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A GEOMETRIC ACHLIOPTAS PROCESS

BY TOBIAS MULLER! AND RETO SPOHEL?
Utrecht University and Bern University of Applied Sciences

The random geometric graph is obtained by sampling n points from the
unit square (uniformly at random and independently), and connecting two
points whenever their distance is at most r, for some given r = r(n). We
consider the following variation on the random geometric graph: in each of n
rounds in total, a player is offered two random points from the unit square,
and has to select exactly one of these two points for inclusion in the evolving
geometric graph.

We study the problem of avoiding a linear-sized (or “giant”) component
in this setting. Specifically, we show that for any r < (nloglog n)_l/3 there
is a strategy that succeeds in keeping all component sizes sublinear, with
probability tending to one as n — oco. We also show that this is tight in the
following sense: for any r >> (nloglog n)~1/3 the player will be forced to
create a component of size (1 — o(1))n, no matter how he plays, again with
probability tending to one as n — oo. We also prove that the corresponding
offline problem exhibits a similar threshold behaviour at  (n) = ®(n_l/3).

These findings should be compared to the existing results for the (ordi-
nary) random geometric graph: there a giant component arises with high
probability once r is of order n~Y2. Thus, our results show, in particular,
that in the geometric setting the power of choices can be exploited to a much
larger extent than in the classical Erd6s—Rényi random graph, where the ap-
pearance of a giant component can only be delayed by a constant factor.

1. Introduction. The random geometric graph with parameters n and r is
obtained by sampling n points from the unit square (uniformly at random and in-
dependently), and connecting two points whenever their distance is at most . The
study of this model essentially goes back to Gilbert [11] who defined a very sim-
ilar model in 1961; for this reason it is sometimes also called the Gilbert random
graph.

Random geometric graphs form an interesting and rich subject from a purely
theoretical perspective, but they are also studied in relation to a variety of appli-
cations. They have, for instance, been used to model wireless networks (see, e.g.,
[13]), the growth of tumors [29], protein—protein interactions [14], fiber-based ma-
terials [28] and many more phenomena. Random geometric graphs have been the
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subject of considerable research effort over the past decades, and quite precise
results are now known for this model on aspects such as connectivity, Hamilton
cycles, the clique number, the chromatic number and random walks on the graph.
(See, e.g., [4, 9, 20, 22, 25].) A comprehensive overview of the results prior to
2003 can be found in the monograph [24].

By the results in Chapter 10 of [24] (which build on the work of several previous
authors, including Gilbert [11]), there is a constant A such that if » = /A/n
with A < Aqi¢ then the largest component contains a sublinear proportion of all
vertices, while if A > A then the largest component contains a linear fraction
of all vertices. Phrased differently, a “giant” component suddenly emerges when
the average degree exceeds a certain constant (57 ¢ to be precise). An interesting
detail is that the precise value of A remains unknown to this date.

1.1. Our results. We consider a power of choices version of the random ge-
ometric graph. By this, we mean the following probabilistic process: There are n
rounds in total, and in each round a player is offered two random points from the
unit square, of which he has to select exactly one for inclusion in the evolving
geometric graph.

The objective of the player is to keep the size of the largest component as small
as possible. (In Section 5, we briefly discuss the setup when the player wants to
maximize the size of the largest component.) In particular, we are interested in
the question for which functions r = r(n) the player can avoid the formation of a
linear-sized (“giant”) component with high probability.? This question is answered
by the following theorem.

THEOREM 1. Consider the geometric power of choices process defined above.
There exist functions f, g:(0,00) — (0,1), g < f, such that the following holds:
Ifr=3 mfor some fixed ¢ > 0, then:

(1) There exists a strategy such that, if the player follows this strategy, then
w.h.p. in round n all components are smaller than f(c)n.

(i) W.h.p., no matter which strategy the player employs, the largest component
in round n has order at least g(c)n.

Moreover, f(c) — 0asc | 0and g(c) - 1 as c— oo.

3We say that a sequence of events (Ay), holds with high probability (abbreviated: w.h.p.) if
P(A;) =1—0(1) as n — oo. As is common in the random graphs literature, we shall often be a little
bit sloppy with our notation and say things like X,;, = o(f(n)) w.h.p, where (X},), is some sequence
of random variables. This will of course mean that there exists a function g(n) = o(f(n)) such that
Xn < g(n) w.h.p. The interpretations of X, = (1 —o(1)) f(n) w.h.p., X, = Q(f(n)) w.h.p., etc., are
analogous.



A GEOMETRIC ACHLIOPTAS PROCESS 3297

Here and in the rest of the paper, log(-) denotes the base 2 logarithm (i.e., the
inverse of 2*). The functions f, g provided by the proof satisfy f(c) = O(/c) as
cl0and g(c)=1—- 0O(1/logc) as ¢ — o0.

Theorem 1 extends to the setting with an arbitrary fixed number d > 2
of choices per step; the expression for r then needs to be replaced by r =

‘”\Vc /(n - (loglogn)4—1). We will come back to this at the end of the paper.

Note that Theorem 1 implies in particular that for any r < (nloglogn)™
w.h.p. the largest component is sublinear in size, and that for any r >
(nloglogn)~'/3, w.h.p. the largest component will be of size (1 — o(1))n no
matter how the player plays. Thus, Theorem 1 establishes a “threshold” of
O((nloglogn)~'/3) for the appearance of a giant component in the geometric
power of choices process. Note that this threshold is higher than the threshold for
the original geometric random graph by a power of n. This is in stark contrast with
the power of choices version of the well-known Erd6s—Rényi process (see Sec-
tion 1.2 below); there, the appearance of a giant component can only be delayed
by a constant factor.

Observe also that the threshold behaviour is very different from that of the orig-
inal random geometric graph setting: Theorem 1 states that qualitatively the be-
haviour of the process is the same for all ¢ > 0. In the standard geometric graph
on the other hand, the size of the largest component jumps from ©® (logn) just
below the threshold reyit := +/Acrit/7 to ®(n) just above 7. (In the well-known
Erdés—Rényi graph, a similar phenomenon occurs; see, e.g., [15].) In the process
considered in Theorem 1, however, the order of the largest component under op-
timal play is ®(n) for every ¢ > 0. So, in particular, there is no c; analogous
to Aqit- See Section 5 for some additional discussion on the order of the largest
component when r is below the threshold ® ((n loglog n)~1/3y.

The offline setting. In the process we discussed so far, the player does not know
which points will arrive in future rounds. It is interesting to consider what would
happen if the player were clairvoyant, that is, if he already knew from the start of
the game where all the points in all the rounds will fall. Put differently, he is given
n pairs of random points all at once, and needs to select one point from each of
these pairs. This is often called the offfine version of the game, and the original
version is called the online version.

Intuitively, the additional advantage of being clairvoyant should allow the player
to delay the onset of a giant component even further. The next theorem shows that
this is indeed true, but that the advantage is rather modest—the threshold only
increases by a factor of (loglogn)!/3.

1/3

THEOREM 2. Consider the geometric offline power of choices setting defined
above. There exist functions f, g:(0,00) — (0, 1), g < f, such that the following
holds:

Ifr= \3/§for some fixed ¢ > 0, then:
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(1) W.h.p. it is possible to choose n points out of n pairs of random points such
that all components are smaller than f(c)n.

(i) W.h.p., for every choice of n points out of n pairs of random points, the
largest component has order at least g(c)n.

Moreover, f(c) - 0asc | 0and g(c) > 1 as c— oo.

Again the result extends to the setting with d > 2 choices; the expression for r

thenis r = “Vec/n.

1.2. Background and related work. The notion of the “power of choices” es-
sentially dates back to a 1994 paper by Azar, Broder, Karlin and Upfal [2, 3]. In
informal computer science terms, their result states that if one allocates a large
number of jobs to a large number of servers by assigning each job to the currently
less busy of two randomly chosen servers, one observes a dramatic improvement
in load balancing over a completely random assignment. This result marked the
beginning of the development of the power of choices as a powerful new paradigm
in computer science, with applications to load balancing, hashing, distributed com-
puting, network routing and other areas (see [21] for a comprehensive survey).

The mathematical model for this setting is usually given in terms of balls and
bins. In the standard balls and bins experiment, there are n balls and »n bins, and
each ball is dropped into a random bin (chosen uniformly at random, independently
of the choices for the other balls). Denoting by M,, the number of balls in the fullest
bin, also called the maximum load, it is well known (and can be proved by the first
and second moment methods) that w.h.p. M, = (1 + o(1))Inn/Inlnn (an even
more precise result is given in [12]).

In the power of choices version of this setup, the n balls arrive sequentially,
and for each ball two random bins are sampled (uniformly at random and indepen-
dently from each other). The goal now is to devise a strategy for choosing between
the bins that keeps the maximum load as small as possible. An obvious choice of
a strategy is the greedy strategy where we always choose the least full bin (in case
of a tie we can choose arbitrarily). Azar et al. [3] showed the following remark-
able result. Recall that a random variable X stochastically dominates the random
variable Y if P(X > x) > P(Y > x) forall x € R.

THEOREM 3 ([3]). Consider the power of choices balls and bins process with
n bins and n rounds, and let M,, denote the maximum load after the process ends
if we employ the greedy strategy. Then

M, =loglogn 4+ O(1) w.h.p.

Moreover, the maximum load under any other strategy stochastically dominates
the maximum load under the greedy strategy.
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This result shows that in the power of two choices ball and bins process, the
maximum load under the greedy strategy is exponentially smaller than in the or-
dinary nonpower-of-choices version, and that moreover it is very strongly concen-
trated. It also shows that the greedy strategy is optimal in a very strong sense.

We should remark that Theorem 3 is in a fact a slight simplification of Theo-
rem 1 of [3]. Among other things, it was also shown in [3] that allowing more than
two choices per step further decreases the maximum load, but only by a constant
factor. Note that the behaviour of the geometric power of choices process is in
contrast with this: As mentioned in the previous section, in our setting a choice of

d options in each round results in a threshold at r = ®( d+\7 1/(n - (loglogn)4-1)).
Thus, every additional choice per step increases the threshold by a power of .

Theorem 3 plays an important role in our proof of Theorem 1, and may give
some intuition why a power of loglogn appears in the threshold for our geometric
power of choices process.

The Achlioptas process. The power of choices version of the classical Erd6s—
Rényi graph process is usually called the Achlioptas process after Dimitris
Achlioptas, who first suggested it. The Achlioptas process starts with an empty
graph on n vertices. In each round, two random vertex pairs are presented, and the
player needs to select exactly one of them for inclusion as an edge in the evolving
graph. His goal is to delay or accelerate the occurrence of some monotone graph
property, such as containing a giant component, containing a triangle, or contain-
ing a Hamilton cycle.

