décroissent logarithmiquement
avec la distance. Kahane (Ann. Sci. Math. Québec 9 (1985) 105-150) a introduit ce modele pour construire mathématiquement le
chaos Gaussien multiplicatif dans le cas sous-critique. Duplantier, Rhodes, Sheffield et Vargas (Critical Gaussian multiplicative
chaos: Convergence of the derivative martingale (2012) Preprint, Renormalization of critical Gaussian multiplicative chaos and
KPZ formula (2012) Preprint) ont étendu cette construction au cas critique et ont établi la formule KPZ. De plus, dans (Critical
Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint), ils fournissent plusieurs conjectures sur
le cas sur-critique ainsi que sur le maximum de ce champ Gaussien. Dans ce papier nous établissons la convergence en loi du maxi-
mum et montrons que loi limite est une variable aléatoire de Gumbel convoluée avec la limite de la martingale dérivée, résolvant
ainsi la Conjecture 12 de (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint).
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1. Introduction

We study the maximum of a Gaussian field on [0, 1] (d > 1) whose correlations decay logarithmically with the
distance. This model was introduced by Kahane [22] to construct mathematically the Gaussian multiplicative chaos
(GMC). This family of random fields has found many applications in various fields of science, especially in turbulence
and in mathematical finance.

A series of work of Duplantier, Rhodes, Sheffield and Vargas has generated a renewed interest on this model. In
[19] and [20] they extend Kahane’s [22] construction of the Gaussian multiplicative chaos to the critical case and
establish the KPZ formula at criticality. Their proofs are inspired by the latest advances in the study of the branching
random walk (BRW) especially concerning the Seneta—Heyde norming for the additive martingale. Moreover they
make several conjectures on the supercritical case and on the maximum of the log-correlated Gaussian field (see

[19D).
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In this paper we resolve the Conjecture 12 in [19]: we establish the convergence in law of the maximum and show
that the limit law is the Gumbel distribution convoluted by the limit of the derivative martingale. Moreover we believe
that this result could lead to the resolution of the Conjecture 11 [19] on the existence of the GMC in the supercritical
case. Our proof is deeply inspired by a powerful method of Elie Aidékon, developed in [1], to show the convergence
in law of the minimum of a real-valued branching random walk.

We treat the case of star scale invariant log-correlated fields. This is a general class of field with no restriction on
the dimension. It generalizes the notion of branching structure in a continuous setting and lead to prove the existence
and the uniqueness of the lognormal *-scale invariant random measures, see [5].

Let us mention that in the discrete setting, 72 N [0, N ]2, if we add the zero boundary condition, the model be-
comes the so-called Gaussian free field (GFF), which has attracted many recent attentions, see [15], [14] and [17].
In particular we mention [16] where they proved the convergence in law of the maximum of the discrete GFF after a
suitable normalization. This result is of the same type as Theorem 1.1 below however in [16] the limiting law remains
unknown. So one of the main interest of the present paper is its identification as a Gumbel distribution convoluted by
the limit of the derivative martingale.

In the first sub-section we shall introduce the model of log-correlated Gaussian random field and state the main
result of the paper. In the second sub-section we set out the strategy of the proof.

1.1. Star scale invariants kernels

We follow [19] to introduce the log-correlated Gaussian field that we will study throughout the paper. We consider a
family of centered stationary Gaussian processes (X;(x))s>0 yera & > 1, with covariances

t
E[X,(O)Xl(x)]zfo k(e"x)du, Vt>0,xeR%. (1.1)

The kernel function k:R? — R is C!, satisfying k(0) = 1 and k(x) =0 if x ¢ B(0,1) := {x: |x| <1} (]x] :=
max;e(1,4] |xi|). Such fields have been studied in [5] via a white noise decomposition. We also denote g(-) := 1 — k()
and introduce for any ¢ > 0,

Y:(x) = X;(x) — ~/2dr. (1.2)
For any A C R4 bounded, we are interested in
M;(A) :=sup Y:(x), t>0, (1.3)
XeA

the maximum of the Gaussian field on the domain A, at time 7. Let B(RY) the Borel on R, and B, (R?) its restriction
to the bounded sets. We introduce for 7 > 0 and y > 0, the random measures M/ (dx) and M (dx) defined by:

M;(A) — /A(_Y’ (x))e\/EY/(x%th dx, sz (A) ::/I;eny(x)JrV\/ﬁt*(Vz/Z)t dx, VAe Bb(Rd) (1.4)

Kahane in [22] proved that for any y € [0, +/2d) (called subcritical case), there exists a random measure M, such
that

M (A) %3 MY (A), YA e B,y (RY), (1.5)
whereas for y > /24 (called critical and supercritical case),

M (A)230, VAeBy(RY). (1.6)

One motivation of (1.5) is to give a rigorous construction of a standard Gaussian multiplicative chaos (GMC) in the
subcritical case which is formally defined as (see [19]) a random measure such that for any set A € B, (R,

ML (A) = f e X~ /DRI g (1.7)
A
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where X is a centered log-correlated Gaussian field:

E[X(x)X(y)] =log, +g(x, ), (1.8)

lx =yl
with log, (x) = max(logx, 0) and g a continuous bounded function on R< x R4, It is an important problem to extend

the construction for y > +/2d. In [19] the authors are able to construct the GMC in the critical case y = +/2d, via the
following theorem:

Theorem A ([19]). For each bounded open set A C RY, the martingale (M](A))i>0 converges almost surely towards
a positive random variable denoted by M'(A).

Concerning the construction of the GMC in the case y > +/2d, they ([19]) conjectured

Conjectures ([19]).

(VRGN Y (@) B e, Nz ast— oo, (A)

with ¢y, a positive constant, and N /55 Iy @ known positive random measure.

sup  Y(x) + logt ¥ Ga, ast— oo, (B)

3
xef0, 178 2424

where the distribution of G g is a Gumbel distribution convoluted with M/_([0, 119).

The authors also explained how to obtain the Conjecture (B) from Conjecture (A). Here we do not study Conjecture
(A), but we resolve directly Conjecture (B):

Theorem 1.1. There exists a constant C* € (0, 00) such that, for any real z,

lim P(M;([O, l]d) < lOg[ _ Z) — E(e_c*e«/ﬁzM/([O,l]d))‘ (19)
t—00

3
2+/24d
Remark. In this paper we have assumed that the kernel k has compact support. This assumption is essential for the
Section 3. However it would be possible to relax this assumption when the long-range correlations decrease rapidly.

We believe that this result and the methods developed here, could lead to establish Conjecture (A): Basically, when
y > V24, M,V concentrates its mass only on the particles close to the maximum M, ([0, 11%), where here and in
the sequel, by particle in the log-correlated Gaussian field we mean a point x € [0, 1]9. We expect to establish the
convergence of the random measure formed by the particles near to the maximum, just like in the BRW case (see [1],
[23], [11] and [19] for an explicit connection between branching random walk and this model). This direction will be
explored elsewhere.

As in the case of the branching Brownian motion, see [6], [7], [8] and [3], our work could also lead to the “geneal-
ogy of the extremal particles” which in our context corresponds to their spatial position. Indeed in Lemma 5.2 we use
our understanding of the paths of the extremal particles to prove that they are concentrated in clusters.

As we mentioned before, recently in [16] the authors showed the convergence in law of the maximum of the GFF.
Furthermore it is believed that there exists some universality between all the log-correlated Gaussian fields, see [18].
For instance, it is interesting to extend our result to some kernels k which are not invariant by translation.
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1.2. Strategy of proof

Here we try to give a guiding thread for the proof of Theorem 1.1. We mention that this strategy of proof is similar to
that used in [1] for the BRW and also in [16] for the GFF.

We start by introducing some notations. It will be convenient to consider a log-correlated Gaussian field starting
from an arbitrary a € R, whose the law is denoted by P,. The law of (Ys(x))50 xcra under P, is the same as the law
of (a + Y;(x))s>0.xera under P. For any / > 0 we define -

(YD), 20 rera = (Ysr1(0) = Y1(0) g 1 cpa- (1.10)

This process is independent of (Y;(x));<; ycra and has the same law as (¥ (Xel))szo,xERd under P, as we will see in
law

(2.5). Observe that for any x € RE, (¥, (x))s=0 = (Bs — v/2ds)s>0 with (Bs) a standard Brownian motion. For any
a,b,l e RT, define

|f ) = fFO)

75— =1, min f(y)>a, and max f(y)<b}.
/3 yel0, R1¢

Cr(,a,b) :={f: sup
ye[0,R]¢ [0,R]

2. yel0, RIS, [x—y| <1/l X = V]
For any process ( fs)s>0, t2 > t1 >0, let

f = inf fj, f inf f;, and

1 s<t Ll y<s<ty”°

7[] = sup fi, ?[tl,tz] :=t sup  fs.

s<t 1SSy

Similarly we also define

|flo ==sup|fsl and [fli.n:= sup [fsl.

S=<I| 1 =s=fp
As shown in [19], the typical order of M is — ﬁ logt, so it will be convenient to introduce

1 3
=— logt and [L(z):=la;+z—1,a:+2z], z>0. (1.11)

kg = ——, a; =
4T 424 R WCF|

Forany x,r > Olet B(x,r) := {y, € R, |x — y| <r}. Let A be the Lebesgue measure on R and for any A € B(RY),
Aa i =XA(AN:). Let O1, O be two metric space, C(Op, O3) is the set of continuous functions from O; into O,. Finally
for any R > 0, p(-) € C([0, R]¢, R1), let

Ta(p) ::/ p(x)e~v24P0) gy (1.12)
[0,R12

The key step of the proof of Theorem 1.1 is the following proposition

Proposition 1.2. There exists a constant C* > 0 such that:

e forany R > 1, ¢ > 0, there exist | > 0 and Ty > 0 such that:
e foranyt > Ty and p(-) € Cr(l, kglogl,logt), we have:

[P(3x €10, RI%. Y, (x) = 4 + p(x)) — C*La(p)| < eTa(p). (1.13)

Part I: Deduce Theorem 1.1 from Proposition 1.2. Fix z € R. Here we always assume ¢ > [ > R > 0. By the
Markov property at time / and the scaling property (2.5) for Y,

P(M, ([0,11%) <@ —z) =P(¥x € [0, 114, Y (x) <a; — 2 — Yi(x))

=E(P(Vx e [0,¢] Y0 <ar — 2= p(0) sy ety
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A
v

Ay
az2

Fig. 1. Decomposition of the cube [0, el1d.

We write [0,e/]¢ = (U; A1) U Ng,; with A; and Ng; defined as in the Figure 1, i € (1,...,m}d. Clearly
limg o SUP;> | re !N r.1) =0, then we choose R large enough such that

P(M,([0,119) <a; —2) =~ E(P(Vx eJai Y <a -z p(x)) )
" pO=Yi(e)

where a > b means “the amount |a — b| can be neglected.” Moreover, x € A; and y € Aj with i # j implies |x —y| > 1
and thus the processes (Y;—;(x))s>; and (Y;—s(y))s>; are independent. Using the invariance by translation of ¥ we get
finally

P(M([0,1]9) <a; —z) =~ E(]‘[ P(Vx € [0, RI% Y,y (x) <a; —z— pi(x))l,,i(,)zyl(ai+,e_,)),

1

with g; := (R+1)((i1 — 1), ..., (ig — 1)) (see Figure 1). For any i let us denote P; ;(¥;) :=P(3x € [0, R4, Y, (x) >
ar — 2= Pi(X))| ()= (g+-c-1)- AS SUPyefo,1ja Y1(x) — —o0 when [ goes to infinity and (sup,¢jo, gja Yi—1(X) — ar)i>i



1374 T. Madaule

is tight (see p. 14 in [19]), we have lim;_, o limsup,_, .o P; ;(Y;) =0 for any i, then

P(M, ([0, 11%) < a; — z) = E(eXi'ogl1~Ar0D]) ~ E(exp[ Z P, ,(Y,)])

Now we apply Proposition 1.2, and get that
P(M,([0,11%) <a, — z) ~ E(exp{ c* Z/O o
= o] % () +(Un) ).

where the last equality comes from a change of variables. Choosing R and / large enough, and applying Theorem A
and (1.6), we can affirm that

My (i) = My (10, 11%) = M (10. 11%) and - M ({Jas) = mi(10, 119) =0,

Finally we have obtained that for r > [ > R,

P(M (10, 11°) = a — 2) = E(exp{ -C*e¥?5 [—zm (| ai) + M (i) })

~ E(exp{—C*e‘/ﬁle/([O, 114}).

al + xe l) - Z)e«/ﬁ[Yl(aiere’l)Jrz] dx })

Thus we get Theorem 1.1. |

Before giving the main ideas to prove Proposition 1.2, let us observe that Proposition 1.2 yields the tail distribution
of M, ([0, R]Y). Indeed by choosing p(-) = p (a constant function) we immediately obtain that

/2dp

lim lim P(M, ([0, R1%) > a, + p) = C*R°. (1.14)
p—>00 [—00

In the case of BRW, by using the “optional lines,” a result similar to (1.14) is enough to obtain the asymptotic distri-
bution of the maximum. For our model, it is not clear whether there exists an analogue tool of “optional lines,” thus
we need here a general statement as in Proposition 1.2.

The proof of Proposition 1.2 relies on a fine understanding of the path of the particles near to the maximum (called,
in the following, the extremal particles). Furthermore to establish the trajectory of an extremal particle x at time
t, we will also need to control the fluctuations of (Y;(y) — Ys(x))s<; for y € B(x,e™") see Lemmas 4.2, 4.3 and
Proposition 4.4.

Part I1: Sketch of proof of Proposition 1.2. Below are the three main steps:
Step 1: In Proposition 4.4, we establish a localization of the paths of the extremal particles. We prove that with

probability close to 1, any x € [0, R]% satisfying ¥; (x) > a; + p(x) — 1, x must also verify that ¥.(x) € =" (when
L large) with

SOt ={(f)s=0. fr <o fujpn <@ +a+L, fza+a—1}, YL, at>0. (1.15)

See also Figure 2.
On the set {3x € [0, R]9, Y, (x) > a; + p(x)}, Ao, rie({x, Y (x) > a; + p(x) — 1}) > 0 and then we can write

1=

f[o R} Ly, »)=a+o()—-1) dy /‘ ]l{y(y)EDL 0y &
[0

Ao, riax, Ye(x) = ar + p(x) — 1}) R14 Ao Rpa({x, Yi(x) = ar + p(x) — 1})
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Pathin v:‘(")"' path in "l:lvp(x)(m)

o(x)_| p(x)
0 t 0 \log ! t
a,+ L +p(x)
—€L(p(x)+1)
€ I, (p(x) +m)
a,+ p(x)
— Pathine}P Pathin 420"
p(x) p(x)_|

log!

a,+ L+p(x) a,+ L +p(x)

€ L(p()
a.+p(x)
Fig. 2. Paths of the particles.
By taking the expectations we get that
Aq16) :=P(Ix €10, RI%, Y (x) = a; + p(x)) (1.16)

~ / E(]l{Y(y)ED?(”’L,er[o,R]d,Yt(x)zaﬁp(x)})dy

~Jiorie \ A rpe(x, Yi(x) = a4 p(x) — 1)) .
Step 2: The Lemma 5.2 shows that on the set {Y.(y) € >/ L }, with an overwhelming probability, for b large enough,
{x €0, R4, Y, (x) > a; + p(x) —1}={x € B(y, eb_’), Y;(x) = a; + p(x) — 1}. In other words, only the particles
close enough to y are extremal. Moreover, as p(-) € Cr(l, kglogl,logt) is a regular function, we may replace p(x)
by p(y) for any x € B(y, eP~1) and thus (1.16) becomes

Atre ~ /- E(ﬂ.{Y,(y)EDf(y)»L’HxEB(y,eb—t),Y;(x)za,+p(y)} ) dy
. [0,R}4 )‘B(y,eb—f)({xv Yix)=a;+p(y)—1})

1 0.L

Y.(y)er, ", 3xeB(y.e?).Y; (x)>a;)

2/ E—p(_y)( ){\‘ Y t X v y,€ = 1 (x lat })dy — A(1.17)- (117)
[0,R1¢ B(y,eb—n{x, Yi(x) = ar — 1})



1376 T. Madaule

Step 3: We are now able to take profit from the two previous steps, using some elementary properties of Y. First, by
the Markov property at time 7, =t — b, we get that

A = /[ o1 E_ (I, (y)fo,?[,/z,,b](y)ga,+L}‘Pt,y[Yzb () —ar =L, (Y5, + 1) = Y5,(0) <o ]) AV

with

79 (1)=0,¥,"" ()= —L—1,31h|<eb=1, ¥, (y+h)=—L+g(h)} >

Apo.eon ({h Y (v + 1) = —L + g (b))

1
@t,y(Za (g(h))m‘ieb—t) = EZ( {

Then using successively the following three properties of Y: (a) the invariance by translation; (b) the scaling property
(2.5); (c) Lemma 2.2; and finally the Girsanov’s transformation with density ¥ © +d e obtain

—V24p(y),3/2
Aqarn = /[.0 pe V24003 E—p(y)(ﬂ{E,bgo,E[,/z,,b]Sa,JrL}F[Btb (y) —a: — L., (Bs — Bo)sejo.]) dy

with F a function (defined in (5.24)) which does not depend on ¢ and y any more. Finally we conclude via a renewal
theorem, see Proposition 6.5, to ensure that uniformly on y € [0, R]<,

P(y)
E_p(y) (]l{ﬁtb50,E[1/2,%]§a:+L}F[Btb () —ar =L, (Bs — BO)SG[Ovt]]) ~ C*t37' (1.18)

From (1.17) and (1.18) we deduce Proposition 1.2. O

Remark. Let G be a random variable independent of M'([0, 11%) and satisfying P(G < —z) = e_c*emz, Vz € R. By
combining (1.14) and (1.9) we get

ev2dp
lim P(

p—00 P

1
G + ——log M'([0, 11¢ =C*. 1.19
+mog (i ])zp) (1.19)

We could hope that (1.19) may to identify the tail of distribution of M'([0, 119). As proved in [10], in dimension one
and for a particular model, we expect that P(M' ([0, 119) > p) ~ps00 0p~'. Unfortunately, (1.19) is not sufficient to
obtain such a result (see for instance [13]).

The paper is organized as follows. In Section 2 we present some notations and general properties about our log-
correlated Gaussian field. We prove Theorem 1.1 in Section 3 by assuming Proposition 1.2. Section 4 is devoted to the

study of the tightness of M, and the localization of the path of extremal particles. Assuming Theorem 5.6, we prove
Proposition 1.2 in Section 5. Finally Theorem 5.6 is proven in Section 6.

2. Preliminaries
Here we state some elementary results and notations used through the paper. Let us start by a definition.

Definition 2.1. For any domain D C R and any f(-) € C(D,R), let

1/3 [f(x)— fODI
wD @)= sup |f@) - O w}[().) D)= sup i, ¥6>0. QD)
y,Xx€D,|x—y|<8 v,xeD,|x—y|<8 |x — y
For any function g.(-) € CRT x D, R), let
We (8, y,1) = sup |gs(x) — gs(»)|. ¥8>0,yeD,t>0. (2.2)

s<t,x€D,|x—y|<s
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d
When D = [0, R]? (R > 0), we will use w;lg.))(é) and w(flg.’)m)(é) instead of respectively w;[?j)m )(8) and
d
w12 (6). Similarly, when D = B(0,b) (b > 0), we denote wD @) = w7 (6). We cite (with our no-
tations) a lemma due to [19]. ' '

Lemma 2.2 ([19]). Recall that g(-) := 1 —k(-). For any fixed u # x, the process (Y;(u)):>0 can be decomposed as:
Yi(w)=P W)+ Z; (w) — ' (w), V>0,

where

o F(u):=~/2d [y g(e’(x —u))ds, t >0,
o PX(u):= f(; k(e®(x —u)) dY,(x) is measurable with respect to the o -algebra generated by (Y;(x)):>0,
o the process (Z; (u));>0 is a centered Gaussian process independent of (Y;(x)):>0 with covariance kernel:

!