Bohman and Frieze [5] were the first to study the Achlioptas process. They
showed that by an appropriate edge-selection strategy, the emergence of a giant
component can be delayed by a constant factor. Several authors subsequently im-
proved on their bounds, and also showed that no improvement beyond a constant
factor is possible [6, 27]. The opposite problem of creating a giant component as
quickly as possible was studied in [8, 10], and an exact threshold for the offline
problem was determined in [7]. All these results show that the power of choices
offered by the Achlioptas process affects the threshold for the appearance of a
giant component only by a constant factor.

More recently, the precise nature of the phase transition in the Achlioptas pro-
cess received much attention: countering “strong numerical evidence” presented
in [1], Riordan and Warnke [26] showed that for a large number of natural player
strategies, the Achlioptas phase transition is in fact continuous.

Other properties that have been studied for the Achlioptas process include
Hamiltonicity [18] and the appearance of copies of a given fixed graph F
[17, 19, 23].

The vertex Achlioptas process. The reader might wonder whether it is reasonable
to compare our geometric power of choices process to the Achlioptas process—
after all, we are selecting vertices in the former and edges in the latter. Let us
therefore consider the following process: the n vertices of an Erd6s—Rényi ran-
dom graph G(n,m) (i.e., the random graph sampled uniformly from all graphs
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on n vertices and m edges) are revealed two at a time, along with all edges in-
duced by the vertices revealed so far, and we need to select one of the two vertices
for inclusion in a subgraph. Our goal is to avoid a linear-sized component in the
subgraph induced by the vertices we select. This process indeed seems to be a
better reference for our comparison, but its phase transition has not been studied
explicitly in the literature. As it turns out, also in this “vertex Achlioptas process”,
w.h.p. a giant component cannot be avoided as soon as the average degree of the
underlying random graph exceeds a certain constant. We give a proof for this in
Appendix A.

We remark that further discussion of our results and possible directions for fur-
ther work can be found in Section 5, at the end of the paper.

1.3. About the proofs. In the following, we informally outline some of the
main ideas used in the proofs of Theorems 1 and 2. Our goal here is not to give
detailed proof sketches, but to give some impression of our overall proof strategies
and of the type of arguments used. We will describe our proof strategies in more
detail later where appropriate.

In all our proofs, we consider a discretized version of the random geomet-
ric graph as follows: We divide the unit square into ® (~2) many small squares
(called boxes) in such a way that, essentially, we no longer need to worry about the
precise locations of the random points, but only need to know which of the boxes
are occupied by at least one point. In this way, our analysis of the process reduces
to an analysis of appropriate random subgraphs of a large finite square grid (or
king’s move grid, see Section 3.1 below). With some technical work, the results
for this grid then translate back to the original geometric setting to give the desired
results.

Lower bound proofs. The key idea in the proofs of the lower bound parts of
both Theorems 1 and 2 is the following: To avoid the formation of large connected
components of occupied boxes (and thus also of large connected components in the
original power of choices random geometric graph setting), we designate a subset
of the boxes as the “barrier”. This barrier separates the unit square into “small”
parts (see Figure 1). The player’s goal is to prevent the appearance of paths of
occupied boxes crossing the barrier. In both settings, he selects points outside the
barrier whenever possible. His main worry are the pairs of points that both fall into
the barrier, as these force him to select a point in the barrier.

In the offline scenario, it is not too hard to show that even if the barrier is only a
(moderately large) constant number of boxes wide, then w.h.p. there is a choice of
points for which the barrier is not crossed. The proof of this relies on an (approxi-
mate) analogy of our setting with the Erd6s—Rényi random graph in its subcritical
stage, where the boxes in the barrier play the role of the vertices and the pairs of
points that both fall into the barrier yield the edges.

In the online scenario, we can only ensure that the barrier will not be crossed if it
is at least © (loglogn) boxes wide. Our strategy here is more involved; the key part
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F1G. 1. Dividing the unit square using a barrier consisting of K - (1/hr) blocks of dimensions
hr x hr, when K is large (left) and when K is small (right).

is to set things up in such a way that, essentially, we can invoke Theorem 3 to argue
that w.h.p. the barrier will not be crossed. To that end, we divide the barrier into
“blocks” consisting of ®(loglogn) x ®(loglogn) boxes, and pay special atten-
tion to the blocks that become “dangerous” because, oversimplifying slightly, only
relatively few more occupied boxes are required to create a (potentially crossing)
long path inside them.

Upper bound proofs. A key ingredient in both our upper bounds proofs is a
simple isoperimetric inequality for subgraphs of the square grid. It allows us to
conclude from the fact that there are relatively few unoccupied boxes that a signif-
icant proportion of the occupied boxes must belong to relatively large connected
components of the graph induced by all occupied boxes.

For the offline case, we use this as part of a combinatorial counting argument.
Essentially, we count the number of sets of boxes whose removal decomposes the
grid graph into “small” components. More precisely, in order to keep the total
number of sets to be considered sufficiently low, we will only count appropriate
subsets of decomposing sets as described. By an expectation argument, we will
then show that w.h.p. the player will not be able to avoid a single one of these sets
and, therefore, will be forced to create a “large” (linear-sized) component.

For the online case, we use a two-round approach and analyze the process after
n/2 points rounds as an intermediate step. To this end, we divide the grid graph
into “b-blocks” consisting of O(1/(rloglogn)) x O(1/(rloglogn)) boxes, and
define an appropriate notion of “good” b-blocks [see Figure 3(b) on page 3321].
We show that at time n/2, w.h.p. most boxes of the original grid graph are oc-
cupied, and that as a consequence most b-blocks are good. It follows with the
mentioned isoperimetric inequality that a bounded number of connected compo-
nents of the graph of b-blocks (defined in the obvious way—b-blocks are adjacent
if they share a side) covers most of the unit square. Conditional on that, we then
show that in the remaining n/2 rounds of the process, w.h.p. at least one of these
components will evolve into a linear-sized component of the original grid graph.
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To show that the player cannot avoid this, we apply a slight variation of Theorem 3
in an appropriate geometric setup.

2. Preliminaries. For the sake of readability and clarity of exposition, we will
mostly ignore rounding, that is, we will usually omit floor and ceiling signs. In all
cases, it is a routine matter to check that all computations and proofs also work if
floors and ceilings are added, and we leave this to the reader.

Throughout the paper, Inx will denote the natural logarithm and log x will de-
note the logarithm base 2 (i.e., Inx is the inverse of ¢* and logx is the inverse
of 2¥). For n € N, we will denote [n] := {1, ...,n}.

By a slight abuse of notation, we will write Z? to denote the graph of the integer
lattice, tht is, the infinite graph with vertex set Z? and an edge between two vertices
if and only if their distance is exactly one. Similarly, we will also identify A C Z?
with the subgraph of Z? it induces. Thus, [s]? in particular denotes an s x s grid.

We will use the notation Bi(n, p) to denote the binomial distribution with pa-
rameters n and p; we will use Po(u) to denote the Poisson distribution with
mean u; and we will use Geom(p) to denote the geometric distribution with pa-
rameter p.

We will use the following incarnation of the Chernoff bound. A proof can, for
instance, be found in [24], cf. Lemmas 1.1 and 1.2.

LEMMA 4. Let X be a random variable with a binomial or Poisson distribu-
tion. Then, letting i :=EX, we have:

(1) for k> u we have P(X > k) <exp[—uH(k/n)], and
(ii) for k < we have P(X < k) <exp[—uH (k/)l,

where H(x) :=xInx —x + 1.
3. Lower bound proofs.

3.1. Proof of part (i) of Theorem 1. We will consider a suitable discretiza-
tion of the geometric graph. Let D, be the obvious dissection into squares of side
length r, that is,

(3.1) Dy ={[ir,( +Dr] x [jr, G+ Dr]:0<i,j<1/r}.

[We assume that 1/r is an integer throughout the section.*] We refer to the ele-
ments of D, as boxes, and we say that a box is occupied if it contains a point of
our process and empty otherwise.

4The concerned reader may check that, if we take h= [100loglogn] instead of 7 = 100loglogn
and 7 := 1/h|1/rh]| instead of r, then 1/r and 1/hr are both integers, and & = (1 + o(1))h, 7 =
(1 4+ o(1))r, and all proofs and computations in this section carry through. Since 7 > r, this also
establishes the result for r.
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The king’s move grid K on s x s vertices is the graph with vertex set [s]? and
an edge between two vertices if and only if their distance is at most /2. This way,
we can also move diagonally, which explains the name “king’s move grid”—at
least to those familiar with the rules of chess.

We will identify the boxes of the dissection D, with the vertices of the king’s
move grid K;,,)—that is, we consider two boxes adjacent if they share a side
or a corner. Note that if two points are adjacent in the original geometric graph,
then they must lie in boxes that are adjacent in X (i /). Thus, denoting by Occ, the
subgraph of X1, induced by the occupied boxes, the following holds: If Cy, C2
are distinct components of Occ,, then the points in C; and the points in C, belong
to different components of the geometric graph.

We further group the boxes into “blocks” consisting of 4 x h boxes each, where
h =100 - loglogn. (For convenience, we assume that 1/r and 1/ hr are both in-
tegers.) Again it is useful to consider the blocks as vertices of a king’s move grid
Kaynr-

Our strategy can be described as follows. At the start of the game, we will pick
a constant K = K (c), to be made explicit later on, and we pick a set of

N:=K-(1/hr),

blocks that forms a “barrier” as in Figure 1 that we will “defend”. The next lemma
formally captures the essential properties of our “barrier”. Its proof is indicated in
Figure 1; the details are left to the reader.

LEMMA 5. For every fixed K > 0, the following holds for all sufficiently large
s € N. There is a subgraph H C K of the king’s move grid with v(H) > s*> — Ks
vertices such that

V(Hmax) < (a(K) +05(1)) - 52,
where Hpax denotes the largest component of H, and

a(K)_{l/(LKJ+1), ifK > 1,
l1—(K/2)2, ifK <1.

In particular, 0 < a(K) < 1 forall K > 0and a(K) — 0 as K — oo.

Let us remark that while it is clearly possible to improve on the expression for
a(K) given in Lemma 5 we have made no attempt to do so as the current version
of the lemma suffices for our purposes.