INT
E(Zf (u)Zf/(v)) = /0 [k(es(u — v)) — k(es(x — u))k(es(x — v))] ds, V&,t'>0,x,u,veR (2.3)

Observe that (2.3) implies (Z (x + u)),cr+ yera (aw) (Z2(u));er+ yera for any x € R9. Some simple computa-

tions lead to

Lemma 2.3. (i) For any x,u,v € R andt,t € R, we have:

/

tNT
E(P(u) P (v)) :=fO k(e (x — u))k(e* (x — v)) ds. 2.4)

(i1) For any | > 0 the following equality holds:

(Yot () = Vi) i yema =2 (V" 0)) s rema D (v, (x€')) s rera- 2.5)

(iii) For any b > 0, uniformly in u € B(0, b), lim,_, », &;(ue™") = /2d fi)oo ge’u)dv :=¢(u).
Finally we state a proposition which will be used in the proof of Proposition 6.5.

Proposition 2.4. Let b,t > 0. For almost every w € 2, B(0,e”) 5 y > Zto(ye_t)(w) belongs to C(B(0, e?), R).
Moreover when t goes to infinity, the Gaussian process B(0,¢e?) 3 y Z? (ye™")(w) converges weakly (according to
the topology induced by the uniform norm in C(B(0, e?), R)) toward the centered Gaussian process B(0,e”) 3 y —
Z(y) defined by:

0
E(Z(y)Z(2) = / [k((y — 2)e") — k(ye")k(ze")]dv, y.ze B(0, eb). (2.6)

—00

Proof. By standard results on the Gaussian processes, the regularity of the kernel k implies the continuity of Z?(-)
(see for instance [21]). Then it suffices to observe that

E(Z)(ye™)Z0(ze™")) = /0 k((y — 2)e") — k(ye")k(ze") dv

—t
0
= k((y —2)e”) —k(ye")k(ze") dv.

t—00 J_ o

So the finite dimensional laws of (B(0,e?) 5 y > Z,O(ye_’))tzo converge to those of B(0, e?)ysym 2V Finally it
remains to show the tightness of (Z?(-)),Zo which is routine (cf. [12]) and we omit the details. (Il
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Convention. Throughout the paper, ¢, c’, ¢” denote generic constants and may change from paragraph to paragraph.
These constants are independent of the parameterst,l, R, L,b, M, o, ..., according to the context of the lemmas and
propositions.

3. Proof of Theorem 1.1 assuming Proposition 1.2

Letl, R > 0 satisfying m : &ﬂ) eN.Forany {1,...,m}¢3i=(i,...,ig), let

e ai:=(R+1)((G1—1),...,@{s — 1)), which is a point of [0, e,
e A; be a subset of [0, el]d defined by Aj :=a; + [0, R)4.

As in Figure 1, we also define Ng; := [0, el ]fu which corresponds to “a buffer zone.” Indeed for any

md Ai’
i#], d(Aj, Aj) :=inf{|x — y|, x € Aj, y € Aj} > 1, then Ng; is the minimal area needed to make sure that the values
taken by the process Y; — Y; inside each A; are independent of its values on all other Aj; for j #1.

The proof of the following three lemmas are postponed at the end of this section.

Lemma 3.1. Forany z € R, ¢ > 0, there exists Ro > 0 such that for any [, R > Ro with eN,

<R+1)
P(|z|M1([0, l]d) > se_mz) ~|—P(M,’(e_1NRJ) > se_mz) <e. (3.1

Lemma 3.2. For any ¢ > 0 there exists ly > O such that for any | > Iy,

1 Yi(x/el) — Yi(y/e!
Plwl V(e ) =e?) =P sup Yite/e) = Nily/e)| >1)<e. (3.2)
1)\ N—_ lx — y|1/3

Jx—yl=1/1

Lemma 3.3. Foranye >0, a < f there exists ly > 0 such that for any [ > Iy,

2
P(Vx € [0, 1]d, —10v2dl < Yi(x) < —a logl) >1—e. 3.3)

The Lemmas 3.1 and 3.3 are essentially contained in [19], whereas Lemma 3.2 stems from [21].
Now by admitting Lemma 3.1, 3.2 and 3.3, we can give the
Proof of Theorem 1.1. Let z € R. Fix ¢ > 0. Let us choose in the following order

(i) aconstant R > R associated to z, ¢ as in Lemma 3.1,
(ii) a constant [y associated to & as in Lemma 3.2,
(iii) a constant /1 > [y associated to R, ¢ as in Proposition 1.2,
(iv) a constant /o > [ associated to ¢ as in Lemma 3.3 with a = k5(= ﬁ),

(v) finally a constant [ > [, 4 e® such that (%ﬂ) eN.

According to the previous lemmas the probability of
1 _ _ _
Ve (1) = {w(yﬁ’(.l/” <7e ’) <3, 12My (10, 1) + | M) (e ' N )| < ee™ V2%,
Vx €[0, 119, —10v/2dl < ¥;(x) < —kq logl} (3.4)

is bigger than 1 — 3¢. For any ¢ > ¢/,

P(M; ([0, 119) < a, —z) = P(M, ([0, 11°) < a; — z, V&,- (D))
= E(H{Mt(eflUAi)fat—Z}; yR’Z(l)) - E(jl{flxee*lNRJ,Y,(x)za,—z}; yR,Z(l))' (35)
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Let us bound the second term in (3.5). By the Markov property at time / and the scaling property (2.5) applied to the
set Ng,;, we get that
E(Lgeee N v, 0za -2} VR (D)
-1 0} .
=E(P(Ix ce ™' Nep, V0,00 = ar — 2= X () )y, 3 YRz D)

=E(P(3x € Ngu. Yi—1(x) 2 ar = 2= X () |, ()=yy ey} YRz (D) (3.6)

We can find a collection (y;) jes € ([0,e'19)7,#J < oo satisfying

e for any distinct ji, ..., ja+2 € J, ﬂf:lz(yjk +[0,119 =2,
o the set Ujej(yj + [0, 119) is contained in the closure Ngr.p of Np .

Moreover for ¢ sufficiently large, on Vg ,(/), for any j € J, we have —Y;(y; + J)—zE€ Ci(l, % 1logl,logt). Soon
Yr.; (1), by the invariance by translation and Proposition 1.2 (notice that a; — a,—; — 0 when ¢ goes to infinity), there
exists Tp such that forany t > Tpy, j € J,

P(Elx S yJ + [07 l]da thl(x) >ar—27— X(x))lx(_)zyl(_/el)

(e [ (e e gy,
xey;+[0,11¢

Recall that —Y;(y; + 7) —z € Ci(l, 5 logl, logt) implies —z — Yi(xe ) > S logl >0, Vx € [0, 11¢. So the expec-
tation in (3.6) is smaller than

<@+2)(C*+ I)E(/ (—z—-Y (xefl))em(yl(xe*l)“) dx; yR,zU))

ENR,

seE</ l (—z—Y1<x>)em<“<x>“>+d’dx;yR,z(l)) 3.7)
xee 'Ng,

Last inequality stems from the change of variables xe ™/ — x. We recognize the expression of the additive martingale

and the derivative martingale as in (1.4), therefore (3.7) is equal to

E(eV2=[(—)M; (e Nr.) + Mj(e 7' Ne.)]: Vr-(D) <,
by definition of Vg - (I) in (3.4). Finally

E(LgceeNg,. v ()20 —2): YR (D) <& (3.8)

Let us go back to (3.5). To treat the first term in (3.5), we start as before, by applying the Markov property at time [
and the scaling property (2.5). Then observing that for any i # j, d(Aj, Aj) > 1 and using (3.5) and (3.8), we deduce
that

P(M([0,1]%) <a, —z)

= E(P(Vx e[ JAi Vi) =0 — 2= x () Vo) —e

Ix()=Yi(-/eh)

=E< l_[ P(VxeAiaYt—l(x)Sat_Z_X(x))lx(_)zyl(_/el);yR,Z(l)) —¢&.

ie{l,....m}4
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For ¢t sufficiently large, on Vg ;(I) we have —Y;(ai + ?) —z€Cr(l, % logl,logt), thus by Proposition 1.2, there
exists 71 > Ty such that forany ¢ > T1,ie {1, .. .,m)d

P(Vx € Ay, Y(x) <a;—z—x(x)) =1 -C*(1 + 8)/ [z - x(x)]e‘/m’((")“) dx
Aj

= 1= C*(1 +e)eV> (M (e Ai) + M (7' 43)).
Finally we get:

P(M,([0,1]%) <a, —z)

>E 1= C*(1 +8)eV2%E (M) (e A;) — zM; (e~ 4; s VR (D)) —e.
I

ie(l,....,m}d

On Vg (1), Vx € [0, 119, % logl < —Y;(x),thusVie {1,..., m}< we clearly have

i

Mi(e7 Ai) + [Mj (7 43)| =/ 5 (~Yi(x) + 1)eY2i+l gy
.

< cRC log! e
- [kav/2d/4

So we deduce
P(M,([O, l]d) <a — Z) > E(e—C*emz(HCS)[M/(e” Us A—zMi e U; ADl. yR,z(l)) _ e

On yR,Z(l)$

M, (e—l U Ai> Y (e_l U Ai) — (10, 11%)

<|zIM; <e_l U Ai) +[M](e7! Ng1)| < seV2%,
i

so POV, ([0, 119 < a; — 2) > E(e_c*emz(”“)Mﬂ[o*11d)_28c*) — 2¢. By combining this inequality with Theorem A,
we obtain the lower bound for Theorem 1.1. The upper bound of (1.9) can be derived in the same way. ]

3.1. Proof of Lemmas 3.1, 3.3 and 3.2

Proof of Lemma 3.1. By [22], observe that

M([0,11%) — 0, as.,
[— 00
which is sufficient to treat the first probability in (3.1). To treat M, [ (e_l NRg.1) we use the following fact (see [19]): For
any B8 > 0 we can find two processes Zf (A), ZI’S(A),I >0, A € B([0, 1]19) satisfying

e almost surely there exists 8 large enough such that M,’(A) = Z;g (A), VA € B([0, 119) (see p- 22, [19]),
e VA € B([0, 119), |ng(A) — Zf(A)| < ,BM,‘/ﬁ([O, 119) (see p. 22, [19]),
e forany />0, VA e B([0, 1]%), E(Zlﬂ(A)) = Br(A) (see p. 9, [19]).

Now let ¢ > 0. We fix 8 > 0 large enough such that P(3A € B([0, 119), Ml’(A) #* Zlﬁ(A)) <eg, VI > 0. We choose
lp > 0 large enough such that for any / > Iy,

VA e B([0, 17), P<|zf(A) — 2P )| > Z) < P(ﬁM/ﬁ([o, 11%) > Z) <e.
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Finally we fix R large enough such that for any [ > [, rMe !N R.I) =< % We deduce that for any [ > [y,

P(M[(e7'Ng,) > &) <P(M/(e 'Nr;) > e, M/(e'Ng,) = Zlﬁ (e'Nry)) +e

IA

B2 ki) = |2 )~ 2 ) < ) 2
< P<Zf (e_lNR,l) > 3;) +2e = 3e,

where in the last inequality we have used the Markov inequality. ([

Proof of Lemma 3.3. From Proposition 19 in [19], for all a € [0, m),

sup( sup Y:(x)+alog(t + 1)) <00, a.s.

120 “xef0,1]9

Then by studying sup, (o 1ja(—Y:(x)) we get easily Lemma 3.3. ]

Proof of Lemma 3.2. The proof is a consequence of Fernique [21], p. 54. Let ¢ > 0 and / > 0. We consider

o1 (h) = sup VE((ri0) - vi(0)?)

(6. )e(0, 1192, |x—y|<h

1
= sup \/2/ g(e[x — y]) du.
(x,»€e(0,119)2,|x—y|<h 0

As x — g(x) is C! constant equal to 1 outside B(0, 1), symmetric, with g(0) = 0 and thus g’(0) = 0, there exists
¢ > 0 such that for any & > 0, ¢;(h) < che!. We imitate the proof of Theorem 4.2.2 in [21] and in particular use the
following assertion (see p. 54 in [21]): “Vp >2,b > /1 +4dlog p, m > Z]—h we have,

1 © I _
P( sup \Yz(X)—Yz(y)}zb[wz(h)+2wl(a)+2(2+\/§)/; ‘”(ap )duD

x,y€[0,1]9,|x—y|<h

o
< [5m%p* + m®@mh + 1)9] / e /2 du.” (3.9)
b
Using ¢;(h) < che!, we get

1 1
P( sup Y (x) — Yi(»)| = che! |:h +—+ —:|> < Cd[mdp2d _I_mzdhd]e_bZ/z_ (3.10)
x,y€[0,119, |x—y|<h m  mplogp

We set p =2 and for any k € N, hy := ek, my = 2ek, by := +/7dk, then we observe that

oo o0
ZP sup Y (x) = Yi(»)| = cbkel_k> < Zcedke_bi/z
k> x.yel0,1]9,|x—y|<e* k>l
o0
< Zedke—(7/2)dk <eG/2al, G.11)

k>1
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Furthermore,
P( sup Yi(x/eh) = Yi(y/ehl _ 1)
x,yel0.el14 [x—y|<1/1 x —y|'/? B
Yi(x) — Y
=P< - 100 - 1O 1)
yel0. 118, vyl <1/aehy (11X =YD
_ 1/3
<Y r sup Y1) = Vi) = (le=®+0) 1)

k>itlogl  x.y€l0,11%,e¢FD <|x—y|<e*

e2/3) (k=D )

< > P( sup |Yi(x) = Yi(y)| = chre! * =

k=l+logl x,yel0,1]9,[x—y|<e~*

If [ is large enough, k > [ + log/ implies e*/3* =D > ¢p,, thus by applying (3.11) we obtain

P( sup Yi/e) —Vi(y/ehl 1) <= G/2al
x.yel0.el19, [x—y|<1/1 e = yIt3 I ’
from which Lemma 3.2 follows. ([

4. Tightness of the maximum M
The main aim of this section is the following

Proposition 4.1 (Tightness). Recall that 15(p) is defined in (1.12). There exist c1, ¢y > 0 such that for any | > 2 we
can find T (I) > 0 so that the following inequality holds

c1Ta(p) <P(Ax €[0, R1%, Y, (x) = a; + p(x)) < c2Ta(p), 4.1
provided that R € [1,1ogl],t > T and p(-) € Cr(l, kqlogl, logt).

To obtain Proposition 4.1 we need more information about the path of particles x such that Y; (x) > a; + p(x). First
we pay attention to the maximum on the trajectory after log/.

Lemma 4.2. There exists c3 > 0 such that foranyl >2, R > 1, p(-) € Cr(l, 10, +00),

P(3x € [0, R1%, Yiiogt, 00 (¥) = p(x)) < c3 f ((logD)*/® + p(x)*/*)eV24 () gy, 4.2)

[0,R14

Remark. This lemma is similar to the reasoning p. 1403 in [1]. However because of the “irregularity” of the function
p(+), here we only control the trajectories after the time logl.

Proof of Lemma 4.2. Without loss of generality we can assume that log/ € N. For any k € N, k > logl + 1,z >0,
we define

Ay =1 7[logl,k—1) <z fi-1x = 2h (4.3)
AL =S frogri—n <2+ 1 frmig =2 — 11 4.4)

We say that Ai’ ; 1s a strong condition on the path whereas A,Z(’ ; is @ weak condition on the path. In particular, Y.(x) €
Alf,(IX) and Y.(y) ¢ Af’(,y ) imply that

suE|Ys(x> —p(x) =Y, () +p()|=1. 4.5)
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Let us start with the following decomposition

+00
P(3x € [0, R1% YVjiogro0) (1) 2 p(0)) = Y P(Ax [0, RI%, Y.(x) € AL).
k=logl+1

We fix k > log/ + 1, and study P(3x € [0, R]%, Y.(x) € Ap(x)) By continuity of y = (Ys(¥) — p(¥))s<k, if Y.(x) €
Ap( %) (x satisfies the strong condition) there exist z € (0, R)¥ and r > 0 such that x € B(z, r) C [0, R]? and for any
y€B(z,r),y€ Ap(V) (y satisfies the weak condition).

Thus on the set {3x € [0, R]%, Y.(x) € Ap(x)} we can introduce r > 0 (r is random) the biggest radius such that

e there exists z; € [0, R]9, with B(zr, ) C [0, R]9,
o there exists x, € B(z¢, T) such that Y.(x;) € A’Q(x'),
o forany y € B(zr, 1), Y.(y) € A7}

Roughly speaking, the (random) radius r > 0 plays a quantitative role to estimate P(3x € [0, R], Y.(x) € Ap (x))
Such a technique will be used several times in the sequel.

We denote by S the volume of the unit ball. On the set {3x € [0, R]%,Y.(x) € A} (x)} by definition of r > 0, for
any ¢ > 0 (¢ > 0 will be determined later), we have

1
1= — 1 »,d
Srd /B(Zr,r) tr. (y)eé,ff,‘)} Y
=(1 + Y 1 ! / 1 d
=\ Lirze-tro ) e pasr<er/a) J g [ Rroeary @

p=k+c

Taking the expectation, we obtain that

P(3x €[0, RIS ¥V.(v) € APY) < 5714% d<k+c>/ P(Y.(y) € A2Y) dy
[0,R]2

+ ) ST +1)E<]1{r5ep/4} /
B(zr,r)

]l{Y.(y)EM(») d)’)- (4.6)
p=kto) (er, !

Fix p >k +c¢. Forany R > 1, on {r <e~”/4}, B(zr,r) # [0, R]%. So there is 7 € [0, R] with |7 — z¢| < 2r <
¢ and ¥.() ¢ AL which implies that sup, _; [Y; () — p(3) — ¥, (xp) + px)| = 1 (recall that ¥.(xy) € ALG™).
Therefore for any y € B(zy, r), by the triangular inequality we deduce that there exists u € [0, R]%, [u — y| <e™? (u

is either xp or 7) such that sup;; [Ys(u) — p(u) — Y5 (y) + p(0)| = % To summarize,

1
{r=e?/a}n{ye B n} C{ sup |10 = p() = V@) + pw)] = _}. @7
ueB(y,e~P),s<k 2

Furthermore, we remark that

(a) For any ¢ > log(8%), as p(-) € Cr(l, 10, +00) and e~ 7 < % we deduce that sup,cp(y e-r) l0(y) — p)| <
(e=P)1/3 < % (recall that p > log! + ¢).

(b) For any y, u € [0, R]¢ such that |y —u| <e™?, as k is C! with compact support (thus Lipschitz), according to
Lemma 2.2 we have

(Ys@), o = (P ) + Z5 () — &5 ),

= (P{(w)+ Z{ ) + 0(c* 7)) ;-
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Now, we choose ¢ > 10g(83) large enough such that for any p > k + ¢ the O(e*~P) is smaller than = - (we stress that
such ¢ does not depend on k). Consequently by (a) and (b), for any p > k + ¢ the event in the right- hand side of (4.7)
is included in

{ sup | P (u) = Ys(y)| = 2_3} U { sup |Z )| = 2_3}

ueB(y,e~P),s<k ueB(y,e~P),s<k
={wpr, (. y. k) =27 Ufwyy (€77, y. k) =27}, (w.(, -, ) is defined in (2.2)).

We go back to (4.6), and use the independence between (ZY(u)), €[0,R] and Y.(y) to deduce that there are some
constants ¢, ¢ > 0 (independent of k) such that

P(Ex € [0, RI%, Y.(x) € A7) < c/ P(Y.(y) € A”“))[ + Y ePP(wy (€77, y. k) 323)}
[0,R14

p>k+c
+ 3 eP(Y.(y) € ALY wpr (7P v, k) 2 270) dy.
p>k+c
Referring to Appendix C, by (C.1) in Lemma C.1 we get that
D eTP(wp (e vk =2 ( sup |z = 273)
p>k+e p>k+e |u|<e™P,s€[0,k]
< ed(kJrc) Z ed(pf(k+c))Clsefc162*6e2(p—k)
p>k+c

< ce¥et = /e,

Thus we deduce that for any k > log/ + 1,

P(Ex [0, RI%, Y.(x) € A7) < (D + (. with

(pimee® [ P e al)ay.
[0,R]¢

@Qri=c Y. edp/ P(Y.(y) € AP wpr( (€77, y. k) = 27%) dy. (4.8)
p>k+c 0,R14

The Lemma 4.2 will be proved once the following two estimates are shown:

Y (ks c/ e™V2300) gy, (4.9)
k>logi+1 [0.R1

> @rse / [(log1)*/® + p(x)¥/4]e=V2%0) gy, (4.10)
k>logl+1 0.R}

For any y € [0, RIY, set Ti(y) := inf{s > k — 1,Ys(y) = p(y) — 1}, w(y) :=inf{s > k — 1, By > p(y) — 1} and
t(y) :=inf{s = logl, B; = p(y) — 1}.