Hence, our strategy begins by selecting N blocks according to Lemma 5 so
that they form a barrier M that divides the unit square [0, 1]? into pieces of area
at most a(K). During the game, we will now attempt to prevent the formation
of (king’s move) paths of occupied boxes crossing the barrier. We will devise a
strategy that will succeed in defending the barrier in this sense (w.h.p.). This then
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FI1G. 2. The left and middle blocks are bad. (The gray cells represent occupied cells.)

implies that the area of the occupied boxes corresponding to the largest component
of the geometric graph is a(K) + o(1). [This may include some boxes from the
barrier; note, however, that the entire barrier has area o(1).] With an additional
argument showing that (w.h.p.) no union of boxes with area A > ¢ (¢ > 0 arbitrary
but fixed) will have received more than (1 + ¢€) - A - n points, it then follows that
the number of vertices of the largest component of the geometric graph is bounded
by (a(K) 4+ o(1)) - n, which completes the proof.

Let us now describe our strategy in more detail. We say that a block B is bad if
there is a path of occupied boxes of length / that uses one of the boxes of B and
uses only boxes of the barrier. Observe that such a path may use boxes in blocks
other than B, but it may not use boxes in blocks that are either not adjacent to B
or do not belong to the barrier. See Figure 2 for a depiction.

Clearly, if there are no bad blocks then there cannot be any path crossing the
barrier.

We will say that a block B is dangerous if occupying up to 2 loglogn additional
boxes can render it bad. In other words, B is dangerous if there is some path P of
length £ that uses only boxes of the barrier, and at least one box of B, such that
at least 7 — 2loglogn boxes of P are occupied. If B is not dangerous, we will
call it safe. Let Npad(?), Ndang(?) denote the number of bad respectively dangerous
blocks at the end of round r =1, ..., n.

We will keep an ordered list of blocks L(t) = (L1(t), ..., L,-ny(t)) containing
exactly 27" N blocks, which will be updated at the end of each round. We will
make sure that if Ngang(?) < 27" N then L(¢) contains all dangerous blocks by
applying the following update rule. If Ngang (1) < 27" N and some previously safe
block B ¢ L(t) becomes dangerous during round ¢ + 1, then we replace an arbi-
trary safe block in the list with the new dangerous block. [If for some ¢ it happens
that Ngang (1) > 27" N — k and k blocks become dangerous during round ¢ + 1,
then our strategy will have failed.]

We will call the blocks in L(t) pseudodangerous, and the blocks not in L(¢)
pseudosafe (with respect to round ¢).

Our strategy can now be described as follows:

(STR-1) We always pick a point outside of the barrier M if we can. If both
points are outside the barrier, we choose randomly.
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(STR-2) If both points fall inside the barrier and both are in pseudosafe blocks,
then we play randomly.

(STR-3) If both fall inside the barrier, one in a pseudodangerous, and one in a
pseudosafe block, then we choose the pseudosafe block.

(STR-4) If both fall in the barrier, both in pseudodangeous blocks, say in L; (¢)
and L (), then we do the following. Set

ki :=|{t' <t: we played in L;(¢') in round ¢’}

El

and define k; similarly. If k; < k;, then we play in L;(¢) and if k; > k; then we
play in L (). In case of a draw, we play randomly.

REMARK. Recall that which block L;(¢#) points to may change between
rounds. Let us stress that in (STR-4) we compare the number of times we played
in the ith, respectively, the jth pseudorandom block as opposed to the number
of times we played in the specific blocks that L; () respectively L ;(z) represent
in round ¢. On the other hand, once L;(¢) points to a dangerous block, the value
of L;(¢") will remain the same for all 7 > ¢. Thus, if L;(¢) points to a danger-
ous block B, the number of times we played in the ith pseudorandom block until
round ¢ is an upper bound on the number of times we played in B since it became
dangerous. This subtle, but very important point shows that—provided the number
of dangerous blocks remains below 2~ N—if the number of rounds in which we
play in the ith pseudorandom block stays below 2loglogn for every index i then
no bad blocks will be formed.

As indicated before, we will show that our strategy works by eventually proving
that, w.h.p., no bad blocks will be formed (which implies the barrier will not get
crossed), and then showing that for each of the regions that the barrier divides the
unit square into, the number of points that fell into the region is proportional to its
area (w.h.p).

We start by proving the following lemma which shows that, w.h.p., we never
have more dangerous blocks than entries in the list L(¢). Clearly, this implies that
we will be able to keep the dangerous blocks a subset of the pseudodangerous
blocks.

LEMMA 6. There is an absolute constant Cy > 0 such that if K < Cq/c, then
Ndang (1) < 2_th0r allt=1,...,n,wh.p.
PROOF. Observe that the area of the barrier is
area(M) := N - (hr)2 = Khr.
Let R denote the number of rounds in which we (are forced to) play inside the
barrier M. Clearly, R 4 Bi(n, area®(M)). Note that
(3.2) ER=n-K>-h* r?>=pn'/3te®
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by choice of r.

To facilitate the analysis, it is helpful to consider what would happen under a
slightly different setup. Suppose that whenever both points fall inside the barrier
during some round we add both points, and otherwise we pick a point outside the
barrier. Clearly, we will end up with 2R points in the barrier, distributed uniformly.
Moreover, the set of occupied boxes inside the barrier under this setup will be a
superset of the set of occupied boxes in the original setup.

Letz 2 Po(8ER) be a Poisson variable with mean 8ER. By applying the Cher-
noff bound, Lemma 4, together with (3.2) we can easily see that

P(Z <2R) <P(Z <EZ/2)+P(R >2ER)
<exp[~EZ - H(3)] +exp[-ER - H(2)]
— eXp[—Q(n1/3+o(l))].

Let us once more modify the setup slightly, and just drop Z points on the bar-
rier (their locations chosen uniformly at random and independent of Z and the
locations of the other points). This way, the points in the barrier will form a Pois-
son process, which has the convenient consequence that the events that different
boxes in the barrier are occupied become independent (see, e.g., [16]). Note that,
by choosing a suitable coupling, we can ensure that if Z > 2R then this setup dom-
inates our previous setup in the sense that the set of points in the barrier under the
old setup is a subset of the set of points in the barrier under the new setup. This
allows us to bound the probability that a block becomes dangerous by considering
the new setup. Observe that the expected number of points in a given box is

wi=Ez (are;zM))

2
zg.n.KQ.h2.,»2.< r )
K-h-r

=8-K-h-n-r’
=800-K -c.

Let us write p := 1 —e~*. Then a box in the barrier is occupied with probability p,
independently of all other boxes.

Next, observe that the number of paths of length & starting either in a given
block or in one of the neighbouring blocks is at most 928"~ (such a path starts
in one of the 94> boxes belonging to the block and adjacent blocks, and there
are always at most 8 choices for the next box of the path). Let pgang denote the
probability that a particular block is dangerous under this new setup. The union
bound gives

Pdang <9 - h* - 8" 1. P(Bi(h, p) = h — 2loglogn).
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Using the Chernoff bound (Lemma 4), we see that for all k > h

) h —2loglogn
P(Bi(h, p) > h —2loglogn) < exp[—hp . H(h—ﬂ
P

98
100- p

where as usual H(x) =xInx — x + 1.

Observe that pH(%) — oo as p | 0, since

98 98 98 98
ot (i50-) = ((iagp ) " (507) ~ 005 +1)
100 - p 100p 100p/) ~ 100p

—ﬁm( 98>+ﬁ+
=100 "\100p/) " 100 " P

Hence, there exists a universal constant pg such that

98 1
3.3 —pH <— for all p < pg.
6 e[on( )=k iz

Let us set Co := —In(1 — pg)/800, so that K = K(c) < Co/c implies that p =
1 —exp[—800K c] < po.
With this choice of K, we have

98
2 h—1
Paang <9-h% -8 -exp[—hp-H(mo,p)}

N 'h2'<8'eXp[_pH<10?ﬁp>])h

where the last line holds for n sufficiently large (recall & — oo as n — 00).
Let D denote the number of dangerous blocks in our modified process where we

simply drop Z points uniformly at random on the barrier. Then ED = N - pgang,
and hence

P(D >27"N) =PB(D > 27"/ puang) - ED)
<P(D>5"-ED)
<57
=o(1),

where we used Markov’s inequality for the third line.
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Putting everything together, we see that
P(Ngang > 27"N) <P(Z <2R) +P(D >27"N)
=o(l),
which completes the proof of the lemma. [

Let Rpsqa denote the number of rounds in which we (are forced to) play in a
pseudodangerous block.

LEMMA 7. Rpsa <27"N wh.p.
PROOF. The probability that both points land in pseudodangerous blocks in
roundt=1,...,nis
pi= (Z_hthrZ)z.
Thus, we have
ERpsa/(27"N) = (np)/ (27" N)
= (n27 " N21*rty /(27 N)
=n2" "N
= 0 (n27"n*r3)
= 0(h*27M)
=o(l),
where we used that N = O(1/hr) in the fourth line, and that nr3 = ¢/loglogn =

®(1/h) in the fifth line. It follows that

_ ERpsd
P(Rpsa > 27" N) < —thp;\; = o(1),

by Markov’s inequality. [J
LEMMA 8. If K < Cy/c with Cy as in Lemma 6, then Npag(n) =0 w.h.p.

PROOF. If some bad block got created even though we stuck to our strategy,
then it must be the case that either (a) there were more dangerous blocks than
places in our list of pseudodangerous blocks, or (b) there is some index 1 <i <
27" N such that there were more than 2loglogn rounds r when we played the ith
pseudodangerous block in our list. [Recall the remark immediately following the
description of the strategy (STR-1)—(STR-4).]
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Let E denote the event that (b) happens. Clearly,
P(Npada(n) > 0)
< P(Ndang(n) > 27" N) + P(Rpsa > 27" N) + P(E and Rpsq <27"N).

By Lemmas 6 and 7, the first two terms of the right-hand side are o(1). Now notice
that

P(E and Rysa <27 "N) < P(E|Rpsa <2"N)
<P(E|Rpsa =27"N),

where the second inequality holds by obvious monotonicity. Now notice that, by
part (STR-4) of our strategy, the event that E holds, given that Rpsg = 27" N, can
be viewed as the event that, in the standard power of choices balls and bins setup
with 71 := 27N balls and 7 bins, the maximum load is at least 2loglogn. Since
A=2"".K.(1/hr)=n'3tD we have that

loglogni = (1 + o(1)) loglogn.

It therefore follows immediately from Theorem 3 that P(E|Rpsq = 27"N) = o0(1).
We see that P(Npaq(n) > 0) = o(1), as required. [J

By this last lemma, our strategy succeeds (w.h.p.) in confining the components
of the evolving random geometric graph to subsets of the unit square of area
bounded by a(K) + o(1). The finishing touch of the proof of part (i) of Theorem 1
comes in the form of the following lemma.