Proof of (4.9). Fix y € [0, RY4. By Girsanov’s transformation we observe that:

]l{E[logl,k—l)SP()’)"‘lyfk(y)Sk} )

P(Y.(y) e A7) =P(Y < 1, Te(y) <k (
(Y.(» ) =P(Yiogrk—1)(») < o) + 1, Ti(y) <k) = 3By )

Ce_mp(y)e_dkp(g[logl,kf1) <pM+1, %) <k)

= Ce_mp(y)e_dkP(E[logl,kfl) <p(M+1,Bp—10=pQ») —1).
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Then

—v/23p(y) _ _
€ E Z ]l{B[logl,k—l]fP()’)-Fl,B[k—l,k]ZP()’)_I} dy. @.11)
k>logl+1

> e

a
k>logl+1 [0.R]

To bound the expectation inside (4.11), observe that k < 7(y) implies supsefoes ) Bs < p(y) — 1 and thus

L B oer i1 <0 )1 Btz —1) = 0. So by the strong Markov property at time 7(y) we obtain
E( Z ]l{Buogt,k—1>§p(y)+1,3[k1,k]Z,0(y)—1})
k>logl+1
=2+ E( Y Ligrronzron P (Bioios < pO) + L Blimi—sms) 2 () 1))
k>7(y)+2
=2+ E(E< Z jl{E[O,ks)<21§[k—s,k+l—s]>0}) )
k>s+2 lz(y)=s

Let us assume for an instant the following assertion: there is ¢, > 0 such that for any t > 1,
P(B; <2. Bri41) 2 0) <o /2, (4.12)
Assuming (4.12) and recalling (4.11), we get that
> (nse / e Y2900) (2 +eh ) kY 2) dy=¢ / e™V2300 gy,
k>logl+1 0, R} =1 [0, R1¢
which proves (4.9). It remains to prove (4.12). This is a consequence of (B.2):

P(B; <2,Bj1,+1120) = E(L;5,.,Ps(B1>0)

o
< ZP(E <2,Bie[l—k,2—k|)P(B;=k—1)
k=0
(B 2)
< 1737, 24(1 +KP(1Bi| =k —1) <yt (4.13)
O

k=0

Proof of (4.10). Fix y € [0, R]¢. The strategy is similar but we have to work on the event {wPA,v(,)(e_”, y, k) >273).
Let us observe that

P(yEAf(l)swp)()( 7ysk)2273)EPA()’vk,P)‘i‘PB(y,k,p), Wlth

PA(y. k. p) i=P(Y.(0) € ALY wpy ) (€77, 3. Tu(»)) = 277,

[ slewarnm| = 24>.
T () [T (y),k]

We study first Pp(y, k, p). As {Y.(y) € Ap(y)} = {Y Nogl k—11(¥) < p(y) + 1, T(y) <k}, by the Markov property at
time Ty (y),

Ps(y. k, p) = P(Y(y) e AYY, sup

|u|<e=P

Pp(y.k, p) =P(Y.(y) € éf,(z)r))l’( sup

[u|<e=?

> 24)
[Tk (v).k]

> 2—5>, (4.14)
k

/ g(e’u) dY;(y)
Ti(»)

/(;.g(esu)

P(Y.(y) € Ag!(ly))P< sup

[u|<e=?
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where we have used that sup;; {5 () = 0@ P) <277, Vju| <eP. By (C.14) in Lemma C.2, for any p > k + ¢, we

have
P( sup fg(esu)st
luj<e=r1J0

Therefore combining (4.15) and (4.14), we get that

> Z/ e Pp(y.k.p)dy<c Y. / eP(Y.(y) € ALY) dy

> 2—5) =P(A, 1 ,-5) < caoexp(—c1o2~ 02?7, (4.15)
k

k>logl+1 p>(k+c) k>logl+1 0, R
<! / e=V2300) gy (4.16)
[0,R]4

where we have used (4.9) in the second inequality.
Now we treat P4 (y, k, p). By Girsanov’s transformation (with density emB 10Ty we have

Pa(y. k. p) =P(Yiiogra—n () < p(3) + LTk (y) <k wpy (€77, . Tu(y)) = 27%)

/O (') dB,

< ce—dﬁp(y)—C“fp(E[logz,k—l) <p+ 1L w(y) <k, sup

[u|<e=P

> 2—4). 4.17)
7% (y)

By using in turn the Holder inequality and then (C.14) in Lemma C.2 (observe that {sup, <c-» |f6 g(e*u)dBslx >
274 =A p.k,2-4), we get that the probability in (4.17) is smaller than

. 1/4
— 3/4 _
P(Bjiogi.k—1) < p(») + 1, w(y) <k) / P( sup / g(e’u)dB,| =2 4)
|u|<e=PI1J0 k
— = 1/4 €19 _
<P(Bjiogi,k—1) < p(») + 1, Blk—1.41 = p(y) — 1) 0 62(/) eXP<—T2 Se2r k)). (4.18)

Furthermore using the inequality (B.2) (as in (4.13)), we get that
P(Bliogik—1) < p(3) + 1, B—1.61 = p(y) — 1)
=E(Ps,, o)1 (Bi—1-togl <0, Blk—1-logl.k—logl] = —2))
E(Biogt + PO + DI bigrtp+120) _ ,p(y) + (logh)' "2

= (k —logl)3/2 =Tk —logl)32 (4.19)
Finally as Y"1 4 €27~ exp(— 42278e2? 1) < ¢, gathering (4.17), (4.18) and (4.19) we obtain that
N S NS | [0 o) T,
k>logl+1 p>(k+¢) 0.R1 }fog /41 (k —logl)3/
= [ (GosDE g p ey, (420)

By combining (4.20) with (4.16), we deduce that

Z @k < C/ ((log)*’® + p(y)3/4)e*~/ﬁﬂ(y) dy,
R d

k>logl+1

which completes the proof of Lemma 4.2.

oo
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The subsequent lemma, similar to Lemma 3.3 in [1], concerns the localization of the trajectory after % of an

extremal particle at time .
Lemma 4.3. There exist ca, c5 > 0 such that for any | > 2 there is T (I) > 0 so that the following inequality holds

P(3x € [0, R1%, Yj10g1,1(x) < p(x), Yi1/2.01(x) = a; + p(x) + L, Y, (x) > a; + p(x))

< cge oL / (v/logl + p(x))e™ V23 gy, 4.21)
[0, R4

provided thatt > T, L >0,R > 1and p(-) € Cr(l, 10, +00).

Proof. Instead of (4.21), it is sufficient to prove that there exist c4s, ¢5« > 0 such that for any / > 2 there is T'(/) > 0
such that forany t > T, L > 1, R > 1 and p(-) € Cg(l, 10, +00),

P(3x € [0, R1%, Yiiogr,1(x) < p(x), Yir2.0(x) € I (p(x) + L), Y (x) € I; (p(x)))

< cqpe L / (Viogl + p(x)e ™2 dx. (4.22)
[0,R]4

Indeed let us assume (4.22) and prove (4.21). We note that the probability in (4.22) is null when L > —a; + 1, so we
deduce that

(3X [0, R1%, loglt 1(x) < p(x), Y[z/z ) =ar+px)+ L, Y (x) >a +,0(x))

—a;+1 L'

< Z > P(Ax €10, R1% Yiiogr.1 () < p (), Yjij2.0(x) € I (p(x) + L), Y, (x) € i (p(x) + u))
=L+1u=1

—a;+1 L’

Z ZP (3x €10, RI% Vpiogr.n(@) < p () + . Virjp,n(@) € I (p () +u + L' —u),
=L+1u=1

Yi(x) e It(ﬂ(x) + u))

—a;+1 L'

—¢/(L'—u) g—/24 floo] —V2dp(x)
= Z Zce e du/()R]d( lOgl+p(x)+“)e 4 dx

—L+1u=1 [0,

<ce 'L / (vlogl + p(x))e_mp(") dx,
[0,R]¢
which yields (4.21).

It remains to prove (4.22). Let a > 0, let us introduce (with I,1 )=lar+z—2,a; +z+ 1)),

AfaL {f: Frogrim <2 Fupu—al € i@+ L), flman <ar+z2+ L. f; € ()}, (4.23)
AfaL {f floglt/2]<z+1 f[t/2t a]el (z+ L), ft a,t]faz+Z+L+17ft€Itl(Z)}’ (4.24)
Vo= {f: Frogrim <o fupr—a Sa+z+L—1, fyu_an€li+ L)} (4.25)

We say that A;, L and VfaL are strong conditions on the paths whereas AfaL is a weak one.
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If the path of Y.(x) satisfies all the conditions in the probability of (4.22), either Y.(x) € A'O WL oy, (x) € Vp ®.L
So Lemma 4.3 is a consequence of the following assertion: There exists ¢ > 0 such that for any | > 2 there is T(l) >0

so that the following inequalities hold

P(3x € [0, R1%, V.(x) € ALSE) <c(1+L)a_1/2/ d(,/1ogzJr;)(y))e—Jﬁf)(J’>dy,
[0,R]

P(3x € [0, R1%, Y.(x) € Vﬁgx)’L) <c(l +a)e_mL/ d(,/logl + p(y))e_mp(y) dy,
[0,R]

provided that R > 1, p(-) € Cr(l, 10, 4+00), t > T, L < —a; + 1 and a € [0, %].
Indeed if we choose a = eV23/2 /3L iy (4.26) and (4.27), then (4.22) follows with cs, = /2d/6.

In what follows we prove first (4.26) and then (4.27).

(4.26)

4.27)

Proof of (4.26). As in the proof of Lemma 4.2, with the same arguments, on the set {Ix € [0, R]%, Y.(x) € Ap (), L}

we can define r > 0 be the biggest radius such that

e there exists zr € [0, R]%, with B(z,, r) C [0, R]%,
e there exists xy € B(zr, r) such that ¥.(x;) € Ap(xf) L

o forany y € B(zr,1), Y.(y) € APOE

Soon {3x € [0, RI%, Y.(x) € AL HY,

for any ¢ > 0,

Srd fB(zr,r) ]l{Y(y)G_ra

P(3x € [0, R1%, Y.(x) € A?9)E) < 57149 d<r+c>/ P(Y.(y) € 470 dy
[0,R]S

+ Z s~ 144 dI’E(Il{r<e 17/4}/ {Y(y)eA/’(\)L dy)

p=i+e
Reproducing the reasoning in the proof of Lemma 4.2, we obtain that
r<e?/4 and yeB(nr) = sup Y5 () — p(3) — Yy (w) + p(u)] > %
ueB(y,eP),s<t
- wP_y(‘)(e_”, v, t) >273 or wz_y(,)(e_”, y, t) >273
where we have chosen:

e ¢ > large enough such that Vp > 1 + ¢, sup,cp(y e [0(y) — p(W)| = 273,
e c (which does not depend on 7) large enough such that for any p > 7 + ¢, sup | <c—p s<; 1 )] <277,

Going back to (4.28) and using the independence between z (4))yefo, ge and Y.(y), we deduce that

P(Ix € [0, R4, Y.(x) € A7) < c/

[0,R}? p=t+c

+ Y ePP(r.(y) e Al wpy (€77, y.1) 2 27) dy.
p=>t+c

By Lemma C.1,

Z edpP(wa(_)(e_p, yot) = 2_3) < Z ePeys exp(—c162_6e2(1’_’)) <ce¥,
p=t+c p=>t+c

AP0 dy =1 (with S the volume of the unit ball). Then

(4.28)

(Y(y)eA”(”L)[ s edpP(wa(.)(e_p,y,t)22_3)]
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which implies that

P@Erel0.RIE Y. e Al ) e [ p(r(y e al oy
[0,R]4

+c > ePP(Y.(y) € A2 wpy (€7 v 1) = 27%) dy.
OR] p=t+c

By Girsanov’s transformation (with density eV2dY () +ar ) we obtain that
P(3Ix € [0, RI%, V.(x) € APSE)

< c/ e—V2dp(»),3/2 |:P(B EA;O,S})’L)
[0,R]¢

+ Z ed(”_’)P<BeAf’gy)’L, sup

p>i+e luj<e=P

f g(e*u)dB;| > 2—3>] dy, (4.29)
0 t

where we have used e—V23Y((") < (3/262=v2dp() for y. ) e Ap(y) L . By (B.3), for any y € [0, R]9,
PPPP(B € A7) = 2By (Buogi L =0 (1 + L)a™ /2
< c(Vlogl + p(y)) (1 + Lya=""?, (4.30)

and by (C.18) (notice that {sup,|<c-» |f0 g(e*u)dBs|, >273) = A, 2-3)s for any u € [0, R]9,

/.g(esu) dB,| > 23>
0 t

_ C19 _
< c2E,p(3) (Biog 1 1{Bog=0)) (1 + L)a ]/zexp<—72 e 0)

t3/2P<B € Aﬁf,”’]“, sup

|u|<e=P

c(ylogl + p(»)(1 + L)a~'/? exp(—%Z_Gez(”_’)) (4.31)
Finally using (4.31), (4.30) and (4.29) we get (4.26). 0

Proof of (4.27). We introduce:
Virm) = {1 Frogrm <o Fijpu—aimn) <@ +2+L =1 Fiarm 1satm € Lz + L)} (4.32)
and the associated weak condition
(m) ={f: f[log,t/zl <z+1, f[t/z, atm—11<a+z+1L, f[, atm—1.1—a+m] = @ +2+ L —2}. (4.33)

We decompose the event {Ix € [0, R4, Y.(x) e Vp(x) L } in Um 1{3x €10, R4, Y.(x) Vp(x) L(m)}. To prove
(4.27) it is sufficient to show that for any m € {1, . a}

P(3x € [0, R1%, ¥.(x) € v/ L (m)) < ce_mL/ o)+ Jlogl)e=V23r0) gy, (4.34)
[0,R]

To begin with, we reason as in the proof of (4.26). On the set {Ix € [0, R]%, Y.(x) € Vp(x) L (m)1, et r be the biggest
radius such that

e there exists z; € [0, R]9, with B(zr, r) C [0, R]9,
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e there exists xp € B(zy, r) such that Y.(xy) € Vf’ﬁlx')’l‘(m),

e forany y € B(zy,r), we have Y.(y) € lﬁgy)‘L(m).

Then for any ¢ > 0, we have

P(Ix € [0, RI%, Y.(x) € ¥/ E (m)) < S—l4ded<f—“+m+°>/ . P(Y.(y) € ¥/  (m)) dy
[0,R]

1,44 dp
+ 5S4 ., Z-F . € E(]l{rfepﬂl} '/;(Z o ]l{Y‘(y)Elf,g‘.)'L(m)} dy) .
p>t—a+m+c rs

Reproducing the reasoning in the proof of Lemma 4.2, we obtain that

r<e?/4 and yeB(xr) = sup [Ys(0) = p(y) = Ye(u) + p(w)| = 1/2

ueB(y,e~P),s<t—a+m
—_ wP_y(‘)(e_p, v, t—a +m) >2 3 or wZ_y(,)(e_p, y,t—a +m) >273
where we have chosen:

e t >1+a—mlarge enough such that Vp >t —a +m + ¢, sup,cp(y o) [P (¥) — p(u)| < 273,
e c (which does not depend on 7 — a + m) large enough such that for any supy,|<e-(—a+m+o s<s—g4m g3 ()] <277,

We use the independence between V44 () yefo, e and Y.(y) to deduce that
P(3x € [0, RI%, Y.(x) € ¥/ F (m)) < (4.35) + (4.36),

with,

(4.35) :=cf P(Y.(y) € ¥/ 9" (m))
[0,R]4

X [ed(’_”+m) + Z edpP(wZ?(~)(e_p’ y.t—a+ m) = 2_3)i| dy,
p=t—a+m-+c

(4.36) := / Yo (v e I ) wpr (€7 vt —at+m) = 27%) dy.
[0, R p=t—a+m+-c

By Lemma C.1,

Z edpP(wa(_)(e_p, y.t—a+m)= 2_3) < Z eeys exp(—c162_6ez(1’_(’_“+m)))
p=t—a+m+c p>t—a+m+c

< cedl—atm) (4.37)

Therefore we get

(4.35) < ce®mtm f[ . P(Y.(y) € ¥/ m) dy. (4.38)

Forany y € [0, R]¢ set T(y) :=inf{s >t —a+m — 1, Ys(y) > a; + p(y) + L — 2}. O
Study of the right hand term in (4.38). Fix p>r—a+m+c¢,y €0, R19. Observe that

L 2 7
Y.0) e ) = Vgt <o)+ LY (2—atm-1i() <ar +p(0) + L, T(y) <t —a+m.
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Thus by Girsanov’s transformation with density eV2drr (v )+AT M) | we have
P(Y.(y) € ¥ () < c1¥/2e V200 +D—d(—atmp(p ¢ wPOL (o)), (4.39)
According to (B.4),
t3/2P(B € !ﬁgy)’l‘(m)) < c12Ep(y) (Blogi L{Biog;>0})
< ¢(Vlogl + p(v)). (4.40)
Finally with (4.40) and (4.39) for any y € [0, R]%, we have
P(Y.(0) € ¥/ (m)) < ce™V2ApOHD—aAU=atm( flog] 4 p(y)). (4.41)

With (4.38), we immediately deduce that

(435 <c / (Vogl + p(y))e V2D gy (4.42)
[0.R]4 O
Study of (4.36). Fix p >t —a +m + ¢,y € [0, R19. We use the independence between (Ys(y))s<T(y) and
(YS(T(y))(y))SZo to get that
P(Y.0) € YO m) wpy (€77, y. 1 —a +m) = 27%) < (4.36), + (4.36),,
with

4.36), :=P(Y.(y) € 1;g§,y>»L(m>)p( sup

lu|<e=P

/ g(e*u) dY,(y) > 2_4>,
T(y) [T(y),t—a+m]

4.36), := P(Y.(y) € W0 F ), wps ) (€77, y, T () = 27%).
According to Lemma C.2 and (4.41), we have

(4.36); < ce™0Uarm 240D (Nlog] + p(y))egpe 102 T (4.43)

Concerning (4.36),, we apply Girsanov’s transformation with density e¥237;+d70) and (C.19) (notice that
{supjyj<e—r | fo 9 u) dByli—qim =274} = A, 1—atm-4) to get that

(4.36), < Ce—«/ﬁ(ﬁ()’)-&-L)—d(t—a-i—m)t3/2P<B c lﬁ(a)r),L(m)’ sup

lu|<e=P

/ g(c*u) dB

0

> 2“‘)
t—a+m
< Ce—\/ﬁ(p(y)-FL)—d(I—a-‘rm) ( /logl + P (y))C22 exp <_ %2—862(17—(1—04-"1))) . (444)

Combining (4.44) and (4.43) we deduce that

(4.36) < ¢ Z ed(p—(t—a+m) exp<_%2862<p<ta+m)>) / (V1ogl + p(y))eﬂ/ﬁ(p(mu dy
[0.R}

p=t—a+m+c
< eV / (Viogl + p(y))e ¥4 dy. (4.45)
[0, R}
With (4.42) and (4.45), we get inequality (4.27), and therefore the proof of Lemma 4.3 is completed. (I

]
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Now we will tackle the proof of Proposition 4.1. For any L, «, t > 0, we introduce

SOt {fr <o fupg<a+a+L, fiza+o—1), (4.46)
>t ={f, <a+ 1. fupn<a+a+L+1, fi>a +o—2} (4.47)
5 m) = {2 Frogr = & Fliogrn < Fujpn <a@r+a+ L, fi € I +m)}. (4.48)

The following proposition implies Proposition 4.1.

Proposition 4.4. There exist ce, c7 > 0 such that:

(1) Foranyl > 2 there exists T (I) > 0 so that the following inequality holds

P(3x € [0, R1%, Y, (x) = a; + p(x)) < c6/ (Vlogl + p(x))e_mp(x) dx, (4.49)
[0,R]¢

provided thatt > T, R > 1, p(-) € Cg(l, 10, +00).
(ii) For any € > 0 we can find L,ly(L) > O such that for any | > ly, there exists T (I) > 1 so that the following
inequality holds
P(3x € [0, RIS, Y, (x) = a; + p(x), Y.(x) ¢ >7 ) < e14(p), (4.50)

provided thatt > T, R > 1, p(-) € Cr(l, kglogl, +00).
(iii) For anyl > 1 there exists T () > 0 so that the following inequality holds

P(3x € [0, RI%, Yi(x) € I (p(x))) = c7Ta(p), (4.51)
provided thatt > T, R € [1,1logl], p(-) € Cr(l, kglogl,logt).

Observe that (4.49) gives the upper bound of Proposition 4.1, (4.50) ensures that for L,/ large enough, with an

overwhelming probability all the extremal particles x satisfy Y.(x) € >/ oL Finally (4.51) is the lower bound of

Proposition 4.1, which will be essential to prove Proposition 1.2 (see (5.34)).

Proof of Proposition 4.4. (4.49) and (4.50) can be deduced from the following two assertions:

o There exists cex > 0 such that for any L,1 > 1 there is T > 0 so that the following inequality holds
P(3x € [0, R, ¥.(x) e h) < cau(1 + L)Z/ p(y)e V240 gy, (4.52)
[0,R14

provided thatt > T, R > 1, p(-) € Cr(l, 10, +00).
o There exists cewx > 0 such that for any L,l > 1 there is T > 0 so that the following inequality holds

P(3x € [0, RI%, Y.(x) € #5)" (m)) < coun(1 + L)/ . E () (Bify LBy <n))e Y230 dy, (4.53)
[0,R]

provided thatt > T, R>1m >0, p(-) € Cr(l, 10, +00).
Proof of (4.49) and (4.50) assuming (4.52) and (4.53). We will decompose the event {3x € [0, R]%, Y;(x) > a; +
p(x)}. For any L > 0 there exist four possible cases:

(i) There exists x € [0, R]? such that 7[10g1,oo) (x) > p(x). So we define:

A={3x €[0, R1%, Y{i0g1,00 () = p(x) };



Maximum of a log-correlated Gaussian field 1393

(i) If A is not achieved we can consider the case when 3x € [0, R]? such that 7[10gl,,] x) <px), Y (x)>a+px)
and Y{;/2,1(x) > a; + p(x) + L. So we define:

By ={3x €[0, R1%, Yiiog1,11(x) < p(x), Y[12.0(x) = as + p(x) + L, Y, (x) > a; + p(x) };

(iii) If A and Bj are not achieved, we consider the case when 3x € [0, R]? such that 7[10g1,,](x) < p(x),
Yipn®x) <a +px)+ L, Y (x) >a, + p(x) and Yig;(x) > p(x). So we define:

cL=J{3r 0. RI% Y.x) € #75F ()}

m>1

_ (iv) Finally if A, By, and Cy, are not achieved, it remains the case when Jx € [0, R]9 such that Y, (x) < p(x),
Yipn&x) <a +px)+L,Y(x)>a + p(x). So we define:

Dy = (3x €0, RI%, Y, (x) = 4y + p(x), V.(x) 7).

Let ¢ > 0. Recalling (4.21), we fix L > 1 large enough such that cae~5L < ¢. Then we choose lp(L) > 1 large

enough such that for any / > [y there is 7'(/) > 1 such that for any R > 1, p(-) € Cr(l, kqlogl, +00),t > T:

e From Lemma 4.2,

P(A) < 03/ ((log)¥/® + p(y)3/4)e—~/ﬁp(y) dy
[0,R]4

<e / p(y)e V20 gy (4.54)
[0,R]4
e From Lemma 4.3,

P(B.) < C4e_CSL/ d(v log! + /O(x))e_mp(y) dy
[0,R]

<s / p(y)e=V230) gy (4.55)
[0, R]4

e From (4.53),

P(CL) < Y P(3x € ¢/  (m))

m>0
= Con(1+1) ) e f Ep(s) (Biag Ly =)e >0 dy
= (0.1
<e / p(y)e=20 gy, (4.56)
[0,R]@

In the last inequality we have used p(y) > kglogl (as p(-) € Cr(l,kglogl, +00)) which implies Ep(y)(Blj;gl X
1B,y <1) =E((0 () + Biog)+1(B,,, < 1-p(»)) = 01(Dp(y).

Combining (4.54), (4.55) and (4.56) we get (4.50). To obtain (4.49) we use (4.54), (4.55) and (4.56) with ¢ =1,
and add from (4.52),

P(D) < cor(l + L) / e ay,
[0,R]

Thus it yields (4.49) with cg = cg4(1 + L)2+3. U
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Proof of (4.52) and (4.53). The studies of P(3x € [0, R1%, Y.(x) e >"“"%) and P@x € [0, R]%, Y.(x) € L (m))
are quite redundant with that of P(3x € [0, R]%, Y.(x) € Af Ef)’L) in Lemma 4.3. Then we just mention the main steps:

(i) Introduce the weak condition f € !f‘f (m) (m,a, L >0,t>1>0) which is defined by

Srogt Za—1, Sriogt, 21 <+ 1, fupn<a+a+L+1, fi e Mo +m) (4.57)

(recall that 1,1 (@) :=[a; +a — 2, a; + a + 1]). Then in the both cases:
(i1) Introduce the radius r > 0.
(iii) Make the common reasoning about the modulus of continuity of y — (Ys(y) — p(¥))s<:-
(iv) Decompose Y.(u) by using Lemma 2.2, then precise correctly the constant ¢ to treat the deterministic part in the
modulus of continuity w.
(v) Apply Lemma C.1 to treat the probability of P(w ,» 0 (e P, y, 1) >273).
(vi) Apply Girsanov’s transformation with density e¥23Y:()+ar

At the end of these steps we can affirm that (as in (4.29)): For any [ > 1 there exists T > 0 such that for any R > 1
m>0, p(-) eCr(,10,400),t > T,

P(3x € [0, R, Y.(x) e/ ™F)

- c/ «—V230(»),3/2 [P(B epOIL)
[0, RJ4

/ g(e'u) dB,

+ Z ed(p—t)P(Belzf()’)yL’ sup
0

p>i+e lu|<e=P

> 2—3” dy, (4.58)
t

and

P(3x € [0, RI%, Y.(x) € ¢4 (m))

<c / e~ V2 () +m) 3/2 [P(B c ¢ )
(0. R} ’

+ ) ed(”’)P<Be!Z§y)’L(m), sup

p>i+e lu|<e=?

/O.g(esu) dB;

> 23)] dy. (4.59)
t

Furthermore by (B.5), (C.20) and (B.6), (C.21), noticing that {sup,|<c-» |f0' g(e’u)dBs|, =273} = A, 1 2-3, we have
PPP(B el < ciap(y)(1 + L)%,

/. g(esu) dB;

13/2P<B € Ef(y)’L, sup
0

lu|<e=P

> 2—3) <cnp()(1+L)° exp(—%z—ﬁeﬂp—”),
t

and

), L
r7P(B € 877" (m)) < el + LBy (B Lipyy =1)-

/. g(e’u) dB,

13/2P<B € !fgy)’l‘(m), sup
’ 0

[u|<e=P

> 23> <cpn(l+ L)Ep(y)(Bl—ggl]l{E]"g’Sl})

X exp (— Cg 26e2(”’)) .

Finally assertions (4.52) and (4.53) follow easily from (4.58) and (4.59) and the four previous inequalities. ([l

t
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Proof of (4.51). The proof relies on a second moment argument. We need some notations:

o Let
1/12 ifo<s<ti
_ @ ._ s 1 _S_2,
€s =€ '_{(t_s)l/12 lf%ESSI (460)

e Forany x € [0, R]¢ let (Ak(x))k>1 be the partition of —x + [0, R]9 defined by

A1) =10, Rl{p1),  Ac(x) = B(x,e" ™) N[0, R4, Vk=>2. (4.61)

\B(x,e!=%)

In order to have good bounds in our second moment argument, we will restrict to “good” particles.

e letD,L>0,kefl,...,|r]}, wesay that x € [0, R19is L-good, if

D
sup |Yi(x) — Yi(y)| <ex+ = and
VEAL(x) 2

(4.62)
log?/3, ifke{l,...,5logl| —1},

Yie(x) < { p(x) —4ex + D, if ke {Sllogl],..., [3t] — 1},
ar+p(x)+L—4dex+ D, ifkef[it],.... [t}

We say that x is L-good particle (we write x L-good or simply x good if L = 0) if x is L-good, for
any k € {1,...,[t]}. Notice that the “%” in log/?/3 is arbitrary and any value between % and 1 could be
used.

e Let B, :={e"(i1,...,iq), withij € {0,..., [Re']},V;j € [1,d]} be a regular subdivision of [0, R]1%. We notice
that for any / > 0, there exists T > 0 such that for any t > T, p(-) € Cr(l, kqlog!, 00),

_ _ 1
e Y p(0)e™ ¥ — 14(p)| < STa(p). (4.63)
xeH,
We also notice that there exists ¢ > 0, such that for any k € {2, ..., |¢]},
e 3 < (4.64)

yel,,ye A (x)

e Finally let
hgood := #{x € B2 Y.(x) e/ x good, Vk € [2, |1]]}. (4.65)

Now we can tackle the proof of (4.51). We fix L = 0. By Corollary D.2, there exists ¢, ¢’ > 0 and D > 0 large (D
from (4.62)) such that for any # > 1 and p(x) € [kglogl, logt],

e ¥ p(x)e V2P W <P(¥.(x) e/, x good, Vk € [2, |1]])

<P(Y.(x) €0 < e p(x)e V2P0, (4.66)

So by combining with (4.63) we get that

! 1
%Id(p) = E(hgood) = C(l + 5) Ia(p). 4.67)
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We look at the second moment of /1g004. We recall that for any x € [0, R1%, #{y e H,;: |x — y| <e?>'} <2929, Recall
also that |x — y| > 1 implies that the process Y (x) and Y (y) are independent. So we deduce that

E(hp0a) < 2°¢*E(hgooa) + E >

1
. (Y. ()0 ¥ (1)exP° x.y good, Vke[2,[¢]1)
x,yel;, |x—y|>e2~?

<2%ME(hgoos) + Y. P(Xr.(v) e OP(r.(n) e/
x,yelH, lx—y|=1

+ E( Z Z ]1{Y,(x)el>f(x)’0,Y,(y)el>f(y)’0,x good, Vke[z,m]})' (4.68)

xetl ye, e <|y—x|<I1

By inequality (4.66),

0 ),0 - _
Yo Pr@en/VOp(rpen/V) e 3 p)p(ye VWL
x,yely [x—y|>1 x,yel [x—y|=1

<cIg(p)? <clalp)

(observe that R <log!/ and p(-) € Cr(l, kqlogl, oo) imply I5(p) < 1). Going back to (4.68) we get

-1
2
E(hgood) < cE(hgood) +ZE< Z ]l{y.(x)e|>f’(‘>'°,Y.(y)e|>f(")'°,x goodk,yeAk(x)}>
k

=2 x,yet,
t—1
= cE(hgooa) + Y _(4.69);. (4.69)
k=2

Let us study (4.69);. For any 2 <k <t — 1, x € [0, R19 the process (Ys(k)(y))sgl,k,yeAk(x) is independent of the
sigma-field

Gr(x) =0 (Ys(y),s <k,y € Ap(x), Y (x), s € RT).

By the Markov property at time k, (4.69) is equal to

> E(H{Y.(x)ebf(x)’o,x g00d | P10 [Yi2-k() < o), Yirjamka-t1(0) <@+ p (),
x,yel;,yeAr(x)

Yiok(W) el (,0()’))])-

Now by using the Girsanov’s transformation (with density e¥2&—+(+a(t=h)  recall also that e~ V23— <
13/2e=v230() when Y1 (y) € I;(p(y))), we deduce that (4.69); is smaller than

Z E(]l{Y.(x)GDf(X)'O,x gOOdk}Cefmm(y)*Yk(y))e*d(l*k)ﬁ/z(4.70)%1’]{), (4.70)

x,yel, yeAr(x)
with
(4.70)y.1.k =Py y)=p(» [Br/2—k <0, Blj2—k,i—k) < ar, Bi—i € 1,(0)],

when k <¢/2 and

—V2d(p () =Y () o —Alt—k) ,3/2
¢ > E(]l{y_(x)ebfm,o’xgoodk}e e /2), (4.71)
x,yel;,yeAr(x)



Maximum of a log-correlated Gaussian field 1397

when t — 1 > k >t /2. To treat (4.69); we distinguish four cases.

(a) k <5Slogl.Let x,y € H; with y € Ai(x), by (B.5) in Lemma B.2 we have
Ce—\/ﬁ(l)(y)—Yk(y))e—d(f—k)t3/2(4_70)%[’](

< e (p(y) = V() VIO TION L )y, )20

< C//e—d(t—k)e—(l)(}')—yk o)) .

In addition if x is good,, we can ensure that p(y) — Yix(y) = p(y) — ex — % — Y (x) > %dlogl — %. Finally by
combining (4.70), (4.66) and (4.64), we deduce that

(4.69) < c g~ dt=k+D/2 Z E(

x,yel;, yeAr(x)

eDe—dt Z p(x)e—JEp(x)e—d(r—k) Z 1

xel, yel;, ye A (x)

JKka/2 ]]'{Y.(x)€l>f(x>'0,x goodk})

/
<c
— 7 ka/2

1
" D
<c ea2® Ta(p)- 4.72)

(b) Slogl <k <t/4. Letx,y €, with y € A;(x), by (B.5) in Lemma B.2 to (4.70), , x (strictly speaking, there is a
t instead t — k in (B.5), but this does not really matter because of % —k > le) we have

C—JE(p(y)—Yk(y))e—d(r—k)t3/2(4_70)y’t’ f
<P (p(y) = ¥4 (y))eﬂ/ﬁ(my)fyk(y))]l{p )—Fe(5)20)

< e =k o= (p(N=Yr(y)

In addition if x is good, we can ensure that p(y) — Yi(y) = 3ex + p(y) — p(x) — D > 3ex — (D + 1) (recall that
lx —y| < e >log! implies |[p(x) — p(¥)| <1 as p(-) € Cr(l, kqlogl, +00)). Finally by combining (4.70), (4.66) and
(4.64), we deduce that

(4.69); < ce~d—R—3e+D > E(1
x,yel;, yeAr(x)

< (e~ 3extDg—dr Z p(x)e—JEp(x)e—d(z—k) Z 1

Y. ()P0 x goodk})

xef, yel, ye A (x)
< et P14(p). (4.73)
(c)t/4 <k <t/2.Letx,y et with y € Ax(x). In addition if x is good,;, we can ensure that p(y) — Yi(u) > 3ex +

p(y)—p(x)—D =3ep — (D+1) (recall that |x — y| < e™"/* implies |p(x) — p(y)| < 1 as p(-) € Cr(l, kalogl, +00)).
Finally by combining (4.71), (4.66) and (4.64), we deduce that

(4.69) < 1?2 Pev2a(3atD) 3™ g
x,yel,,yeAr(x)

< C/ts/zeJE(—sek+D)e—dr Z p(x)e—\/ﬁp(x)e—d(t—k) Z 1
xeH; yeH;, ye A (x)

(Y. (x)esP0 x goodk})

< C//e\/ﬁDe—(\/ﬁ/Z)kk Ta(p). “4.74)
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(d)t/2<k=<t—1. Letx,yeH, withye Ai(x). In addition if x is good,, then we can ensure that p(y) — Y (y) >
3er +p(y) —p(x) — D —a; > 3er — (D + 1) — a;. Finally by combining (4.71), (4.66) and (4.64), we deduce that

4.69); < cefd(t*k)e\/E(*&:kJrD) Z E1
x,yel;,yeAr(x)

{v. (x)€l>f(x>'0,x goodk})

< C/em(—3ek+0)e—dz Z p(x)e—JEp(x)e—d(z—k) Z 1
xel, yel,, yeAr(x)
< C//e\/ﬁDe—m%k Id(p)~ (475)

The terms with e, allow us to control the Z;::ls logl+1 (4.69). Indeed by combining (4.72), (4.73), (4.74) and (4.75)
with (4.69) we get:

Slog! t—1
1 -

E(Fg000) < ¢'Ta(p) + <c”eD P R D DI “ﬁ/me’«) Ia(p) < cTa(p). (4.76)

k=2 k=5logl+1

2

By the Paley—Zygmund inequality, we have P(hgood > 1) > %’%")) > c¢Ig(p). We conclude because of hgood > 1

good
implies 3x € [0, R]9, Y, (x) > a; + p(x) — 1. O

]

5. Tail of distribution of the maximum M
Our aim is to prove the Proposition 1.2. We recall (1.11) and (1.15).

Proof of Proposition 1.2. Let R and ¢ > 0. We want to estimate for p(-) € Cr(l,kqlogl,logt), P(3x €
[0, R4, Y, (x) > a; + p(x)). We introduce some notations:

Mip= sup () —p®),  Orp={yel0,RI%Y,(y)=a +p() -1}, (5.1
y€[0,R]4
Mip(x.b):=  sup (V) —p(»).  Orpx.b):={yeB(x.e" ) Y\(»>a+p() -1}, (52
yEB(x,eP71)
and
R, :=[e"? R—e"/?], (5.3)

For any 7 > 0, because of the continuity of the function x  Y¥;(x) — p(x), the random variables A(9; ,) and
Ay, (x, b)) are strictly positive respectively on {M; , > a,} and {M; ,(x, b) > a,}. Therefore for any L > 1,

1 1
P(3r € [0, R, Y;(x) = ar + p(x)) = P(My = ar) = E( / bRy ) dx>
[0

R]E A(Or,p)
=)L +Q@)+ @A),

with
(l) . E(/ ﬂ{xegt.mY-(X)EDf(lr)'L}jl{M[’pZa[} dx)
L'= b
R, A(O1.p)
Q) E(/ R e e dx)
L -= s
R, AM(O1,p)

([ Mot )
[0,R]4—R, A(Or,p)
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We shall show that (2)7 and (3) are negligible, only (1) contributes in (1.13).

Recall (1.15), clearly (2); < P(3x € O, , N [0, RIS, Y.(x) ¢ l>f(x)’L). Via Proposition 4.4, there exist L and
lo(L) > 0 such that for any [/ > [ there exists T > 0 such that for any p(-) € Cr(l, kqlogl, logt),

(2)r <eIa(p).

—dt/2

Concerning (3), decomposing [0, R]fRT in, at most, 27e(@=D!/2 cube of volume e , and by the invariance by

translation of (¥, (:))s>0, we have

(3) <P(3Ix € [0, RISy . x € Dy,p) <2%@V2p(Ax € [0,e7/2]%, ¥, (1) = ). (5.4)

Furthermore on the event {Ix € [0, e~"/2]9, ¥,(x) > a,}, we introduce r > 0 (r is random) the biggest radius, in a

similar way as in the proof of Lemma 4.2, such that

e there exists zp € [0, e//2]9, with B(zr, 1) C [0,e77/2]9,
o there exists x, € B(zy, ) such that Y; (xy) > a;,

e forany y € B(zy, 1), Yi(x) >a; — 1.