LEMMA 9. For every ¢ > 0, the following holds if we follow the strategy set
out above. Wh.p. every A C [0, 11? that is the union of boxes of the dissection D,
and with area(A) > & contains at most (1 + ¢) - area(A) - n points.

PROOF. For A C [0, 1]%, let N(A) denote the number of points in A (in
round 7). Let us first recall that the barrier satisfies area(M) = Khr = o0(1). If R
denotes the number of rounds in which we (are forced to) take a point in the bar-
rier then clearly R 4 Bi(n, area®(M)), and in particular ER = n -area’>(M) = o(n).
Hence, by Markov’s inequality

P(N(M) > (¢2/2)n) = P(R = (¢2/2)n) = o(1).

Let A denote all the subsets of [0, 1] under consideration, that is, all A that are
unions of boxes of D, and have area at least .

Pick an arbitrary A € A and set A’ := A\ M. Then area(A") = area(A) — o(1).
Note that in every round 1 < < n, a point is added to A’ with probability

area(A”)

PR —
p:= (1 — area*(0)) 1 — area(M)

= (14+o0(1)) - area(A).
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(This is because if both points fall in the barrier, we obviously add a point outside
of A’, and otherwise we add a point drawn according to the uniform distribution on

[0, 1]\ M.) We have N(A") 4 Bi(n, p) so that by the Chernoff bound (Lemma 4)
we have

P(N(A") > (1 +¢/2) -area(A) - n) < exp[—n p H<(1 +¢/2) - area(A) n>:|

np
=exp[—Q(n)],

since p = (1) and (1 4+ ¢/2) - area(A) - n/(np) =1 4+ /2 + o(1) is bounded
away from one. Let E denote the event that there exists A € A with N(A) > (1 +
¢) area(A)n. Noting that (82/2)71 < (g/2)-area(A)-n for all A € A, we obtain that

P(E) < P(NOV) > (2/2)n) + > P(N(A\ M) > (1 +&/2) - area(A) - n)
AeA

<o(l)+ p/r)? -exp[—Q2(n)]
= o(1) +exp[n? >V — Q)]
=o(1),

. . 2 . .
where in the second line we used that |A| < 2(1/")" as sets in A are unions of the
boxes of our dissection D,, and in the third line we used the specific form of r.

O

Lemmas 6-9 together imply part (i) of Theorem 1. For completeness, we spell
out the details.

Proof of part (i) of Theorem 1: If we take K = Cp/c with Cy as provided
by Lemma 6, and follow the strategy described by (STR-1)-(STR-4) above,
then by Lemma 8, w.h.p. every connected component of the resulting geomet-
ric graph will lie inside a set of boxes of area at most a(K) + o(1) with a(-) as
in Lemma 5. Therefore, by Lemma 9, w.h.p., every component of the geometric
graph will have at most # - (a(K) + o(1)) vertices. Thus, the claim follows for, say,
f(c) :==4/a(Cp/c). [Recall that 0 < a(K) < 1 for all K.] Since K = Cy/c — 00
asc | Oand a(K) — 0 as K — oo, we also have f(c) -> 0Oasc | 0.

3.2. Proof of part (i) of Theorem 2. Our proof strategy is similar to the one
for part (i) of Theorem 1 used in the preceding section. We will make use of a
standard result for the Erd6s—Rényi random graph G (n, m). Recall that G (n, m) is
obtained by taking a set of n vertices, and selecting a set of m edges uniformly at
random from all possible sets of m edges. A graph is 1-orientable if its edges can
be oriented in such a way that every vertex has indegree at most 1.

The following result is a special case of Theorem 5.5 in the standard refer-
ence [15].
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THEOREM 10. Ifm <cn with c < % then G (n, m) consists only of trees and
unicyclic components, w.h.p. In particular, G(n, m) is 1-orientable w.h.p.

Let D, again be defined by (3.1). Again we will consider blocks, that is, & x h
groups of boxes. However, this time we simply set 4 := 100. Again we pick a
constant K = K (c), and build a barrier M consisting of N := K - (1/ hr) blocks,
in such a way that the barrier divides the unit square into parts of area no more
than a(K) with a(-) as in Lemma 5. As before, we select points outside the barrier
whenever possible, breaking ties randomly. As we will see, Theorem 10 will then
allow us to deal relatively easily with pairs of points that both fall into the barrier.
Let R denote the number of rounds in which both points fall into the barrier.

LEMMA 11. There is an absolute constant Cqy such that if K < Co/c then
R < N/100 w.h.p.

PROOF. Observe that R = Bi(n, area®?(M)), and area(M) = N - (hr)? =
K hr. Hence,
cK?h?

ER =nK?*h*r?=——,
-

using that nr3 = c. This is less than N /100 = K /(100hr) for K < 1/(100h3c) =
1/(103¢). Hence, the claim follows for Co := 1073,
For such a choice of K, the Chernoff bound (Lemma 4) gives

P(R > N/100) <P(R > 10-ER)
< exp[—Q(ER)]
— exp[-2(n' )]
=o(1),
where we used the fact that ER = @(1/r) = @(n'/3). O

Let us say that a block gets doubly hit in some round if both balls fall into the
block in that round.

LEMMA 12. W.h.p., no block of the barrier gets doubly hit in more than three
rounds.

PROOF. Letus fix a block B, and let Z denote the number of rounds in which
B gets doubly hit. Clearly, Z 4 Bi(n, (hr)*). Then we have

P(Z > 4) = 0(n*r'%) = 0(n™*7?).



3312 T. MULLER AND R. SPOHEL

Thus, the expected number of blocks that get doubly hit in at least four rounds is
ON -n~*3)=0mn"H=0). O

Let us now define an auxiliary (random) graph G, whose vertices are the N
blocks of the barrier and where for every pair of blocks B # B’ there is an edge
between them if in some round one of the points landed in B while the other landed
in B’.

LEMMA 13. Provided K < Cy/c with Co as in Lemma 11, the graph G is
1-orientable, w.h.p.

PROOF. Let E denote the event that G consists of trees and unicyclic compo-
nents (and hence is 1-orientable), and let R’ denote the number of rounds in which
the points fell into two different blocks of the barrier. Observe that if we condition
on R’ =m then G is just a copy of the Erd6s—Rényi random graph G(N, m). Let
F denote the event that the Erd6s—Rényi random graph G(N, N /100) consists of
trees and unicyclic components.

Then we have that

P(E) <PP(R' > N/100) + P(F€) = o(1),
by Lemma 11 and Theorem 10. [J

As mentioned, our strategy for the offline process will always select a point
outside the barrier if possible, choosing randomly if both points fall outside the
barrier. (Which point we select when both points fall in the barrier will be specified
shortly.) Let us note that the proof of Lemma 9 in the previous section only used
part (STR-1) of our strategy for the online setting and, therefore, carries over to
our offline strategy.

LEMMA 14. Consider the offline process, with the dissection D,, the barrier
M, etc., as above. Assume that we always select a point outside the barrier if
we can, choosing randomly if both points fall outside the barrier. Then for every
e > 0 the following holds w.h.p.: every A C [0, 11? that is the union of boxes of the
dissection D, and with area(A) > ¢ contains at most (1 + ¢) - area(A) - n points.

We are now ready for the proof of part (i) of Theorem 2.

Proof of part (1) of Theorem 2: We show that, w.h.p., we can select one point
from each pair in such a way that no block of the barrier will contain more than
four points. Clearly, this then implies that the barrier will not be crossed.

To see this, note first that, by Lemma 12, w.h.p., no block will contain more
than three points coming from rounds when it was doubly hit. Observe also that,
by Lemma 13, w.h.p., the auxiliary graph G is 1-orientable. Hence, it is possible
to select one point from each pair of points that both fall into the barrier in such
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a way that this contributes at most one point to each block. Thus, we can ensure
that, in total, each block will indeed contain at most four points (w.h.p.).

This shows that the player succeeds (w.h.p.) in stopping the barrier from getting
crossed. The result now follows with Lemma 14 exactly as in the online case.

4. Upper bound proofs.

4.1. Preliminaries. 'We need a number of auxiliary results for our upper bound
proofs. We collect these in the next few subsections.

4.1.1. Isoperimetric inequalities. Recall that we identify subsets of Z? or [s]?
with the subgraphs of the infinite integer grid induced by them.

LEMMA 15. Suppose H C 72 is a finite induced subgraph of the integer lat-
tice. Then

e(H,H) > 4y/v(H).

PROOF. Let H be an arbitrary finite induced subgraph of Z?, let H, denote
the projection of H on the x-axis, and let Hy denote the projection on the y-axis.
Let us write £, := |H,|, £y, = |Hy|. Note that every vertical line that intersects H
contributes at least two vertical edges to e(H, H¢), and that analogously every
horizontal line that intersects H contributes at least two horizontal edges. Thus,

e(H, H) > 20, +2¢,.
On the other hand, it is clear that
V(H) <4y - L.
Thus, we obtain with straightforward calculus that

e(H,H") Z) _ <e(H, HC)>2,

“4.1) v(H) < max z- ( > 7

T 0<z<e(H,H®)/2

which is equivalent to the claim. [
We will need the following strengthening of Lemma 15.

LEMMA 16. Let x > 0 be given, and suppose H C 77 is a finite induced sub-
graph of the integer lattice such that all connected components of H have at most
x vertices. Then
v(H)

N

e(H,H) >4
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PROOF. Let C denote the set of components of H. By Lemma 15, each com-
ponent C satisfies /v(C) < e(CA,‘—CC). Hence,

v(H) =) v(O) =vx ) Vu(€)=Vx )]

ceC CceC CeC

e(C,C°)
4

:\/;.e(H;tiHc),

which is equivalent to the claim. [J

LEMMA 17. Leta, B> 0ands € N be given. Suppose H C [s]? is an induced
subgraph of the s x s grid with v(H) > s*> — as. Moreover, let Hg C H denote

Hg :=U{C C H:C is a component of H, and v(C) < ,Bsz},

that is, Hpg is the union of all components of H with at most Bs? vertices. Then

v(Hg) < /B-(1+a)-s>

PROOF. Let H¢ denote the complement of H in 72 (not [s]?), and observe that
every edge of e(H, H¢) connects a vertex of H either to a vertex of A := ({0, s +
1} x [s]) U ([s] x {0, s + 1}) or to one of the at most as vertices of B := [s]? \ H.
Observe also that every vertex of A can be adjacent to at most one vertex of H,
while a vertex of B can be adjacent to at most 4 vertices of H. Hence, we have

(4.2) e(H, HY) < |A| +4|B| < 4(1 +a)s.

The claim follows by applying Lemma 16 [in the form v(H) < /x - e(H, H®)/4]
to Hﬁ. O

LEMMA 18. Let o > 0 and k € N be fixed. Then the following holds as
s—>o00.IfHC [s1? is an induced subgraph with v(H) > s2 — as vertices, and
C1,...,Cx C H denote the k largest components of H (ties broken arbitrarily)
then

v(C1) + - +v(C) = (1 = 05(1) - hx - %,
where A = A () is given by
1

2
4.3 AM=|—-— d A =A
4.3) 1 <1+a> an k41 k+<

1 —Ag
14+«

2
) fork >1.

PROOF. Let us first point out that 0 < Ax < 1 for all k, as can easily be seen
from the definition. The proof is by induction on k. We start with the base case,
k=1.SetB:=(1—-¢)-,1=1—¢)- (ﬁ)z, with 0 < & < 1 arbitrary but fixed.
By Lemma 17, the union of all components of order at most Bs> contains no more
than /1 — ¢ - 52 vertices. Since the union of all components must clearly have
s2 —as = (1 — o4(1))s? vertices, there must exist a component of order > ,Bsz.
As & > 0 can be chosen arbitrarily small, it follows that v(C1) > (1 — 0s(1)A1s2,
which establishes the base case.
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_ Now suppose that v(Cy) + -+ + v(Cx) = As? with & > (I — oy(1))Ag. If
A > Aky1, then we are done, so we can assume this is not the case. Aiming for

a contradiction, suppose that v(Cgy1) < ,Bsz, where = (1 — 8)(%%)2 for some
fixed ¢ > 0. Lemma 17 would then give that

V(H\(C1U---UCp) <VBU +a)s? =1 —¢-(1—1)s?%,
which is impossible as we must have
(1 —o0s(1))s*> =v(C1U---UC) +v(H\ (C1U---UCy)
= s>+ v(H\ (CU---UCy)).

It follows that v(Cyy1) > (1 — os(l))(h;z)z, so that

V(€D +- -+ 0(Chr) = (1= 0y(1) - ()1 + (}%)2)

By differentiating f(x) :=x + (%)2 with respect to x, it is easily seen that f
is strictly increasing in x for x > Ay = (HL(X)Z. Since A > (1 — o5(1))1x by the
inductive hypothesis, and Ay > Ag_1 > --- > A1, it now follows that

€+ +v(Crpn) = (1 - (1))-(k +<1_k")2>- 2
ACSS| V(Ck+1) =2 Os k l+a N

= (1= og(1)) - Axy1 - 7,
as required. [J

COROLLARY 19. Fix 0 <& < 1,a > 0. Then there exists k = k(e, a) such
that the following holds for all large enough s. If H C [s]? is an induced subgraph
with v(H) > s — as then

v(C1) 4+ v(Cp) > (1 — &)s?,

where C; denotes the ith largest component (ties broken arbitrarily). Moreover,
forall e we have k(e,a) =1 ifax < /2.

PROOF. Let the numbers A = Ag(«) be as defined by (4.3).

The “moreover” part of Corollary 19 follows immediately from Lemma 18 since
M=(g)>1—eifa <e/2.

To see that the rest of the corollary also holds, notice that the numbers A; form
an increasing sequence that is bounded above by one, and that the limit of the

sequence must be a fixed point of the equation

1—a\2
k:)ﬂ—( )
14+«

Since the only fixed point is A = 1, we must have limg_, .o Ax = 1. Hence, there is
ak =k(e,a) such that A > 1 — &. The lemma follows. [
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4.1.2. Balls and bins. In our proof of part (ii) of Theorem 1, we will need a
minor extension of the lower bound part of Theorem 3 that concerns the scenario
where there are slightly fewer balls than bins. This case does not seem to have been
treated explicitly in the literature. The proof is very similar to the original lower
bound proof given in [3]; we include it here for completeness.

LEMMA 20. Let ¢ > 0 be arbitrary, but fixed. Consider the power of two
choices balls and bins process, with n bins and m rounds where n/Inn <m <n,
and let M, denote the maximum load in round m. No matter what strategy the
player utilizes, we have

P(M, < (1 —¢&)loglogn) < exp[—n!ToD],

PROOF. By obvious monotonicity properties, it suffices to prove the lemma
for the case when m, the number of rounds, is exactly equal to n/Inn. Let us thus
assume that m = n/Inn. Our approach for the proof will be to bound from below,
for each i, the number of rounds in which the player is forced to create a bin with
i balls in it.

We denote by N; (¢) the number of bins with at least i balls in them after round ¢.
[Note that No(¢) = n for all ¢.] Furthermore, we set

k:=[(1—¢)loglogn],
and write N (t) = (No(2), ..., Ni(t)). Let

m . .
a':<4-k.n>’ ti=m-(i/k)  fori=1,....k

and define ¢; by

Observe that the ¢; satisfy the recurrence relation
2
(4.4) cio1=a- .

Before proceeding, let us make some further observations about the ¢;. Note that
o= (1+¢)/(4loglogn -logn), so certainly « < 1 and the ¢; are thus decreasing.
Moreover, we have

4.5) 0>Ina>—(1+o(l))Inlnn.
Also note that
L = a2k—1
> gUogm)' = ~1

(4.6) = exp[lna - ((logn)' ¢ — 1)]
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> exp[—(1 +o(1)) - Inlnn - (logn)l_g]
=exp[—o(Inn)]
— o),
where we have used (4.5) in the fourth line.
Another key observation is that if in some round both balls fall in bins with

exactly i — 1 balls in them then a new bin with i balls in it will be created, regardless
of the strategy of the player. In other words, for all i,  we have

Ni—1(t) — Ni(t)>2

4.7 P(N;(t+1)=N;(#) + 1|N(@)) > ( "

If for some ¢ we have Ni(¢) < cn, then the observation (4.7) shows that
P(Ni(t + 1) = Ni(t) + 1IN1 (1) < cin) > (1 —¢1)? > 1.
It follows that

P(Ni(t1) < cin) < P(Bi(tl, %) < cln)

< exp[—(fl/z) ' H<%>]

-eol 5 ()

= exp[—n!70W],

4.8)

where we used the Chernoff bound (Lemma 4), together with the facts that 1| =
m/k=n'""°W and c| = o = m/(4kn).
Let E; denote the event
E;i:={N;j(tj)>cjnforall 1 <j <i}.
Again using the observation (4.7) we see that, for all ¢ > #;:
P(Nig1(t + 1) = N1 (1) + 1 E;, Nis1(t) < ciq1n) > (ci — ciy1)? > ¢t

[Here, we use that N;(¢) > N;(t;) for t > t; by obvious monotonicity.] It thus fol-
lows that

P(Ni+1(ti11) < cipinlE;) < P(Bi(tis1 — i, ¢ /2) < ciyin)

< exp[—(m/k) (c}/2)- H(%)]

_ exp[_(m/k) (c}/2) H(%)}

— exp[_nlfo(l)],

4.9)
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where we used that c;| = ozcl-2 = (m/4kn) - ci2 in the third line, and that ¢; > ¢ =
n—oW by (4.6) in the fourth line. It follows that

P(Ni(tx) < ckn) < IP(there is some 1 <i < k such that N; (t;) < ¢;n)
=P(E{) + P(ES|E1)P(E1) + - - + P(E{|Ex—1)P(Ex—1)
<P(E{) + P(E3|E1) + - - + P(E}| Ex—1)
k—1

=P(N1(1) <cin) + Y P(Nig1(tis1) < ciyinlE;)
i=1

=k -exp[—n'70W]

— eXp[—nl_O(l)],

where we used (4.8) and (4.9) to get the fifth line. This concludes the proof of the

lemma. [

4.1.3. The two choices coupon collector. In the classical coupon collector
problem, each box of some product contains one of N types of coupons, sam-
pled uniformly at random. There is a collector who keeps buying new boxes until
he has collected at least one coupon of each type.

For our purposes, it is useful to consider a variant of the coupon collector
problem that we call the two choices coupon collector. Suppose again that there
are N types of coupons, but now each box contains fwo coupons (whose types
are chosen independently and uniformly at random from all N possible types).
There is a collector (2CCC, henceforth) who only adds a coupon to his collec-
tion if both coupons in the box are of types he does not have in his collection
yet. Even in that case, he only adds one of the two coupons to his collec-
tion.

LEMMA 21. Forany s =s(N) with 1 < s < N, the following is true: w.h.p.
the 2CCC needs to buy at most 2N? /s boxes to collect all but s coupons.

PROOF. Let T denote the number of rounds it takes the 2CCC to collect ex-
actly N — s coupons. We need to show that

(4.10) P(T > 2N?/s) = o(1).

Observe that T is a sum of independent geometrically distributed random vari-
ables. More precisely,

Tr=2Zi+-+Zn,
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where Z; 4 Geom(p;) with p; := (N_T”rl)z. Thus,

=X L= ()
—p S\N-i+l

1=

N
2 -2
N* >
j=s+1

=N?-(1+o0(1)) foox—de

2
_ (1+0(1))NT,

where the integral approximation holds due to our assumptions on s. Similarly, we
have

(4.11) =N* > i

Jj=s+1

=N*. (14 0(D)) /Oox—4dx

N4
=(1+ 0(1))3?

It follows with Chebyshev’s inequality that

VarT

P(T > 2N%/s) <P(T > 15ET) < —
(T'>2N%)s) BT > )= 0sETY

= 0(1/s) = o(1),

as desired. [

4.2. Proof of part (i) of Theorem 1. 'We now are ready to give the main argu-
ment for our upper bound on the online threshold. Throughout this section, we will
consider the boxes of the dissection D, as defined in (3.1), where ¢ :=1r/ V5. This
time, however, we treat these boxes as vertices of the ordinary grid graph [(1/0)].
[Again we assume (1/0) is an integer.] We will denote by Occ,(?) the subgraph
induced by the occupied boxes after ¢ rounds.
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Note that if two points fall anywhere inside two adjacent boxes of D,, by our
choice of p they are within distance r from each other. Hence, if a set of occu-
pied boxes induces a connected component of Occ, (), then all points inside these
boxes belong to the same connected component of the geometric graph.

LEMMA 22. After n/2 rounds, w.h.p. all but (@) -loglogn - (1/0) boxes are
occupied, no matter how the player plays.

PROOF. Note that to minimize the number of occupied boxes, the player
should play exactly like the two choices coupon collector from Section 4.1.3,
with the N := (1/0)? = n*/3T°() boxes playing the role of the coupons. Let
s = (18—0) -loglogn - (1/0), and note that s = nl/3te) = o(N). It follows with
Lemma 21 that w.h.p. after at most

2N? 2¢ c-5%2 53/2
s 100-p3loglogn  50-r3loglogn 50

rounds, all but s many boxes are occupied. [

n<n/2

Let us now fix 0 < ¢ < 1/7, to be determined later. We dissect the square into
b-blocks (which stands for “big blocks”) consisting of b x b boxes, where

’ " \1000/ loglogn’

[Again we assume for convenience that (1/9) and (1/bp) are integers.] Thus, there
are z2 b-blocks where

1
(4.13) z=(1/bo) = (%) -loglogn.