Thus on {3x € [0, e_’/Z]d, Y:(x) = a;}, by definition of r > 0, for any 7, ¢ > 0 (¢ > 0 will be determined later) we
have

1

l=——
Srd /B

Ly, (v)=a, -1y dy

1
= <]1{r2e—(’+°)/4}+ Z 1{e‘<”"’”/4§r<e"’/4}>§/ Ly, (y)>a,—1) dy.
peite B(zr,r)

By taking the expectation we obtain that

P(Ax e [0,e7%]% vi(0) > a) < S_14ded(’+°)/ P(Y,(y) > a, —1)dy
[O,e_’/z]d
+ ) sl H)E(ﬂ{rsepm} / Jl{Y,(y>>a,—udy)- (5.5)
p>t+e B(zr.r)

Fix p >t +c¢. On {r < e ?/4}, B(zr, 1) # [0, e7/2]%. So there exists Z € [0,e7"/2]%, |7 — z;| < 2r < %~ with
Y:(z) < a; — 1 which implies that |Y;(z) — Y;(x)| > 1. Thus for any y € B(z, r), by the triangular inequality we
deduce that there exists u € [0,e7"/%]9, [u — y| < e™” (u is either x, or Z) such that sup,_, |Vy(u) — Ys(y)| > % To
summarize, B

{[r<e?/4}n{y € Bz 1)} C { sup | Ys(») = Ys(w)| = %} (5.6)

ueB(y,e P),s<t
According to Lemma 2.2, for any y, u € [0, e’t/z]d such that |y —u| <e™?,
(Yx(u))sgt = (Psy(u) + Za)(u) - Csy(u))sft

= (P} () + Z3 (w) + O(eF 7))

s<t’

Now, we choose ¢ > 0 large enough such that for any p >t + ¢ the O(e!~?) is smaller than 2]—7 (we stress that such ¢
does not depend on k). Consequently for any p > ¢ 4 ¢ the event in the right-hand side of (5.6) is included in

[ s [Rw-rolz2?fu]  w Zw]z27)

ueB(y,e~P),s<t ueB(y,e P),s<t

= {wP_y(,) (7P, y,1) > 2_3} U {wzy(_)(e_p, y.1) > 2_3} (w.(-, -, ) is defined in (2.2)).
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We go back to (5.5), and use the independence between (Z” (u))yeqo0.rpe and Y.(y) to deduce that there exist some
constants ¢, ¢ > 0 (independent of k) such that

P(Ex e [0,e7%]% vi(0) > @) < c/ P(Y:(y) >a, — 1) [ed’ + Y eP(wy (e y. 1) > 2—3)]

[0,¢71/2)9 pErte
+ Y PV =a — Lwpy (€7, y,1) = 27%) dy. (5.7)
p=t+c

Referring to Appendix C, by (C.1) in Lemma C.1 we get

Z edpP(wZ;'(,)(e_P, v, t) > 2_3) = Z edPp sup |Z?(u)| > 2_3)
p>t+e p=t+e lu|<e™?,s€[0,1]

< ed(t—i—c) Z ed(p—(t+c))c156—c162*662(p—t)

p>t+c

< Cedcedt — C/edt_

Fix y € [0,e™! / 2]d . By Girsanov’s transformation we observe that
P(Y,(y) > ar — 1) = E(1{g24,_1ye~ V2B~ < co™ V204 (5.8)
and

- -3 —+/2dB,—d
P(Yi(y) Zar = Lwpyy (€77, y,8) 227°) = B(e™ 5 ™ ip o 1 up 1 s g@waByl=2-7)

< e_dte_m"’P( sup / g(e’u)dB| > 2_3). (5.9)
|u|<e—PI1J0 t
By (C.14) in Lemma C.2, for any p >t + ¢, we have
P( sup / g(e*u)dBy| > 2—3> =P(A,, )-3) < caexp(—c192~0*P7"). (5.10)
|u|<e—PI1J0 t

Go back to (5.7) combining (5.8), (5.9) and (5.10), we obtain that
P(3x €0, e_t/z]d’ Yi(x) = ar) < ce™Y23 / [1 + Z e ez CXP(—0192_662(p_t)):| dy
[0.e7/2)¢ p>t+e

< ce—V28mg=d1/2,

Finally with (5.4) for ¢t > 0 large enough, it stems that

3) < Zde(d—l)z/zce—JEa,e—dz/z <eTa.

Therefore we can fix L > 0, such that there exist / > 0 and T > 0 satisfying: Vt > T, p(-) € Cr(l, kqlogl,logt),
[P(M; 5 > ar) — (1)1 | < eTa(p). (5.11)

The previous inequality just express that with an overwhelming probability for any x € [0, R]%, Y;(x) > a; + p(x) is
equivalent to Y.(x) € > L We will take advantage of this fact to know the spatial distribution of extremal particles.

For any ¢t > b > 0, let us introduce:

Epi(b,x)={Iy €[0,R1% |y —x| =" Y,(y) = ar + p(y) — 1}. (5.12)
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- LMy p>ap) LMy p(x,b)>ar) .
(o c Lpzart t,p(x,b)>ar
On &, ;(b, x)°, RO Oy, (5.5 therefore we obtain

Dr=Mrp+DrLpe—0Crp VYb=0, (5.13)
with

e I ).

Q)Lp = E< /R 60 ]l{Y'(x)eif((gjf){M"”za’} dx), (5.15)

B)rp = E< /R pEN 1”‘(x)Eifg;:f;w;;)(x’b)za’} dx>. (5.16)

We shall show, via two lemmas, that (2)7, 5 and (3)1 , are negligible.

Lemma 5.1. There exists cg > 0 such that for any L,t > b > 1,

:ﬂ. p(x),L
{Y.()e>fh)
Qs+ By =<cs /{0 o E(#ﬂ{ap,,(b_bgz,m) dx, (5.17)
with
1 —t
r;(x) :==supyr >0, wy (r,x,1) < 7 Ae . (5.18)

Proof. Fix x* € R, and observe that

/ 1 o )[ﬂ{Y.(x)e>;’“‘>'L,M,,,,<x,b>za,} ]1{Y.<x>e>{"”’L,M,,pza,}}d
15 X
BGx*,(1/4eb-1) MOy, p(x, b)) A(O:.p)

< 21{3}663@*,(1/4)&7,),{ (x>€>f<x),L}1{5,,,,(b40g4/3,x*)}-

By continuity of y > (Ys(¥) — p(¥))s<s, if x € B(x™, }Teb_’) such that Y.(x) € Df(x)’L (x satisfies the strong con-

dition) then there exist r > 0 and x, € B(x*, %eb_’) such that: x € B(x,,r); B(x,,r) C B(x*, }Teb_'); and for any
y e B(x,,r), Y.(y) € Ef(y)’L (y satisfies the weak condition).

Thus on the set {Ix € B(x*, %eb_’), Y.(x) e l>f(x)’L}, there exists r, > 0 (see Figure 3) which is the biggest radius
such that:

o there exists xy, € [0, R]? with B(xy,, 1) C B(x*, %eb_’),

o there exists zr, € B(xr,, ry) with Y.(zr,) € Dtﬂ(Zr*),L’
e forany y € B(x,,ry), Y.(y) € Ef(y)'L'
B definition. ﬁ Jbte,.r Ly epporey dy =1on (3x € BG™, Leb=1), v.(x) e >/ “""), s0 we can affirm that

/ 15 0 )[ﬂ{Y.(x>e>f"”’*L,M,‘poc,b)zu,} ]1{Y.(x>e>{’<”'L,M,,pza,}}d
= X
B, (1/4)eb1y MOy, p(x, b)) AMO:,p)
2

=512 Jpe r)ﬂ{Y.<y)eEf(”’L}]lspvf@*‘(’g“/“*)dy

C
< —1 012,18, (b-log2.y) dY-
/B(xr*,r*) rc*l {Y.(y)e>} } et 22,)

Furthermore on {y € B(xy,, I,)} there are two possible options:
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eb—t/z
A
B(x* ,e?7t/4)
B(x,,1.)
.
eb—t
L)
Xr,
eb—t/4 e
X*
eb—t/z
xT EEp(x‘r'g)'L A
y EEP(y).L
Z, EDP(zr*)'L
v

Fig. 3. Positions of xr, and zr,.

e Either there exists Xy, € [0, R1¢ such that |zr, — Xr,| < 2ry and Y.(Xy,) ¢>f e, L which implies that

sup,<; |Ys(¥r,) — Ys(zr,) + p(r,) — p(ar,)| = 1. As p(-) € Cr(l, kalogl, logr) (implying sup,c g, ar,) 10 (¥) —
px)] < %) by the triangular inequality, for any y € B(xy,, ry) we have finally wy, () (4ry, y, 1) > %.

e Or B(xy,,ry) = B(x*, %eb_’) and thus ry = %eb_’.
Nevertheless in the both cases we have on {y € B(xr,, I's)}

1
4ry > 1, (y) = sup{r >0, wy(y(r,y,1) < Z} Ae !,

We deduce that

/ 1z o )[1{Y(x>e|>f(”'L,M,.p<x,b>za,1 ﬂ{Y‘<x>e1>,W’*L,M,,pza,}}d
By MO, (x. b)) M(O1,p)

Ly.meprty -

§4dc/ = (b—logZ,y)dy
Bt T -

1 ,
{r.(pe>rh) 1

gc’/ 8, (b—log2.y) 4y
B, (1/4)eb—1)  TR(Y) PO
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This inequality is true for any x* € R;, moreover we can find N2> m < ced=b) and (xi)i<m a collection of R, such
that:

. b—
@ Ry €Uy <jom BGrin S50) C [0, R,
(ii) forany (i1, ....iq12) € {1, ..., m} distinct, N7 B(x;, =g

Finally there exists ¢ > 0 independent of L,/ or t > b > 1 such that

e

/ I o )[]l{Y.<x>e>f(*>~L,Mt,pu,b)zat} 1{Y«x>e>f‘“,Mf.pzaf}} d
et MOy p(x, b)) AMDip)

{r.(ye>rhy
= C/[O Rp r?i(yl)]lé‘p.,(b—logly) dy, as.

Lemma 5.1 follows easily. (]
The proof of the following lemma is postponed at the end of this section:

Lemma 5.2. Let R, L be two constants fixed. For any € > 0 we can find by, ly > 1 large enough such that for any
[ > 1y, b > by, AT > 0 so that the following inequality holds

1 ),L
r.mexr™)
W)Lp = f[o R]dE(:thngp,,(b,x)> dv < eTa(p), (5.19)

provided thatt > T, p(-) € Cr(l, kglogl,logt).

Remark. This lemma gives a description in “cluster” for the repartition of the extremal particles in [0, R1¢. About
this question, see also [9] for a slightly different model.

Assuming this lemma, combining (5.13) and (5.19) we can fix b(L), [o(L) > 0, such that for any [ > [ there exists
T > 0suchthat Vi > T, p(-) € Cr(l, kqlogl,logt),

|P(M;, > a;) — (D1p| <2eTa(p). (5.20)

Therefore we can restrict our study to (1) ;. The Markov property at time #, = ¢ — b and the invariance by translation
of our model give

(1) E(f N eyt T Dza) )
L,b = X
R, MOy p(x, b))

b,L
= fR E(L7, (02000710 2atp+1y 32D ) 4, (5:2)
t

with

1~y () ()
{Ybb (0)+Z(5.21)§0,Ybb (0)+Z<5.21)Z—L—lﬂyEB(O,eb”),Ybb ()’)+Z(5.2|>Z—L—g(5.21>(y)})

(520 = E( W
Apo,eb-ny{y: Y (0) + 2521y = —L — 1 = g2 (M)}

with,

8520 () =Y, (x +y) = Y, (x) — (p(x + ) — p(x)),
Z5.21) = Yy, (x) —a; — p(x) — L.
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In the following we will denote
Vx €[0,RI%,  pu():=p(x+-) — p(x). (5.22)

. . d .
According to the scaling property (sz(tb)(y))sfb’yEB(O,ebft) @ (YS(yet_h))sib’yeB(O’eb—t), thus we can rewrite
(520)2F as

) (ﬂ{Yb(0)50,Yb(O)Z—L—l}jl{HyEB(O,1),Yb(y)>—L—g(5.21)(yCh')}>
o2 Aoy ({y: Yp(y) = —L —1—gi2n(yeb=)})

In addition Lemma 2.2 and the Girsanov’s transformation lead to

(D =/ E(emY’b(x)+d’b1 _thb(x)—dlbedt;,(5.21)2{,)d
’ R, ,

(¥4, )=<p(0). Y1201 (¥)<ar+p (1) +L}C *

— | V230032 - P
= /e POBIZE_ (U8, 0By oy <ar+1y FLb(Biy — ar — L, &7 )) dx, (5.23)
1
with

e as before B a standard Brownian motion,
e for g € C(B(0,e"),R), z € R,

1+ o nl N> T —o(veb
Frp(z,8) = e—«/ﬁ(z+L)Ez< {Y5(0)<0,Y,(0)>—L—1}{3yeB(0,1),Y,(y)>—L—g(ye )}>’ (5.24)

Ao, ({y: Yp(y) = —L —1—g(yeP)})

e forany ¥ € Cgr(B(0, eb), R),
i
8%, :B(0.¢") 5y > — / a(e " y)dBy — & (ye ) + 20 (ve ') — w (ye ). (5.25)
0

For ¥ = 0 we denote Qﬁ?’ » = ;5. In passing we take the opportunity to define for any o € [0, ],

1p
Gipo:B(0,e") 3y —/ g(e " y) dBs — &y, (ye ™) + Zp) (ve ™). (5.26)
Ip—0

Notice that Zg} (+) is a centred Gaussian process, independent of B, which have the covariances as in (2.3). Further-
more by Proposition 2.4 for any b > 0, the Gaussian process B(0, ¢?) 5 y 227 (ye™") — &, (ye™"), converges in law

toy > Z(ye™?) — ¢ (ye™?).
Now we want to get (via a renewal theorem): for any L, b > 0, uniformly in x € Ry,

C*
Px ~
Efp(x) (:ﬂ'{Erbe,E[t/z_,h]Sa[-'rL}Fst(Btb —ar — L’ 6[,11)) t3/2 ,O(X)

We stress that C* must not depend on x or p. To obtain this result, we need yet two steps:
o Study the regularity of F7, , (Lemma 5.5).
e Use this regularity to apply a renewal theorem (Theorem 5.6).
Definition 5.3. A continuous function F :R x C(B(0, e?), R) — R* is “b regular” if there exist two functions h: R —
Ry and F*:C(B(0,e?)) — R satisfying
)
suph(z) < +oo, and h(z) = O(ez). (5.27)
z

zeR -
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(ii) There exists ¢ > 0 such that for any § € (0, 1), g € C(B(0, e?), R) with w;(zjig)(S) < %,
F*(g) <c8™ 10, (5.28)

(iii) Foranyz eR,geC(B(0,e"),R), F(z,g) <h(z)F*(g).
(iv) There exists ¢ > 0 such that for any z € R, g1, g» € C(B(0, e?), R) with g1 — g2llc0 < %,

|F(z.81) = F(z. 82)| <cllgr — gallab* @) F*(g1). (5.29)
Definition 5.4. For any M > 0 and F a function b regular, we define
F™(x, g):=(F(x,8) A M)1yx>—p). (5.30)
The proof of the following two results are postponed to the next sections.
Lemma 5.5 (Control of Fy, ;). Forany L,b > 0 the function Fr j defined in (5.24) is b regular.
For any y € R, let T, :==inf{s > 0, By = y}. Let (R,)s>0 be a three dimensional Bessel process starting from 0.

Theorem 5.6. Let b > 0 and F:R x C(B(0,e?),R) — R* be a function b regular. For any ¢ > 0, there exist
M,o0,1, T > 0 large enough such that forany t > T, p(-) € Cr(l, kqlogl,logt), z € [1, logt)30,

<ela(p) (5.3

3/24—v2d Px
/R P2V WO (g, 080,12 F (B +2.613)) dx = Caro (F)1a(p)
1

with

M u
Cuo(F) = \/g /0 fo E(F“‘”(—u, v Z(ye") = ¢ (ve ™)

T_yNo o
- / T (1= k(e ye?))dB, — / (1-Xk(e™* ye_b))dRsTV)) dy du. (5.32)
0

T-y Ao

Assuming Lemma 5.5 and Theorem 5.6, we are in position to end the proof of Proposition 1.2. Indeed combining
(5.20), (5.23), Lemma 5.5 and Theorem 5.6 (applied with z = —a; — L and F = F| ;) we deduce that: Ve > O there
exist L,b, M,o > 0 such that for l, T > 0 large enough we have: forany t > T, p(-) € Cr(l, kg logl, logt),

[P(M; > a;) — Cy.o (FLp)Talp)| < e1a(p). (5.33)

In addition by Proposition 4.1: There exist cy,co > 0 and I, T > 0 large such that: for any t > T, p(:) €
Cr(l,kglogl,logt),

c1Ia(p) <P(M; , > a;) <c2Ia(p). (5.34)

For any n € N*, let (L, b, M, 0),, such that (5.33) is true with ¢ = % Clearly C, :=Cy,,0,(FL,.b,) € [%1, 2¢;] for
any n € N large enough. Let ¢ : N — N strictly increasing such that Cy(,) — C* € [c1/2, 2¢3].

Now we fix ¢ > 0. Let Ng > 0 such that for any n > Np, |Cp) — C*| < e. Then we choose N| > Ny such that
n > Np implies ¢L < ¢. Finally there exist (according to (5.33)) [(N1), T (N1) > O such that for any t > T, p(-) €

(n) —

Cr(l,kglogl,logt),
[P(M1,p > a;) = C*La(p)| < eTa(p).
This completes the proof of Proposition 1.2. (]

In the next two subsections we shall prove Lemmas 5.2 and 5.5, then in Section 6 we will prove Theorem 5.6.
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5.1. Proof of Lemma 5.2

This important Lemma gives the cluster representation for the extremal particles. The notion of “good particles,”
defined in (4.62) and studied in Appendix D is essential for its proof.

Proof of Lemma 5.2. Let R, ¢, L > 0. Recall the definition of =), ;(b, x) in (5.12), we want to show that there exist
by, lp such that for any b > bg, [ > Iy, AT > 0 so that the following inequality holds

1 @.L

r.wexp®h ~

(COYm 12/ E<L'dllsp,,(b,x)> dx 58/ o(x)e V23p() gy
[0, R]d r; (x) [O,R]d

provided thatt > T', p(-) € Cr(l, kglogl,logt).

Let A* := B(0, 62)\B(o,e)- Recall (4.60), (4.61) and (4.62) for the definitions of respectively (es)s<s, Ax(u), u is
L-good;, and u is L-good. By Lemma D.1 we choose D(L, €), lp(L, €) large enough such that for any [/ > Iy, 37 > 0
so that the following inequality holds

1 ),L
{Y.(x)e>7™7)
/ 4 E< ;c (ex)td Tix not L-good}> dx <eIa(p),
[0,R] t
provided that t > T, p(-) € Cr(l, kg logl, logt). So we can restrict our study to
1 )L
{Y.()ex/™"
®Lp = /[o R]dE<—x > lg,,®bxlx L-good}) dx.

r(x)4

Without loss of generality we can always assume that  — b € N, so the subsets (Ax(y))1<k</—p+1 form a partition of
{u [0, R1%, |y — u| > e’~}, therefore

it IL{Y(x)er(X)’L x L-good}
®L,p < Z/ dE( ——— ]l{ElueAk(x),Yz(u)ZaHrp(u)1}> dx.
— J10.R]
k=1

r;(x)d

As k is continuous with support included in B(0, 1), for any k <t — b + 1, the process (Y s(k) (#)) s<i—k 1s independent
of ueAy(x)

Ge(x) =0 (Ys(u),s <k,u € Ak(), Ys(),s € Ry, y € B(x,e™")).

According to the definition (5.18), clearly r,(x) is measurable with respect to G (x). Then by the Markov property at
time k,

1
® < ]X:f E(]I{Y.(X)ED,”(X)'L,)C is L-good, }
Lb =
i J10.R1e r; (x)4

x P(u € Ar(x), Y, ) = a; + p(u) — gw))

g(-):Yk(-)+1> dx

tp+1

N )
k=1

We remark that for any ¢ > 0

/ E<1{Y.<x>ezf(‘>’L}) dr
[0, R]4 ry(x)4

A+ d
5/[0 e By ey 2 eVELn ey ep ) 45
’ p=t+c
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By the arguments (iii), (iv), (v) and (vi) in the proof of (4.52) and (4.53), we can affirm that

1 p(0),L
f E<M> dx < (1 + L)2/ p(x)e~ V2900 gy (5.35)
[0, R]¢ r;(x) [0, R]¢

Using (5.35) we will bound ®y, 5, (k) by distinguishing three cases:
(i) If k <5logl. As x is good,, p(-) € Cr(l, kglogl,logt) and u € Ar(x),

D
pu)— sup Yi(v)—1 Z—|:ek+—] —Yi(x)+pu) —1
veAL (x) 2

D
> p(u) = (logh*? — (Slogh) /1 = = — 1

D
> pu) — (logh)'/12 — = — 1> L logl,
2 2
once [ > e’ By using in turn the scaling property (2.5) and then the invariance by translation we get that

1 p(x),L
®1p(k) < / . E(Mp(au e A, Y® ) = a, + %d logl>) dx
,R]

[0 r;(x)d
Ly (et Ka
5/ E<7fdP<ElveA*,Ytk(v)za,+—logl>>dx.
[0,R]& r;(x) 2

By applying Proposition 4.4 (with the constant function x — %d log! € C4+(1, 10, +00)) we have for some 8 > 0,

I%d logle_m“{d/z) logl 4y,

*

P(HU €AY 4(v) = a; + K?d logl) = C6/
<clP (notice that A(A*) < 1).