It is convenient to consider the b-blocks as vertices of the (ordinary) grid [z]*. So a
b-block is adjacent to b-blocks that share a side with it, but not with b-blocks that
share only a corner with it.

We shall refer to the top b rows of a b-block B simply as the fop rows of B.
Similarly, we call the bottom &b rows the bottom rows, the leftmost ¢b columns
the leftmost columns and the rightmost b the rightmost columns. Those boxes of
a b-block B that belong to neither the top or bottom rows nor to the leftmost or
rightmost columns will be called the interior of B. See Figure 3(a) for a depiction.

Let us call a row of a b-block good if no more than %log logn of its boxes are
empty, and similarly we call a column of a b-block good if no more than % loglogn
of its boxes are empty.

We call a b-block good if at least three quarters of the top rows are good, at least
three quarters of the bottom rows are good, at least three quarters of the leftmost
columns are good, and at least three quarters of the rightmost columns are good.
See Figure 3(b) for a depiction.
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FI1G. 3.  Two b-blocks. (a) A b-block with its top, bottom, leftmost and rightmost columns labelled.
(b) A good b-block. Three of the four top rows have only few empty boxes, and similarly for the
bottom rows, left columns and right columns.

If a b-block is not good, we will call it bad. Let us denote by Big,(¢) the sub-
graph of the grid of b-blocks (recall that we treat it like the ordinary z x z grid)
induced by the b-blocks that are good in round ¢.

LEMMA 23. W.h.p. in round n/2 at most (g) -z b-blocks are bad, no matter
what the player does.

PROOF. By Lemma 22, we can assume that in round n/2 at most (@) .
loglogn - (1/0) boxes are empty. Each bad b-block contains at least

1 bll . <€2c>(1/)

—. & - —loglo — s
4 3 088" = 12000/ /¢

empty boxes, because a quarter of either the top rows or the bottom rows or the

leftmost columns or the rightmost columns is not good. Hence, the number of bad

b-blocks cannot be larger than

(100/c) - loglogn - (1/0) (108)11 _(@)
2¢/12000)(1/0)  \e2c2) B8 =% ) F

We shall also need the following consequence of Lemma 22.

COROLLARY 24. Wh.p. in round n/2 at least (1 — )(1/0)? boxes are con-
tained in components of Occ, (n/2) of order strictly larger than b%, no matter what
the player does.
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FIG. 4. A framed b-block.

PROOF. By Lemma 22, we can assume that in round n/2 there are at most
(li&)log logn(1/0) empty boxes. Set

100 -c 2
= (1/0), i=(— ) -loglogn, =0/s) = ) .
si= (/0. ai= () doglogn, =0/ = ({gpieaior)
By Lemma 17, w.h.p. the number of occupied boxes in components of Occ,(n/2)
of order at most b2 is at most /B - (1 + ) - s> < /B -2 - s> =¢/5- (1/0)?. As
only an o(1)-fraction of the boxes is empty, the claim follows. [J

Let us say that a row or a column of a b-block is full is it contains no empty
boxes. We will us say that a b-block is framed if among the top rows there is one
that is full, among the bottom rows there is one that is full, among the leftmost
columns there is one that is full and among the righmost columns there is one
that is full. If a b-block B is framed then we refer to the union of the full rows
among the top rows, bottom rows, leftmost columns and rightmost columns as
the frame of B. The choice of the name should be clear from the depiction in
Figure 4.

LEMMA 25. W.h.p. every b-block that is good in round n/2 is framed in
round n, no matter what the player does.

PROOF. We will first compute the probability that a given b-block contains a
full row among the top €b rows in round n, given that it was good in round 7 /2.

Let us thus fix a b-block B, condition on it being good in round #/2, and con-
sider what happens to it in the rounds ¢ > n/2. In round n/2, at least M := %sb of
the top rows of B are good. Let us fix exactly M of these good rows ry, ..., ry.

We now consider the following balls and bins type process for the remaining
n/2 rounds. In each round n/2 <t <n, as long as none of the rows rq, ..., ry is
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full, we have a list e(t) = (e((¢), ..., ep(¢)) of empty boxes, where e;(t) € r;. If
at some round ¢ the player plays in some box in our list, then we replace it with
another box in the same row that is still empty (as long as this is possible; if it is
not possible then evidently a full row has been created). Otherwise, we keep the
list the same. In other words, if in round ¢ the player picks a point in ¢;(¢) then
we set ej(t + 1) =e;(t) for all j #i and e;(t + 1) is set to some box in row i
that is still empty; and if the player does not play in any box of e(¢) then we set
e(t+1)=e(1).

We want to compute the probability that there is some index i such that the
player is forced to play more than %loglogn times in e;(¢). Let R denote the
number of rounds n/2 < ¢t < n in which both points fall into e (#) U --- U epr (1)—
so that the player is forced to play in one of the ¢;s. Then

RLBi(n/2. (M- ¢)?).
Observe that
ER = 0O(nM?0*) = O(n - 0*/(loglogn)?) = n'/37o0),
Hence, the Chernoff bound (Lemma 4) yields
_nl/3—0())

P(R<ER/2)<e

Set N := %ER. If we condition on R > N, the probability that the player can
achieve a situation where none of rq, . .., rps is full by round # is upper bounded by
the probability that in the player version of the two choices balls and bins process
with N rounds and M bins, the player can achieve a maximum load of less than
% loglogn. Observe that

M = 3eb=0((1/0)/loglogn) = n'/3oM).
Thus, we have
loglogn = (1 + o(1)) loglog M.

Also observe that

©(nMo*)
©((no*)Mo)
© (loglogn) ‘ (logfogn))

= O((loglog M)™?).
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F1G. 5. Two adjacent, skewered b-blocks.

Hence, by Lemma 20 we have
P(none of rq,...,ry isfullinround n | ry, ..., rpr were good in round n/2)
<P(R < %ER) +exp[—M'7°D]

_1/3—0(1) _1/3—o(1)
<e™" +e"

e_nl/Sfo(l).

The same argument and computations apply to the bottom &b rows, the leftmost
&b columns and the rightmost ¢b columns. Since there are 2= O((loglog n)?)
b-blocks in total, the union bound gives us

P(there is a b-block which is good in round n/2 and not framed in round »)
<2.4. exp[_n1/3—0(1)]
=o(l),

as required. [

Let us say that two b-blocks Bj, By that share a vertical side are skewered if
there is a row that is full in both B; and B,. Similarly, we say that two b-blocks
B, B; that share a horizontal side are skewered if there is a common column that
is full in both. See Figure 5 for a depiction.

LEMMA 26. W.h.p. every two adjacent b-blocks that are both good in round
n/2 are skewered in round n, no matter what the player does.

PROOF. Let By, B> be two adjacent b-blocks (without loss of generality we
can assume they share a vertical side). If we condition on both being good in round
n/2, then there must be atleast M = 2- %sb = ¢b rows that are good in both B1, B>.

A row that is good in both has at most % loglogn empty boxes. We can thus follow
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the same reasoning as in the proof of Lemma 25 and the same computations with
only very minor adaptations to prove that, with probability 1 — exp[—n!/370(]
at least one of these rows will be full in both By and B;. Since there are only
O (z) = O (loglogn) pairs of adjacent b-blocks, the union bound again completes
the proof. [J

Observe that, if two adjacent b-blocks Bj, B are both framed and if they are
also skewered, then their frames will belong to the same component of Occ,.
Hence, Lemmas 25 and 26 together immediately imply the following.

COROLLARY 27. W.h.p. the folllowing holds, no matter what the player does.
If C is a connected component of Big,(n/2), then every b-block of B € C will be
framed in round n and the frames will all belong to the same component of the
boxes graph Occ, (n).

LEMMA 28. W.h.p., no matter what the player does, in round n there will be
a component C of Occy(n) that contains at least v(€) > a(e, c) - (1/ Q)2 boxes,
where

1-7e
k(e, 105/(ec))’
with k(-, -) as provided by Corollary 19.

4.14) a(e,c) =

PROOF. Let A; C [0, 1]% denote the union of all boxes that belong to a compo-
nent of Occ,(n/2) of order larger than b?* (in round n/2). By Corollary 24, w.h.p.,
we have

area(A1) >1—e¢.

Let A, denote the intersection of A; with the union of all boxes that lie in the
interior of some good b-block € Big, (n/2). (The reason for these definitions will
become clear later.) Then

area(A,) > area(A) — 4¢(h0)> Ngood — (b0)* Noad
> area(A1) — 4 — (b0)> Noads

where Ngood, Nbad denote the number of good respectively bad b-blocks in round
n/2. Trivially, we have Ngooq < 22 = (1/bp)?. Moreover, by Lemma 23 we have
that Npad = O (2) = 0(z%) w.h.p. Hence, w.h.p. it holds that

area(A,) > area(A;) —S5¢ > 1 — 6¢.

Recall that, by Lemma 23, Bigg (n/2) contains at least 72 — az b-blocks, where
o :=10%/(ec). By Corollary 19, the k = k(e, o) largest components of Big,(n/2)
together cover a fraction of at least 1 — & of the unit square. Let A3 denote the
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intersection of A, with the b-blocks belonging to the k largest components of
Big,(n/2). Then

area(A3) > area(Az) —e >1—Te.

Let Cy, ..., Cx denote the k largest components of Big,(n/2). Denoting by B; the
union of the b-blocks of C; foreachi =1, ..., n, there is an index 1 <i < k such
that

area(A3z N B;) > area(A3)/k > (1 —Te)/k.

Now recall that A3 is a union of boxes that belong to components of Occ,(n/2)
of order at least b2, and that all these boxes belong to the interior of a b-block be-
longing to C;. Observe that, if B € Big,(n) is a framed b-block, and C € Occy(n)

is a component with more than b? boxes that intersects the interior of B, then C
also intersects the frame of B (as a b-block consists of exactly b? boxes).

By Corollary 27, we can assume that the frames of the b-blocks in C; all belong
to the same component of the box graph. Hence, all boxes of A3 N B; belong to the
same component of Occ, (). Consequently, Occ, (1) has a component consisting
of at least ((1 —7¢)/k) - (1/@)2 boxes, as required. [J

To transfer the result back to the original random geometric graph setting and
conclude the proof, we need the next lemma, which is similar in spirit to Lemma 9.