Y. (x)egf’m'L

1
Finally ® (k) < cl™P [i pia E( ( 1 (x)3 1) dx then, by applying (5.35) we get that

Slogl Slogl 1 BP0
Z =P ®r.p (k) < =P Z / E<{Y(X)€7_Td}> dx
k=0 k=0 [0,R]¢ r(x)
<1+ L)1 P1a(p), (5.36)

which is smaller than €I 4(p) for / large enough.

(i) If Slogl <k < % As x is goody, and u € A (x),

D
pu)— sup Yi(v)—12>= —|:€k + —} —Yi(x)+p(u) —1
veAL(x) 2

> —|:ek+ —} + (—p(x)+4ek — D) + o) —1
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For the last inequality, recall that p(-) € Cg(l, kglogl,logt), lu — x| < ce>'°¢! if k > Slogl and thus |p(u) —
p(x)] < 1. In addition with the scaling property (2.5) then the invariance by translation we get that

E<1{Y.(x)ezf(‘>’L

} (®) 3
D1.p(K) < / el P(au € M), Y@ z a4+ 305~ 5D - 2)) ax

[0,R1¢

Ly eyt

3
5/ E<7dP(EIveA*,Y,k(v)zat+3ek——D—2))dx.
[0,R]¢ r(x) 2

By applying Proposition 4.4 then (5.35) we get that

1 x),
E( {Y.(x)(elz);:i( >L}>e—3ek+(3/2)1)dx < +L)2Id(p)e—3ek+(3/2)1)_
r:(Xx

®Lp(k) <c /

[0,R14
Finally, there exists ¢ > 0 such that
l1/2] lt/2]

Y ®Lpk) <ce®PP YT (14 L) Ta(p)e** < /(14 L)?e /PP i 14(p)
k=5logl k=5logl

<e¢eIalp) (5.37)

once [ is large enough.

(iii) If t —b+ 1>k > §. As x is good; and u € A (x),

D
ar+p(u)— sup Yk(v)—lz—[ek+—}—Yk(x)+az+p(u)—l
veAL(x) 2

3D
> 3¢ — T—L—I-,O(u)—p(x)—l23ek—3D/2—L—2.
For the last inequality, recall that p(-) € Cr(l, kglogl,logt), |u — x| < ce /2 if k> t/2 and thus |p(u) — p(x)| < 1.
According to Lemma 4.2 (with the constant function x — 3e; —3D/2 — L — 2 € Cg(1, 10, +00)) one has

P(3u € Ar(x), YO ) > a; + p(u) — g(w)) P(3u € A%, Y,(u) > 3ex —3D/2 — L —2)

g =Yew) =

< ¢3¢ Bea—3D/2-L-2],

Finally with in addition (5.35) we get that

r;(x)d

E Ly weproty &
I't(x)d

1 L .
B V.0 el 1 s L-good;) ®) B
®p.p(k) = /[O’R]dE< P(Fu € Ar(). Y, 5 () = ar + p(u) = 8(0)) g )y, 0y ) 9

< ce-Be—3D/2-1] /
[0,R]¢

< (le~1Be=3D/2-L] (| +L)2/ p(x)e—«/Ep(x)dx,
[0.R}4

and thus
fp+1 tp+1
Yo @pt) < Y c(l+4 Lyl Ba3PTy(p)
k=t/2+1 k=t/2+1

< /(14 L)2eGRPTD L ),
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This yields that there exists bo(D, L) > 1, such that for any b > by, and any ¢t > 1, p(-) € Cr(l, kqlogl,logt) we have

n+1
> @Lplk) <eTalp). (5.38)
k=t/2+1
From (5.36), (5.37) and (5.38) we get Lemma 5.2. O

5.2. Proof of Lemma 5.5

Fix L, b > 1. We shall prove that F j is b regular with

h(z)=hp p(z) = e VDD (¥,(0) = 0)'/?, (5.39)
F*(z) = Fj(g) :==supE < Li3yeB©,1),7,()>—g(yeh)) )1/4 (5.40)
bR TR\ Ao (. Yo(y) = —g(yeb) — 172D )~ '

Proof of Lemma 5.5. We will show that /7 , and F, l;‘ satisfy (i), (ii), (iii) and (iv) of Definition 5.3.

e To check (i), observe that there exists ¢ > 0 such that

suphr p(z) <c, and hpp(z)<e*, ifz<—-Q2b+L+1). (541)
zeR

e Now we shall prove (ii): Let g € C(B(0,e’), R) such that wgzje‘g)(a) < 1. We define 4 = g 1y({y, Yo(y) =

—g(yeb) — %}). On the set {Iy € B(0, 1), Y (y) > —g(yeb)}, we introduce r the biggest radius such that Ix, with
B(xr, 1) C B(0,1); 3zr € B(xr, 1) with Yp(zr) > —g(zre?); Vy € B(xr, 1), Yp(y) = —g(ve?) — 1. By (5.40),

LiayeB(0,1), () >—g(yeb
Fig)'t= supEZ< Bye AISOL g(ye )})
zeR

o0
—8(.b 8 -8 8
<S8+ Y s+ SuﬂgEz(]l{HyeB(o,1>,Yb<y>z—g(yeb>}]l{5/<k+1>dsAss/kd})v
k=eb /8 €

with S the volume of the unit ball. Clearly, A < § (%)d implies r < %, moreover on {r < % < 6},

= < ,
1 ﬂ{supx_yeB(o,1),‘x,y|§1/k 1Y () =Yy (WIZ1/ 2w (8) = Lsupy yep 0,1y v—yi=1/6 1Y )= Yp ()2 1/4)-

Furthermore by (3.10) (with h = %, m=2k,p=2,l=bandx = ce_bk) we have

1 1 _ 1\ a—b
SUpPz< sup  |Yp(x) = Yp(»)| = —) =Po( sup  |Yp(x) — ()| = —> < e /eek,
zeR  \x,yeB(0,1) 4 x,yeB(0,1) 4

lx—yl<1/k lx—y|<1/k

o
Finally F; (g)* < 5880 /58 ¢ Zk:1+eb/8 S8k + 1)8ce_(1/”//)e_bk < e*1P§=8 which suffices to prove of (ii).
e Check (iii) stems easily from the definition of Fy, ; in (5.24) and the Cauchy—Schwarz inequality.
e It remains to prove (iv). Let g1, g» two continuous functions from B(0, e?) — R such that ||g; — g2]lec =8 < %.
Let us define (only for this proof) Vg € C(B(0, e?), R) and y eR:

M(g) = sup l)(Yh(y) +g(ve"), A i=apon({y. Yo (») = —g(ve’) + v }).
ye s
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With these two notations we have:

Limenz1  Limg)=1
Ag(0) Ag, (0)

|Frp(z, 1) — FLp(z, 82)| < e_M(Z+L)Ez+L+1 (Jl{yb<0)30}

) . (5.42)

By the triangular inequality observe that

Limen=1y  Lmg=1
Ag (0) Ag, (0)

‘ Limgn=1) — Lim(gn=1)
Ag (0)

1 1
1 -
* ‘ ‘M(g2)>‘}(Agl ©0) Ay, (@)‘

~ Limneni—s.1+s) | Agi (29) — Ag (9)
- A4,0) Ag (0)Ag, (0)

where we have used ||g1 — g2|lco = 8. Furthermore from Theorem 3.1 in [24], as Var(Y,(y)) =b > 1,Vy € B(0, 1),
we can affirm that there exists ¢ > 0 such that for any § € (0, 1), g € C(B(0, e?), R),

supP(M(g) €[z — 8,2+ 68]) < 8. (5.43)
zeR

Going back to (5.42), we have

eV24(G+L) |FL,b(Z, g1) — FrL(z, gz)|

Ly, (0)=0,M(g1)el1-8, 141}
Ag, (0)

Agi (28) — A, (5)>

+E +L+1<11 Y5 (0)>0,M 1
) z {Yp(0)> (g2)=>1} Ag1 (O)Ag2 0)

<E;1n (
== (A) + (B).
By applying twice the Cauchy—Schwarz inequality then (5.43) to (A) we get that

Lim(g)=1-3)
4
A% (5)

1/4

1/4
12
(A) <P 111(Y(0) = 0) % Ez+L+l< > xPoypp1(M(g1) €[l —6,1+6])

1/4
1/2 Tim 1
< cPoip+1(Y5(0) 2 0)"/ sz+L+1+5(ﬁ> 514,
81

Similarly, observing that min(Ag, (0), Ag, (0)) > Ag, (%), we deduce that

Ly, (0)=0,M(g2)=1}
(B) 2/ E +L+1<;1 el dx
BO.1) < Agl(O)Agz(O) {Yp(x)+g1(xeP)e[—5,6]}

Lim(g)=1-3)

1/4
1/4
P Yp(x) €[-6,6])" dx
[Ag] (1/4)]8> ~/;3(0,1) Z"‘L'f‘l-‘v-gl()ceb)( b )

12
<P_141(¥5(0)=0) / Ez+L+1<

1 b 174
1/2 {3yeBO0.1), Yy ()= —g1(ye”)+1} 1/4
<cP Y»(0)>0)""E 8.
<cP.i141(Y(0) > 0) z+L+l+6( Ay, (/41 8)° )

From the bound on (A) and (B) we deduce that
_ 1/2
|FLb(z81) — Frp(z, g2)| < e Y23ED2eP 1 (%,(0) 2 0) P g1 — gall i (g0),
which proves (iv).
6. Proof of Theorem 5.6

For any o € [0, 1], ®; .5 : B(0, eb) Sy —ft;”_g g 'y)dBs — &, (ye ") + Zg} (ye™"). The Theorem 5.6 is a
combination of the two following lemmas.
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Lemma 6.1. Let b > 0 and F :R x C(B(0, e?), R) — R be a function b regular. For any € > 0, there exist [, T >0
such that foranyt > T, p(-) € Cr(l, kqlogl,logt), z < (logt)30,

—+/24 x
K J_p<x>E_p(x)[1{5%505“/2%1572}(F(Blb +2,87}) — F(By, +2,6,,))]dx
1

<e / p(x)e V2P gy 6.1)
[0,R]4

Recall the definition (5.30).

Lemma 6.2. (i) Ler b > 0 and F:R x C(B(0,e?),R) — R* be a function b regular. For any ¢ > 0, there exist
M,o, T > 0 such that forany t > T, o € [1,logt], z < (logt)30,

3/2
t
—Be[U3, <05,y 2oy (F By 42, 81p0) = F(By +2,81p)]| <. (6.2)

(ii) Let b > 0 and F :R x C(B(0, e?), R) > RT be a function b regular. Fix M, o > 0. There exists Cpy »(F) >0
such that for any ¢ > 0, there exists T > 0 such that foranyt > T, « € [1,logt], z < (log t)30,

(32

zrmﬂm FM (B, +2,845)] — Cuo(F)| <e. (6.3)

{By, <0,By12.41<—72}

Displays (6.1) and (6.2) may to replace (’5ﬁ 5 by & 5 o in the argument of F. Then thanks to the properties of &; 5 »

we can prove the renewal result (6.3). Theorem 5.6 is obtained by replacing a by p(x), then integrating on [0, R]<,
the displays (6.2) and (6.3).

Before to tackle the proof of Lemma 6.1 we need a control on the function F* and & associated to the b regularity
of F:

Lemma 6.3. Let h and F* the two functions associated to F a function b regular. There exists constants ¢ > 0
(depending on F, h or F*) and T > 0 such that foranyt > T, «a € [1,logt],o € [0, 1] and z < (logt)30

E_o [H{Etb SO’E[r/Z,tb]S—z}h(B’b + Z)F* (®t,b,0)] = COlt73/2. (6.4)

Proof. By (C.23), we can affirm that for any + > b > 0 large enough, « € [1,logt], k, j,> 1, z € [1, (logt)30] and
o €10, 1],

- X L —cud)j
E—“[E{B:bEO,B[;/z,f,,]sz,be+zelf(k+1),kl}ﬂ{w$*'; ( b)(]/j)31/4}] = ex3(1 +k)t3/2e L (6.5)
t,b,o (€

According to (5.27), there exists c1 (k) > 0 such that

eBv? if B, 4z < —c(h),

() if By +2>—c1(h). (©6)

h(Bt}, + Z) = {

By continuity of y = &; 5 5 (¥),

1<1, oy +Z]l ©,1) 4 ©,1) el
{wﬂfz,b,a(-eb>(l)fl/4} = {wﬂfy,b,a(-eb>(] )21/421')@5,1,?_“(@17)((]“) )}

Thanks to (5.28), for any j > 1, on {} > wg'lb) (e G
t,b,o "

F*(&p0) <cj'l.
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Combining these two inequalities with (6.6), we get that

E_ [ﬂ{ﬁrb SO,E[z/z,:b]S—z}h(B’b + Z)F*(@vb"’)]

c1(h)
10
<C1(h)z(f+1) (ZEQ[ {By, <0.Bi/2,1,1<—2. By, +z€[—(k+1),—k]} {w(Ol) b)(j—l>31/4}]
j=1 k=0 1o e

o
—k
+ Z © E—a[ﬂ{B, <0,B(1/2,)<—2. By, +z€[—(k+1),—k]} {w“’” N )(j1)>1/4}]>'
k=cy(h) Crba (e

Finally according to (6.5) we have for any ¢ > 0 large enough, « € [1, log?], k, j,> 1,z € [1, (10gt)30] and o € [0, 1],

E o (B . - G+DOF — (1+4k)
—“[ {By, <0,B1/2,,1<—2} (B, +2)F( l’lw)]— ,3/22 ec24(b)j ci()” + Z ek
k=cy (h)

COC

=< 3/ (6.7)

which ends the proof of Lemma 6.3. ]

Remark 6.4. As a by product we have also shown the following affirmation. Fix F a function b regular. For any & > 0
there exists M, T > 0 such that forany t > T, a € [1,logt], z < (10gt)30 and o € [0, tp] we have

o

E_q (H{E,bfo,E[,/z,rb]f—z}h(sz + Z)F*(ﬁhb,o)ﬂ{wgv” ( h)(l/M)zl/4}) =5 (6.8)
t,b,o (€
and
N ca
E_, (Jl{gthSo,gll/zﬁtbjf_z}h(Bt,, +z)F (ﬁz,b,a)]l{B,bJrzg—M}) < e (6.9)

Indeed for (6.8) as well as for (6.9), it suffices to choose M > c1(h) large enough such that (see (6.7))

0 . 10 o) oo . 10 o°
G+D 5 (I+k) G+D (I+k)
> U w3 U et > b

j=M k=ci(h) j=1 k=M

Proof of Lemma 6.1. Forz >logl + b, as p(-) € Cr(l, kglogl,logt),

Hﬁfﬁ, - (’5;,13”00 < sup |,o(x 4 ye*‘) _ ,o(x)| < e (1=b)/3
xeR;,yeB(0,eb)

Recalling (5.29), the quantity in (6.1) is smaller than:
e VWP L1z o5 coe (V2 (B, + 2) F* (&, )] dx
R =P LBy, <0, B0, <—2} 9 I 1,b
t

with & and F* the two functions associated to the b regular function F. Now we conclude with Lemma 6.3 applied
with o =1, O

Proof of (6.2). Let b, e > 0 and F b regular. We have to study the expectation under E_, of

]l{ﬁtbSO,E[z/z,xbls—z}}F(M)(Bth +2,81p0) = F(By, +2,615)].
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Thanks to (6.8) and (6.9) we can choose M large enough to restrain our study to the expectation of

L, 00 | FM (B, +2,8:6) — F(By, + 2, 6:)], (6.10)

1 — —
QS,_b’a(zeh)(]/M])51/4’3%2_2_1‘4]} {Bi, <0,Bj1/2,4,1=<
with # > b. Now we will choose M > M;. On {wgg‘l[) (eb)

t,b,o "

(5.28) and (iii) of F, we get

(1/My) <1/4, By, + z > —M,}, by the properties (5.27),

F(By, 42,8, b0) <h(By, +2)F* (& o) <cM!":=M. 6.11)
Then (6.10) is equal to

]l{w(e(a)vl) ( b)(l/M1)51/4,Bth—z—M1}jl{EthSO,E[r/Z,tb]S—Z} ’F(Bth +2,81p0) — F(By, + 2, 6t,ly)’ A2M. (6.12)
t,b,o (€

We denote |[AB; |0 := SUP e B(0,eb) |&:.5(y) — & 5.0 (¥)], by the property (5.29) of F, for any § > 0, we deduce that
(6.12) is smaller than

|FL.b(By, + 2, 615.0) — FLb(By, + 2, 615)| A2M
< 2M U a6, a5t T 1126, I <s40R LBy, + 2) F (16,6 ().

0,1
As w(eﬁ,,b),g ceny (i) < 4 and By, = —z — My we now use (6.11) to bound (6.12) by

Ly z—z-mL(5, ), <—2) CM (a6, =5 T MOL( a6, 026t (6.13)

lloo

Now we claim the following two assertions:

e Forany L,b, 38, M there exists T > 0 such that foranyt > T, a € [1,logt], z < (logt)30 we have
Poo(By, <0, Biyjo) < —2. By, +2 = —M) < cra—g75 (1+ M) (6.14)
e Forany L,b, 8, M there exists o, T > 0 such that foranyt > T, a € [1,logt], z < (logt)30 we have
P, (|1 AG, lloo > 8, By, <0, Biijos) < —2, By +2 > —M)) < ct;%(l + Ml)zexp(—%82ezg). (6.15)

So we take the expectation in (6.13) and apply (6.14) and (6.15) to obtain (6.2).
To conclude we notice that the assertion (6.14) comes from (B.7), whereas (6.15) is a consequence of (C.22).
Indeed it suffices to notice that:
-]

> 8} C Atb,tbfa,(S'

{1A64]l0c =8} = { sup
yeB(0,eb)

p—0
/0 g(e’y) dB,

tp—o
/ g(e'™"y) dB;
0

= { sup
lyl<e™'®

Now we tackle the proof of (6.3). Let us introduce some notations:

e Let (Ry)s>0 be a three dimensional Bessel process starting from 0.
e Let (By)s>0 be real Brownian motion and for any ¢ > 0 we denote (BS(U))SEO ‘= (Bs+0 — Bs)s>0-
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e Let g, h be two processes, for any #y € RT the process X.(t, g, h) is defined by

gSa lfS S th
A(O & ) {gt() +ht—t()7 1f52l0~ ( )
e Let o > O for any process (g5)s<o We set
<~
(g;r)sfa = (8o—s — ga)sfa- (6.17)

e We set $,, - the set of continuous functions F : R x C([0, 0], R) — R* with SUP,cR ¢eC([0,01,R)) F(u, g) <m.For
g € C'(RY, R) we denote by Vy(g) the gradient of g at y € R?. At last we denote by (-, -) the inner product in R9.

Display (6.3) is a consequence of the following proposition which is proven in the Appendix A.

Proposition 6.5. Let B be a Brownian motion and let R be a three dimensional Bessel process starting from O in-
dependent of B. Let m,o > 0 be two constants. For any ¢ > 0 there exists T (m, o, &) > 0 such that for any t > T,
1<a,z<(logt)®and F € Hn.6

t3/2
—E (]l{B >0, B (/2,022 ,B;— z<m}F(Bf -z, (By_a))sg(r))

\f/ / (%! (1_y. B.R)),_,)) dy du| =&, (6.18)

where T), :=inf{s >0, By =y}, y € R.

law

Proof of (6.3). Fix b, M,o > 0 and F a function b regular. Let us explicit the expectation in (6.3). As (Bs)s>0 =
(—Bys)s>0 we have,

E63):=E—o[15, c05,,, < aF "By +2.650)]

= Eot |:1{be ZO,E[,/Z,,b]ZZ»Btb*ZSM}

tp
X F(—[B,b —zl,y+> f (1 —%(e""y))dBs — &y, (ye™') + Z¢) (yef)> A M}.
th—o

Moreover by integration by parts, the second argument of the function in F can be rewritten as:
p
o (U= (e By = Byol [ 1B = By (Ve e ) ds =, (ve7) + Z0 (e ),

tp—0o

and we recall that the processes B and Z are independent. So E(6.3) is equal to
Ey [Jl{gthzo,g[t/z,,]zz,B,b—ng}Q)tb (Bz,, -z, (BS(I_G))ssg)],

with @;, :R x C([0,0],R) — RT, a continuous function, bounded by M and defined by

p

(u,h)l—)EI:F(—u,yH (1 =%(e""y))lho —h0]+f [hs—(ty—o) — ho)(Vyes—tk.ye* ") ds

tp—o

— &y (ve ™) + 2y (ye’)> A M}.
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Now we can apply Proposition 6.5, with t < 1, > 0, ¢ < «, z <> z < (log t)30, 0 < o,m< Mand F < &, . Then
for any ¢ > O there exists T > O such that forany r > T, | <« < (logt)30

(32

—E(6.3) - \/? f " / VB[ . (X7 (7 B.R), )] dy du| <. (6.19)
o mJo Jo =

Moreover, we observe that for any u > 0, y <u,

E[ (¢, (u. X (T_y. B. R)),_, )]

- E|:F oo <_"‘7 y > Zy (ve™") = &y, (ve™)

T_yno o
[ ket am = [T (- Kee ) dRST_y>:|.
0 T_y Ao
Finally as (Z,, (ye™") — I (ye™)) yeB(0,eh) is independent of (B, R) and converges in law, when ¢ goes to infinity, to
(Z(ye’b) — g“(ye’b))yeB(O,eb) (see (2.6)), by combining with (6.19) we deduce that: for any ¢ > 0 there exists 7 > 0
such that forany r > 7,1 <a < (logt)30

1

M
— 3B el15, <05, = P By +2.61.0)] = Cio (F)

<e, (6.20)

with

M ru
Ch,o (F) = \/2/0 /0 E[F(M) (—u,y = Z(ye™) —¢(ve ™)

T_yno o
- / (1 —xk(e*ye))dB, — / (1 —xk(e*ye?)) dRS_T_yﬂ dy dU. (6.21)
0

T_yno

This completes the proof of (6.3). ]

Appendix A: Proof of the Proposition 6.5

In the following we denote R™ a Bessel three process starting from x > 0 (R.(O) =R.). Our aim here, is to prove the

Proposition 6.5. First let us state two results:

Proposition A.1 (p. 255 in [25]). Let RY) be a three dimensional Bessel process starting from x > 0 and t =
inf{s > 0, REX) =inf,>¢ R,(f)}; the process (R§x), s < 1) has the same law as (B;,t < T,), where B is a Brownian
motion starting from x>0 and T, is the hitting time by B of an independent random point k uniformly distributed
on [0, x]. Moreover conditioned on {R(rx) =y}, (Rgs — ¥)s>0 I a three dimensional Bessel process starting from 0

independent of (Rgx))s <z

Lemma A.2. Let m > 0 and Ly > 0. For any ¢ > 0 there exists T (m, Lo, €) > 0 such that for any t > T, b > /4
y €[0,m],x <Xioand F € Hy,.,

F—Re, Ri<n) /m 2
3/2 d = / b7/ 20
t7“E L{y>r,— —-E F(u, Rp)i<x)d b
( R, +y {y =R —b+m=0} iy (u, Roi<s) du ¢

<&t ebe V1D, (A.1)
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Proof. This is a slight extension of the local limit theorem for the three dimensional Bessel processes. Indeed let
us assume that F (u, g) = F(u). Recall that for a three dimensional Bessel process starting from 0, P(R; € dx) =

\/ n%x exp(—3; )dx, moreover as b > m, y, we have

m-+b 2
BPE( Fp — ry) MrzRizbm=0) S e ‘/y x? exp( == VF(b — x) dx
Ri+vy mb XtV 2t
—u)? (b —u)?
B o {5

:ng4ﬂeﬂfm Fu)du(1 4 o(1)), (A.2)
m—y

which proves (A.1). Of course, for any A > 0, display (A.2) remains true for (R‘EX))SZQ uniformly in x € [0, A]. Now
let us prove (A.1) for any function F € $),, ). According to the Markov property at time A,

t3/2E<F(b — Ry, Ri<n)
Re+vy

F(b—Ri_;,
:E<t3/2ERA( ( RIAA_F(fI)ISA)
t_

{y>Rr, —b+mZO}>

HWZRrA—b+mZW> )~
(&ni<a=R)i<r

By letting ¢ going to infinity an applying (A.2) we obtain easily Lemma (A.2). |

We can start the

Proof of Proposition 6.5. Let 7 := 7 —inf{s > 0, B,y = B, , 1} and E; :={t > B;)» > 1Y N {rg =t — logt).

First we show that uniformly in 1 < «, z < (log?)%°,
32
7Ea (m1(B,>0.B), ) y>2.Bi—z<m)LE) = 0(l), 1 — oo0. (A.3)

Clearly mPq (B2 > t) = o(t~3/?), thus to prove (A.3), it remains to study Eq (ML(B,>0,B,, y>2.B—z=m) L (B, ,,<i1/4))

then Ea(ﬂ{ﬁ,zO,E[,/z,,]zz,BﬁZSm}]l{rostflogt})- By the Markov property at time /2 then (B.2) we get that

3/2 3/2
t t
TEU(m]]'{ﬁtz()»ﬁ[t/z_ﬂZZvBt_ZSnl}ﬂ{Bt/2§[|/4}) = TEU (m]]‘{E,zO,B;/QSI|/4}PB//2—Z(EI/Z >0, Bt/2 =< m))

(372

= Ea(mﬂ{ﬁ,zo,Bz/ast‘/“}t1/4_3/2)
1
_cﬂ 34732 — o(1). (A.4)
o

Set 7 :=inf{s > 0, B; = By, ;;}. By the Markov property at time /3, then the property of time reversal of the
Brownian motion we get that

E, (E{E,EO,Q[,/Z_,]zz,Bt—ZSm}ﬂ{r()St—logt})

<E, (1{5,/320}13(1{52,/3 >—m,0<x+ By 3—z<m,1y Zlogt})IX=B:/3)~
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In the second expectation, we apply the Markov property at time %, then the inequalities (B.1) and (B.2) and we get
that

/32 3/2

TEQ(]]-{QlzO,QWzy,Jzz,B,—zfm}]]-{rft—logl}) =< TPQ(EZ/S >0)supP(O<x+ B;/3 <m)
xeR

x P(B, /3 > —m, inf{s > 0, By = By, 3} > log)

32 c(l1+a)
S P logt o(l) (A.5)

From (A.4) and (A.5) on has (A.3). So we can restrict our study to

E, (]l{ﬁtzo'ﬁ[t/lt]ZZ’BI_ZSm}F(Bt -z (Bs(t_o))sfa)]lEt)' (A.6)

By the Markov property at time %, the property of time reversal of (By)s<;/2 and the equality (By)s<;/2 @ (=By)s<1/2,
the expectation in (A.6) is equal to

Eot (]l{gt/220,123[/2211/4}¢Z,m,cr,t(BI/Z))’ (A7)
with @, »;(x) defined by (recall that t; :=inf{s > 0, By = Qt/z})

¢z,m,a,t(x) = E(F(_BZ/Z +x—2z,(Bo—s — Bo)550)ﬂ{ﬁl/zzB,/2+z—xZ—m,rlflogt})- (A.8)
Using the notation (6.17) we get that

Bi 2
By (x) =Ep, ( B’/

0o
P F(m - Bt/2 +x —z, (B )sfd)]l{gt/zzB,/2+zsz,r1§10g1}>-
t

We recognize the h-transform of the Bessel process, therefore with 75 :=inf{s > 0, R; =R, »}, we have

m
(pz,m,a,t(x) =E;, R—

<0
/2 F(m —Ript+x—2z, (Rs )sga)1{3,/22Rx/2+z—xZO,rzSIOgt})'
t

We define 7 :=inf{s > 0, Ry =R, }. Observe that

m 0
‘cpz,m,a,t(x) —E, (R—/zF(m - Rt/2 +x—2z, (R )s<cr)]]-{E,/Z>R,/2+z—x>0,r2_r<logt}> ‘
t

2
m
=< Em<R_/z1{@,/2ZR,/2+z—xZ(),TZt/2})- (A9)
1

According to the Markov property at time % and Proposition A.1, the expectation in the right hand side of (A.9) is
smaller than:

m2 m3

< et/ = o(t_3/2xe_xz/t). (A.10)

Furthermore in order to use Lemma A.2, we disintegrate the expectation in the left and side of (A.9) with respect of ©
and R, and apply Proposition A.1. Finally with (A.10), it stems

m (A . (AdDg)
@z,m,d,t(x) = /0 E( RZ/Z_Tyim n Y :ﬂ'{}’ZRt/z—Ty,m+7+Z_XZOva—m510gt} d)/

+ ot 2xe1), (A.11)
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with T),_,, :=inf{s > 0, By = y — m} for B a Brownian motion independent of R and
(Al :==m — Ri2-T,_, =V +X — 2,
<0
(All)(b) = (XS (Tyfm, B, R))SSO'
So from (A.11) we can write
m
_ 42
Do .o (X) = / E(E( ). 17, <iogn) dy +0o(1 7 ?xe /"),
0
with

Py
F(b—Re, (X5 (A, & R))s<o)
Re+vy

E(-).. :E(

]l{)’ZRt+V+Z—xZO,}> t=1/2-=Ty—m
|b=m—-y+x—2z
§=B,A=Ty_p

Forany g € C(RT,R), A > 0, F(b —Re, (<}_§: (A, &, R))s<o) can be rewritten F), 4, 4(b —Re, (R)s<(o—n),) With F) 5 ¢
a function in $;,, (5 —1), - S0 we can apply Lemma A.2 to E(- - ),..., it allows us to affirm that

3/2
23/2<2) Dy (x) = \/_/ / X3 (Ty—m, B, R)) )(x+m—)/—z)

« o= +m—y—2)? JCUR=TD 7 o) dudy +o(1 _’_xefx2/t).
Recall that for any z < (logt)30,x > rl/4 T, <logt,
(X +m—y — z)e” WHmy =2 Q2T - g/t 4 o(xe‘xz/’).

Finally we get that t3/2q§z,m,g,t(x) is equal to

__xeix / / (3 (Tymms BoR)), L, )11, <togn)) dudy +o(1 +xe™/)

——xe_x / / (X, (T_,. B, R)),-,))dv du + o1+ xe 7). (A.12)

With an easy computation, we can obtain that

4 _g? 4 _R?
ﬁEa(]]'{Et/ZzOJZBt/ZleM}B[/ze ) = ﬁa[Ea(e 72/") +o(1)]
=« —(1 + o(l)), uniformly in & < (log?)™". (A.13)
bl
Going back to (A.7), Proposition 6.5 follows from a combination of (A.12) and (A.13). O

Appendix B: On the one dimensional Brownian motion B
We refer to [4] and [2] for the proof of the following lemmas.

Lemma B.1. There exists a constant c11 > 0 such that forany x > 1 and t > 1,

P(B; €x, x+1])<% (B.1)

— 1
P_.(B <0)<cp) +IX),
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Recall the definitions of A in (4.24), ¥ in (4.33), &> in (4.47) and 4 in (4.57). From the Lemma B.1 we deduce

Lemma B.2. There exists a constant c1p > 0 such that
() foranyb>a,z>1andt > 1,
P_.(B, €[-b.—al. B <0) <cpz(l+b—a)(1+b)t ™2, (B.2)

(i1) foranya,l,z,L>l,iza—i—l—i—landme[t—a,t],

7P(B € A}'Y) < c12B: (Biogi LBy =0 (1 + L)a™/?, (B.3)

r?P(B e LZ”L (m)) < c12E; (Biog1{Byg=0))- (B.4)
(i) foranyl,z,L>1,t>1l+1andm <L,

PPP(B eit) < cinz(1+ L), (B.5)

£°P(B € #5(m)) < cleZ(Bnggl]l{Eltglil})(l +L—m), (B.6)

@iv) for any tp,a > 0, z € [0, (log t;,)30] and k >0,

rPPP(By, <o, Bijpy) <o — 2, By +z—a € [—(k+ 1), —k]) < crnz(1 +k). (B.7)

The proper proofs are minor adaptations of Lemma 2.2 [2] for (B.2); Lemma 2.4 in [2] for (B.5), (B.6) and (B.7);
pp- 1374-1375 in [1] for (B.3) and (B.4).

Remark B.3. Each of these assertions can be proved by using the Markov property, Brownian time reversal and a
combination of the inequalities in (B.1).

In this section our aim is to extend Lemma B.1 and Lemma B.2.

Lemma B.4. There exists c13 > 0 such that forany t > 1,7 >0, u € [0,t — 1] and for any event A(u) € 0 ((Bs4+y —
Bu)se[O,l])

1
P(B, = 2. Aw) = 13— P(AGW), (B)

P(B elz,z+ 11, Aw)) < %P(A(u)). (B.9)

Proof. First we prove (B.8). If u > %, by the Markov property at time « and (B.1) we get that

+z
At

Ifu< %, by the Markov property at time « + 1 and (B.1) we get that

P(B, > =2, AW) <E(Lp,, > 1awPs, 1 Bi—(41) = —2)

P(B, > —z, Aw)) <P(B, = —2)P(A(w)) < cny ! P(Aw)).

C11
= EE((Z + Bur D18, =—z2.Aw))-

Observing that B, 41 < B, + max;<] |BS(”) |, we deduce that

1 1 W)
P(B 2 —2,AW) = ZE(@+ Bolip,z-9Taw) + ﬁE(ryglex L AW)
<12 p(aw),

NG
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where we have used the Cauchy—Schwarz inequality for the second term. So (B.8) is proved. Now we prove (B.9). If
u< %, by the Markov property at time u + 1 and (B.1),

P(B; €lz,z24+ 1], Aw)) < E(LawPs,;, (Bi—u—1 € [z, 2+ 1]))
C11
< —P(A(n)).
= (Aw))
If u> %, thent —u < % then we use the time reversal and Lemma B.4 follows. O

From the two previous results we can deduce:

Corollary B.S. There exists a constant c14 > 0 such that for any event A(u) € 6 ((Bm+u — Bu)melo,11) and

(i) foranyb>a,z>1andt > 1,
P_ (B, €[~b,—al, By <0, AW) < craz(1 +b — a)(1 + by~ [P(AWw)), (B.10)

(i1) foranya,l,z,L>1,Lzl+1+a, andm € [t —a, t]

PPP(B € Ay, AW) < 14 (Biogi 1By =0)) (1 + L)a ™2 [P(A@w)), (B.11)
PPP(B € X7 (m), Aw)) < 14 (Biogi 1By =01)y/ P(AW)), (B.12)

(i) foranyl,z,L>1,t>1l+1andm <L,

PPP(B eit, Aw)) < caz(1 + L)*\/P(Aw)), (B.13)

1>2P(B € #5L (m), Aw)) < c14EZ(B1Jgglll{§gglsl})(l + L —m),/P(A(w)), (B.14)
@iv) forany t,,a >0, z € [0, (log )39 and k > 0,

£1?P(By, <o, By <o — 2, By, +z—a€[—(k+1), k], Aw)) < craz(1 +k)\/P(Aw)). (B.15)

Proof. The result is an immediate consequence of the Remark B.3 and Lemma B.4. Indeed we just have to reproduce
the proofs for Lemma B.2 by replacing the inequalities in (B.1) by (B.8) and (B.9). ]

Appendix C: On the fluctuations of the Gaussian processes Z and P

Recall that:

o the process (Z?(y))seR yeRrd, is a centred Gaussian process with covariance:

E(Zg(y)Zg(z)) = [k(e*(y — 2)) —k(e’y)k(e'z)] ds,
0

e the function k is symmetric and C 1 in particular k’(0) =0,
e the function g := 1 — k is C!, with g(0) =g'(0) =0,
o the function g’ has a compact support included in B(0, 1), so there exists ¢ > 0 such that SUpy cRa g’ ()| <clyl.

Lemma C.1. There exist ci5, c16 > 0 such that
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@) forany$>0,T,t >0,

P ( sup

|Z?(y)| > 3) <cis exp(_cl682e2(T—z))’

lyl<e=T,s€[0,1]

(i) for any b > 0 there exists c17(b) > 0 such that for any § > 0,¢, j > 0,

P

sup

[Z0(ve™) = 20 (ze™)| 2 8) = 535 exp(—c17(B)))?)-

y,2€B(0,e?), |z—y|<j~!

Proof. Observe that

P( sup |ZO()’)| >5> ZP( sup |Z (y)|kk+l]>62k ’)
=0

Iyl<e~T

For k € [0, |£]], set Ty := ([k, k + 1]) x B(0, 1). Recall Theorem 4.4.1 in [21] we introduce:

T, %), (v, y)) =

or(h) ==

sup

lyl<e=T

E[Zg(xe_T)ZS (ye_T)], and

sup E((Z9(xeT) = Z9(yeT))?).

lu—v|<h [x—y|<h

By an easy computation we have

B2 ) = 280 T))) = [ [1 -3 T as 2

o\,

- [Ty ke T Pas

Therefore the Taylor expansion of k leads to

ok (h) < cv/heke™

T and sup\/kacek*T
T2
k

Finally via the Theorem 4.4.1 of [21] and (C.4), we get that

P( Sup |Z (y)|kk+l]>82k t)

Iyl<e~T

o

9}

2

Going back to (C.3) we obtain that P(sup),| -7 1Z0%()|; = 8) < Z,Etio ce— (@ e/2T? < ) ce—cr6’e
proves inequality (C.1). Proof of inequality (C.2) is similar, the details are omitted. Let us just mention that

o (h) :

sup ‘Z (Y)‘[k M+ =

Iyl<e™T

92(d+1) /00 e—x2 dx.
BeT—’(e/Z)’_k

IA

sup
lx—yl<h

sup
lx—yl<h

VE(Z0(xer) — Z0(ve))?)

g e T (x—y)ds

> csel <§>I_k [s;lf\/ﬁ + /loo oe(275) de

\/ / es ’(x—y))ds—/[ (es—’y)—k(es—’x)]2ds

1421

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

' which
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1

So instead of (C.5), we can use here (see p. 54 in [21], withh = j7 ' ,m =2j,and p =2)

P sup |Zt0(ye_’) - Z?(ze_’)| > 5)
y,2€B(0,e),|z—y|<j~!
<P( s |2 -2 2 cdjon (7))
x.yeB(0,eb), [x—y|<j!
< c(b) (2j)2@+D / e dux. (C.6)
cdj U

Now we shall estimate the fluctuations of the process P_O(y), ie.forT,t>0>0,§>0,j>1and b > 0, we will

control the events:
N
f g(e"y)dBy
0

t
/ (1) — a(e? ' y2) dB,
o

Ary5:= { sup

|y|<e=T,s€[0,t]

> 5}, and (C.7)

B, = { sup > 3}. (C.8)

Iy1—y21<1/j.(y1,y2)€B(0,e")

Event (C.7) appears in the proofs of Lemma 4.3, Proposition 4.4, inequality (6.15) and Lemma D.1, whereas event
(C.8) appears implicitly in (6.5) and (C.23).
We observe that forany 7,¢ > 0,6 >0, j > 1,b>0and o € [0, 7],

L1+1] Je+11

ArssC | Aras@). B, U Biuss(). (C9)
i=1 i=1

with for any i <7+ 1, Ar;s(i) and Bj;s(i) are measurable with respect to the sigma-field o ((B4—i —
Bi—i)mefo,17) and defined by
m
/ g(e’y)dB;
t—i

m
JRECREOEECS L}
r1—1

AT 5(i) = { sup sup > 527" } (C.10)

lyl<e~T t—i<m=t—i+1

Bjisp(i) = { sup sup > 827" } (C.11)

ly=jl<i=hiyil ly2l<eb t—ism=<t—i+]

The following result is the core of this section

Lemma C.2. There exist c13, c19 > 0 such that for any b > 0 there exists c19+(b) > 0 such that forany § > 0, T,t >0
andie{l,...,[t+1]}

i
P(Ar,:s()) <cig CXP<—61952 <§> ez(T_’)>, (C.12)
\_C18 e\ .
P(Bj;5.5()) < 8—deXP<—cw*(b)82<5> ]>- (C.13)
Recall the definitions (C.7) and (C.8). By summing overi € {1, ..., [t + 1]} we deduce that there exists cro > 0 such

that forany § >0, T >t > 0and o € [0, 1],

P(A7,5) < caoexp(—c18%e® ™), P(B\7) <= 20 exp(—c10.(0)8%}). (C.14)

8



Maximum of a log-correlated Gaussian field 1423

Proof. We start by (C.12). By the Ito-formula for any 7, ¢, s > s1, |y| < e T

N N
/ g(eu—ty) dBu‘ — 'Bs(sl)g(eS’y) _/ (Vg.ye“it)B,Ek) du

S1 S1

< c(s —s1+ et |y|sup | BEY). (C.15)

u<s

Then

P(AT,I,E(i)) = P(3c sup |y| sup etfi7t|B’(rffi)| > 827")

lyl<e=T  mel0,1]
i
= P( sup |By| > 8c/eT_’ei2_i> <cig exp(—qg&z(s) ez(T_’)>.
mel0,1] l
Concerning inequality (C.13) we use Lemme 4.1.3, p. 54 in [21] applied to the process:
m
Gi(y,m) :=/ g(e'y)dBy, yeB(0,e"),me(0,1]. (C.16)
1—i
Indeed we first observe that for any ¢, j,6 > 0andi € {0, ..., [t — 1]},
Bj:s56() C { sup |Gi(y1.m1) — Gi(y2,mp)| = 52_i}.
[y1=y21<j=1, Imy—ma|<j~!