LEMMA 29. Forevery € > 0, the following holds w.h.p. Every A C [0, 1]? that
is the union of boxes of the dissection D, and with area(A) > e contains at least
(1 — &) - area®(A) - n points in round n, no matter what the player does.

PROOF. Let A denote the set of all sets A [0, 1]° under consideration. Since
. . 2 2 o(1
every A € A is a union of boxes, we have |A| < 2(1/@)" = 2" e,
Fix a set A € A, and let Z the number of rounds in which the player cannot

avoid playing in A because both points fall inside it. Then Z 4 Bi(n, area’(A)).
By the Chernoff bound (Lemma 4), we have

P(Z < (1 —¢) - area®(A) - n) < exp[—n - area’(A) - H(1 — )] = exp[—Q(n)].

This holds for every set A under consideration. Hence, by the union bound we
have

P(there is a set A € A that receives less than (1 — ¢) - area®(A) - n points)
exp[—Q(m)]

=exp[n?* TN —Q@)]

=o0(1),

< 2n2/3+0(l) )
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which gives the lemma. [J

With Lemmas 21-29 in hand, it is easy to prove part (ii) of Theorem 1.

Proof of part (ii) of Theorem 1: For given ¢, set & :=,/2-10%/c > 0 if ¢ > 103,
and ¢ = 0.01 otherwise. Let d(c) :=a(e, ¢) for a(e, ¢) as defined in (4.14). Note
that in both cases 0 < d(c) < 1. Further, by the “moreover” part of Corollary 19,
for ¢ > 103 we have @(c) =1 — 7e = 1 — O(1/4/c). Hence, we have d(c) — 1 as
¢ — 0.

By Lemma 28, w.h.p. the boxes graph Occ, () will have a connected compo-
nent of area at least @(c). By Lemma 29, this will give us a component of order
at least (1 — o(1)) - @%(c) - n in the resulting geometric graph. Hence, the claim
follows for, say, g(c) := @ (c). Note that g(c) > 1 asc— oo.

4.3. Proof of part (ii) of Theorem 2. As in the previous proof, we divide the
unit square into boxes of side-length ¢ := r/+/5. We set s := 1/o as before and
assume, also as before, that s is an integer. Again we denote by Occ,, the subgraph
of the s x s grid [s]? induced by the occupied boxes.

For given ¢ > 0, define a = a(c) as the solution of

480./a
—— =c.
(I - Ja)?

Note that 0 < a(c) < 1 witha(c) — 1 as ¢ — o0.
We will show the following.

(4.15)

CLAIM 30. W.h.p. every possible choice of points is such that Occ, has a
component with more than a(c) - s2 vertices.

Observing that Lemma 29 carries over to the offline setting, Claim 30 implies
part (ii) of Theorem 2 as in the argument just given for the online case [for, say,
g(c) :=a*(0)].

It therefore remains to prove Claim 30. To do so, we proceed by combinatorial
counting in the grid [s]%. Let X denote the family of all subsets X C [s]? for which
all components of the graph [s]%> \ X are of order at most as?. Note that a choice
of points for which Occ, has only components of order at most as? exists if and
only if there is a set X € & that can be completely avoided by the player; that is, if
and only if there is a set X € X" such that in each of the n pairs, at most one point
falls into one of the boxes of X.

Naively speaking, we would wish to show that the expected number of such sets
X is o(1). Then Claim 4.15 would follow with Markov’s inequality. Unfortunately,
the number of sets X € X is too large for this. We therefore refine our basic idea by
defining a more manageable family X* of subsets of [s]* with the crucial property
that each X € X has a subset X* C X with X* € X*. For this family X™*, we
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will indeed be able to show that the expected number of sets X* € X'* that can be
avoided in the sense discussed above is o(1). Once this is established, it follows
with Markov’s inequality that w.h.p. no set from X* can be avoided, which in turn
implies that also no set from X can be avoided (recall that each set X € X" contains
a subset X* € A'*). To avoid confusion, let us point out explicitly that X* will not
be a subfamily of X.

In the following, we proceed with the construction of X'*. For a given set X €
X, we denote by C(X) the set of all components of [s]% \ X. Set

1—
(4.16) §:= ﬁ.
4
For X € X given, let
8254
4.17 tH|X]) i = ———,
4.17) (1X1) (X|+3)

and let k = k(X)) denote the number of components in C(X) that are of size at least
t(]X]). We shall refer to these components as large components, and denote them
by Cy, ..., Cx. We call the remaining components small. Note that the notions of
large and small components are not absolute, but depend on the size of the set X
considered.

For the following definitions, it is convenient to go back to a geometric view-
point of the s x s grid. Each component C of the graph [s]?> \ X corresponds to
a connected subset of the unit square [with area v(C) - QZ], and has a geometri-
cal boundary dC that is the union of one or several closed (rectilinear) walks in
the unit square. Note that the length of this geometrical boundary is e(C, C) - o,
where C¢ denotes the complement of C in 72 (not in [s]?). For brevity we write,
with slight abuse of notation, |dC| for ¢(C, C¢), and |C| for v(C) in the following.

Fori=1,...,k,let Ci/ denote the maximal superset of C; whose geometrical
boundary BC{ is contained in 0C;. Note that 8le is a single closed walk in the
unit square. (Informally speaking, C; is obtained from C; by “filling the holes”
in C;.) Note that Ci, e C,’( are not necessarily pairwise disjoint (think, e.g., of
C1, ..., Cy as concentric rings).

Going back to the combinatorial viewpoint, it is not hard to see that the neigh-
bourhood of le is contained in the neighbourhood of C; foreachi =1, ..., k. Let
X" = X'(X) denote the union of the neighbourhoods of C7, ..., C;, and note that
X' CX.

For X € X, we now define
X* = X*(X) := X, if|X|Z.s1'01,

X'(X), otherwise.

Note that X*(X) C X in both cases—as explained above, this is crucial for our
argument. Finally, we define X* to be the family of all sets X* C [s]* that can
arise in this way from some set X € X.

By our explanations above, it remains to show the following.
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CLAIM 31. The expected number of sets X* € X* that contain no two points
from the same random point pair (i.e., the expected number of sets X* € X* that
can be avoided by the player) is o(1).

Let X; denote the family of all sets X* € X™* of size exactly m. We will bound
the number of sets in &% by combinatorial counting. We begin by showing that
A is in fact empty for values of m smaller than

(1 —+/a)s
4.18 in=—.
( ) Mmin 2\/5
LEMMA 32. For s large and X € X with |X| < s'0 the set X' = X'(X)
satisfies | X'| > mmin. Consequently, for m < mmin we have X, = &.

PROOF. Let X as in the lemma be given, and let Hgy,y denote the union of the
small components in C(X) [recall the definitions after (4.17)]. Applying Lemma 17

with B = (t(|1X])/s)? = 0)?%2 and & = | X|/s gives that v(Hsma) < 85. The re-
maining occupied boxes must be in the k = k(X) large components. Consequently,

we have
k

(4.19) Y ICi = (1= 8)s* = [X| = (1 - 28)s%,
i=1

where the last inequality follows from | X| < s'01 = o(s?).

The next argument is similar in spirit to the proofs of Lemmas 16 and 17;
however, we have to deal with the subtlety that we want to bound Y"%_, |0C]| =
Zle e(le, (C;)C) from below but we only have an upper bound on |C;| = v(C;)
[not |C]| = v(C/)] for all i.

Note first that

k
(4.20) > 10C]| < 4]X'| 4 4s,
i=1
where the inequality follows from the observation that each vertex of X’ con-

tributes at most 4 to the sum, and the boundary of the unit square contributes at
most 4s in total.

On the other hand, by Lemma 15 the total circumference of C {, ...,C ,/( satisfies
k k k k
|Cil
aci| > 4./|C!| > 4 |Ci| >4
i§| i ; VICi ;v i gl —

“19) 4(1 - 28)s
p— ﬁ 9
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where in the third inequality we used that |C;| < as? (because X € X).
Together with (4.20), it follows that

|X/| > (I —28)s s (4é6) (I— \/c_l)s .

Va Taa .

Next, we bound the size of X for the intermediate values of m.

LEMMA 33. Fors large and mpyjn <m < s1Ol e have Xk < el0m/(1=ya)

PROOF. To specify a set X* € X% for m as in the lemma, it suffices to specify
the boundaries of C i, ..., C ,/( (i.e., the outer boundaries of C1, ..., Cy). For a given
such component C/, we encode its geometric boundary dC; by specifying, say, the
leftmost point of the topmost horizontal line intersecting with dC; as a starting
point, and by specifying the direction of each of the [dC}| = ¢; steps along the
boundary (say in clockwise direction). There are at most s2 - 3% ways of specifying
a boundary dC/ (and thus a component C?) in this way.

For each set X* € X" with m as in the lemma there exists, by definition, a set
X € X with X'(X) = X* and |X| < s'9'. Thus, the number k = k(X) of large
components can be bounded as

2 2

5T @17 _2<|X| ) —2/.0.01 2

< =8 —+1) =5 1) =
t(1X1]) s ( )

Note that x = O (s%9). Recall also from (4.20) that >°5_, ¢; < 4m + 4s.
It follows that for muyi, <m < 591 we have

X k
|| < Z Z H(s23ei) < x(4m + 4s)* (SZ)X34m+4s‘
k=1 Liyenny Ly i=1
L1+ <4dm+4s

Observe that, for s large enough and mmpin < m < s'91, the factor 34"+ is
much larger than x, (4m + 4s)* and (s?)* (which are all exp[O (s*0%logs)]). It
follows that, for s large enough:

}X,:;} S (301)4(m+s) S eS(ers) E elOm/(lf\/(E)’

where in the last step we used that
“18) 2./a 2./a
§ £ = "Mmn<——="m
1—4/a 1—4a
and consequently

N <1+ﬁ - 2m
m N -m .
“1—-ya ~1-.a O
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With the preceding lemmas in hand, Claim 31 follows with a routine calculation.
PROOF OF CLAIM 31. Using Lemmas 32 and 33, and using the trivial bound
)
|Xr>rkl| =< ( ) §S2m :eZmlogs
m

for m > 5191 we obtain that the expected number of sets X* € X'* that contain no

two points from the same random point pair is

sl (- ()

“4.21) < Z 610m/(1—«/5)—m2n/s4+ Z eZmlOgs—mzn/.v4
Mupin <m<s 101 m>s1.01
< Z (610/(1—ﬁ)—mn/s4)m+ Z (6210gs—mn/s4)m.
mznmin m>s101

By our choice of constants, we have
(4.22) n/s>=nod=nr’-573%>¢/12
and consequently the exponents of the terms in parentheses are uniformly bounded
by
10 4 418).422) 10 c(l — /a) @.15) 10
————= — Mmin " N/$ = - = =
1—4a 1—4a 24 /a 1—4/a

and

(4.22)
210gs—s1'Ol -n/s4 < 210gs—c/12-s0'0] =—w(l),

respectively. It follows that the right-hand side of (4.21)is o(1). O

As explained above, Claim 31 implies Claim 30, which in turn implies part (ii)
of Theorem 2.