Then by an easy computation

o) = sup VE(Gion.m1) — GGy m) )

[y1=y2l=j=" Imi—ma|<j~!
< Vhexp(—i), Vh=>0.
So applying Lemme 4.1.3, p. 54 in [21] with h = %, m=2jeb, p=2, we get

8271 00 )
P(Bj,t,a,b(i))§P< sup IGi(yl,m1>—G,-(yz,mz>|z—[3<o(j‘l)+c’f go(j”z—”)])

-nl=j! c9(j7h) !

lmy —mal < j=

i i
< c(b)jdexp<—c”82j<§> ) < ;% exp(—clg*(b)(Sz(%) j).

It ends the proof of Lemma C.2. (]
Now we can state the following assertions ((C.17), (C.18), ..., (C.23)) which are continuously used through the
paper:

Combining Corollary B.5 and (C.12) we deduce that There exists cy1 > 0 such that forany T,t > 1,2>0,6 >0

Lr+1]
2P, (B, € la.b].inf By = 0. A7) <% ) Po(By € la. bl inf By = 0, 41,50
i=l1

Lt+1] i
(&
<cz+b—a)(1+b E —c1082( = ) e2(T—0
<cz(1+ a)(1+b) clgexp( c19 <2> e )

i=1

<enz(l+b—a)(d +b)exp(—c§52e2<“>>. (C.17)
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Recall that Ar ;s 1= {Suply\fe—T,se[O,t] |f0S g(e’y)dB,| = &} (see (C.7)). Similarly we can affirm that for some
constant ¢yp > 0 we have
()foranya,l,z,L>1,t>I+1+aandm €[t —a,t],

— _ 2.2(T—1)
t3/2P(B e Atz:aL’ AT,I‘,S) S C22Ez(310g11{310g120})(1 —+ L)a l/Ze (C19/2)5 e , (C18)
i 2.2(T—1)
£2P(B € Y75 (m), AT—asm.i—atm.s) < €22 (Blogi LBy z0p)e ™1/ 2D¥ e (C.19)

(i) foranyl,z, L > 1,t>]+1landm <L

PPP(B eIt Ar, ) < ezl 4 L)2e(€0/29°¢ (C.20)
_ 2,2(T—t)
°P(B € 41 (m), Ar,5) < B (Bioy Ligg, <) (1 + L —m)e (c19/2)8%7 (C.21)

(iii) for any #,, @ > 0, z € [0, (log1;)°] and k > 0,

t?P(By, <o, Bijpy) <o — 2, By +z —a € [—(k + 1), —k], A1, 5)

§262(T—1p)

<cmz(1 +k)e €19/ (C.22)

Finally let us prove the inequality used in (6.5). We want bound P(B,, < o, B/ <o — 2, By, +z —a €
[~k + 1), =k, w 1})) (e = §). With Lemma 2.2 observe that

1
0,1) —1
{wes,y,,‘(,(-eb)(J ) > Z} - { sup

1
/b g(e™"y) —g(e*'x)dBs
tp

22‘4}

x,y€B(0,e"),lx—y|<j~ !/ th—0
U sup ’22, (ve™) — 22, (xe )| = 2_4}
x,y€B(0,e?),[x—y|<j~!
U { sup e (ve™) — ¢ (xe™)| = 2‘4}.

x,y€B(0,e),|x—y|<j!
Once j large enough the last event is never realized. Therefore, recalling the definition (C.11), we have

1

- - 0,1 -
P(Blb <o, Bypy <a—z,B,+z—ae [—(k + 1), —k], wér_b)a(,eh) (J l) > Z)

r+1]
<Y PB,<a.Bypy<a—zB,+z—ae[—(k+1),—k], B, ,-4())
i=1

+P_y(By, <0, Byjoy) < —2z, By +z € [—(k+ 1), —k])

x P sup 120 (ve™") — Z0(xe™")| > 2*4>.

y,x€B(0,e),|z—y|<j~!

Using (C.2) in Lemma C.1, Corollary B.5 and (C.13) we deduce that there exists cp3 such that for any b > O there
exists c24(b) > 0 (a constant which depends on b > 0) such that for any ¢ > 0 large enough, @ € [1,log¢], k, j > 1,
z € [0, (log7)**] and o € [0, 1],

_ _ 1
0,1 .—
P<sz <a,Bypy<a—2z,B,+z—-ac [—(k + 1), —k], wéjt.b)a('eb) (J 1) > Z)

[1+1]

a(l+k) - ) Y

ECT[( 2. P(Bj,t,24,b(l))> e :|
i=1

a ;; zk) ecu®)j
t

=3¢ (C.23)
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Appendix D: The L-good particle

Here we recall the definition of the “good particles.” It is convenient to introduce

log/?/3 ifi efl,...,5logl] — 1},
dh(p(x) == { p(x) —4de; + D ifi € {5|logl],..., [5t] —1},
a+p(x)+L—4e;+D ifie(lt],....[t]),

where we recall that ¢, = s1/12 if s < % and e; = (t — s)l/12 when s € [%, t]. Then, according to (4.62), a particle
u € [0, R]19 is said to be L-good; if

D L .
sup |Yi(X) - Yi(y)| <e;+— and Y;(x) Sd,;;(p(X)), ie [1, LtJ] (D.1)
YEA; (x) 2

(see (4.61) for the definition of A;(x)).

Lemma D.1. Fix L, R > 1. For any ¢ > 0, there exists D(L, ¢),lo(L) large enough such that for any | > Iy there
exists T (I, D) such that forany t > T, p(-) € Cr(l, kglogl, +00),

1 p(x),L
E {Y.(x)el; }

BT R - dx <eI ) .2
/[O,R]d < r; (x)4 fx "‘”Lgood}> <eIa(p) 02)

Proof. Recall the definition of r;(x) in (5.18), for any p > 1, {r;(x) < %} implies {wy y(e™?,x,t) > ;k}. Using
Lemma 2.2, there exists ¢ > 0 (as in the proof of Lemma 4.2, see (b) there), ¢ is a constant which depends only of k,
chosen in order to get rid of the deterministic part £, such that for any x € [0, R14,r>0, p>t+candre (0,e77],
we have

1 -3 -3
wy_(.)(r,x,t)z4 CHwpry(rx, 1) =27 Ufwze oy (rox, 1) =270}

So decomposing the value of r;(x) in the intervals [e= 19 +00) and [e~PHD e~P] with p>t+c, forany x €
[0, R]¢ one has

E Ly meprhy 1
r (x)d {Y.(x) not L-good}

(x).L

< ced(H'c)P(Y. (x) e’ , x not L-good)

dap
e D €PE(Ly (eprnt ot 1-goot) Mgy e w022 F L e e rxnz2-3): (D.3)
p>t+c

Then we need to:
(a) Decompose the event {x not L-good}. Once D large enough, for any i € [1,¢], as k is Lipschitz,
{sup,ea; ) 16" @) = #} = &, thus {x not L-good} is included in the union from i =1 to 7] of

{Yi(x)zd,ﬁ(p(x))}U{ sup |Pf<u)—Yi(x>|zw}U{ sup IZj‘(u)|zw}.
UueA;(x) 4 u€A;(x) 4

(b) By using the decomposition given by (a), the events in (D.3) are either measurable according to (¥s(x))s>0
either to Z*(-). Therefore, similarly to (4.29) or also (4.70), we apply the Girsanov’s transformation, with



1426 T. Madaule

density eV23Yi)+d 4 the two right hand terms of (D.3), recalling that Y.(x)e > L implies e~ V24N <
e—143/2e—V2dp(x)

(c) By using the decomposition given by (a), then the Girsanov’s transformation of (b), in the second term of the
right and side of (D.3) appears naturally the following term:

i +D/2
c Y e dpP(Y(x) e/t sup |ZFw)| > u,wzlx(.)(e*p,x,t) 223>
p>t+e uecA;(x)
i +D/2
<t/ */_"(X)P(B er(X)L Z ed(P- ’)P( sup |Z} ()| = #,wz_x(.)(e_”,x,t)z2_3>.
€A (x)

p=t+c

To control the sum, we use the Cauchy—Schwarz inequality then Lemma C.1 and affirm that for any x € [0, R]9,
iel0,t],

+D/2
Y el ’)P< sup | ZF(w)| > / wz.X(-)(e_”w»’)zz_g)
p>ite ueA;(x)
i +D/2
< Z ed(p—t)clsexp(_clgz—GeZ(p—t))\/P< sup ‘Zf(u)‘Z%)
poiie ueA;(x)

i +D/2
<c P< sup \Zf(u)| > u)
ueA; (x) 4

Finally, gathering (a), (b) and (c), it stems that for any x € [0, R]9, the first term plus the first part of the Y peite”
in the right hand side of (D.3) is smaller than

ce™ V2300032 <Z[(l)(l P+ @5+ oY ”]),

i=1
with
MY =P(B e/ B > dl(p())),

i ;+ D/2
@4 =P (Bezi’(”’L, sup / g(e'u)dB, zu),
ueA;0)1Jo 4
.+ D)2
34 =P (Bebf(x)’L)\/P< sup |Z?(u)|z%).
ueA;0)

Similarly, the second part of the sum ZPZI+C -+ - in the right hand side of (D.3) is smaller than

t
ce™V2300 372 (Z[(l)(’ Y+ @5 + 3 ”]),

i=1
with
(1)(, X)L Z ed(p— I)P(BEDP(X)L B; >d ( (x)),Ap,,’zf,%),

p>i+c
i .+ D)/2
(2)([ ) = Z ed(r— ’)P< EEf(x)’L,Apy,’z_a sup / g(e’u)dB, 27614_ / >
poite ueA; (010 4
i ei+D/2
(3)%36) = Z P(BGIZ;)(X)’L,A,M,23)P< sup |Zl()(u)| > ¥>’
ueA; (0) 4

p=t+c
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where we recall that {sup,|<—» | [y g(e’u) dBy|; > 273 = p.1.2-3- We start by studying (1)(l ) We distinguish five
cases:

(i) i <5logl. By definition d 1(p(x) = log/?/3, thus by the Markov property at time i then (B.5), we have

MY < E(1> (og1)2/PBi—p() (Bi—i <1, Bluja—iy—i) <@ +L+1,B— > a; —2))

(14 L)?
< enB((p(0) + 1= Bi) Lip,2q0g12) 75—
< Ce—(logl)l/b(l + L)2 p('x?))/;_ 1 .

Then for all / large enough, ZSIOgl(l)(’ ) < clogle=oeD* (1 4 L)2'0()‘)+l 8‘;3(;‘2)

(i) Slogl <i < ’ 5- By definition d; l(,o(u)) = p(u) —4i'/2 4 D, thus by the Markov property at time i > 1, then
(B.5) and (B.2),

o _ . (1+L)°
D5 < et B((1+ 000 = Bi) 15,2 p )it 12,5,2pxn)
(1+L)* it/
=¢—3p (1+0(0) =75 32
Then for all [ large enough (depending on L), ZI/_%IOgl(l)(l ) < (ltfgx))(l—i—L)z Z:/%Slogll 4 < 8‘;32)

(iii) 1 3<i< ’ . By definition d l(,o(x)) = p(x) —4i'/12 4 D, thus by the Markov property at time i > 3 then by
applying twice (B 2), we get that

2
ix) _ (1 ar)
(D" =e—3p 7 E((1+2() = Bi) , 15,2 )12 B, <p(x)))

(1+a)? it
=¢—an (1+ (x)) 32

Then for all ¢ large enough, Zt/_ztﬂ(l)(’ *) < C(H'p(x)) (14 ay)? Zt/z/ j—5/4 < EM

(iv) 5 <i< 2’ . By definition d (p(x)) =a; + p(x) + L — 4e; + D, thus by the Markov property at time i > £
then Wlth two tlmes (B.2), one has

(14 L)?

@, )
D4 - mE((l o) tat L= Bi)+1{BiZa:+p(X)+L—4ei+D,§[r/z,i1§af+L+p(x)})
(1+L)?
m P(Bz Zat+p(X)+L 46, + D, B <p(x) B[Z/Zz <az+L+p(x))
(14 L)% ei2
= Cm(“& - at)m(l + ,O(x)).

N1/12 2t/3 (ix) _ 1+ 2t/3 14L)?
Asei =t —i)'/12, wehave 300D = HED L, X < e

V) 3 2 <<t By definition d; l(p (x)) =a; + p(x) + L — 4e; + D, thus by the Markov property at time i > 2{
then (B. 2) and (B.5),

2
(i, x) (1 + L)
(Da ( it 1)3/2E((1 +p(x)+a+L— Bl’)+]l{B,-Za,+p(x)+L—4el-+D,§[,/2,,-]§a,+L+p(x)})
(14 L)% _ _
< CmeiP(Bi >ar+p(x)+ L —4ei+ D, B; < p(x), By <ar + L+ p(x))Ljge; =}
(1+L0? ¢

“G—itr1n PEY;] (1+p())Lpgei=).



1428 T. Madaule

12 2
Ase; = (t—i)V/12, wehave Y ! 2t/g(l)(' ) < Ht}%x) i 2/3 % < e%fz),once D large enough (D depends

on L).

Finally we conclude that for any ¢ > 0, there exist [y and D large enough such that for any [ > lo, t > el ,x €[0, R]9,
p(-) € Cr(, kglogl, +00)

Zﬂ)(' - p3(;cz)’ (D.4)

which ends the study of (1)<l *) The study of (l)g’x) is quite similar. Indeed it consists to reproduce the case (i) to
(v) by using (C.17), (C.20) instead of respectively (B.2), (B.5) it provides the following assertion: for any & > 0, there
exist /o and D large enough such that for any [ > Iy, t > e, x [0, R4, p(-) €Cr(, kglogl, +00)

P( ) €19 p(x)
Z(l)(, X) ;3/2 Z e (p=1) oy p( 19 5—6,2(p— z)) sc R (D.5)

p=t+c

The details of the proof of (D.5) are omitted.
Now we study (2)(' ) and (2)%”‘) . First observe that
- ei+D/2 }

i e +D/2] it
sup / g(e’u)dBs| > ——— 1 C sup / g(e’u)dB;s| > _
{MEA,'(O) 0 ( ) : U i—j ( ) s 2]+2

4 21 lueaio)
Recall that g € C!, thus by the Ito formula we can rewrite for any j € [1,i], u € A;(0), f’ J+l g(e*u)dB, =
g(e"_j“'lu)(B,'_jH —-Bi_j)— fl.i:in (Bs — Bi—j) < Ves; (g),€’u > ds. Recall also that g is Llpschltz with g(0) =

and |Ves.(g)| is bounded. As u € A;(0) implies [ue!~/+1| < ce3~/, foralli € [1, [¢]] (for i = I recall that R is ﬁxed),
we deduce

i ei+D/2 i 3 ei+D/2

sup [ g(e'u)dBs| > ———— C ce) sup |Byyi—j— Bij| > ———
{ueA,-(O) 0 () dB; 4 ,L:J1 5€[0.1] ST = 7j+2

i
le+D/2
C sup |Bsyi—j— | > — 7< ) },
,L;Jl{se[o,l] simi — B c 4 2
and for any j € {1,.... i}, {Supspo.17|Bs+i—j — Bi—jl > %e’JrD/z( I)j} is measurable with respect to o ((Bs4; —

Bj)sef0,1])- Then according to (B.13)

0 (x) lej+DJ2 N 1/?
@7 < ey (41 Z (sup |Bssij = Biojl = - ’T 5

_ s€l0,1]

,0( 2)(1 4 L)2e¢(D/24e), (D.6)

Similarly by the Cauchy—Schwarz inequality, then (B.13) and (C.20) we get that
_ i

(Z)g’x) < P(B € ‘th(x),L7 sup / g(e’u)dB,
ueA; (0)1J0

<Jy@iJa +L)2—'(; 3(2) 3 edlpne(en/H2TeHr

p=t+c

. p/o\?
> u) « Z edP=0p(B EEf(x)’L, Ap,t,2*3)]/2
4 p=t+c

< (1+L)2p(x) —"(D/2+e), (D.7)
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Combining (D.7) and (D.6), we get that for any ¢ > 0, there exist /p and D large enough such for any [ > [p, t > e,
x €[0,R1%, p(-) € Cr(l, kalogl, +00)

t
Z[(z)x,x)_i_(z)(l x)]_ pyf/z) A -|—L)2 —c D/ZZ —c"e; < ,O(X)‘ (D.8)

3/2
i=1 i=1 !

It remains to treat (3)%’”. By (B.5) and (C.20) one has

£PP(B ™) < cpppx)(1+ L)%,
P(B e A, 5s) S ()1 Lylem (022

Moreover from Lemma C.1, we see that

4D 4D
P( sup |20 = S >§P< sup |20 = 45 )
ueA; (0) 2 | <ce?—i 2

<ci5 eXp(—chC(ei + D)26_4).

Combining these three inequalities we get that for any ¢ > 0, there exist /p and D large enough such for any [ > [y, t >
e/, x €[0,R1%, p(-) € Cr(l, kglogl, +00)

[7] [7]
- - px) — e _  PX)
Y I@LY + @] < pe+ L)% P Y e <ot (D.9)
i=1 i=1
Finally we deduce Lemma D.1 by gathering (D.5), (D.8) and (D.9). O

Observe that the event {x good; Vi € [2, [#]]} does not depend of R > 1. Then as a by product of the previous proof
we have the following corollary:

Corollary D.2. For some constants c,c’ > 0, there exist D(L, €), ly large such that for any | > Iy, 3T (I, D) so that
the following inequalities hold

‘e p(x)e V2D < P(Y.(x) e/, x good; Vi € [2, [1]])
<P(Y.(x) /M) < e p(x)e V2P, (D.10)
provided thatt > T, R > 1 and p(x) € [kglogl, logt].
Proof. By applying the Girsanov’s transformation with density eV2dY () +ar
/26—«/ﬁp(x)P(B c D;O(x),O) < P(Y. (x) € Df(x)’o) < t3/2e_mp(X)P(B c Dtp(X),O)'

From (B.5) and (2.10), p. 1366 in [1] we have also for any > 1 and p(x) € [kqlog/, logt],
p(x)

an?
43

p(x),0 p(x)
SP(BGD, )SCIZW.
Finally it stems that

e p(x)e V2P W < P(¥.(x) e 0 < cem ¥ p(x)e V2P, (D.11)
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It proves the upper bound. For the lower bound we just remark that

P(Y.(x) € Df(x)’o,x good; for some i € [2, Ltj])

>P(Y.(x) € l>f(x)’0) —P(Y.(x) € =P ¢ not good, for some i € (2. 17]]).

We choose D large enough such that

P(Y.(x) € Df(x)’o, x not good; for some i € [2, |¢]]) < se_dt,o(x)e_m"(x). (D.12)
We combine (D.12) with (D.11) to conclude. O
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