S. Concluding remarks. In this paper, we have shown that in the power of
choices version of the random geometric graph, the onset of a giant component
can be delayed until the average degree is of order n!/3(loglogn)?/3. This is an
improvement by a power of n over the standard random geometric graph, where a
giant appears as soon as the average degree exceeds a certain constant. As pointed
out in the Introduction, this behaviour is in stark contrast to what happens in the
(vertex) Achlioptas process, where the power of choices only yields a constant
factor improvement.

We have also shown that in the offline version of our process a giant can be
delayed just a little longer, until the average degree is of order n'/3.

We offer the following two natural conjectures.
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CONJECTURE 34. There is a function f:(0,00) — (0, 1) such that the fol-
lowing holds. Consider the online power of choices geometric graph process,

wherer = 3 m. Assuming optimal play, the largest component will have size
(1+o0(1))- f(c) -nwhp.

CONJECTURE 35. There is a function f:(0,00) — (0, 1) such that the fol-
lowing holds. Consider the offline power of choices geometric graph setting,

where r = \3/5 Assuming optimal play, the largest component will have size
(1+o0(1))- f(c) -nwhp.

Many steps in our proofs have been rather crude and we have made no attempt to
optimize the expressions for f(c), g(c) in Theorems 1 and 2. The main reason for
this is that we believe that it will not be possible to prove the above two conjectures
without significant new ideas.

The largest component just before the threshold. Our proofs also give some
insight into the behaviour before the threshold. For the following discussion, we
let ro = (nloglogn)~!/3 for the online case, and ro = n—'/3 for the offline case.
Furthermore, we assume that r is asymptotically smaller than ro but only slightly
so (say n=137001 < ).

The strategies described in Sections 3.1 and 3.2 guarantee that w.h.p. the largest
component is of order O ((r/ ro)® - n) vertices in both settings. To see this, note
that in Lemma 5 the constant a(K) can be improved to a(K) = &(1/K 2). Thus,
a(K) = ©(c?) as ¢ = (r/ ro)> — 0, which translates to the claimed bound by
(a slightly adapted version of) Lemma 9.

On the other hand, the upper bound proof given in Section 4.3 for the offline
setting shows that w.h.p. the player will be forced to create a component with
Q((r/ro)'? - n) vertices: We have a(c) = ©(c?) as ¢ = (r/ro)> — 0 in (4.15),
and the resulting factor of (r/ro)® is squared when (a slightly adapted version of)
Lemma 29 is applied.

Similarly, the upper bound proof given in Section 4.2 for the online setting
shows that w.h.p. the player will be forced to create a component with at least
®((r/r0)12 - n) vertices: For ¢ fixed and o — 00, we have k(e, ) = O(«?) in
Corollary 19, as A; = O(i/az). It follows that for ¢ = 0.01 fixed, a(c, €) in
Lemma 28 is €2(c?) as ¢ = (r/ r0)> — 0. As for the online setting, the resulting
factor of (r/rg)® is squared when Lemma 29 is applied.

To summarize, in both the online and the offline power of choices setting,
the size of the largest component in optimal play is between ®((r/ro)'? - n)
and ©((r/ro)® - n), where ry denotes the respective threshold. Note that this be-
haviour is again very different from what happens in the standard geometric and
Erd6s—Rényi random graphs, where the size of the largest component jumps from
®(logn) to ®(n) at the threshold. (Such a jump is also observed in the Achliop-
tas process when played with certain natural, but most likely not optimal player
strategies; see, e.g., [27].)
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It would be interesting to close the gap between our bounds for the moderately
subcritical regime.

QUESTION 36. Both for the online and the offline setting, what is the order of
the largest component in optimal play (w.h.p.) when r is slightly below the respec-
tive threshold?

(Here, we mean by “slightly below” that ro - n™¢ < r « rg for every fixed
e>0.)

More choices. Let us now sketch how our results generalize to the scenario with
an arbitrary fixed number d > 2 of choices per step. As stated in the Introduction,
the resulting thresholds then are n~/@+D (loglogn)=(@=D/@+D for the online
setting, and n~'/@+D for the offline case. This can be shown with only minor
modifications to the proofs we gave for d = 2.

To give some intuition for these formulas, let us point out the following: In both
scenarios, the threshold corresponds to the point where the number of points that
are forced to be in the barrier (as defined in our lower bound proofs) equals the
number of boxes of the barrier in order of magnitude. In the online scenario, the
barrier has an area of ®(r loglogn), and thus the (expected) number of points that
we need to choose in the barrier is of order nré(loglogn)?. On the other hand,
the number of boxes in the barrier is of order r~!loglogn. It is not hard to see
that these terms are equal for r as stated. The threshold for the offline case can be
motivated with a very similar calculation.

Creating a giant. Another interesting related question is what happens if the
player attempts to speed up the onset of a giant component instead of delaying it.
For this setup, one can quite easily derive the following result.

THEOREM 37. Suppose that r = \/A/n for some constant ). > 0. Then the
following holds, where M\ is the critical constant for the emergence of a giant
component in the ordinary random geometric graph:

(1) If & < Acrit/2 then w.h.p. the largest component of the graph will be o(n),
no matter what the player does.

(1) If A > Acrit/2 then the player has a strategy that will result in a component
of order Q2 (n), w.h.p.

To see that part (i) holds, we just need to note that even if we allow the player
to keep both points in each round he will just have a subcritical or critical random
geometric graph. The proof of part (ii) is only slightly more involved. A sketch
of the argument is as follows: The player fixes a small square A of area ¢ = ()
inside the unit square, and he always selects a point inside A if he can (if both
fall in A he chooses randomly). If € > 0 was chosen sufficiently small, then the
graph induced by the points in A will be a supercritical random geometric graph,
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containing a linear proportion of all vertices that fall in A, and hence also a linear
proportion of all n vertices. For completeness, we spell out this argument in more
detail in the Appendix B.

Our strategy for A > Aqit/2 case is rather simple, and in a sense it might be
suboptimal. While it does deliver a component of linear size, a more sophisticated
strategy might achieve an even larger largest component.

QUESTION 38. If A > Acrit is fixed and r = /A /n, what is the order of the
largest component the player can (w.h.p.) achieve?

APPENDIX A: AN UPPER BOUND FOR THE VERTEX ACHLIOPTAS
PROCESS

In this section, we show that, as claimed at the end of Section 1.2, in the vertex
Achlioptas process the player is also forced to create a linear-sized component
as soon as the average degree of the underlying random graph exceeds a certain
constant.

We will use the following lemma, which is a straightforward generalization of
Lemma 2 in [6]. We denote by G (n, m) a (“Erd6s—Rényi”’) random graph sampled
uniformly from all graphs on n vertices and m edges. For a graph G and a set
S € V(G), we denote the graph induced by § in G by G[S].

LEMMA 39 ([6]). Let c > 0. For every ¢ > O there exists 5 = §(c, &) > 0 such
that a.a.s. the random graph G := G(n, cn) has the property that for every S C
V(G) for which G[S] contains more than (1 + ¢)|S| edges we have |S| > én.

We are now able to deduce the following.

THEOREM 40. There is a constant ¢ > 0 such that if m > cn then w.h.p. a
component of linear size will be formed in the vertex Achlioptas process, no matter
what the player does.

PROOF. We will show that for ¢ large enough and m := cn, w.h.p. G(n, m) is
such that every set of n/2 vertices induces a graph that contains a linear-sized com-
ponent. Clearly, this then proves the claim. (In fact, our argument gives an upper
bound for the offline problem corresponding to the vertex Achlioptas process.)

Note that the expected number of edges in a fixed set of n/2 vertices is

2
()

(2)
By a Chernoff-type bound (Theorem 2.10 of [15]), the probability that this num-
ber of edges is less than m /8 is e~ A union bound over all (trivially at most

= (14 o(1))m/4.
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2" sets of n/2 vertices thus yields that with probability 1 — 2"¢~%("™) each such
set contains at least m /8 edges. Clearly, for ¢ chosen large enough the last proba-
bility is 1 — o(1).

Note that the ratio of edges to vertices in each such set is (m/8)/(n/2) =
m/(4n) = c/4, which we can ensure to be at least 2, say, by choosing ¢ > 8. More-
over, by averaging, also at least one of the components of the graph induced by
such a set has a ratio of edges to vertices of at least 2. By Lemma 39, w.h.p. each
such subgraph of G (n, m) is of order at least §(c, 1)n.

To summarize, w.h.p. G (n, m) is such that each set of n/2 vertices has a ratio of
edges to vertices of at least 2, and as a consequence of this induces a graph which
contains a linear-sized component. [

APPENDIX B: PROOF OF THE SECOND PART OF THEOREM 37

In this section, we fill in the details of the proof sketch provided just after the
statement of Theorem 37.

Proof of part (ii) of Theorem 37: We take € = ¢()) sufficiently small, to be made
more precise later, and we let A C [0, 11* be a square with area(A) = ¢.

In every round, the player will always picks a point in A if he can. If it happens
that both points fall in A the he chooses randomly. Observe that the probability
that, in a given round, the player is able to select a point of A equals 1 — (1 —¢)? =
2e — 2.

Let R denote the number of rounds when he succeeded to pick a point of A.
Clearly, R 4 Bi(n, 2¢ — £2). By the Chernoff bound (Lemma 4), we have that

P(R < (1 —¢)-ER) <exp[—Q(n)] =o(1).

Let G denote the subgraph of the player’s graph induced by the points in A. Ob-
serve that we can rescale A by a factor of 1/4/¢ and translate it to map it to the
unit square [0, 1]%. Thus, by stopping the process the instant n’ := (1 — &)ER =
(1 —¢) - (2 — €?) - n points have been selected inside A, we see that (w.h.p.) G
contains a copy of the ordinary random geometric graph with parameters n’ and
r'i=r/\/e.

Let us now observe that we can rewrite r’ as

. _\/7_\/2-(1—8)-(1—8/2)-1_. Y
r_ﬁ_ E— ' =. ;

As A > )Lcrjt /2, we can choose ¢ > 0 small enough for A’ > A to hold. Hence, in
that case G will (w.h.p.) contain a component spanning Q2 (n") = Q(n) points.
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